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0.1 Introduction
These are lecture notes for the course Quantum
Materials. The web page of the course is
https://mycourses.aalto.fi/course/view.php?id=38792

The web page contains the lecture material (these notes),
advance assignments, exercises and other material. The
material for the course will be prepared during the
course, so that hopefully the material for each lecture is
uploaded before the lecture.

Time table 2023

Lectures on Mondays and Wednesdays 12.15-14.00
(23.10.-29.11.).
Exercise sessions on Thursdays 10.15-12.00 and Fridays
11.15-13.00 (26.10.-1.12.).
All lectures and exercises in nanotalo room 228.

Teaching assistant: Miika Rasola

Advance assignments are small task that are aimed to
prepare you for the lecture. They will be placed on the
web page some days prior each lecture, and they should
be completed before the lecture. Each week’s exercises
will be placed in web page soon after Wednesday’s
lecture, or earlier. There are two exercise sessions
(Thursdays and Fridays). You can go to one or the other,
or to both. Try to solve the problems before the exercise
session, so that during the session you can pose questions
to the assistant. You still have time until next Wednesday
to show completed exercises.

Exam Tuesday 5.12. at 9.00–12.00

The evaluation criteria are approximately as follows:
advance assignments 15%, exercises 25%, examination
60%.

Relation to other courses

This course is part of quantum technology bachelor
program. Some related courses are listed below.

ELEC-C9420 Introduction to Quantum Technology. This
has given you a flash of several topics in quantum physics.

ELEC-C9430 Electromagnetism. Here you have learned
basics about electric and magnetic fields, and
electromagnetic radiation.

PHYS-C0252 Quantum Mechanics (QMec). This course
has introduced you to the formalism and some
applications of quantum mechanics.

The present course, Quantum Materials. The aim is to
learn how quantum mechanics can be used to understand
the properties of matter, from atoms to molecules and
condensed matter. Note that this course has different
content than the course with the same name that was
lectured in 2021 and 2022. (The reason for this is that
the order of the courses Quantum materials and

Quantum mechanics has been changed.)

PHYS-C0256 Thermodynamics and Statistical Physics.
At some places we need some basic results of thermal
physics, which will later be more properly explained in
this course.

Topics

• Reminder of Schrödinger equation in 1 dimension
and generalization to 3 dimensions

• Schrödinger equation applied to hydrogen atom:
energy levels, angular momentum, electron spin

• Many-electron systems, justification for the periodic
table of elements

• Atomic bonding, transitions in molecules

• Crystal structure of solids

• Lattice vibrations in solids, classical and quantum
models and heat capacity.

• Electronic structure of solids, free electron model,
electrons in a periodic potential, energy bands,
semiclassical electron motion

• Metals: electrical conduction, superconductivity:
phenomenology and pairing theory

• Semiconductors: intrinsic, n and p types, junctions
and devices,

• Electronic transitions

Learning Outcomes (from Sisu):
After the course, the student has understanding on the
atomic and solid state structure and can solve basic
problems.

Prerequisites

Basic knowledge of classical mechanics (Newton’s
equation of motion, work and energy, harmonic
oscillator). Basic quantum mechanics [Schrödinger
equation applied to one dimensional (1 D) problems].

Mathematical skills: elementary functions, complex
algebra and basic functions, derivative, Taylor series,
integration, differential equations, vector algebra, partial
derivatives.

Books

• Young and Freedman, University Physics (14th
Edition), Pearson (YF). Library link. This is a vast
book with 1600 pages. What is useful for the present
course are chapters 41 “Quantum mechanics II:
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atomic structure” and 42 “Molecules and condensed
matter”. The presentation of solid state physics, in
particular, in this book is shorter than we will have
in this course.

• S.H. Simon, The Oxford Solid State Basics (S).
Library link. Year 2013, 290 pages. This is very nice
introductory book of solid state physics, which goes
much more in details than YF. No discussion of
superconductivity.

The lecture notes below contain references to sections of
both books (YF and S) that contain similar discussion.
Not all topics presented in the lectures can be found in
the two books. The way theory of superconductivity is
presented here will not be found in any book or
publication, as far as I know, although the basic theory is
the same as explained in practically all books of
superconductivity, also in my lecture notes.

Other good books

• N. Ashcroft ja D. Mermin, Solid state physics (AM).
Year 1976, 826 pages. Very clear book in theoretical
basics but lacks modern developments. Solid state
physics seen from the point of a theoretical physicist,
but still with minimal formalism. (warning: cgs
units)

• M. Tinkham, Introduction to Superconductivity
(1975, 1996). Very widely used book of
superconductivity.

Notation, constants and formulas

(figure) This indicates a figure to be drawn in the lecture,
but not included in these notes.

a/bc = a
bc notation used in these notes

h, Planck’s constant, h̄ = h/2π = 1.054× 10−34 Js

c = 299 792 458 m/s, velocity of light in vacuum

e = 1.602× 10−19 C, the elementary charge, absolute
value of the electron charge. Unfortunately, e is also used
to denote the Euler’s number e = 2, 718 . . .. What is
meant, should be deduced from the context.

kB = 1.380× 10−23 J/K, Boltzmann constant

NA = 6.022× 1023 1/mol, Avogadro constant

u = (0.001 kg/mol)/NA = 1.660× 10−27 kg, atomic mass
unit

ε0 = 8.854× 10−12 C2/Nm2, electric constant (vacuum
permittivity)

µ0 = 4π × 10−7 N/A2 = 4π × 10−7 T2m3/J, magnetic
constant (vacuum permeability)

me = 9.109× 10−31 kg, mass of an electron, in most cases
marked by m

mp = 1.6726× 10−27 kg, mass of a proton

1 eV= 1.602× 10−19 J

exp(x) = ex, coshx = 1
2 (ex + e−x), sinhx = 1

2 (ex − e−x),
tanhx = 1/ cothx = sinhx/ coshx.

sin(α+ β) = sinα cosβ + cosα sinβ
cos(α+ β) = cosα cosβ − sinα sinβ
a∗, complex conjugate of a

ex+iy = ex(cos y + i sin y)
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1. Quantum mechanics of a single
particle

1.1 Schrödinger equation
(YF 40.1) The Schrödinger equation is

ih̄
∂Ψ

∂t
(x, t) = − h̄2

2m

∂2Ψ

∂x2
(x, t) + U(x)Ψ(x, t). (1)

This equation was deduced starting from the formal
theory of quantum mechanics in the course QMec. In the
present course, we take the Schrödinger equation as our
starting point. In this section we try to clarify the
meaning of this equation.

Let us recall the quantities contained in the Schrödinger
equation (1). Ψ(x, t) is the wave function. It is also called
state. It depends on the spatial coordinate x and on time
t. It describes what we know of a particle that is allowed
to move on the x axis. The Schrödinger equation contains
partial derivatives of Ψ(x, t), the first partial derivative
with respect to t, and the second partial derivative with
respect to x,

∂Ψ

∂t
(x, t),

∂2Ψ

∂x2
(x, t). (2)

The partial derivative of a function of several variables is
like the usual derivative while considering the other
variables as constant. In addition it contains the Planck
constant h̄ = h/2π, the mass m of the particle and the
potential energy U(x). On the left hand side is i, the
imaginary unit. The wave function Ψ(x, t) is complex
valued. That is, it can be represented with two real
functions <Ψ(x, t) and =Ψ(x, t) [called real and imaginary
parts of Ψ(x, t)] so that Ψ(x, t) = <Ψ(x, t) + i=Ψ(x, t).
The absolute square of the wave function is

|Ψ(x, t)|2 = Ψ(x, t)Ψ∗(x, t) = [<Ψ(x, t)]2 + [=Ψ(x, t)]2,
(3)

where Ψ∗ = <Ψ− i=Ψ is the complex conjugate of Ψ.

The physical interpretation of the wave function is that
the probability to find the particle at location x is
proportional |Ψ(x, t)|2. In order to express this more
precisely we define normalization integral

I =

∫
|Ψ(x, t)|2dx. (4)

In many cases, I has a finite value (6= 0, 6=∞). When
this holds, we can “normalize” the wave function by
dividing by

√
I. As a result, we have a new Ψ(x, t) that

satisfies the normalization condition∫
|Ψ(x, t)|2dx = 1. (5)

When this is satisfied, we define the probability density

P (x, t) = |Ψ(x, t)|2 (6)

so that P (x, t)dx gives the probability to find the particle
within a small range dx around x. For example, in the
interval (x− 1

2dx, x+ 1
2dx).

Mathematically, the Schrödinger equation (1) is a partial
differential equation because it expresses a condition for a
function of two variables and its partial derivatives. The
idea is to find the wave function so that equation (1) is
satisfied at all values of x and t in some appropriate
domain. For example, the domain could be −∞ < x <∞
and t > t0. Often there is an initial condition that
Ψ(x, t0) equals a given function of x at some initial time
t0 and/or there are boundary conditions that fix the
behavior of Ψ(x, t) at certain values of x.

The Schrödinger equation (1) should be compared with
Newton’s equation of motion. The latter for a particle
moving along x is

m
d2x

dt2
(t) = F (x), F (x) = −dU

dx
(x), (7)

where F is the force acting on the particle. This is an
ordinary differential equation (not partial) for the
function x(t), the location of the particle as a function of
time. Newton’s equation of motion (7) is valid in classical
mechanics. In quantum mechanics it is replaced by the
Schrödinger equation (1).

An important property of the Schrödinger equation (1) is
that it is linear. That is, if Ψ1(x, t) and Ψ2(x, t) are two
solutions of the equation, then their linear combination
aΨ1(x, t) + bΨ2(x, t) is a solution (where a and b are
arbitrary real or complex numbers). This is known as the
principle of superposition.

Of particular interest are states that have the form

Ψ(x, t) = ψ(x)e−iωt, (8)

where the time dependence is complex sinusoidal with
angular frequency ω. Such states are called stationary
since the probability density (6) is independent of time.
Substituting (8) into the Schrödinger equation allows to
cancel the factors e−iωt. Defining E = h̄ω we are left with
time-independent Schrödinger equation

− h̄2

2m

d2ψ

dx2
(x) + U(x)ψ(x) = Eψ(x). (9)

Since ψ is a function of a single variable, the partial
derivative has been replaced by ordinary derivative.

In oder to get better understanding of the Schrödinger
equations (1) and (9), we define the momentum operator

pop =
h̄

i

∂

∂x
. (10)

As an example, consider the sinusoidal wave

Ψ(x, t) = Aei(kx−ωt) ⇔ ψ(x) = Aeikx. (11)
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Applying the momentum operator (10) gives

popΨ(x, t) =
h̄

i

∂

∂x
Aei(kx−ωt) = h̄k Aei(kx−ωt). (12)

We express the result

popΨ(x, t) = h̄kΨ(x, t). (13)

It is called that Ψ (11) is an eigenfunction of the
momentum operator. The quantity of h̄k is called the
eigenvalue. We see that operating with momentum
operator on the wave state (11), gives the same state
multiplied by the eigenvalue. The eigenvalue is the
momentum of the state, p = h̄k. This is the way we can
know the momentum of a state. When (13) is valid, the
momentum of the state Ψ is precisely defined.

We see that the first term on left hand side of the
Schrödinger equation (9) is operator p2

op/2m acting on
the wave function. This can be interpreted as the kinetic
energy operator, as a particle with momentum p has
kinetic energy p2/2m. The second term on the left hand
side can be seen as potential energy operator acting on ψ
(where the operation is simply multiplication). Thus the
left hand side of the Schrödinger equation (9) is the total
energy operator acting on ψ. This allows to interpret E
on the right hand side of (9) as the total energy. Thus the
stationary states [solutions of (9)] are also known as
energy eigenstates, as they have definite value of energy.
Also names energy levels or levels are used.

Above we deduced the relation E = h̄ω. Since the
frequency ν = ω/2π, and h = 2πh̄, this can also be
expressed by

E = hν. (14)

This relation is the same as suggested for quanta of
electromagnetic radiation (photons) by Max Planck in
1900. Also note that k in (11) is the wave number. It is
related to the wave length λ by the standard relation
k = 2π/λ, and thus

p =
h

λ
. (15)

This relation was suggested for electron waves by de
Broglie in 1924. Both relations (14) and (15) were
suggested before the full theory of quantum mechanics
was developed. We see that both are incorporated in the
Schrödinger equation (1).

The momentum operator (10) is an example that in
quantum mechanics physical quantities are represented by
operators. Let O be an operator (which are hermitian in
quantum mechanics). When

OΨλ(x, t) = λΨλ(x, t), (16)

where λ is a number, we say that Ψλ(x, t) is an eigenstate
of O with eigenvalue λ. More general wave functions can

be presented as sum over different eigenstates,

Ψ(x, t) =
∑
λ

cλΨλ(x, t). (17)

Measuring the quantity O in this state gives the result λ
with probability |cλ|2 (assuming normalized states). The
expectation value is

〈O〉 =

∫
ψ∗(x)Oψ(x) dx. (18)

For example, the momentum

〈p〉 =

∫
Ψ∗(x, t)

(
−ih̄ ∂

∂x

)
Ψ(x, t) dx, (19)

the x coordinate

〈x〉 =

∫
Ψ∗(x, t)xΨ(x, t) dx =

∫
|Ψ(x, t)|2x dx, (20)

or the potential

〈U〉 =

∫
Ψ∗(x, t)U(x)Ψ(x, t) dx =

∫
|Ψ(x, t)|2U(x) dx.

(21)

For the sinusoidal wave (11) the momentum p = h̄k is
precisely known but the x coordinate of the particle is
completely unknown (since |ψ(x)|2 is constant). By
making a superposition of sinusoidal waves with different
k’s, it is possible to form a localized wave packet, but
then the momentum is no more well defined. We skip the
precise definitions and the proof, but state that the
uncertainties of momentum ∆p and location ∆x satisfy
the inequality

∆x∆p ≥ h̄

2
(22)

known as the uncertainty relation.

Above we compared the Schrödinger equation (1) with
Newton’s equation of motion (7). The relation between
the two is clarified by Ehrenfest theorem. It states that
the expectation values of the location x and the force
F = −dU/dx obey Newton’s equation of motion

m
d2〈x〉
dt2

= −〈dU
dx
〉. (23)

The proof of this relation is an exercise in integration by
parts using the Schrödinger equation and its complex
conjugate.

In the following we refresh our memory of some
applications of the Schrödinger equation.

1.2 Deep potential well
(YF 40.2) We study a particle in a deep potential well.
We take U(x) = 0 in the range 0 < x < L. Outside this
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range we take the limit U →∞. In order to get finite
results, ψ → 0 in the outside region. Thus the effective
boundary conditions are

ψ(0) = ψ(L) = 0. (24)

Instead of a traveling wave eikx, we now expect
superposition of waves traveling in the positive and
negative x directions,

ψ(x) = Ceikx +De−ikx

= A cos(kx) +B sin(kx). (25)

The latter form is obtained from the former using
eiφ = cosφ+ i sinφ. In both forms the coefficients A, B,
C and D are complex in the general case. For the present
problem the latter form is more convenient.

The boundary condition ψ(0) = 0 gives A = 0. The
boundary condition ψ(L) = 0 gives B sin(kL) = 0.
Assuming B 6= 0 we should have kL = πn with integer n.
The nontrivial solutions have

k =
πn

L
, n = 1, 2, 3, . . . (26)

The corresponding energies are obtained from (9), giving
E = h̄2k2/2m, and thus

E =
π2h̄2n2

2mL2
, n = 1, 2, 3, . . . (27)

xn=1

n=2

n=3

L0

E

The figure illustrates the three lowest energies and their
wave functions. Although wave numbers (26) are
constant times integer, the energies/frequencies (27) are
not equidistant. Another noteworthy point is zero point
energy. That is, the energy of the lowest energy state
n = 1 is not zero.

In order to normalize the solutions we calculate I (4). We
find I = B2L/2. Thus the normalized eigenstates are

ψn(x) =

√
2

L
sin

πnx

L
, n = 1, 2, 3, . . . (28)

The probability density is given by |ψ(x)|2. (YF fig
40.12) Compare to the classical probability density, which
is constant 1/L.

1.3 Potential step etc.

(YF 40.3-4) We consider the case that U(x) = 0 for x < 0
and U(x) = U0 > 0 for x > 0 and a particle arriving from
the left.

E

U0

0 x

Consider first what happens according to classical
mechanics. If the particle’s kinetic energy is less than U0,
the particle is reflected back. If the kinetic energy is
larger than U0, the particle is transmitted but with
reduced speed.

In a quantum mechanical solution, we have to find the
general wave functions in the regions x < 0 and x > 0.
Then these waves have to be matched using boundary
conditions. The boundary conditions are 1) the wave
function has to be continuous and 2) the derivative of the
wave function has to be continuous. These are
understandable because the Schrödinger equation (9) is
second order differential equation. If there were
discontinuity in the wave function or its first derivative,
the second derivative would be infinite at such a point.
Considering potentials that are finite, this is not allowed.

Consider E < U0. On the left (x < 0) the solution is of
the standing wave form (25). On the right the energy of
the solution is less than the potential energy, E − U0 < 0,

h̄2

2m

d2ψ

dx2
(x)− (U0 − E)ψ(x) = 0. (29)

We try to solve this with ansatz ψ = Feαx. We get
α2 = 2m(U0 − E)/h̄2, and α = ±

√
2m(U0 − E)/h̄. Only

the negative sign leads to finite solution on the right.
Thus

ψ(x) = F exp

(
−
√

2m(U0 − E)x

h̄

)
. (30)

We see that this wave decays exponentially towards the
right.

We will not go into applying the boundary conditions
quantitatively, since it leads to complicated equations.
Instead we sketch the results, see the figure above. We
see that the particle can penetrate some distance into the
potential. Since the wave functions vanishes
exponentially, the particle must finally be reflected back.
Thus the solution on the left looks similar as for the deep
potential well, but shifted towards the positive x.

