Hints for exercise set \#1

2. In part b), the following facts will be useful:

$$
\begin{aligned}
\mathbb{E}\left(y_{i}\right) & =\int_{0}^{\infty} \frac{y^{3}}{2 \theta} e^{-\frac{y}{\theta}} d y=3 \theta \\
\mathbb{E}\left(y_{i}^{2}\right) & =\int_{0}^{\infty} \frac{y^{4}}{2 \theta} e^{-\frac{y}{\theta}} d y=12 \theta^{2}
\end{aligned}
$$

The integrals can be solved via multiple iterations of integration by parts, if you wish to convince yourself.
Recall also the identity $\mathbb{E}\left(X^{2}\right)=\operatorname{var}(X)+[\mathbb{E}(X)]^{2}$ for any random variable X.
4. In part b), you may need the expectation $\mathbb{E}\left(x_{i}\right)$ of an Erlang distributed random variable x_{i}. By definition, expected value is given by the integral

$$
\mathbb{E}\left(x_{i}\right)=\frac{1}{(m-1)!} \int_{0}^{\infty}\left(\frac{x}{\theta}\right)^{m} e^{-\frac{x}{\theta}} d x
$$

Introducing the substitution $u=x / \theta$, we have $d x=\theta d u$ and

$$
\mathbb{E}\left(x_{i}\right)=\frac{\theta}{(m-1)!} \underbrace{\int_{0}^{\infty} u^{m} e^{-u} d u}_{I_{m}}
$$

Denoting the resulting integral by I_{m}, we can integrate by parts and obtain

$$
I_{m}=-\left.u^{m} e^{-u}\right|_{0} ^{\infty}+\int_{0}^{\infty} m u^{m-1} e^{-u} d u=0+m I_{m-1}
$$

Continuing the recursion, and observing that $I_{0}=1$, we obtain $I_{m}=m$!, and hence

$$
E\left(x_{i}\right)=m \theta .
$$

