Statistical Mechanics
E0415

Fall 2023, lecture 5
Percolation: a phase transition



Take home (previous)

.... we skip to the next time....



Summary of a geometrical phase
transition

* What is percolation?

* How does it depend on typical parameters like the dimension?
* What kind of physics might be important for?

* What kind of quantities turn out to be important?




What is percolation?

The study of connectedness