At energies E > U0, there is both transmission and
reflection.

We can apply these results to potential well of finite
potential U0 on both sides. The energy eigenvalues with
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E < U0 are discrete and correspond to bound states, states
confined to the potential well. Because these solutions
penetrate under the potential, the corresponding k’s and
E’s are lower than for deep potential well (at the same
L). (YF fig 40.15) At energies the E > U0 there are states
at all energies. This is called continuum, in contrast to
the discrete energies of the bound states. The continuum
states are not bound to the well, but are partly reflected
and partly transmitted while traveling through the well.

Let us consider a potential barrier. For simplicity, we
assume a rectangular barrier, were U(x) = 0 everywhere
except the range 0 < x < L, where U(x) = U0 > 0. (YF
fig 40.20) Consider a particle at energy E < U0. The
situation resembles that for a potential step: incoming
and reflected wave on the left and exponential decay (30)
of the wave function in the barrier. Because the barrier
has finite length L, the wave function is small but
nonzero at x = L. In the region x > L, the wave can
continue as a traveling wave. Thus, in quantum
mechanics, a particle can tunnel through a potential
barrier. Since part of the wave is transmitted, the
probability for reflection is less than 1.

Let us estimate the tunneling probability. The amplitude
of the transmitted wave relative to the incoming one is
given by the ratio of (30) at x = L and x = 0. Since the
probability is proportional to the amplitude squared, we
get the estimate of tunneling probability

T ≈ exp

(
−

2
√

2m(U0 − E)L

h̄

)
. (31)

We see that this depends exponentially on L and on the
energy relative to the top of the barrier, U0 − E.

In classical mechanics, there is no tunneling, T = 0 at
E < U0 and complete transmission T = 1 for E > U0. In
fact, we can see that quantum mechanics corrects some
problems that are present in the classical case. As T (E)
is discontinuous at E = U0, one can ask what happens at
this energy. Another problem is the discontinuity in T (L):
for L = 0 we expect T = 1 but for any nonzero L we
expect T = 0. These problems disappear in quantum
mechanics since in both limits, E → U0 and L→ 0, the
transmission (31) grows continuously towards 1.

An important, and early, application of tunneling is to
nuclear reactions, in particular to alpha decay. For
example, 238U can emit an alpha particle (4He nucleus) to
decay to 234Th. Consider the alpha particle at different
distances from the rest of the original nucleus. As both
have positive charge, there is Coulomb repulsion between
the two. Another force is the nuclear force, that is
attractive and strong, but only of short range. Thus there
is a potential barrier between the alpha particle being in
the nucleus and being far away (on the nuclear scale).

20 40 60 80 100
r [fm]

5

10

15

20

E [MeV]

The figure gives the potential U(r) (blue line) and the
energy E of an α particle (horizontal line) in 238U, 1
fm= 10−15 m.

If the energy of the alpha particle in the nucleus is lower
than the potential far away, the original nucleus is stable.
In the opposite case alpha emission is possible, but is
delayed by the potential barrier. The fact that tunneling
probability is exponential in energy, allows to understand
the enormous variety in the half lives of alfa-decaying
nuclei, from microseconds to 1015 years. 238U half life is
4.468× 109 years.

Examples where tunneling is essential: nuclear fusion,
tunnel diode, Josephson junction, scanning tunneling
microscope, biomolecules

Resonant tunneling. Consider two barriers in a row. We
can consider the region between the barriers as finite
potential well. Suppose it has a bound state. A solution
of the Schrödinger equation gives that the transmission
trough the double barrier depends strongly on the energy.
At particle energy equal to the bound state energy,
complete transmission can take place. (figure)

1.4 Harmonic oscillator
(YF 40.5) Harmonic potential U(x) = 1

2Kx
2, where K is

the force constant. The classical oscillation angular
frequency is ω0 =

√
K/m. Strangely enough, the

quadratic dependence of kinetic energy on k and the form
of the potential cancel each effects so that the energy
levels are equally spaced,

En = h̄ω0

(
n+

1

2

)
, n = 0, 1, 2, . . . (32)

-4 -2 2 4

mω0

ℏ
x

1

2

3

4

5

6

E

ℏ ω0

Figure: the parabolic potential energy, the 6 lowest
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energy eigenvalues (horizontal lines) and the
corresponding wave functions.

We only give the ground state solution

ψ(x) =
(mω0

πh̄

) 1
4

exp
(
−mω0

2h̄
x2
)
, (33)

which corresponds to the minimal uncertainty in (22).

-4 -2 2 4

mω0

ℏ
x

1

2

3

4

5

6

E

ℏ ω0

Figure: The probability densities |ψ(x)|2 for the same
states in the previous figure.

The harmonic oscillator forms a good approximation in
several cases, although the potential is not strictly
harmonic. Atomic vibrations in molecules and solids form
an example.

1.5 Transitions
We have seen above that quantum mechanics in many
cases leads to discrete energy levels. This is in contrast to
classical mechanics, where the energy spectrum is
continuous, i.e. all energy values above a minimum are
allowed. The discreteness of energy has important effect
on the emission and absorption of electromagnetic
radiation. Let us consider an electron in some potential
well, although the same could be applied to other
particles as well.

Electromagnetic radiation consist of photons. They are
quanta of energy E = hν, where ν is the frequency of the
radiation. The emission and absorption of radiation is
possible only at discrete frequencies, as follows. Suppose
the electron is initially in an excited state n with energy
En. The transition from level n to n′ of lower energy
(En′ < En) takes place by emitting a photon of frequency
ν so that the energy is conserved,

hν = En − En′ . (34)

A system in its ground state (lowest energy state) cannot
emit radiation since there are no lower levels for the
electron. Correspondingly, absorption can take place by
an electron transiting from an energy level to a higher
level so that the energy difference between them matches
the photon energy.

As an example, consider hydrogen, the lightest of all
substances. For hot hydrogen gas several spectral lines

were found experimentally in the late 1800’s. The wave
lengths of these could be fitted by the expression

1

λ
= R

(
1

n2
1

− 1

n2
2

)
, (35)

where R ≈ 107 1/m is Rydberg constant, n1 = 2 or 3, and
n2 has integer values (n2 > n1). The lines corresponding
to n1 = 2 are called Balmer series (in the visible and
ultraviolet region) and n1 = 3 Paschen series (in infrared
region). Our plan in the following is to understand these
based on quantum mechanics.

1.6 Schrödinger equation in 3 dimension
(YF 41.1) We have written the Schrödinger equation (1)
for one spatial dimension (1D). We now consider its
generalization to 3 dimensions (3D). The wave function
depends on the location vector r and on time, Ψ(r, t).
The Schrödinger equation takes the form

ih̄
∂Ψ

∂t
(r, t) = − h̄2

2m
∇2Ψ(r, t) + U(r)Ψ(r, t). (36)

Here ∇2 is the Laplace operator, which is the square of
the gradient operator

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
, (37)

∇2 = ∇ ·∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (38)

Written explicitly using cartesian coordinates
r = xx̂+ yŷ + zẑ, we have Ψ(x, y, z, t) and the equation

ih̄
∂Ψ

∂t
= − h̄2

2m

(
∂2Ψ

∂x2
+
∂2Ψ

∂y2
+
∂2Ψ

∂z2

)
+ U(x, y, z)Ψ. (39)

The normalization condition (5) in 3D is∫
|Ψ(r, t)|2dV = 1, (40)

where the integration is over 3D space.

The sinusoidal wave (11) has a straightforward
generalization to 3D,

Ψ(r, t) = Aei(k·r−ωt). (41)

This is called plane wave, and k is the the wave vector

k = kn̂ =
2π

λ
n̂, (42)

where n̂ is the unit vector in the propagation direction.
Noting that k · r = kxx+ kyy + kzz, the plane wave can
be written in product form

Ψ(r, t) = Aeikxxeikyyeikzze−iωt. (43)
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[Exercise: verify that (41) is a solution of (36) for U ≡ 0
when ω = h̄k2/2m.] The absolute value squared
|Ψ|2 = |A|2 is a constant. That is, the probability to find
the particle is the same at any location r.

Similarly as in 1D, we can look at an energy eigenstate
Ψ(r, t) = e−iωtψ(r), and write the time-independent
Schrödinger equation. In cartesian coordinates it is

− h̄2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
+ U(x, y, z)ψ = Eψ, (44)

where ψ(x, y, z).

1.7 Deep potential well in 3 dimension
(YF 41.2) Let us now consider the generalization of the
deep potential well to 3D. We assume U →∞ everywhere
except a cube of side L: 0 < x < L, 0 < y < L and
0 < z < L, where U = 0.

L

L

L

y
x

z

The boundary condition for ψ is that it has to vanish at
the sides of the cube and outside.

The general method to find solutions of partial
differential equations, like (44) is called separation of
variables. We assume a solution that is a product of
functions each depending on a single variable,

ψ(x, y, z) = X(x)Y (y)Z(z). (45)

We substitute this in (44). Dividing the equation by ψ we
get(

− h̄2

2m

1

X(x)

d2X(x)

dx2

)
+

(
− h̄2

2m

1

Y (y)

d2Y (y)

dy2

)
+

(
− h̄2

2m

1

Z(z)

d2Z(z)

dz2

)
= E. (46)

We see that the first term depends only on x, the second
on y and the third on z, and the right hand side is a
constant. Looking from to point of x, the second and
third terms are constants as well. Thus the first term
must be equalt to a constant. We denote it by Ex.
Similarly for y and z. Thus the equation separates into
three ordinary differential equations

− h̄2

2m

d2X(x)

dx2
= EXX(x)

− h̄2

2m

d2Y (y)

dy2
= EY Y (y)

− h̄2

2m

d2Z(z)

dz2
= EZZ(z) (47)

and EX + EY + EZ = E. We look at the first one. The
boundary condition for X(x) is X(0) = 0 and X(L) = 0.
Thus the problem of solving X(x) is the same as we had
for ψ(x) in the case of deep one-dimensional potential
well in (24). We can read the wave function from (28)
and energy from (27). Renaming some symbols they are
X(x) =

√
2/L sin(πn1x/L) and EX = π2h̄2n2

1/2mL
2.

Similarly we can find the solutions for Y (y) and Z(z).
Putting the results together gives the wave function

ψ(x, y, z) =

(
2

L

)3/2

sin
πn1x

L
sin

πn2y

L
sin

πn3z

L
, (48)

and the energy

E =
π2h̄2

2mL2
(n2

1 + n2
2 + n2

3). (49)

The numbers n1, n2 and n3 are called quantum numbers.
They are positive integers 1, 2, 3, . . ..

The lowest energy level has quantum numbers
(n1, n2, n3) = (1, 1, 1) and energy E = 3E0, where
E0 = π2h̄2/2mL2. The next lowest levels has (2, 1, 1) and
energy E = 6E0. The same energy is obtained with
quantum numbers (1, 2, 1) and (1, 1, 2) as well. When
there are two or more states that have the same energy,
the energy level is called degenerate. This is typically
caused by some symmetry in the system. In the present
case we have chosen the box of same length L in x, y and
z directions. In a rectangular box with nonequal lengths
in x, y and z directions, the three levels would not be
degenerate. (Exercise: analyze all energy levels up to
E = 12E0.)

1.8 Hydrogen atom
(YF 41.3) The hydrogen atom consists of a single electron
around a nucleus. The nucleus with proton charge +e
attracts the electron of charge −e by the Coulomb force
F = (1/4πε0)e2/r2, where r is the distance of the electron
from the nucleus. The corresponding potential energy is

U(r) = − e2

4πε0

1

r
. (50)

[Recall that the force is the gradient of U , F = −∇U .]

Our program is now to find the electron states in the
hydrogen atom using the Schrödinger equation (36). For
the stationary states, we use the time-independent
Schrödinger equation

− h̄2

2m
∇2ψ(r) + U(r)ψ(r) = Eψ(r). (51)

The Coulomb potential (50) depends only on the radial
distance r = |r|. Because of spherical symmetry, the
solutions of the Schrödinger equation (51) are most
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conveniently obtained using spherical coordinates.
Spherical coordinates (r, θ, φ) are defined by

r = r(x̂ cosφ+ ŷ sinφ) sin θ + ẑr cos θ. (52)

x

z

φ

θ r

y

All r can be described by the coordinates in the ranges
0 ≤ r, 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

The Schrödinger equation (51) contains the Laplace
operator ∇2 (38). In spherical coordinates it is given by

∇2ψ =
1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
. (53)

This formula is justified in the appendix.

Let us first demonstrate one solution of the problem.
Substitute the ansatz ψ(r) = eαr into (51). Based on that
determine the constant α and the energy eigenvalue E.
Check that the E you get is equal to the ground state
energy (the lowest energy) given in (67), and α is simply
related to the Bohr radius

a =
4πε0h̄

2

e2m
= 0.529× 10−10 m. (54)

(Exercise)

Historically, the “atomic radius” (54) was found by Niels
Bohr in 1913. He considered a classical model of circular
electron orbits around the nucleus with the additional
assumption that the angular momentum L = h̄n and
n = 1, 2, . . .. This led to the correct energy spectrum (67),
but his assumption about L can be seen to be in
disagreement with (70) and (68), which are obtained by
solving the Schrödinger equation.

In order to find other solutions, we again use separation
of variables. We write

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ). (55)

We substitute this in (51). Dividing the equation by ψ we
get

1

R

[
− h̄2

2m

1

r2

d

dr

(
r2 dR

dr

)]
+

1

Θ

[
− h̄2

2m

1

r2 sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+

1

Φ

[
− h̄2

2m

1

r2 sin2 θ

d2Φ

dφ2

]
− e2

4πε0

1

r
= E. (56)

We would like to argue, as in the case of (46), that each
term is a constant. Now it does not work out immediately
but can be achieved with some manipulations. We
rearrange the terms and multiply by r2

r2

R

[
− h̄2

2m

1

r2

d

dr

(
r2 dR

dr

)
− e2

4πε0

1

r
R− ER

]
+

1

Θ

[
− h̄2

2m

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+

1

Φ

[
− h̄2

2m

1

sin2 θ

d2Φ

dφ2

]
= 0. (57)

We define a new quantity L2 so that L2/2m is equal to
the two last terms in (57),

1

Θ

[
− h̄2

2m

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)]
+

1

Φ

[
− h̄2

2m

1

sin2 θ

d2Φ

dφ2

]
=
L2

2m
. (58)

We see that L2 cannot depend on r since there is no r
dependence in (58). Using (58) we can write (57) as

r2

R

[
− h̄2

2m

1

r2

d

dr

(
r2 dR

dr

)
− e2

4πε0

1

r
R− ER

]
= − L

2

2m
. (59)

We see from this that L2 cannot depend on θ and φ since
there is neither θ nor φ in this equation. Thus we
conclude L2 is a constant (independent of the spherical
coordinates).

We manipulate (58) rearranging the terms and
multiplying by sin2 θ. We get

sin2 θ

Θ

[
− h̄2

2m

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
− L2

2m
Θ

]
+

1

Φ

[
− h̄2

2m

d2Φ

dφ2

]
= 0. (60)

We notice that the first term depends only on θ and the
second only on φ. Thus they both have to be constants.
We define L2

z so that the latter term is equal to L2
z/2m,

1

Φ

[
− h̄2

2m

d2Φ

dφ2

]
=
L2
z

2m
. (61)

Based on these, we can now write independent equations
for all the three functions

− h̄2

2m

1

r2

d

dr

(
r2 dR

dr

)
+

L2

2mr2
R− e2

4πε0

1

r
R = ER

− h̄2

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

L2
z

sin2 θ
Θ = L2Θ

−h̄2 d
2Φ

dφ2
= L2

zΦ. (62)

In solving (62) it is best to start from the simplest, the
one for Φ(φ). Recall that φ is the angle around the z axis.
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In order to have unique solution Φ(φ), it has to remain
the same when φ changes by 2π. That is, we require
periodic boundary condition Φ(φ+ 2π) = Φ(φ). We look
the solution of the last (62) as an exponential eikφ. The
boundary condition limits 2πk to be an integral multiple
of 2π. The quantum number associated with φ is called
the orbital magnetic quantum number and marked by ml.
Thus

Φ(φ) =
1√
2π
eimlφ, ml = 0,±1,±2, . . . , (63)

where the prefactor comes from normalization.
Substituting this in the last one in (62) shows that it is
satisfied when

Lz = h̄ml. (64)

We can identify Lz as the z component of the angular
momentum.

The next step is to solve the second equation in (62). The
boundary condition for Θ(θ) is that it should be finite in
the whole interval 0 ≤ θ ≤ π. We will give the general
result without proof. The quantity L is the angular
momentum. Its values are given by the orbital angular
momentum quantum number l so that

L = h̄
√
l(l + 1), l = 0, 1, 2, . . . . (65)

In addition |ml| ≤ l. The wave functions Θ(θ) are
polynomials of cos θ and sin θ. We give the normalized
functions corresponding to the lowest quantum numbers

Θ =
1√
2
, l = 0,ml = 0

Θ =

√
3

2
cos θ, l = 1,ml = 0

Θ =

√
3

4
sin θ, l = 1,ml = ±1

Θ =

√
5

8
(3 cos2 θ − 1), l = 2,ml = 0

Θ =

√
15

4
cos θ sin θ, l = 2,ml = ±1

Θ =

√
15

16
sin2 θ, l = 2,ml = ±2. (66)

Your are encouraged to check that these indeed satisfy
the second of (62) with the eigenvalue (65).

π

2
π

θ

-1

1

Θ

The figure gives the functions Θ(θ) for l = 0 (blue), l = 1
(red) and l = 2 (green).

Finally we are in the position to solve the radial equation,
the first one in (62). The boundary condition is that the
solution should vanish with r →∞. Again, we give the
result without proof. The energy eigenvalues are

E = − me4

2(4πε0)2h̄2n2
= −13.60 eV

n2
, n = 1, 2, 3, . . . (67)

The integer n is called the principal quantum number. For
a given value of n, the orbital angular quantum number l
can take values from 0 to n− 1,

l = 0, 1, . . . , n− 1. (68)

Thus for n = 1 we have only l = 0. For n = 2 the values
l = 0 and l = 1 are allowed. The radial functions are
polynomials multiplying exponential function. Here we
give lowest order ones

R =
2

a3/2
e−r/a, n = 1, l = 0

R =
1√

2a3/2

(
1− r

2a

)
e−r/2a, n = 2, l = 0

R =
1

2
√

6a3/2

r

a
e−r/2a, n = 2, l = 1, (69)

where a is the Bohr radius (54).

5 10 15 20 25
r/a

-1.0

-0.8

-0.6

-0.4

-0.2

E (13.6 eV)

The figure gives the hydrogen potential, the three lowest
energy levels and the radial wave functions. The color
coding corresponds to the figure of Θ functions above.

We summarize the quantum numbers

• n, the principal quantum number n = 1, 2, 3, . . ..

• l, the orbital angular momentum quantum number,
l = 0, 1, . . . , n− 1.

• ml, the orbital magnetic quantum number,
ml = 0,±1, . . . ,±l.

We have now solved the bound state energies and wave
functions for the hydrogen atom. We now discuss some of
the implications.
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1.9 Angular momentum
We found above the angular momentum and its z
component are described by quantum numbers l and ml,

L = h̄
√
l(l + 1), l = 0, 1, 2, . . .

Lz = h̄ml, ml = 0,±1, . . . ,±l. (70)

For example, if l = 1, we have L =
√

2h̄ and Lz can have
values 0 and ±h̄. We see that that Lz is always less than
L, except the case l = 0, where L = Lz = 0. We can
understand the impossibility of Lz = L as follows. For
that to hold, the particle has to circulate in the x-y plane,
i.e. at z = 0. But the uncertainty relation then says that
the momentum pz cannot be zero. Thus the particle
necessarily has to move out of the x-y plane, and the total
angular momentum is thus larger than the z component.

The possible values of L and Lz can be illustrated by
drawing the equidistant Lz = h̄ml values on the Lz axis
and then figure out a vectors L = Lxx̂+ Lyŷ+ Lzẑ of
length L = |L|. For each ml we get a definite value√
L2
x + L2

y =
√
L2 − L2

z of angular momentum

perpendicular to z axis.

Lz

ℏ

2ℏ

0

-2ℏ

-ℏ

Lx
2+Ly

2 

We now ask can we also know Lx and Ly. The answer is
no. Consider some state with L and Lz determined by
quantum numbers l and ml. If one now measures Lx, this
will collapse the original state to a state with the same l
but to an eigenstate of Lx. These are similar as in (63),
but with the angle φ denoting the rotation angle around
the x axis. In this state, the information on Lz in the
original state has disappeared. Thus, only the magnitude
of the angular momentum and its component along one
axis can be precisely known in quantum mechanics.

In the figure we discussed, we can only specify the L, Lz

and
√
L2
x + L2

y =
√
L2 − L2

z, but not Lx and Ly.

However, this problem is alleviated when l is large. In
this case the states with different ml are dense, in
comparison to l. Then forming a linear combination of
the states of different ml, one can from a state with
rather accurately determined vector L. This then
becomes similar as in classical mechanics, where L can be
known accurately. Thus for large quantum numbers, the
prediction of quantum mechanics become closer to the
ones obtained in classical mechanics. This is known as

correspondence principle.

We note that this discussion of angular momentum uses
only the spherical symmetry, and is valid for any
potential function U(r), not just (50).

The states having l = 0, 1, 2 and 3 are commonly called s,
p, d and f states.

1.10 Hydrogen probability distributions
The probability density of electron is given by P = |ψ|2
(6). In 3 D these are not trivial to show because
dependence on more than one variable. The θ dependence
can be obtained by squaring (66). The higher l, the more
there are zeros. In studying the radial dependence, note
that P = |ψ|2 gives the probability per volume dV . One
can also consider probabilities Pr per radial distance dr.
This is different since the volume dV = 4πr2dr, where
4πr2 is the surface area of a sphere of radius r. The
radial functions R(r) are normalized so that Pr = r2R2.

2 4 6 8 10
r / a

0.1

0.2

0.3

0.4

0.5

Pr

The figure shows radial probability density Pr(r) for
states with n = 1 (blue) and n = 2.

5 10 15 20 25 30
r / a

0.02

0.04

0.06

0.08

0.10

Pr

The figure shows radial probability density Pr(r) for
states with n = 3. (Note different radial scales in the two
figures.) The rule is that the larger n, the larger the
average distance of the electron from the nucleus. Note
that radii of the orbits in a semiclassical Bohr model for
states n = 1, 2 and 3 would be the Bohr radius a (54), 4a
and 9a. Compare these to the distributions in the figures.
In the ground state, the probability to find the electron
within radius a is 0.32. You can identify values of l in the
figures knowing that the larger l, the less there are zeros
in the radial direction. This is compensated by there
being more zeros in the angular dependence given by Θ
functions. That is, for a given energy (n), the electron
momenta (and the zeros) are mainly directed in the
angular direction for large l, and in the radial direction
for small l.

Above we have selected the Φ states (63) as eigenstates of
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the operator Lz. It is defined by

(Lz)op =
h̄

i

∂

∂φ
(71)

in close resemblance to the momentum operator (10).
The Lz eigenstates (63) have constant |Φ|2 = 1/2π. For
some purposes, in particular for application in chemistry,
it is more convenient to choose linear combinations of
them. For example, in the case of l = 1 we define

Φpx(x) =
1√
2

(
eiφ√
2π

+
e−iφ√

2π
) =

1√
π

cosφ,

Φpy (x) =
1√
2i

(
eiφ√
2π
− e−iφ√

2π
) =

1√
π

sinφ. (72)

These are largest in the x and y directions, respectively,
and are called px and py orbitals. Expect of different
orientation, they are identical to the pz orbital, which
corresponds to ml = 0, see (66).

1.11 Hydrogen energy levels
(YF 41.4) We see that the energy (67) depends on n only.
This means that all states with different values of l and
ml are degenerate. The energy levels can be visualized by
a figure, with E on the vertical axis and the energies (67)
are drawn as short horizontal lines at locations
l = 0, 1, 2, . . ..

0,0 eV
−0,85 eV
−1,51 eV

−3,4 eV

−13,6 eV 1

2

3
4
∞
nE

s p d f

(Figure: wikipedia Grotrian diagram)

Electromagnetic radiation causes transitions between the
levels, or an excited state can spontaneously decay by
emission. In these processes the photon energy
corresponds to the energy difference of the levels (34).
This just gives explanation to the observed wave lengths
(35) of emission and absorption. Not all transitions are
equally likely. Based on the wave functions, one can
calculate the rates of different transitions. We leave such
nice calculations for your next course of quantum
mechanics. Here we only state that the strongest
transitions correspond to change of l by unity, ∆l = ±1.
Such a rule is called selection rule. These transitions are
drawn in the figure above.

We mentioned above that degeneracy of energy levels is
commonly associated with a symmetry. The degeneracy
with respect to ml comes from the spherical symmetry.
That can be broken by placing the atom in an external
magnetic field, as we will discuss next.

We start by defining the magnetic moment µ on the basis
of classical electromagnetism. It is defined as the electric
current I flowing in a planar circuit times the area of the
circuit A: µ = IA. The direction of the magnetic moment
is perpendicular to the plane of the circuit, using the
right hand rule. In external magnetic field B, the
magnetic moment is associated with energy

Em = −B · µ. (73)

Consider now the motion of an electron in an atom
according to classical physics. We also assume circular
orbit of radius r and velocity v. We can think the electron
motion to form an electric current I = −eν, where the
frequency ν = v/2πr. For the magnetic moment we get

µ = −1

2
evr = − e

2m
L, (74)

where L = mrv is the angular momentum. We write the
result in vector form

µ = − e

2m
L. (75)

This is simple result since µ and L are related by natural
constants, the elementary charge and electron mass. We
claim that the result (75) is generally valid, independently
of the simple assumptions about the electron orbit.

We return to quantum mechanics. We assume the
magnetic field in the z direction, B = Bẑ. Using (75) and
(70), we write the magnetic energy (73)

Em = mlµBB, (76)

where we have defined Bohr magneton
µB = eh̄/2m = 9.274× 10−24 J/T = 5.8× 10−5 eV/T.
The magnetic energy (76) should be added to the
hydrogen energy levels energies (67). Its magnitude is
much smaller, but still measurable. Since there are 2l + 1
different values of ml in a level with l, the the energies of
the l levels split into 2l + 1 equally spaced levels. That is,
there are 1, 3 and 5 sublevels for s, p and d states. (YF
fig 41.13). This is know as Zeeman effect. Again, not all
transitions are equally likely. In addition to the ∆l = ±1
rule, there is ∆ml = 0 or ±1 selection rule. This affects
how the levels appear in a spectroscopy experiment.

Besides spectroscopy experiments, the level splitting was
observed in experiment made by Otto Stern and Walter
Gerlach in 1922. They had a beam of atoms that is
moving through a highly inhomogeneous magnetic field.
The gradient of the field makes the beam deflect by
amount that is proportional to the magnetic energy Em
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(76). As a result the, the slitting of the (n, l) levels into
sublevels could be observed.

1.12 Electron spin
(YF 41.5) It was found experimentally that there were
splitting of the energy levels that could not be understood
by the theory presented above. In order to understand
these, Samuel Goudsmidt and George Uhlenbeck
suggested in 1925 that there is additional angular
momentum that is intrinsic to the electron. This is known
as spin of the electron. The simple minded picture is that
the electron is spinning around itself. However, no
internal structure of the electron, other the spin itself, has
been observed. Therefore we have to say that the electron
behaves like it would be rotating around itself.

The electron spin differs from the orbital angular
momentum in that the spin quantum number s = 1

2 .
Otherwise it is like the orbital angular momentum in (70):

S = h̄
√
s(s+ 1) = h̄

√
3
4

Sz = h̄ms, ms = ± 1
2 , (77)

where S is the magnitude of the spin angular momentum
and Sz the component in the z direction. ms is the spin
magnetic quantum number. Its two values are often called
“spin up” and “spin down”. Associated with the spin, the
electron also has magnetic moment.

µz = −g e

2m
Sz, (78)

where the g factor g = 2.002319304364 ≈ 2. This is one of
the best known constants in nature, which can be both
measured and explained theoretically using quantum
electro dynamic theory, which is outside the scope of
these lectures.

The electron spin causes additional splitting of the
hydrogen levels in external magnetic field because of
magnetic energy associated with spin, Em,s = msgµBB.
But there is an effect without external magnetic field as
well. This is called spin-orbit coupling. The electrons
orbital motion generates a magnetic field whose direction
can be characterized by L. This field couples to the spin
magnetic moment (78). The energy is of the form

ESO = aL · S (79)

with some constant a.

Now the total angular momentum J of the electron is the
sum of orbital and spin parts,

J = L+ S. (80)

We claim that also J is described by a quantum number,
the total angular momentum quantum number, so that

J = h̄
√
j(j + 1), j = |l ± 1

2 |. (81)

The two values of j (in the case of l 6= 0) correspond to
different relative orientations of L and S. The spin-orbit
energy (79) is thus different for the two states. As a
consequence, the degeneracy of the levels of different l but
same n in (67) is lifted.

We stop here by noting some effects that still were
neglected. The mass in (67) is the reduced mass,

1

m
=

1

m1
+

1

m2
⇔ m =

m1m2

m1 +m2
, (82)

where m1 and m2 are the electron and proton masses.
This is because both the electron and the proton are
rotating around their center of mass (Appendix B). There
is relativistic correction to electron kinetic energy. This
together with the spin-orbit correction is called fine
structure. There are still smaller corrections called
hyperfine structure, caused by the structure of the nucleus
and so-called radiative corrections.

1.13 Hydrogen-like atoms
Helium nucleus has two protons, the atomic number
Z = 2, and lithium there protons, Z = 3. In uncharged
states these have the same number of electrons. It is
possible to ionize these by removing electrons. For He+

and Li2+ and so on, only one electron is left. The
calculations above for hydrogen can be generalized to
these taking into account that the charge of the nucleus is
now Ze instead of e. Thus the potential (50) becomes
multiplied by Z, the energy (67) multiplied by Z2 and the
characteristic scale of the ground state, the Bohr radius
(54) becomes multiplied by 1/Z. We see that with
increasing Z the binding energy grows rapidly and the
electron is bound much closer to the nucleus.

13



2. Many-particle systems

2.1 Many-body prolem
(YF 41.6, S 5.1) Above we have considered the motion of
a single particle in a given potential. In this case, accurate
calculations can be done. The situation changes radically
when we start considering, for example, the helium atom
with two electrons, not to speak about heavier atoms,
molecules or the solid state. Let us try to figure out how
could we generalize the Schrödinger equation (36) to the
presence of two electrons, the He atom.

Let us denote the coordinates of the two electrons by r1

and r2. Obviously, the wave function should depend on
both of these,

Ψ(r1, r2, t). (83)

Note that using coordinates (cartesian or spherical), there
are 6 spatial coordinates. The kinetic energy part should
contain the sum of the separate kinetic energies,

− h̄2

2m
∇2

1Ψ(r1, r2, t)−
h̄2

2m
∇2

2Ψ(r1, r2, t), (84)

where the Laplace operators ∇2
n operate on the

coordinates rn of the n’th particle. The potential energy
should contain the interactions of both electrons with the
nucleus,

Ucentral(r1, r2) = − Ze
2

4πε0

1

r1
− Ze2

4πε0

1

r2
, (85)

but in addition there is the Coulomb repulsion between
the two electrons

Uel−el(r1, r2) =
e2

4πε0

1

|r2 − r1|
. (86)

We could try to solve the two-body Schrödinger equation
by separation of variables

ψ(r1, r2) = ψ1(r1)ψ2(r2). (87)

This would work fine for other terms, but there is a
problem in electron-electron interaction (86): where is
electron 1, affects the potential of electron 2. Thus their
motion is correlated, and cannot be represented in the
form (87). This is the essential difficulty in many-body
problem.

It is not possible to find analytic solution for the helium
atom. Precise numerical methods can still be used, but
they also run in rapidly growing difficulties when the
electron number grows towards 5. For all heavier atoms,
molecules, and solid state, approximations are absolutely
necessary.

Very common approximation is mean field approximation
or independent-electron approximation. The idea is that

the particle, instead of being correlated with others, only
feels the average effect of the other particles. That is, we
can still use the one-particle Schrödinger equation (36),
but with an effective potential U = Ueff , that includes the
averaged effect of all other particles.

Let us emphasize the important step we have to make
here. Most of the problems to be studied in the following
are so complicated that solving them from first principles
is impossible. Instead, we aim to make simple models to
learn about the physical system we are studying. If the
model is insufficient, we can try a more accurate model.
This hopefully leads to better understanding, but
simultaneously the work we have to do increases as well.

2.2 Atomic struture
(YF 41.6, S 5.2-3) We will now be using the
independent-electron approximation. That is, the electron
moves in a static potential caused by the nucleus and all
other electrons. In addition, we make central field
approximation, where the effective potential is assumed to
have spherical symmetry, Ueff(r) = Ueff(r).

The spherical symmetry means that the angular part of
the wave functions, which we derived for hydrogen, is
valid for all electrons in all atoms. Thus, the electrons of
an atom are labelled with the angular momentum
quantum numbers given in (70). What still remains to be
done is solve the radial wave functions from the radial
equation

− h̄2

2m

1

r2

d

dr

(
r2 dR

dr

)
+
h̄2l(l + 1)

2mr2
R+Ueff(r)R = ER (88)

As long as Ueff(r) is not know, we cannot do precise
calculations. However, we still expect that we can label
the solutions with a quantum number n = 1, 2, . . ., as in
the case of hydrogen.

In the case of hydrogen, we found that the energies E did
not depend on l in (88). This degeneracy can be traced to
the 1/r form of potential (50). In many-electron system
we do not expect the effective potential Ueff(r) to have
1/r form. Therefore, we can expect that different l values
are no more degenerate. That is, the energies depend
both on n and l.

Let us summarize the quantum numbers. We have the
angular quantum numbers l and ml (70). The radial wave
functions from (88) give the principal quantum number n.
In addition we have the magnetic spin quantum number
ms (77). In summary,

• n, the principal quantum number n = 1, 2, 3, . . ..

• l, the orbital angular momentum quantum number,
l = 0, 1, . . . , n− 1.

• ml, the orbital magnetic quantum number,
ml = 0,±1, . . . ,±l.
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• ms, the spin magnetic quantum number, ms = ± 1
2 .

At this stage, it is good to take a sidestep to recall the
periodic table of elements. It was found that elements
formed groups that had similar properties, for example
the alkali metals Li, Na, K, Rb, Cs. The atomic weights
of several elements were measured. In 1869 Dmitri
Mendeleev published a list were elements were arranged
according to their atomic weights so that members of the
groups of similar properties repeated periodically. With
more measurements and new elements discovered, it was
found that the periodicity is more accurate using the
atomic number Z than the atomic mass. The periodicity
in Z seemed to obey numbers 2, 8, 18, 32, . . ..

In 1925 Wolfgang Pauli was thinking the Bohr model and
the periodic table. He came to the conclusion that the
principal features of the periodic table could be explained
by assuming a rule, now known as Pauli exclusion
principle. The principle says that in an atom, no more
than one electron can occupy a state with all same
quantum numbers. That is, for any pair of electrons, at
least one of the numbers n, l, ml and ms has to be
different. (In 1925 the spin was not yet known, but Pauli
hypothesized the existence of a two-valued quantum
number, in addition to n, l, ml.)

Let us apply the Pauli principle to explain the atomic
structure and the periodic table. In this connection, the
states with n = 1, 2, 3, . . . are often called K, L,
M,. . . shells.

The ground state of hydrogen has one electron in state
n = 1. It is called 1s configurartion. In helium the
additional electron can also go to n = 1 orbital supposing
the ms numbers are different. That is, one electron has
ms = + 1

2 and the other ms = − 1
2 . He configuration is

1s2, the superscript 2 meaning two electrons. With these
two electrons the K shell is full.

In Li, the third electron has to go to the L shell. There
l = 0 and 1 are possible. It is found experimentally that
the s state has lower energy. Thus Li has configuration
1s22s. The next ones are Be with 1s22s2 and B with
1s22s22p. There are 6 p states corresponding to
ml = 0,±1 and ms = ± 1

2 . The L shells is full at Z = 10
Ne with configuration 1s22s22p6.

In Na, Z = 11 the configuration is [Ne]3s, continuing to
Ar, Z = 18 and [Ne]3s23p6. After that could 3d orbitals
be filled. However, it is found that 4s has lower energy,
and is therefore filled first. Thus K, Z = 19 is [Ar]4s, and
Ca, Z = 20 is [Ar]4s2. Only after that are the 3d orbitals
filled, with maximum 10 electrons, up to Zn, Z = 30,
[Ar]3d104s2.

Instead of continuing this, let us look closer at some
points. Although we cannot use the radial wave functions
calculated above for hydrogen, we can expect that the
ones with smaller n are more close to the nucleus.

Consider Li as example. The two 1s electrons feel the
nuclear charge 3e and thus are at ∼ a/3 distance from the
nucleus. Since the 2s electron is further a way, the 1s
electrons screen the charge of the nucleus, so that the 2s
electron approximately sees effective nuclear charge 1e.
Thus the binding energy 5.4 eV is not much larger than
the binding energy 3.4 eV of n = 2 states in hydrogen.
Thus Li can easily be ionized to free one electron. The
same applies to all alkali metals.

Similar arguments can be used to excited states, measured
by optical transitions. Consider as example Na. The
ground state E = −5.138 eV corresponding to the M shell
electron in state 3s. The excited states have E = −3.023
eV for 3p, E = −1.521 eV for 3d and E = −1.947 eV for
4s. Note, in contrast to hydrogen, the energies depend on
l. The 3d energy is quite close to the hydrogen energy
−1.51 eV. The 3s and 3p energies are lower since the
radial wave function has more weight close to the nucleus
and thus feels stronger attraction. For the same reason
the 4s state has lower energy than −0.85 eV in hydrogen.

There are more detailed rules how the different orbitals
are filled. We only mention the first Hund’s rule. It says
that the different orbitals with same n and l are filled so
that the total spin, which is the sum of the spins of the
electrons, has the maximum value that consistent with
the exclusion principle. This means that in 2p2 and 2p3

configurations the total spin is S = h̄ and S = 3
2 h̄,

respectively. In 2p4 the Pauli principle does not allow
more than S = h̄, and in 2p5 only S = 1

2 h̄. (Exercise:
why?)

(YF 41.7) The deep levels can be seen as characteristic
X-ray radiation, see figure below. An electron accelerated
in an X-ray tube may kick out an inner electron from an
atom in the target material. This electron hole (= missing
electron) may by filled by transition from an occupied
higher orbital. The emitted quantum has the energy of
the difference of the two level energies. This can be used
to study the atomic structure of the target material.

Figure: Spectrum of the X-rays emitted by an X-ray tube
with a rhodium target, operated at 60 kV. The smooth,
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continuous curve is due to bremsstrahlung, and the spikes
are characteristic K lines for rhodium atoms. (source
Wikipedia)

The deep levels can also be seen in absorption of X rays
as absorption edge. Studied as a function of energy
E = hf , the absorption grows abruptly when the photon
energy is sufficient to cause an emission of inner electron
from an atom. (YF fig 41.26)

2.3 Pauli principle as symmetry
(YF 41.8) Above we have stated the Pauli exclusion
principle using the quantum numbers n, l, ml and ms.
This statement works in the central field approximation.
For other cases, a more fundamental statement is needed.
This is possible by specifying a symmetry of the
many-body wave function (83).

As a first step, we should generalize the one particle wave
function ψ(r) to include the spin. We write the wave
function ψ(r, σ) with the spin magnetic quantum number
σ = ms = ± 1

2 as a second argument. That is, we have
two wave functions, ψ(r,+ 1

2 ) for up spin and ψ(r,− 1
2 )

for down spin. For two-body wave function we then have

ψ(r1, σ1, r2, σ2). (89)

We now claim that the wave function should have definite
symmetry in exchange of the two particles,

ψ(r1, σ1, r2, σ2) = ±ψ(r2, σ2, r1, σ1). (90)

The particles that obey the plus sign are called bosons.
The particles that obey the minus sign are called
fermions.

In order to see whether electrons are bosons or fermions,
we apply the condition (90) to the wave functions we had
above. We assume one particle is in wave function
φa(r, σ) and the other in φb(r, σ). Here a and b are short
hand notation for the set of quantum numbers
{n, l,ml,ms}. In order to satisfy (90), the two particle
wave functions should be

ψ(r1, σ1, r2, σ2) =

1√
2

[φa(r1, σ1)φb(r2, σ2)± φb(r1, σ1)φa(r2, σ2)] . (91)

[Exercise: check that (91) satisfies the condition (90).]
Now test the case that the quantum number sets a and b
are the same, a = b. We get from (91)

ψ(r1, σ1, r2, σ2) =

{ √
2φa(r1, σ1)φa(r2, σ2) for bosons,

0 for fermions.
(92)

The latter case is what describes electrons: having two
electrons with the same quantum numbers, leads to
vanishing of the wave function. That is, such a state does
not exist. Thus we conclude electrons are fermions.

The symmetry condition (90) can be generalized to the
presence of more particles. The requirement is that the
symmetry is obeyed in any exchange of two particles
coordinates.

We mentions a general spin-statistics law. It states that
all particles with half-integer spin are fermions and all
particles with integer spin are bosons. Protons and
neutrons are fermions, photons are bosons. (The
polarization of the electromagnetic field of the photon can
be interpreted as spin s = 1.)

The symmetry of the many-body wave function implies
that all electrons are identical. We cannot label them in
any way, without affecting their behavior.

2.4 Chemical bond
(YF 42.1, S 6.1-5) An important application of quantum
mechanics is to understand bonding between atoms.
Unfortunately, this is also very difficult topic. Here we
briefly mention the main types of bonding.

At short distances the force between two atoms is
repulsive. To large extend this is caused by the exclusion
principle, that prevents two electrons to be in the same
state. Also the Coulomb repulsion between electrons is
essential. At larger distances the force is often attractive.

r0
0

E(r)

The figure depicts the potential energy of two atoms as a
function of their distance r.

Ionic bond. Consider NaCl as an example. A simple
description of the bonding is that Na gives its 3s electron
to Cl, where it fills the last 3p state in the M shell. As a
result, the Na+ and Cl− have the fully filled shells. The
attraction then comes from the Coulomb attraction
between the opposite charged ions.

Covalent bond. There is attractive force because the
atoms share part of their electrons. As a simple case,
consider two protons at some distance and a single
electron. The figure illustrates the ground state wave
functions localized to the two nuclei, ψ1 and ψ2.

-10 -5 5 10
x (a)

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

E (13.6 eV)

ψ1 ψ2

When the wave functions start to overlap, appropriate
wave functions to describe stationary states in the
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molecule are

ψeven ≈ ψ1 + ψ2, ψodd ≈ ψ1 − ψ2. (93)

The probability density |ψ|2 in these two states differs
especially in the region between the atoms: it has a zero
in ψodd but stays finite in ψeven.

-10 -5 5 10
x (a)

-1.5

-1.0

-0.5

ψeven

-10 -5 5 10
x (a)

-1.5

-1.0

-0.5

ψodd

Figure: The energies are only qualitatively correct. The
atoms are still far apart compared to the bond length
0.74 nm = 1.4a of H2.

The expectation values of both the kinetic and the
potential energy are lower in ψeven than in ψodd. The
kinetic energy is lower because the gradient of the wave
function is lower. The potential energy is lower because
the probability density is larger in the region between the
nuclei, where the potential is lower (compared to other
directions from a nucleus at the same distance).

Let us now consider adding a second electron, that is, we
consider two hydrogen atoms. Now both electrons can go
to the lower energy molecular orbital ψeven with opposite
spins. Because the energy is lower than in two separated
hydrogen atoms, this leads to boding of the atoms. For a
more complete study of the problem, one should also
include the electrostatic repulsion between the nuclei, and
the electrostatic repulsion between the electrons. While
the former is easy, the latter is difficult to calculate (as in
the case of He atom above).

The reduction of kinetic energy is similar as in potential
well, (27) or (49), where the energy eigenvalues are
reduced by increasing the well size L. There are two
effects that can oppose the formation of covalent bond:
the exclusion principle and the Coulomb repulsion
between the electrons. (The former of these is studied as
an exercise.)

Covalent bond prefers to form in definite directions. For
example, carbon C tends to form four bonds, that are
maximally separated form other bond directions, in the
directions of the corners of a tetrahedron (equivalently,
every second corner of a cube). The four wave functions
concentrated in these directions are obtained as linear
combinations of the one s and three p wave functions.

The covalent bond appears in purest form between similar
atoms, for example in O2. A bond between non-equal
atoms has partly covalent and partly ionic nature.

Metallic bond. A large amount of atoms share some of
their electrons, which can move almost like free particles
through the material. The justification of the bonding is

similar as for the covalent bond.

Hydrogen bond. Hydrogen has only one electron.
When hydrogen bonds to oxygen, the main part of the
electron wave function goes to the oxygen so that the
hydrogen gets positive charge. This charge attracts a
third atom, and this boding is called hydrogen bond.
This is essential, for example, in water and ice.

Van der Waals bond. This gives a weak attraction also
between uncharged atoms. The idea is that because of
motion of electrons in an atom, the atom is an oscillating
electric dipole. This causes an oscillating electric field,
that can polarize a second atom close by. The electric
interaction between the electric dipoles gives a weak
attraction, where the interaction energy depends on the
distance proportional to 1/r6. This bonding is always
present, but becomes important only in case other
bonding does not take place. Examples are boding in
noble gases and between molecules like O2, that cause
them to liquify and solidify at low temperatures.

2.5 Transitions in molecules
(YF 42.2) Similarly as in an atom, there can be
transitions between electronic levels in a molecule. An
additional feature in a molecule is that the nuclei can
have relative motion. This results in transitions that we
will study now. For simplicity we first consider only a
diatomic molecule, consisting of two nuclei (and of
electrons).

The relative motion of the nuclei in a diatomic molecule
can be studies similarly as for two particles (a nucleus
and an electron) in a hydrogen atom. There are two
essential differences. 1) Whereas the electron is much
lighter than the proton, the atoms in a molecule can be
comparable in mass. Therefore it is essential to use the
reduced mass (82) that takes into account that both
particles are moving relative to their center of mass. 2)
The potential is of the form depicted in the first figure of
Sec. 2.4. Let r0 denote the distance corresponding to the
minimum of the potential. For small oscillations around
this minimum, we approximate the potential by harmonic
oscillator with force constant K. The change of r
compared to r0 is assumed to be small. This implies that
we can treat the rotation of the molecule separately from
the vibration, the oscillation of r.

Consider first rotation. The angular momentum is given
by the quantum numbers l and ml as given in (70). The
rotational kinetic energy can be read from the first of
equations (62) by comparing the terms containing L2 and
E. Because r ≈ r0, we get

Erot =
h̄2

2I
l(l + 1), l = 0, 1, 2, . . . (94)

where the moment of inertia I = mr2
0. The energies are

thus 1, 2, 6, 12 . . . times h̄2/2I. For carbon monoxide
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(CO) h̄2/2I = 0.48 meV. The rule (34) gives that the
transition between the lowest states corresponds to
electromagnetic radiation of wave length 2.6 mm, in the
microwave region. Similarly to transitions in atoms, there
is a selection rule ∆l = ±1.

As the radial motion is modeled by a force constant K,
the energy levels are as in harmonic oscillator (32),

Evib = h̄ω0(n+
1

2
), n = 0, 1, 2, . . . (95)

where ω0 =
√
K/m. For CO the energy separation of the

levels is 0.27 eV. The transition between the levels
correspond to electromagnetic radiation with wave length
4.6 µm, which is in the infrared region. Harmonic
oscillator has selection rule ∆n = ±1, meaning that this
is the only wave length in the harmonic approximation.

For comparison, the lowest electronic transition in CO
apparently has wave length 154 nm, in the ultraviolet
region. Thus we see that the three types of transitions are
well separated from each other. There are no transitions
in the visible region, which makes CO transparent and
colorless.

In addition to the “pure” transitions discussed above
there are mixed ones. For example, a transition between
vibrational states is associated with simultaneous change
of the rotational state. Therefore molecular spectra
consist of bands of several closely spaced lines. The same
applies combined electronic and vibrational transitions.

In order to the rotations and vibrations to interact with
electromagnetic radiation, the molecule should have a
permanent electric dipole moment. Only in this case the
electric field drives the two (or more) atoms in a different
way. Therefore we used CO as an example above, since in
homonuclear molecules like N2 and O2, the
electromagnetic radiation does not couple to rotation and
vibration.

In molecules with more than two atoms (H2O, CO2, CH4,
etc.) there are several vibrational modes. As an example,
consider CO2. It is a linear molecule in equilibrium, but
its bending couples to electromagnetic radiation at the
wave length of 15 µm (in the infrared region). This
vibrational transition is crucial to cause of global
warming, when the concentration of CO2 in the
atmosphere increases.

3. Solid state: lattice properites

3.1 Crystal structure
(S 12) Substances are commonly classified as gasses,
liquids and solids. Solid materials are formed by boding
of a large number of atoms together. The atoms in a solid
are often arranged so that they have a periodically
repeating pattern. Such solids are called crystalline.

A picture obtained by scanning tunneling microscope
from the surface of NbSe2. The atoms are arranged in a
regular pattern with nearest neighbor distance of 0.35
nm. (http://www.pma.caltech.edu/GSR/condmat.html)

Two quartz crystals (SiO2).

Many crystalline materials show up in a form where flat
surfaces appear at definite angles. Such angles can be
understood based on the atomic ordering.

Two calcite crystals (CaCO3) that have the same angles
between their faces,

18



Solid bodies are most commonly multicrystalline. This
means that they consist of several crystal pieces that have
different orientations, joined together. For example, a
single crystal could consists of ∼ 1018 atoms, while the
macroscopic body may consist of ∼ 1023 atoms. These
numbers illustrates that a single crystal can be huge
compared to atomic scale although it is tiny on a
macroscopic scale.

Samples with different sizes of crystals of pyrite (FeS2).

Generally, the structure of a solid can be complicated.
Even though it consists of units having the same atoms,
the structure may not have periodic order. One example
is glass, which consists of SiO2 units. Such materials are
called amorphous.

We study the ideal case, where all deviations from
periodicity of the crystal can be neglected. The
description of the crystal can be divided in two steps.

1) a group of atoms (or any pictures), which forms the
periodically repeating object. This is called basis.

2) a set of points in space, where the basis should be
placed (only by moving, not turning) so that the crystal
is formed. Such a set of points is represented in form

r = n1a1 + n2a2 + n3a3. (96)

Here n1, n2 and n3 integers (0,±1,±2, . . .). The vectors
a1, a2 and a3 are called primitive vectors. (They have to
be linearly independent.) The set of points (96) is called
Bravais lattice, and its vectors lattice points.

a
1

a
2

a
3

The cell formed by the basis vectors in the figure is called
primitive cell.

+ =

lattice             +   basis =           crystal

Here an example in two dimensions.

a
1

a
2

a'
1

a'
2

The selection of the primitive vectors is not unique. In the
figure we can use a′1 and a′2 as primitive vectors. Using
them we get the same lattice points as with a1 and a2.

unit cell

primitive cell

a'2

a2 a'1

a1

In some symmetric lattices it is convenient to use
rectangular basis (although they do not give all lattice
points). The cell formed by such vectors is called
conventional unit cell. The lengths of the sides of the
conventional unit cell are called lattice constants.

3.2 Examples of lattices
In the figures below, the dots denote the locations of
atomic nuclei. The whole crystal is obtained by repeating
the unit shown.

a a

a

Simple cubic (sc) structure has all sides with equal length
and at right angles.

a

Body centered cubic (bcc) structure has an additional
point in the middle of the cube.
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a

Face centered cubic (fcc) has additional point at the
centers of the faces compared to simple cubic structure.
The structures sc, bcc and fcc are Bravais lattices.
(exercise)

Diamond structure has additional points so that they are
in the middle of the tetrahedra formed by four neighbor
lattice points of the face centered cubic lattice. This
structure appears in carbon C, and in silicon Si, where
atoms are of the same type. A related structure appears
in zincblende ZnS, where every second atom is S (for
example, the yellow dots in the figure above). The
structure can be seen as fcc with a basis consisting two
atoms.

Sodium chloride structure is cubic, where Na and Cl
atoms alternate. This can be seen as fcc lattice where the
basis consist of a NaCl pair.

Face centered cubic structure is close packed: if one packs
rigid balls, the maximal density is obtained in this
structure. The figure below tries to illustrate how the
lattice consist of planes with maximal packing density.

a

An alternative close packed structure is hexagonal close
packing (hcp). It is formed of planes as in fcc, but they
are placed differently. In ideal (rigid ball) case

c =
√

8/3 a.

a

c

The difference between fcc and hcp structures is
presented in the figure, which shows two layers of balls.
When the third layer is added on top, it comes in fcc at
the locations (c) which were left open in the two lower
layers. In hcp they come on the same locations (a) that
were used in the lowest layer.

Both close packed structures are common to elemental
metals. If atoms were like rigid balls, they would not
distinguish between the two structures. Instead, atoms
prefer to choose one or the other. For example Al, Ni and
Cu prefer fcc and Mg, Zn and Co prefer hcp. In hcp the
ratio c/a deviates from the rigid ball value 1.63. A
substantial deviation appears in zinc (Zn), which has
c/a = 1.86.

In addition to close-packed structure, the body centered
cubic is common in elements, for example K, Cr, Mn, Fe.
The simple cubic is essentially nonexistent in pure
elements. The sodium-chloride structure can be
understood because of the different size of the atoms: the
small sodium ions just fit in the space left between large
chloride ions. The diamond structure corresponds to low
density packing. It appears in substances which tend to
form bonds so that they all are in the same angle relative
to each other (109.5◦).

Many materials have crystal structure that is more
complicated than presented above. The figure below
presents the structure of quartz.

Model of quartz (SiO2) crystal structure. The balls
represent oxygen atoms, the silicon atoms (not shown)
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are at the center of each O4 tetrahedron. The basis of the
Bravais lattice consists of three tetrahedra (for example
A, B ja C).

SiO2 often appears in amorphous form (glass). Looking
at the complicated structure of quartz, one maybe can
understand that cooling rapidly a molten SiO2, the atoms
have no time to arrange to this structure but remain
disordered.

Crystals can be classified based on their symmetry. A
crystal is always symmetric in translation by a lattice
vector. That is, when the crystal is moved by a lattice
vector (96), there is no change. In addition to translation,
the crystal can have symmetry in rotation or reflection,
for example. It has been show that by using different
criteria, the crystals can be classified into 7 crystal
systems, 14 Bravais lattices, 32 crystal classes and 230
space groups.

Many properties of solids depend on the crystal
symmetry. For example, in an ionic crystal of cubic
symmetry the center of positive and negative charge are
the same. This implies vanishing electric dipole moment
(for example, NaCl). If the symmetry is less (such as
rectangular prism) the negative and positive charge can
have different centers. Such a material, which has
non-zero electric dipole moment, is called ferroelectric.

Another case is that the dipole moment vanishes in
equilibrium. This is the case in the model figure below,
which has negative charges at the corners of a
tetrahedron and positive in the center.

When such a material is pressed in the direction of the
arrows, the charge centers are no more equal. Such a
material is called piezoelectric. The effect work also the
other way round: when a piezoelectric material is placed
in electric field, it changes its shape. Quartz, for example,
is piezoelectric. Detailed explanation of the phenomenon
is difficult because of the complicated crystal structure.

A phenomenon related to crystal structure is also double
refraction. In such a material, the speed of light depends
on the polarization of light (direction of the electric field
in the wave). This divides a light ray in two beams.

The figure shows double refraction in two calcite
(CaCO3) crystals of different thickness.

Let us recall the five types of chemical bonding discussed
above. The following table gives some examples of each
type (separated by a horizontal line). The second column
gives the melting temperature, which reflects the strength
of the bonding. The third column gives the crystal
structure (when it is simple enough to express).

substance melting temperature (K) crystal structure
CsCl 918 sc, CsCl basis
NaCl 1075 fcc, NaCl basis

Si 1683 diamond
C (4300) diamond

GaAs 1511 zincblende
SiO2 1670

Al2O3 2044
Hg 234.3
Na 371 bcc
Al 933 fcc
Cu 1356 fcc
Fe 1808 bcc
W 3683 bcc

H2O 273
He -
Ne 24.5 fcc
Ar 83.9 fcc
H2 14
O2 54.7

Besides diamond, carbon has an allotropic form graphite.
It has planes formed by carbon atoms. Within a plane,
the atoms are bonded by covalent bonds. The forces
between the planes are of van der Waals type, and thus
weak. Thus the planes can easily slide past each other. A
single plane detached from bulk graphite is called
graphene.

The figure shows model of graphite where the balls
represent carbon atoms and the sticks represent covalent
bonds. (figure from Wikipedia)
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The covalent bond often forms in a particular direction.
The covalent bonds are hard, but brittle. That is, they
break from sudden strong force Metallic bond does not
depend essentially on the direction. Thus metal atoms
can glide past each other without breaking the bond.
Therefore metals are malleable.

(S 14) The crystal structure is often studied using x-ray
diffraction. In order to save time for other topics, we skip
this important topic here.

3.3 Lattice vibrations
(S 9) We studied above the vibrations of atoms in a
molecule. New we consider vibrations of in a crystal. For
simplicity, we study first a one-dimensional atom chain.
The oscillation amplitude is assumed to be small.
Therefore we can use model where the forces are linearly
proportional to the deviations in the nearest-neighbor
distance. This is equivalent that the atoms were bound to
each other by springs.

equilibrium

nonequilibrium

In equilibrium the atoms are at equal distance a from
their neighbors and there is no forces on them. The
location of atom n in equilibrium is denoted by xn = na
with integer n. In nonequilibrium, the location of atom
n is xn = na+ ξn, where ξn is the deviation of atom n
from its equilibrium location. There is a force on atom n
from the right-hand-side atom n+ 1 by

K(ξn+1 − ξn), (97)

where K is the force constant and ξn+1 − ξn is the stretch
of the spiring between atoms n and n+ 1. On the
left-hand-side atom n− 1 exerts the force

−K(ξn − ξn−1). (98)

The negative sign is because the force is to the negative
direction if ξn > ξn−1. We sum the forces and form
Newton’s equation of motion

M
d2ξn
dt2

= K(ξn+1 − ξn)−K(ξn − ξn−1)

= K(ξn+1 − 2ξn + ξn−1), (99)

where M is the mass of the atom.

We try to solve (99) with the ansatz

ξn(t) = Aei(kna−ωt). (100)

Let us study it a bit.

The ansatz (100) is complex because eiφ = cosφ+ i sinφ.
The true physical solution should be interpreted at the
real part of this,

ξphysical
n = Reξn (101)

= (ReA) cos(kna− ωt)− (ImA) sin(kna− ωt).

The reason for using complex ansatz is that it simplifies
the following calculations, compared to using real-valued
sine and cosine functions.

Secondly, we note that na ≈ xn is the x coordinate of
atom n (because ξn � a). The ansatz (100) is thus
Aei(kx−ωt), which is the same form as we used for
traveling wave in the Schrödinger equation (11). Recall
how the wave number k and the angular frequency ω are
related to wave length λ, the frequency ν and to the
velocity v of the wave:

k =
2π

λ
, ω = 2πν, v =

ω

k
= λν. (102)

The velocity of the wave is easiest to deduce by writing
the ansatz (100) in the form f(x− vt).
Substituting the ansatz (100) to the equation of motion
(99) and cancelling common factors gives

−Mω2 = K(eika − 2 + e−ika) = −4K sin2 ka

2
. (103)

Here we have used formulas eix = cosx+ i sinx and
1
2 (1− cosx) = sin2 x

2 [or, alternatively, we noticed

eix − 2 + e−ix = (eix/2 − e−ix/2)2]. From (103) we get the
angular frequency

ω = ±2

√
K

M
sin

ka

2
. (104)

This so-called dispersion relation is presented in the figure
below.

ω

ω  
=
 c
k

k

a

π

M

K

0

2

We study different ranges of k. (The case ω < 0 does not
bring anything new so we limit to ω ≥ 0).

1) 0 < k � π/a. This can be written λ� a, that is, the
wave length is much larger that the lattice spacing. The
wave means oscillation in density. Thus it can be
identified as sound wave in a solid. In this region the
dispersion relation (104) can be approximated by linear
dependence

ω = ck, (105)
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where c = a
√
K/M is the speed of sound.

2) k ∼ π/a. In this region, the wave length is of the same
order of magnitude as the lattice constant a. The angular
frequency is close to its maximum value ωmax = 2

√
K/M .

In this region the speed v = ω/k (102) of the wave
deviates from c. The corresponding property for light
(dependence of speed on the wave length and thus on its
color) is called dispersion. This is the reason for the name
of the relation ω(k) (104).

3) k < 0. These solutions correspond to waves traveling
to negative x direction. There are included in the
following figure

ω

k

a

π
a

π

M

K

0

2

-

ω  
=
 c
k

4) |k| > π/a. This region does not lead to any new
solution. This can be seen writing the solution (100) for
the wave number k + (2π/a). We see that ξn(t) is the
same as for wave number k. The figure below aims to
clarify that the same ξn’s are obtained by different k’s.
Thus the wave number can be limited to range |k| ≤ π/a.

ξn

x

a

The results above show that the lattice vibrations are not
possible above the frequency νmax = ωmax/2π ∼ 1013 Hz.
This is very large compared to audible sound frequencies,
which are below 20000 Hz. In the audible range the linear
approximation (105) is very accuate.

Two-atom basis

(S 10.2) We study lattice vibrations in an atomic string
with basis of two atoms of different mass.

nonequilibrium

equilibrium

As above, we can write equations of motion

M1
d2ξn
dt2

= K(ηn − 2ξn + ηn−1)

M2
d2ηn
dt2

= K(ξn+1 − 2ηn + ξn). (106)

We make the ansatz

ξn(t) = A1e
i(kna−ωt)

ηn(t) = A2e
i(kna−ωt). (107)

Substituting and cancelling common factors gives

−M1ω
2A1 = −2KA1 +K(1 + e−ika)A2

−M2ω
2A2 = K(1 + eika)A1 − 2KA2. (108)

We rearrange this as

(M1ω
2 − 2K)A1 +K(1 + e−ika)A2 = 0

K(1 + eika)A1 + (M2ω
2 − 2K)A2 = 0. (109)

In order to find a nonzero solution, the two equations
have effectively to be a single equation only. The
standard way to express this is that determinant of the
coefficients have to vanish,

det

(
M1ω

2 − 2K K(1 + e−ika)
K(1 + eika) M2ω

2 − 2K

)
= 0. (110)

We get

M1M2ω
4 − 2K(M1 +M2)ω2 + 4K2 sin2 ka

2
= 0, (111)

that can be solved

ω2 =
K

M1M2

[
M1 +M2 ±

√
M2

1 +M2
2 + 2M1M2 cos(ka)

]
.

(112)

Equation (112) two solutions, which are illustrated in the
figure. One solution, called acoustic branch, is of the same
type as in a chain of identical atoms (104). The
additional solution is called optical branch.

-

acoustic branch

optical branch

In the optical branch neighboring atoms vibrate against
each other, whereas in the acoustic branch they mostly
move in the same direction (most accurately at k � π/a).

The frequency ν in the optical branch has order of
magnitude 1013 Hz. This corresponds to the infrared
region of electromagnetic radiation. Especially in
materials of ionic bonding the optical branch couples
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strongly with electromagnetic radiation because the
electric field drives the oppositely charged basis atoms in
opposite directions.

Lattice vibrations in 3 dimensions

We considered above longitudinal vibrations in a
one-dimensional atomic chain. In 3 D we have to take
account that the vibrations can take place in 3
perpendicular direction. This means that instead of one
mode, there are three vibrational modes. In addition, all
modes depend on the propagation direction of the wave,
which is determined by the direction of the wave vector
k = (2π/λ)k̂. In special directions the modes can be
described as one longitudinal mode and two transverse
modes. The figure illustrates the obtained dispersion
relations, where TA1 = transverse acoustic mode 1 etc.

ω

k

a

π
a

π 0-

TA1
TA2

LA

LO

TO2

TO1

Quantum theory of lattice vibrations

(S 9.3) Let us consider one mode of lattice vibration: we
fix k and the oscillation direction (labelled by index s).
Each oscillation mode (k, s) has a precise angular
frequency ω. The vibration is harmonic because

ξphysical
n (113)

= Re(Aeikan) cos(ωt) + Im(Aeikan) sin(ωt).

Thus a mode corresponds to a harmonic oscillator.
Mode’s energy E = Ekin + Epot is the sum of the kinetic
energies of the atoms and the potential energies of the
bonds (modeled by springs) associated with this mode.

The oscillations of the crystal can be seen as independent
oscillations in each of the modes (k, s).

We now consider lattice vibrations using quantum
mechanics. The dispersion relations (104) and (112)
above remain unchanged but now each harmonic
oscillator should obey quantum mechanics. This means,
for each mode the possible energy eigenvalues are given
by (32), where ω is the oscillation frequency of the mode.

E

0

1

2

3

2

5

2

ħω

ħω

ħω

ħω

7

2

The quantization of the energy eigenvalues has important
effect on several physical phenomena. Here we consider
heat capacity.

Heat capacity of a harmonic oscillator

(S 2.1) Our starting point is Boltzmann distribution, also
known as Gibbs distribution. It will be derived in the
course Thermodynamics and Statistical Physics. The
Boltzmann distribution says that if we have states j with
energies Ej , the probability of each state is

pj =
1

Z
e−βEj . (114)

Here Z is normalization factor, which is fixed by the
condition that sum of probabilities of all states is equal to
unity, ∑

j

pj = 1⇔ Z =
∑
j

e−βEj . (115)

The factor multiplying energy in the exponent is

β =
1

kBT
, (116)

where T is the absolute temperature and
kB = 1.380658× 10−23 J/K is the Boltzmann constant.

æ

æ æ æ

ò

ò

ò
ò

à
à

à
à

0 D 2D 3D
E0.0

0.2

0.4

0.6

0.8

1.0
p j

The figure is an example of probabilities of states in a
system consisting of four states at energies Ej = n∆
where n = 0, 1, 2 and 3. The circles describes the
occupations at a low temperature and the squares at a
high temperature compared to temperature ∆/kB , at
which the occupations are shown by triangles. At room
temperature kBT = 0.025 eV. Thus the triangles
correspond to room temperature if ∆ = 0.025 eV. The
transition between such levels correspond to frequency
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ν = ∆/h = 6× 1012 Hz of electromagnetic radiation, or
wave length λ = c/ν = 50 µm, in the infrared region.

A simple rule is the following: the states whose energy is
less than the “thermal energy” kBT above the
ground-state energy are possible. The higher energy
states are unlikely.

We apply the distribution (114) to a harmonic oscillator.
We get

Z =
∑
j

e−βEj = e−βh̄ω/2
∞∑
j=0

e−βh̄ωj

= e−βh̄ω/2
∞∑
j=0

(
e−βh̄ω

)j
= e−βh̄ω/2

1

1− e−βh̄ω
, (117)

where we have used the expression of geometric series in
the last step. In order to calculate the energy, it is
convenient first to derive the general formula

〈E〉 =
∑
j

Ejpj =
1

Z

∑
j

Eje
−βEj = − 1

Z

d

dβ

∑
j

e−βEj

= − 1

Z

dZ

dβ
= −d lnZ

dβ
. (118)

Applying this to harmonic oscillator (117), a short
calculation gives

〈E〉 =
h̄ω

2
+

h̄ω

eβh̄ω − 1
. (119)

This is shown by continuous line in the figure.
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The result can be understood as follows. At low
temperatures, T � h̄ω/kB, the harmonic oscillations is in
ground state (the lowest energy state). In this case the
expectation value of the energy equals the ground state
energy, 〈E〉 = 1

2 h̄ω. At high temperatures, T � h̄ω/kB,
many states of the oscillator are possible, and 〈E〉 ≈ kBT ,
which is shown by dashed line.

The heat capacity is defined as the derivative of average
energy with respect to temperature,

C =
d〈E〉
dT

. (120)

Heat capacity tells how much energy has to be imported
in order to raise the temperature by a given amount.
Using formula (119) we get the heat capacity of a
harmonic oscillator

C =
d〈E〉
dT

=
h̄2ω2

kBT 2

eβh̄ω

(eβh̄ω − 1)2

=
h̄2ω2

4kBT 2 sinh2 h̄ω
2kBT

. (121)

This is shown by continuous line in the following figure.
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At high temperatures kBT > h̄ω, the heat capacity is
nearly constant, C ≈ kB. This is the classical result
C ≡ kB (dashed line), which is obtained in the limit
h̄→ 0. At low temperatures kBT � h̄ω, the heat capacity
approaches zero. This can be understood so that when
the thermal energy kBT is small compared to the energy
difference h̄ω between the first excited state and the
ground state, the probability of the excited state stays
small, and thus the oscillator does not take energy in
spite of a raise of temperature. Raising the temperature,
the probability of the excited states is increased
substantially when kBT starts to be of the same order of
magnitude as the excitation energy h̄ω.

We apply the result to lattice vibrations. The simplest
model of a solid would be that all atoms oscillate at the
same frequency ω. The number of such modes is 3N ,
where N is the number of atoms in the crystal. The
factor 3 comes because each atom can oscillate in three
orthogonal directions. Such a model is called Einstein
model. Einstein model has heat capacity that is the same
as for a single harmonic oscillator but multiplied by 3N .
Thus at high temperatures, the oscillators obey classical
result and the heat capacity C ≈ 3NkB, which is known
as Dulong-Petit law. At low temperatures (T < h̄ω/kB)
the heat capacity is reduced and approaches zero when
T → 0.

Historically, it was found experimentally that the heat
capacity at high temperatures approaches the classical
value C ≈ 3NkB, but is reduced at low temperatures.
Einstein showed in 1907 with his model that this
temperature dependence can be understood on the basis
of quantum mechanics.

(S 2.2) A more advanced model is called Debye model. It
takes in to account that instead of one frequency, there
are many different frequencies in a crystal, as we derived
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above [Eq. (104)]. When the temperature is high so that
kBT > h̄ωmax, all oscillators obey the classical law and
the heat capacity C ≈ 3NkB. At low temperatures
kBT � h̄ωmax, part of the oscillators is “frozen” because
their energy is so high that that they are not excited.
They do not contribute to the heat capacity. Only those
modes with small frequency (small k) contribute to the
heat capacity at a low temperature.

0 QD 2 QD
T

3 N kB

2

3 N kB

C

The figure shows heat capacity according to Debye model.
It assumes linear dependence ω = ck for k < kD where
the “cut-off” kD is determined from condition that there
are 3N modes. It describes rather well the heat capacity
of many substances. The quantity
ΘD = h̄ckD/kB ∼ h̄ωmax/kB is called Debye temperature.
It is typically a few hundred degrees in elemental
substances.

substance Debye temperature (K)
C (diamond) 1860

Na 150
Al 394
Si 625
Fe 420
Cu 315
Hg 100

NaCl 321

Phonons

(S 9.3) The concept of phonon is often used in connection
with lattice vibrations. Let us consider the case that the
mode (k, s) is in state j, i.e. the mode energy is
E = h̄ω(j + 1

2 ). An alternative way to express this is to
say that the mode has j phonons. One can speak about
phonons as they were particles, although they represent
oscillation states. For example, one phonon energy is
h̄ωk,s. The whole lattice energy is

E =
∑
k

∑
s

h̄ωk,s(jk,s +
1

2
), (122)

where jk,s the number of phonos in mode (k, s). The
expectation value of energy (119) is interpreted that the
average number phonons is

〈j〉 =
1

eβh̄ω − 1
, (123)

which is a special case of Bose-Einstein distribution.

Phonons are quanta of lattice vibrations. This is
analogous to photons, which are quanta of
electromagnetic field. One phonon energy is hν = h̄ω. A
photon has momentum p = h̄k. Continuing the analogy,
the phonon also has momentum p = h̄k. The phonon
concept is useful, for example, in study of heat
conductivity. Phonons transport heat from region of high
temperature to region of low temperature. What limits
the transport is that phonons collide with each other and
with defects of the crystal, and get scattered to other
directions.
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4. Solid state: electronic properites
(YF 42.4, S 11 and 16.1) We now start applying quantum
mechanics to electrons in the solid state. It should be
reminded that the following is based on the independent
electron approximation, where the Coulomb interaction
between the electrons is neglected. The approximation
works surprisingly well for many properties, but not all.

Above we have considered electron states in an atom. We
also considered the binding of two atoms to form a
molecule. Now we study what happens the atoms form a
solid. The figure below depicts three energy level in an
atom, marked by a, b and c.

a

b
c energy

When two atoms are brought close to each other, the
energy barrier between them gets lower. This means that
the electrons from one atom can tunnel to the other one.
However, for the state a the potential barrier is high, and
nothing really happens. This is an important result: the
inner electron states in an atom remain unchanged in the
formation of a bond.

At level b the electron tunneling is important. At level c
the electrons can move freely in the molecule.

When the atoms form a bond, the energy levels are
restructured. In a molecule of two atoms, an atomic
energy level forms two levels at different energies. The
energy difference of these levels is the larger the stronger
is the tunneling between the atoms. In a chain of 4
atoms, each atomic level is split into 4 levels of different
energy. A solid has a great number of atoms, N ∼ 1023.
This implies that instead of separate energy levels, there
are energy bands. The energies in energy band is allowed
for electrons. Between energy bands there are forbidden
energies, that are called energy gaps. In some cases the
energy bands arising from different atomic levels overlap,
implying that there is no energy gap.

Similar as in atoms, the electrons in a solid fill the energy

levels starting from the lowest energy. Solids can be
divided in three groups based on the filling of the energy
bands.

• Insulator: all bands are either filled or empty. The
highest filled band is separated from the lowest
empty band by an energy gap of several electron
volts.

• Semiconductor: like insulator, but the band gap is
smaller so that some electrons are excited from the
valence band (the highest filled band) to the
conduction band (the lowest empty band).

• Conductor: there is one partially filled band (or
more). (“Metal” and “conductor” are used as
synonyms.)

E
empty

band

full

band

E

µ
partially

filled 

band

energy gap

conductorinsulator

We will consider each case separately below.

4.1 Free electron model of metals
(YF 42.5, S 4.1-4.2) In metals the partly filled band is
called conduction band. The ability of metals to conduct
electricity is based on the existence of a conduction band.
This is because the bands that are full do not conduct.
(We will discuss this soon.) The electrons in the
conduction band are called conduction electrons. These
can move rather freely through the metal. We now study
their behavior in more detail.

We assume electrons are moving in a potential U(r) that
is constant, U ≡ U0. Since the constant does not affect
the motion, we choose for simplicity U0 = 0. The wave
functions have been solved above. They are plane waves
(41) with energy E = h̄2k2/2m.

The next step is the following. Given the density of
conduction electrons in a metal, up to what energy are
the states filled. For that we consider a lump of metal and
count the number of levels below a given energy E. We
use the deep 3D potential well as a model of a piece of
metal. The energy levels are given by (49) with positive
integers n1, n2 and n3. The number of wave functions
below E correspond to quantum numbers satisfying

n2
1 + n2

2 + n2
3 <

2mL2E

π2h̄2 = κ2. (124)

We draw a space with axes n1, n2 and n3. In this space
the condition (124) means dots inside 1/8 of sphere of
radius κ.
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n2

n1

n3

(1,3,1)

In the limit the box is large, the dots are very dense,
κ� 1. Then the number of dots Nd(E) can be estimated
from the volume of the 1/8 sphere

Nd(E) =
1

8

(
4

3
πκ3

)
=

√
2m3V

3π2h̄3 E3/2, (125)

where the box volume V = L3.

We define the density (number/volume) of electron states
n(E) below energy E. It is given n(E) = 2Nd(E)/V ,
where the factor 2 comes from two values of the spin
quantum number ms. We get

n(E) =
2
√

2m3

3π2h̄3 E
3/2. (126)

We also define density of states

g(E) =
dn

dE
=

√
2m3

π2h̄3

√
E. (127)

Here “density” means the number of states per energy
interval. The number of states in energy interval
(E,E + dE) is g(E)dE. This is proportional to the
square root of energy.

dn

dE

E

The number of levels (126) below energy E is recovered
as integral over g,

n(E) =

∫ E

0

g(E)dE =
2
√

2m3

3π2h̄3 E
3/2. (128)

Suppose the electron density ne. These fill the electron
states from 0 to an energy EF called Fermi energy.

g

E

E F

filled levels

empty levels

The condition ne = n(EF) gives, using (126),

EF =
h̄2

2m

(
3π2ne

)2/3
. (129)

We apply the free electron model to the electrons in the
conduction band. We suppose each atom contributes Zc
elecrrons to the conduction band. The following table
shows estimation of Zc for some elements. When we know
the density of the element, one can calculate ne, and the
Fermi energy (129).

Zc EF (eV)
Na 1 3.2
Cu 1 7.0
Fe 2 11.1
Al 3 11.7
Pb 4 9.5

We derived that the energy levels are filled up to Fermi
energy (129). According to E = h̄2k2/2m there is
corresponding Fermi wave nunber

kF =
(
3π2ne

)1/3
. (130)

ħ2k2

2m
E =

k

EF

kF

We can also think three dimensional k space with axes
kx, ky and kz. In this space, the filled states are inside a
sphere of radius kF. This is called the Fermi sphere and
its surface the Fermi surface.

kx ky

kz

One also defines Fermi momentum pF = h̄kF and Fermi
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velocity vF = pF/m. The typical order of magnitude
vF ∼ 106 m/s.

More generally, at a given temperature, the levels are
filled according to the Fermi-Dirac distribution (also
known as Fermi function)

f(E) =
1

e(E−µ)/kBT + 1
. (131)

This formula will be justified in the course
Thermodynamics and Statistical Physics. The change of
the occupation from 1 to 0 takes place in energy range
characterized by the thermal energy kBT . At room
temperature kBT = 0.025 eV. Because this is small
compared to EF, we conclude that the partially filled
levels occur only in vicinity of Fermi energy

dn
dE

E

E

kBT

µ

1
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filled levels
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4.2 Electron in a periodic potential
(S 15) Above we studied free electrons, which was then
applied to conduction electrons in metals. The
assumption in free electron model is that the potential
vanishes. In reality, the ions generate a nontrivial
potential U(x), which we study next.

In a crystalline material the effect of U(x) is simplified
because its symmetry. We consider one-dimensional case
with lattice constant a. Then

U(x+ a) ≡ U(x). (132)

That is, U(x) is a periodic function with period a. This
means that we need to know the potential only in one
unit cell. Because of periodicity (132), the potential is
then known in the whole lattice.

Sums of sinusoidal waves can be used to represent more
complicated functions. This is especially useful for
periodic functions, where it is called Fourier series. We
apply this to express U(x),

U(x) =

∞∑
n=−∞

Une
i2πnx/a, n = 0,±1,±2, . . . . (133)

We notice that the exponential factor ei2πx/a is periodic
in x with period a. Thus the sum of them with
coefficients Un satisfies the periodicity (132).
Mathematicians have shown that the infinite sum (133)
can represent all sufficiently well behaved functions. The
fact that U(x) is real leads to the constraint U−n = U∗n.

Our task is to solve the Schrödinger equation

− h̄2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x). (9)

Let us consider a traveling wave (11) ψ = Aeikx. This is
an eigenstate of the kinetic energy operator
−(h̄2/2m)d2/dx2 but operation by the potential energy
gives

U(x)eikx =

∞∑
n=−∞

Une
i(k+2πn/a)x. (134)

We see that the original wave at wave number k is
coupled to waves at wave numbers k + 2πn/a with
n = ±1,±2, . . .. This is a complicated problem in the
general case. Here we can make progress by assuming
U(x) is small. Then the main effect of the potential is to
scatter electrons from one direction to another but nearly
at the same energy. The figure below illustrates the
scattering of a wave from two consecutive atoms in the
crystal.

a

There is a constructive interference of the two scattered
waves when the path length difference 2a equals integer
number of wave lengths λ. This gives

k =
lπ

a
, l = ±1,±2, . . . (135)

Let us concentrate on the case l = 1. We claim that for
solving the Schrödinger equation (9) in the region
k ≈ π/a, a reasonable approximation is to consider the
ansatz

ψ = Aeikx +Bei(k−2π/a)x, (136)

and to neglect the couplings to all other wave number
states. This procedure is known as degenerate
perturbation theory.

We substitute (136) into (9), neglect coupling to other
states, and simplify by assuming U0 = 0. Demanding a
solution valid at all x gives the pair of equations

h̄2k2

2m
A+ U1B = EA

h̄2

2m

(
k − 2π

a

)2

B + U−1A = EB. (137)
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For nontrivial solution the determinant of the coefficient
matrix of A and B has to vanish,

det

(
h̄2k2

2m − E U1

U−1
h̄2

2m

(
k − 2π

a

)2 − E
)

= 0. (138)

From this we find the energy eigenvalues

E =
h̄2

4m

[
k2 +

(
k − 2π

a

)2
]

±

√√√√ h̄4

16m2

[
k2 −

(
k − 2π

a

)2
]2

+ |U1|2. (139)
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The result (139) is plotted in the figure. We discuss
several features of the result below.

1) We see that the deviation from the free electron model
(dashed line) is small except close to k = π/a. Instead of
the continuous spectrum of the free-electron model, a gap
of magnitude 2|U1| opens in the energy spectrum.
Perviously, we argued about energy bands and gaps
starting from weak overlap of atomic orbitals. Here we
started from the opposite assumption of free electrons,
and introduced weak periodic potential. Neither of the
two approximations is quantitatively correct in real solids.
In spite of this, the result that in both limits energy
bands and gaps are obtained, makes us to believe that
they do appear in real solids as well.

2) Besides results close to the dashed line, the figure
shows branches close to the dotted line (the upper branch
at k < π/a and the lower branch at k > π/a). We can
study the corresponding wave function by solving (137).
This gives that the B term is the dominant one in the
wave function (136). Thus the dominant wave number is
k − 2π/a instead of k. This ambiguity is possible because
the wave function (136) is not an eigenstate of the
momentum operator (10).

More generally, one can prove Bloch theorem. It states
that any solution of the Schrödinger equation (9) for a
periodic potential (132) can be written in the form

ψ(x) = eikxu(x), u(x+ a) = u(x). (140)

This Bloch wave function is a product of two factors. The
exponential part is as for a free particle (11). The part

u(x) is a periodic function with period a. The wave
number k in (140) is called crystal momentum, see
explanation below.

One consequence of the Bloch theorem is that |ψ(x)| and
thus the probability density is a periodic, although ψ(x)
is not.

Because of the periodicity of u(x), we can write it using
Fourier series as in (133),

u(x) =

∞∑
n=−∞

une
i2πnx/a, n = 0,±1,±2, . . . . (141)

Using this we see that the Bloch wave function ψ(x) (140)
is a superposition of states of momenta p = h̄k + 2πh̄n/a
with amplitudes un at integer n. Thus, neither k nor h̄k
is the momentum of the state, but the crystal momentum
k specifies the momenta that occur in the superposition
state. This is a more general statement of the result we
obtained in the calculation and figure above with
superposition state two momentum values (136).

3) The calculation above addressed the effect of the
periodic potential near k = π/a. More generally, a similar
calculation should be done at all k = πl/a with integer l.
The result is that gaps will open at l = ±1,±2, . . .
(depending on the value of |Ul|).

energy gap

energy band

first Brillouin zone

The figure shows the electron energies in so-called
extended-zone scheme. The first Brillouin zone, where
−π/a ≤ k ≤ π/a, is indicated.

4) We saw (in point 2) that k specifies the momenta in
the superposition state but it does not determine which of
them appears with largest amplitude. We can use this
freedom to select the values of k in a specified range.

E

π/a−π/a 0

energy gap

energy band

k
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The figure shows all our results moved to the first
Brillouin zone. This compact representation is called
reduced zone scheme. One has to remember that the
states at the boundaries of the zone, k = ±π/a, should be
identified. Sometimes this looks too discontinuous, and it
is advantageous to use other schemes, where the curves
are continued outside of the first Brillouin zone (but at
the expense that same physical state may be represented
more than once).

5) Let us finally note that the result obtained in figure
after eq. (139) is an example of avoided crossing of levels.
It is common in quantum mechanics (or in any wave
theory) that two uncoupled levels (here the dashed and
dotted lines) cross in energy as a function of some
parameter (here k). When a coupling between the two
levels is added, the crossing is avoided. [Note that we
encountered a somewhat similar situation for lattice
vibrations, where a gap opened in the frequency spectrum
in a chain of atoms of different mass, eq. (112).]

Electron dynamics in a lattice

(S 17.1) Above we considered electron waves, which are
characterized by the wave number k and angular
frequency ω = E/h̄. These waves are delocalized. That is,
they extent in principle from x = −∞ to x = +∞. In
order to have a localized wave, one has to form a wave
packet that contains several wave numbers, for example
in the range (k −∆k, k + ∆k). (earlier exercise) We claim
that such a wave packet moves with group velocity

v =
dω

dk
. (142)

This formula is explained in appendix C. (exericse)

Often the group velocity (142) depends on k. Then the
form of the wave packet deforms as it propagates. Then
the group velocity should be interpreted as some average
velocity.

We apply the group velocity (142) to electrons. Using
ω = E/h̄ we get the velocity of the electron

v =
1

h̄

dE

dk
. (143)

We suppose an external force F is applied to the electron.
It makes the work Fv dt which equals the energy change
dE = (dE/dk)dk. Using formula (143) we get

h̄
dk

dt
= F. (144)

The force F could be caused by an electric field E so that
F = −eE , where −e is the electron charge.

Equations (143) and (144) are familiar to us in the case of
free electrons, h̄k = mv and E = h̄2k2/2m. In a lattice
their content is different because of the nontrivial E(k).

2π/a

k

E

π/a−π/a 0−2π/a

k

v

The figure skethes v (143). In regions where the free
electron model is good, v ≈ h̄k/m, but at zone
boundaries (135) the velocity vanishes, v → 0.

We consider an electron under a constant for F .
According to (144) the wave number k = k0 + Ft/h̄ grows
linearly starting from its initial value k0. If the electron is
close to the bottom of the band, it behaves nearly as free
electron. Starting from rest (v = 0, k0 = 0) the velocity
increases linearly in the direction of the force. The
situation is different close to the upper end of the band.
When k approaches the zone boundary k = π/a, the
velocity decreases. This can be understood by scattering
of the electron to the opposite direction. The state is a
superposition of waves propagating in opposite direction
(136), and v should be interpreted as the averaged
velocity in the wave packet. When k reaches the zone
boundary, k = π/a, it will be identified with k = −π/a.
Then k will continue increasing from k = −π/a according
to (144), implying that it moves in the direction opposite
to the force. Thus the electron will not jump from one
band to another but remains in the same band. This is an
example of adiabatic theorem, discussed in Quantum
mechanics course. (The electron remains in the same
band if the electric field is not too strong. A strong field
can cause “Zener tunneling” to the next band.)

The electron motion could be clarified defining effective
mass. Near the bottom of the band the energy depends
quadraticlly on k. Thus we can write

E ≈ E0 +
h̄2(k − k0)2

2m∗
(145)

where m∗ a constant called effective mass. The same
formula could be used also close to the top of a band,
with the difference that m∗ is negative.

In region where the effective mass approximation is valid,
we get from equations (143) and (144)

m∗
dv

dt
= F. (146)

This is like Newton’s equation of motion, but now m∗ can
also be negative.
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4.3 Electric conduction in metals
(S 16.1) We study a metal. We found previously that the
electrons in the conduction band move at a high velocity
∼ vF. In the levels at wave vectors k and −k, the motion
is in opposite directions. These levels are equally likely to
be occupied in equilibrium as they have the same energy.
Thus the electric current vanishes in equilibrium, j = 0.

k

π/a−π/a 0

µ

E

k

π/a−π/a 0

E

electron flows to the right 

and to the left cancel
net electron flow to the right 

In order to have electric current, j 6= 0, there has to be
asymmetry in the occupation of some levels with k and
−k. This is sketched in the right figure above, where the
levels with velocity to the right are occupied to higher
energy than the ones moving to the left. (Warning: the
asymmetry is strongly exaggerated.)

The imbalance of electrons can be achieved by external
electric field. The force F = −eE accelerates the electrons
so that their momentum p = h̄k grows. There are always
imperfections of the lattice

• lattice vibrations

• static imperfections of the lattice: atoms missing,
extra atoms, wrong type of atoms, dislocations, grain
boundaries. . .

These cause scattering of the electrons. The electrons
predominantly scatter to empty levels that are at the
same or lower energy. A stationary current flow is
reached when the driving electric field and the scattering
balance each other.

k

π/a−π/a

E

scattering

F = -e EE

(S 3.0) A simple model of electric conduction was
suggested by Drude (1900). The Drude model considers
the momentum p = mv that is the averaged value over all
conduction electrons. Its equation of motion is assumed
be

dp

dt
= −p

τ
− eE. (147)

This is Newton’s equation of motion that has force
F = −eE caused by electric field, and the additional term
−p/τ that describes scattering of electrons. This term
takes into account that the electrons loose their
momentum in collisions on the average in a time τ , which
is called the relaxation time. The electric current density
j = −enev, where ne is the number density of the
conduction electrons.

[The current density is defined as the electric current
divided by the perpendicular area, through which the
current flows. It is good to check that the units match in
the formula j = −enev: [j] = A/m

2
= C/s m2, [e] = C,

[ne] = 1/m3 and [v] = m/s.]

(S 3.1.1) One particular case that can easily be solved is
the response to a constant electric field E. Setting
dp/dt = 0, we get

j = σE, (148)

where

σ =
e2neτ

m
. (149)

Note that (148) is Ohm’s law: the current depends
linearly on the electric field. The more common form of
Ohm’s law V = RI is obtained when we have a conductor
of length L and cross sectional area A. Then the current
I = Aj and the voltage over the ends of the conductor
V = LE . Thus the resistance R = L/σA. The quantity σ
is the conductivity and its inverse ρ = 1/σ is the
resistivity.

The table below gives measured resistivities of some
metals at the temperature T = 273 K. The relaxation
times are calculated based on the measured resistivities.

ρ (10−8Ω m) τ (10−14 s)
Na 4.2 3.2
Cu 1.56 2.7
Fe 8.9 0.24
Al 2.45 0.80
Pb 19.0 0.14

A typical dependence of resistivity ρ = 1/σ on
temperature is sketched in the following figure.

T (K)

ρ

0
0

At room temperature the resistivity caused by lattice
vibrations is dominant. With decreasing temperature it
decreases towards zero. At low temperatures the
resistivity comes from lattice defects as they cause
resistivity that is temperature independent. The rule that
the resistivities arising from the two sources can be
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added, ρ = ρ1 + ρ2, is called Mathiessen rule. Some
metals become superconducting at low temperatures.
This means that the resistivity vanishes abruptly below a
temperature called critical temperature Tc (not shown in
the figure)

The figures below show resistivity of copper, Cu, at
different temperatures.
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Full bands and holes

Above we looked at how electrons carry electric current in
a partially filled band. Based on this we can also
understand why a full energy band does not conduct. A
full band has always electrons equally going in one
direction than in the opposite direction. Thus the net
current vanishes.

The fact that the full bands do not conduct is essential
for the classification of solids into insulators, metals, and
semiconductors (see above). The deep lying filled bands
do not matter for conductivity.

There is an alternative way to describe electric
conduction in a partially filled band. Instead of looking at
the filled levels, we can concentrate on the unfilled levels.
An elecron missing from a level is called hole. This way of
looking is mostly useful when the energy band is almost
full.

As above, consider a force that is driving the electrons
towards increasing k. The situation with holes is as in the
figure below.

k

π/a−π/a

Eholes

F = -eEE

In this case the velocity v = (1/h̄)dE/dk for holes is
negative, on the average. That is, they move in the
negative x direction. Compared to the case that the band
would be full, the holes have a positive charge. Thus,
instead of negatively charged electrons moving in the
positive x direction, we can think the electric current to
arise from positively charged holes that move in the
negative x direction.

4.4 Superconductivity
(YF 42.8) By superconductivity we mean the
phenomenon that the electrical resistivity of a material
disappears below some temperature Tc.

T0
0

Tc

electric resistance

Occurrence

• several metallic elements : Al, Nb, Sn, (but not in
magnetic metals and in noble metals: Cu, Au, Ag)

• many alloys, e.g. Nb-Ti

• some compounds: Nb3Ge, MgB2, Y-Ba-Cu-O etc.

The temperature below which superconductivity occurs is
called critical temperature, Tc. The list gives some critical
temperatures.

material Tc (K) µ0Hc(T = 0) (mT)
Al 1.196 9.9
Hg 4.15 41
In 3.40 29.3
Pb 7.19 80.3
Nb 9.25

Nb3Ge 23
MgB2 39

YBa2Cu3O6+x 98
Tl2Ca2Ba2Cu3O10 125
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Infinte conductivity

In normal state metals the electric current is proportional
to the electric f,ield j = σE (148). As stated above, in
superconductors σ = 1/ρ→∞.

Meissner effect

A more fundamental phenomenon than infinite
conductivity is seen when a normal state metal is first
placed in magnetic field B, and is then cooled into the
superconducting state. It is observed that the magnetic
field is expelled from the sample. This is called Meissner
effect.

normal state

metal in field

then cooled 

below Tc

Critical field

The Meissner effect is observed only if the magnetizing
field H is not too large. It is observed that a transition
between superconducting state and normal state takes
place in critical field Hc, whose dependence on
temperature is approximately

Hc(T ) = Hc(0)

[
1−

(
T

Tc

)2
]
. (150)

supercon-

ducting state

normal state

T

Tc

Hc(0)

H

Material showing this behavior are called type I
superconductors.

Some superconducting materials have a mixed state
between Meissner and normal states. These are called
type II superconductors.

normal state

mixed state

Meissner state T

Tc

Hc2

Hc1

H

Hc

Persistent currents and flux quantization

Let us place a normal state ring in perpendicular
magnetic field. When it is cooled below Tc, the magnetic
field is expelled from the inside of the superconductor,
but a magnetic flux through the ring remains. When the
external field is removed, this flux remains unchanged.
We deduce that a persistent current I is induced in the
superconducting ring that generates the magnetic field B.
In addition, the magnetic flux Φ =

∫
da ·B through the

ring is quantized: it is an integer multiple of the flux
quantum

Φ0 =
h

2e
= 2.07× 10−15 Wb. (151)

Here h is Planck’s constant and e the elementary charge.

B

I

Theory of superconductivity

Many properties of superconductors can be understood
based on Bardeen-Cooper-Schrieffer (BCS) theory (1957).
It consists of two parts. 1) there is attractive force
between electrons that is mediated by lattice vibrations.
In superconducting metals this dominates the Coulomb
repulsion between electrons. 2) Because of the attractive
interaction, the electrons form pairs, so-called Cooper
pairs. We study the latter part in more detail.

The many-body wave function takes the form consisting
or pairs,

ψ0(r1σ1, r2σ2, r3σ3, . . .) = φ(r1σ1, r2σ2)×
φ(r3σ3, r4σ4)φ(r5σ5, r6σ6) . . . , (152)

All pair states are the same!. This function does not
vanish in antisymmetrization as long as the pair function
is antisymmetric,

φ(r1σ1, r2σ2) = −φ(r2σ2, r1σ1). (153)
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In exchanging pairs one gets the factor (−1)2 = 1,
similarly to bosons.

We see that a large number of electrons behave according
to a single pair wave function. This makes
superconductivity to withstand perturbations that often
destroy quantum coherence on a macroscopic scale. The
pair wave function is said to be “macroscopic”.

Consider a pair of particles. Assuming the center of mass
[R = 1

2 (r1 + r2)] is at rest, the wave function can depend
only on the relative location r1 − r2. We also assume the
spin state is a singlet, 1√

2
(↑↓ − ↓↑), which is believed to

be the case in most superconductors. Thus

φ(r1σ1, r2σ2) = ψ(r1 − r2)
1√
2

(↑↓ − ↓↑). (154)

If we now look the orbital part ψ in k space, we see that
it is a superposition of states, where, if one particle is in
state k, the other is in the opposite state −k:

ψ(r1 − r2) =
∑
k

cke
ik·r1e−ik·r2 (155)

This is understandable because the center of mass is
assumed to be at rest, and therefore the total momentum
should vanish.

A special case of the pair state (155) is that ck vanishes
for all wave vectors except one, say k = k0. Such a state,
which describes two fermions with wave vectors k0 and
−k0, is an energy eigenstate if there is no interaction
between the particles. In the presence of interaction, the
two particles will collide and scatter to some other wave
vectors k1 and −k1. These then scatter to wave vectors
k2 and −k2, and so on. Thus the energy eigenstate in the
presence of interactions is a coherent superposition of
opposite wave-vector states as in (155) with many
non-vanishing ck’s.

Let us look the pair state from the point of a fixed single
k = k0. The states included in (155) are |1, 1〉 and |0, 0〉.
Here the two numbers mean the occupation of levels with
wave vectors k0 and −k0, respectively. The presence of
|0, 0〉 state means that the particles are scattered into
some other wave-vector states leaving the levels k0 and
−k0 empty. In order to have complete basis states for
wave vectors k0 and −k0, we also need states |1, 0〉 and
|0, 1〉. These mean states where only the former or the
latter level is occupied, repectively.

Let us study the energies of the states |0, 0〉, |1, 0〉, |0, 1〉
and |1, 1〉. These contain different number of particles.
The standard method to deal with such a case is to
connect the system with a particle reservoir. An ideal
particle reservoir can store particles at a constant energy.
The energy µ is called chemical potential. In the free
electron model µ is equal to EF at T = 0.

We can now calculate the energies of the four states in
the absence of interactions. It is convenient to choose µ

as zero of energy, and to express other energies relative to
that. We get

|0, 0〉 : E = 0

|1, 0〉 : E = ξk

|1, 0〉 : E = ξk

|1, 1〉 : E = 2ξk (156)

where ξk = h̄vF (k − kF ). The energies are illustrated in
the figure as function of k.

E

k
|0,0>

|1,0> and |0,1>

|1,1>

kF

It is obvious that the system ground state consist of
states |1, 1〉 at k < kF and of states |0, 0〉 at k > kF . This
is the Fermi sphere of noninteracting particles.

Let us then consider what happens when the attractive
interaction is switched on. As discussed above the
formation of pair state leads to coupling between different
momentum states, and this leads to coupling of states
|1, 1〉 and |0, 0〉. It is a standard problem in quantum
mechanics that such a coupling leads strongest mixing of
the states when the unperturbed energies are close to
each other. In the present case this happens just at the
Fermi surface (k = kF ), where the states |1, 1〉 and |0, 0〉
are degenerate in the absence of interaction. This leads to
an avoided crossing, similarly as discussed in a different
context above [Eq. (139)].

E

k
|0,0>

|1,0> and |0,1>

|1,1>

kF
|0,0>

|1,1>

a|1,1>+b|0,0>

b|1,1>-a|0,0>
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The ground state (blue in the figure) is now a
superposition of states |1, 1〉 and |0, 0〉. However, deep
inside the Fermi sphere (k � kF ) it is to a good
approximation |1, 1〉, and far outside (k � kF ) it is to a
good approximation |0, 0〉, as in the normal state. Thus
pairing only changes the electron state near the Fermi
surface, k ≈ kF . But this is just the region that is
essential for transport properties at low temperatures.

In addition to the superconducting ground state, the
picture above gives also the elementary excited states.
Namely, the lowest energy exited state is to break the
pair a some k and replace it by state |1, 0〉 or |0, 1〉. The
excitation energy is just the energy difference between the
green and blue lines in the figure above. The excited pair
states (red in the figure) correspond to double excitation
at the same k. The excitation energy of the elementary
excitations is replotted in the figure below.

E

k
kF

particle-like
excitations

hole-like
excitations

Δ

We see that there is minimum of the excitation energy. It
is called the superconducting energy gap and denoted by
∆. This is in contrast to excitations in the normal state
which have no gap (shown by dashed line).

Tc (K) ∆ (eV)
Al 1.2 1.7× 10−4

Sn 3.75 5.6× 10−4

Pb 7.22 13× 10−4

The superconducting energy gap ∆ is illustrated in the
figures below
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Because the gap is very small compared to the width of
the conduction band, it will not be visible in the left
panel showing the band scale. The right panel zooms in
the energy range near the Fermi level, where the gap in
the excitation spectrum becomes visible. At T = 0 all the
states below the gap are filled and all the states above are
empty.

Because of smallness of the gap ∆, electrons are excited
across the gap already at temperatures of a few kelvin.
The excitations limit the momentum states available for

the pairs in (155). This leads to decrease of ∆ with
increasing T . The gap vanishes at T = Tc, and the metal
is in the normal state at higher temperatures.

The superconducting gap differs from the crystal band
gap that it need not be horizontal. An electric field not
only drives imbalance in the electron distribution, but
also tilts the energy gap.
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Since there are more electrons moving to the right than
to the left, there is net electric current, j 6= 0. Lattice
vibrations and other defects of the lattice cannot scatter
the electrons since there are no empty states available at
the same or lower energy. This explains the infinite
conductivity in the superconducting state.

Also other properties of superconductors can be explained
based on the Cooper pairs. The quantization of magnetic
flux to nΦ0 (n integer) in a superconducting ring is a
consequence that the pair wave function ψ(r1, r2) ∝ eiφ,
where the phase φ changes by 2πn in circling the ring.

Josephson effect

thin insulating layer

superconductor 1 superconductor 2

We study two pieces of a superconducting metal that
connected by a thin insulating layer. The electrons
tunneling through the layer give rise to current. The
current I depends on the phases φ1 and φ2 of the
superconductors in the form

I = I0 sin(φ2 − φ1). (157)

Under constant voltage V , the phase difference φ2 − φ1

changes as φ2 − φ1 = ωt, where

ω =
2eV

h̄
(158)

(This can be seen as E = h̄ω, where E = 2eV is the
energy associated with a pair tunneling form one side to
the other.) Substituting into (157) we see that the
current oscillates at frequency (158). Because the
frequency can be measured accurately, this can be used as
a voltage standard. For example, V = 0.1 mV
corresponds to frequency ν = ω/2π ≈ 48 GHz.
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4.5 Semiconductors
(YF 42.6, S 17) Semiconductors were studied
experimentally already in the 18 hundreds. They conduct
electricity, but the conductivity is not as good as in
metals. Opposite to the case of metals, their conductivity
increases (resistivity decreases) with increasing
temperature. The conductivity also depends strongly on
impurities, in contrast to a metal. Semiconductors have a
rectifying property: the observed conductivity in one
direction is different from the one in the opposite
direction. In the following we aim to understand these
properties of semiconductors. The understanding is based
on the band theory and the semiclassical theory of
electron dynamics.

Pure semiconductors in ground state (T = 0) have all
bands either filled or empty. The highest filled band is
called the valence band, and lowest empty band the
conduction band. The band gap between them is smaller
than in insulators, typically 2 eV or smaller. The table
lists band gaps of some insulators and semiconductors

Eg (eV)
C (diamond) 5.5

Si 1.12
Ge 0.67

InSb 0.17
GaAs 1.4
NaCl 9.0
Al2O3 9.9
SiO2 11

The region near the band gap is illustrated in the figure
below. The highest energy in the valence band is denoted
by Ev and the lowest energy in the conduction band by
Ec. Thus the band gap Eg = Ec − Ev. The figure below
illustrates an indirect band gap, where Ev and Ec occur at
different k’s. A material where they are aligned in k is
called to have a direct band gap.

f

E

µ

k 00 1

Ec

Ev

The right hand side of the figure shows the Fermi
function (131). The Fermi level energy µ (where f = 1/2)
is in the band gap. Because the band gap is not too big
compared to the thermal energy kBT , f is small but not
negligible at Ec. Thus there are some electrons in the
conduction band. Similarly, there is a small difference of

f from unity at Ev. This means that there are holes in
the valence band.

Electric conduction in semiconductors

The electric conduction in semiconductors takes place
both by electrons in the conduction band and holes in the
valence band. As in a metal, the average velocity of the
charge carriers is linear in the electric field E . We write
this separately for electrons in the conduction band
(index n meaning negative charge) and holes in the
valence band (index p meaning positive charge),

vn = −eBnE, vp = eBpE. (159)

The coefficients Bn and Bp are called mobilities. Note
that vn is the same as in Drude model except that now
we have written Bn instead of τ/m. The holes have
different effective m and τ , and thus their mobility Bp
can be different. For the electric current we need the
density of electrons in conduction band nn and holes in
the valence band pp. The current density

j = −ennvn + enpvp = e2(nnBn + npBp)E. (160)

From this we get the conductivity

σ = e2(nnBn + npBp). (161)

We see that the conductivity of the electrons in the
conduction band and the holes in the valence band add
(not subtract), as was discussed above. This is illustrated
in the figure below (where q denotes the charge).

conduction

band

valence

band

E

j = -ennvn + enpvp

vn

vp

⇒

F=qE

x

E

q=+e

q=-e

The most essential difference in the conductivity between
a metal and a semiconductor is the following. In a metal
(149) the density of charge carriers n is the number of
electrons in the conduction band. This is constant for
each metal. In particular it does not depend on
temperature. In a semiconductor (161), the charge
carriers densities nn and np are suppressed at low
temperatures and grown exponentially with temperature.
This effect is generally stronger than any temperature
dependence in the mobility B = τ/m. Thus we can now
understand that the conductivity of semiconductors is
smaller than in metals, and it grows with temperature, in
contrast to the case of metals.

Extrinsic semiconductor

Certain type of impurities can strongly affect the
conductivity of semiconductors. Such an impure
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semiconductor is called extrinsic. Let us consider silicon
or germanium, which have 4 valence electrons per atom.
We replace one atom by phosphorous or arsenic (P, As),
which have 5 electrons in the outermost shell. The extra
electron can move in the conduction band. However, the
impurity atom has a positive charge e, that attracts this
electron. As a consequence, the electron can be trapped
in the neighborhood of the impurity atom. A simple
model to consider this is that the fixed positive charge
and the mobile electron form something like a hydrogen
atom. The difference is that the electron moves in the
background of the semiconductor atoms. This could be
taken into account that 1) the mass of the orbiting
electron is the effective mass in the conduction band, and
2) the Coulomb potential caused by the positive charge is
reduced by the relative dielectric constant of the
semiconductor material. Because of thess reasons, the
bound state energy is only slightly below Ec. (exercise).

Let us think that there are several impurities. The extra
electrons of these atoms are placed on levels that are
formed slightly below the conduction band. From there
they are easily excited to the conduction band, where
they can contribute to electric conduction. Such a
semiconductor is called negative type, or n type.

conduction

band

impurity

levels

valence

band

n type

E

p type

E

Correspondingly there are impurities that have less then
4 electrons in the outermost shell, for example aluminium
or gallium (Al, Ga). They make bound hole state slightly
above the the valence band. When electrons from the
valence band are excited to these levels, mobile holes are
formed. Such a semiconductor is called positive type, or p
type.

In intrinsic semiconductors the Fermi level is close to
middle of the gap. In n-type semiconductor the Fermi
level is shifted up to be close to the “donor” impurity
levels.

E E

n type

E

µ

µ

µ

p typeintrinsic

Correspondingly, in p-type semiconductors the Fermi level
is shifted down to be close to the “acceptor” impurity
levels. Both type of impurities can dramatically increase
the number of charge carriers and thus the conductivity
of the semiconductor compared to the intrinsic case.

N-p junction

Consider an interface between n and p type
semiconductors. Because the Fermi level is higher in the
n-type side, electrons start to flow to the p-type side.
Therefore a negative charge will form on the p side and
positive charge remains on the n side. This increases the
relative potential of the p side. An equilibrium is achieved
when the Fermi levels on both sides are equal. Thus, the
whole system is described by the same Fermi distribution.

E E

f

n

p

E

µ

A corresponding potential difference develops between
any two conducting materials. It is called contact
potential.

We next bias the junction by an external voltage V that
is negative on the n side. According to the definition of
voltage, the energies on the n side are shifted by
U = −eV . This allows electrons from the n side to flow to
the p side. Similarly, holes from p side can flow to n side.

E
E

U

0

n
p

-

n

+

p

forward bias (U > 0)

If the voltage is biased in the reverse direction, one could
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think that the currents would be reversed. However, there
are very few electrons on the p side conduction band and
very few holes on the n type valence band. This means
that the current in this reverse direction is less than in
the case of forward bias.

-

E

E

U

(U < 0)

0

n

n

+

p

p

reverse bias

We conclude that the junction acts as a current rectifier:
the current in one direction is larger than in the opposite
direction at equal voltage.

We make a simple model. We only look at electrons, the
behavior of holes is analogous. The flow of electrons p→n
depends only on the number of electrons in the p-type
conduction band. The current −I0 caused by this is
independent of the potential U . The flow of electrons
n→p depends on the number of those electrons on n side,
whose energy exceeds the p-type Ec. Because in this
region the Fermi distribution is given by the exponential
(exercise), the current caused by these is
I1(U) = I1(0)eU/kBT . The total current is the sum of the
two contributions. Taking into account that in
equilibrium U = 0, the total current has to vanish, we get

I(U) = I0[eU/kBT − 1]. (162)

U

I 

-I
0
 

At large negative U there will be electric breakdown (not
shown in the figure).

Applications of n-p junction

The n-p junction, diode, is used as rectifier. A rectifier
transforms an alternating electric current to an oscillating
direct current. A slightly more complicated component
with two nearby junctions (for example n-p-n) is called
bipolar transistor. It is important component in
electronics as it can be used to amplify signals: with a
small current to the “base” (the middle semiconductor)
one can direct a larger current through both junctions.

Another type of transistor is a MOS-FET
(metal-oxide-semiconductor, field effect transistor). It it
widely used in logic circuits. It also can have n-p-n
structure, where the conductance through the p layer can
be changed by a voltage on a nearby metal electrode
(insulated by the oxide).

Let us consider the p side of the diode. In forward bias
there will be extra electrons coming from the n side. In
equilibrium, the current in p type is by holes. The
transformation between these is called recombination,
where the electrons in the conduction band drop to the
holes in the valence band. The energy ≈ Eg per electron
is released in recombination. This can be emitted as
electromagnetic radiation. This is the working principle
of light emitting diodes (LED) ja diode lasers.

ħω
≈ 
E g

E

recombination in p type

N-p junction is also used in solar cells, or more generally
in photovoltaic cells. The idea is to absorb the
electromagnetic radiation and convert it to electric
current and voltage. When an insulator or semiconductor
is shined with radiation, whose energy quantum h̄ω
exceeds the energy gap Eg, electrons are excited from the
valence to the conduction band. These electrons move
randomly in the conduction band before they after some
time recombine with with the holes to form radiation
again. In case the excitation takes place in the p side of a
n-p junction, the electron can drift to the n side. There it
cannot any more recombine (because there are no holes)
and it cannot easily return to the p side (if the electron
energy is relaxed below p-side Ec). This causes a negative
charge on the n side, that causes voltage and current in
an external circuit.

E

principle of solar cell

E

U

0

n
p

-

n

+

p

ħω

battery is charged

4.6 Transitions
We considered transitions between atomic levels before.
We argued that in a transition (absorption or emission)
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the energy is conserved. That is, the photon energy is
equal to the energy different between the two levels (34).
The same rule applies also for transitions in solid state.
For definiteness, consider absorption and let i denote the
initial electron level and f the final level. The energy
conservation can then be written

Ef (kf ) = Ei(ki) + h̄ωph. (163)

where ωph is the photon angular frequency. In a crystal
there is additional condition that also the crystal
momentum has to be conserved,

kf = ki + kph. (164)

The photon wave number kph = |kph| = 2π/λ. At
frequencies of visible light and lower, the wave length λ is
much longer than the atomic spacing. Thus the photon
momentum is negligible in comparison to the typical
crystal momentum ∼ π/a. This means that the
transitions are almost vertical in a band diagram.

E

π/a−π/a 0

k

Some interband transition are depicted in the figure. A
transition is possible only if the initial level is filled.
Similarly, the final level has to be initially empty since
the Pauli principle prohibits transition to a filled level.
Below we consider transitions in insulators,
semiconductors and metals separately.

Let us consider insulators. In order for the photon to be
absorbed, its energy has to be lager than the band gap,
h̄ω > Eg. At lower frequencies the the material is
transparent. Visible light corresponds to energies from
1.7 eV (red) to 3.1 eV (violet). From the table on page 37
we see that diamond, table salt (NaCl), corundum
(Al2O3) and quartz (SiO2) have energy gap larger than
3.1 eV, and thus they are transparent for visible light.
The same hold for many other insulators.

The reason that many insulator materials do not look
transparent is that they have impurities or other defects
that scatter or absorb light. An impurity can add an
electron level within the band gap. Depending on their
energy, they can give the material a characteristic color.
If some wave length is absorbed effectively, the material
shows the complementary color. The figure shows a
colorless and two colored quartz crystals

In addition to electronic transitions, also lattice
vibrations cause absorption. This absorption is in the
infrared region.

In semiconductors with direct band gap, the absorption
takes place when photon frequency exceeds the band gap.
The case of indirect band gap is more complicated.
Absorption at band gap frequency is still possible in a
process which involves also an optical phonon. It takes
care that the momentum is conserved, but such a process
is not as affective as direct transition. In light emitting
diodes, direct band band gap is preferred.

In metals, the conduction electrons have a strong effect
on optical phenomena. Because of them, electromagnetic
radiation does not penetrate into the conductor. Thus
metals are not transparent. In the visible range, a major
part of photons is reflected from the metal surface. This
is the reason that metals are shiny, a clean metal surface
reflects the incident light. A small part of the incident
light is absorbed in interband transitions. For example,
the yellowish colors of copper (Cu) and gold (Au) can be
understood as absorption of the violet end of spectrum in
transitions from a d band below the Fermi level to the
conduction band.

An excited electronic state can relax so that a photon of
energy h̄ω = Ei − Ef is emitted in the transition from
state i to a lower energy state f . The state can also relax
by other mechanisms, for example, by emission of several
photons or phonons. Some examples are the following.
Fluorescence: emitted radiation with frequency smaller
that the absorbed radiation than caused the excited state.
Can be understood by relaxation by two photons, out of
which only one is observed. Phosphorescence: delayed
emission where the excited electron goes to a long lived
state, and relaxes only after longer time by emitting a
photon.

4.7 Other electronic properties

Electronic heat capacity

(S 4.2) We studied above the heat capacity caused by
lattice vibrations. In addition, also electrons contribute to
heat capacity. In principle, the contribution from
conduction electrons in a metal could be of the same
order of magnitude as form the lattice vibrations.
However, at room temperature kBT � EF . Because of
this, only small fraction (≈ kBT/EF ) of electrons is
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excited. Because of this, the electronic heat capacity is
small and in many cases can be neglected.

Heat conductivity

(S 3.2) Heat conductivity κ is defined by formula

jQ = −κdT
dx
, (165)

where jQ heat current density (unit W/m2). This is
nonvanishing when the temperature T depend on location
x. (The minus sign indicates that the heat current is
towards decreasing temperature.)

We mentioned above the heat conductivity caused by
lattice vibrations (phonons), that takes place in both
insulators and in conductors. In conductors also
conduction electrons transport heat. Because of this, the
heat conductivity of metals is often higher than that of
insulators. Without proper justification, we mention that
in many metals the heat conductivity is approximately
proportion to the electric conductivity σ (148) so that

κ ≈ π2k2
BT

3e2
σ. (166)

This dependence is called Wiedemann-Franz law.

Magnetism

(S 19-23) Seems we have to skip this topic.

4.8 Electron-electron interaction
We have studied electron bands in solids. This is based
on the independent-electron approximation, which
approximates the electron-electron interaction by an
effective potential. The theory seems to work well in
many cases discussed. The reason is partly explained by
screening of the Coulomb interaction. This means that a
charge placed in a material causes the electrons to adjust
in such a way that the electrostatic potential is
exponentially weaker (∝ e−αr/r) compared to unscreened
Coulomb potential (∝ 1/r). This makes the potential of
short range and thus not that serious a problem.

The independent-electron approximation allows to
understand many properties of solids, as discussed in this
course. Exceptions to this are the following topics: a)
covalent bond, b) superconductivity, and c)
ferromagnetism.

5. Conclusion
I hope you have enjoyed this course. See the web page of
the course for some information about the exam.
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Appendixes

A. Spherical coordinates

x

z

φ

θ r

y

The spherical coordinates r, θ and φ are defined by
writing

r = r sin θ(cosφ x̂+ sinφ ŷ) + r cos θ ẑ. (167)

Alternatively

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ. (168)

All r can be described by the coordinates in the ranges
0 ≤ r, 0 ≤ θ ≤ π and 0 ≤ φ < 2π.

At each point r, one can define the basis vectors

r̂ =
∂r

∂r
= sin θ cosφ x̂+ sin θ sinφ ŷ + cos θ ẑ

θ̂ =
1

r

∂r

∂θ
= cos θ cosφ x̂+ cos θ sinφ ŷ − sin θ ẑ

φ̂ =
1

r sin θ

∂r

∂φ
= − sinφ x̂+ cosφ ŷ. (169)

These three vectors form an orthonormal vector basis.
Orthonormality means that they are orthogonal to each
other and have unit length. The latter property is
achieved by the factors 1/r and 1/r sin θ in the definition
of the unit vectors. The factor r∂θ can be understood as
the distance traveled when θ changes by ∂θ. Similarly
r sin θ∂φ is the distance travelled when φ changes by ∂φ.
With change of r by ∂r, the distance travelled is ∂r, and
no extra factor is needed.

In cartesian coordinates the operator ∇ is defined by

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (170)

Using this we can define the gradient ∇Φ of a scalar
function Φ(x, y, z) by

∇Φ = x̂
∂Φ

∂x
+ ŷ

∂Φ

∂y
+ ẑ

∂Φ

∂z
. (171)

We now claim that in spherical coordinates

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
. (172)

We can recognize here the same factors as in the
definition of the basis vectors (169). The gradient of a

scalar function Φ(r, θ, φ) is

∇Φ = r̂
∂Φ

∂r
+ θ̂

1

r

∂Φ

∂θ
+ φ̂

1

r sin θ

∂Φ

∂φ
. (173)

The Laplace operator is defined as ∇2 = ∇ ·∇. In
cartesian coordinate we get from (170)

∇2Φ = ∇ ·∇Φ

=

(
x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z

)
·
(
x̂
∂Φ

∂x
+ ŷ

∂Φ

∂y
+ ẑ

∂Φ

∂z

)
= x̂ ·

(
x̂
∂2Φ

∂x2
+ ŷ

∂2Φ

∂x∂y
+ ẑ

∂2Φ

∂x∂z

)
+ŷ ·

(
x̂
∂2Φ

∂y∂x
+ ŷ

∂2Φ

∂y2
+ ẑ

∂2Φ

∂y∂z

)
+ẑ ·

(
x̂
∂2Φ

∂z∂x
+ ŷ

∂2Φ

∂z∂y
+ ẑ

∂2Φ

∂z2

)
=
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
(174)

The last form is obtained because of the orthonormality
of the basis x̂, ŷ and ẑ.

In spherical coordinates we have

∇2Φ = ∇ ·∇Φ

=

(
r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ

)
·
(
r̂
∂Φ

∂r
+ θ̂

1

r

∂Φ

∂θ
+ φ̂

1

r sin θ

∂Φ

∂φ

)
= r̂

∂

∂r
·
(
r̂
∂Φ

∂r
+ θ̂

1

r

∂Φ

∂θ
+ φ̂

1

r sin θ

∂Φ

∂φ

)
+ θ̂

1

r

∂

∂θ
·
(
r̂
∂Φ

∂r
+ θ̂

1

r

∂Φ

∂θ
+ φ̂

1

r sin θ

∂Φ

∂φ

)
+ φ̂

1

r sin θ

∂

∂φ
·
(
r̂
∂Φ

∂r
+ θ̂

1

r

∂Φ

∂θ
+ φ̂

1

r sin θ

∂Φ

∂φ

)
(175)

The added complication here compared to the cartesian
case (174) is the extra factors 1/r and 1/r sin θ but also
that the unit vectors (169) depend on θ and φ. The
following derivatives will lead to nonvanishing terms in
the Laplace operator:

∂r̂

∂θ
= θ̂,

∂r̂

∂φ
= sin θφ̂,

∂θ̂

∂φ
= cos θφ̂. (176)

In the same order as in (175), we get 6 nonvanishing terms

∇2Φ =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2

+
1

r

∂Φ

∂r
+

cos θ

r2 sin θ

∂Φ

∂θ
+

1

r2 sin2 θ

∂2Φ

∂φ2
. (177)

Verify that this is equivalent to

∇2Φ =
1

r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
. (178)
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B. Reduced mass
Let us consider two particles. We assume that the
potential depends only on their relative distance r1 − r2:
The energy of the system is

E =
1

2
m1ṙ

2
1 +

1

2
m2ṙ

2
2 + U(r1 − r2), (179)

where the dot denotes time derivative. We define vectors
for the center of mass and the relative vector,

R =
m1r1 +m2r2

m1 +m2
(180)

r = r1 − r2. (181)

Solving these for r1 and r2 gives

r1 = R+
m2

m1 +m2
r (182)

r2 = R− m1

m1 +m2
r. (183)

m
2

m
1

r

r
1

r
2

R

Taking the time derivative and subtituting to (179) gives

E =
1

2
(m1 +m2)Ṙ2 +

1

2

m1m2

m1 +m2
ṙ2 + U(r). (184)

The first term is the kinetic energy coming from the
motion of the center of mass. The two last terms describe
the relative motion, where the mass appearing in the
kinetic energy is the reduced mass

1

m
=

1

m1
+

1

m2
⇔ m =

m1m2

m1 +m2
. (185)

This makes it plausible that the two-body problem is
reduced to a single-body problem with a fixed potential
and the reduced mass. (The definite proof would make
use of the Lagrangian instead of E, but would otherwise
be the same as above.)

C. Group velocity
Consider the wave

ξ(x, t) = A sin(kx− ωt) = A sin(k(x− ω

k
t)). (186)

Drawing it at different times, we can see that it
propagates at velocity

vphase =
ω

k
, (187)

which is called the phase velocity. In many cases the
angular frequency ω depends linearly on the wave
number, ω = constant× k. In this case vphase = constant.
That is, all waves move with the same velocity
(independently on the frequency or the wave length).

The alternative case is dispersion. In this case the
dependence ω(k) is a more complicated than a linear
function. Because the phase velocity (187) is not a
constant, waves of different frequency move at different
velocities. We study a superposition of two waves, whose
wave numbers k ± δk are close to each other.

ξ = A cos[(k+δk)x−(ω+δω)t]+A cos[(k−δk)x−(ω−δω)t].
(188)

Using trigonometric formulas we can write this in the
form

ξ = 2A cos(kx− ωt) cos(δkx− δωt). (189)

Here the amplitude of the wave of short wave length
(λ = 2π/k, former cosine factor) is modulated by a wave
of long wave length (λ = 2π/δk, latter cosine factor). It
represents a train of wave packets.

x

ξ
vgroup vphase

The modulating wave now gives the velocity of the wave
packet,

vgroup =
δω

δk
≈ dω

dk
. (190)

which is called the group velocity.
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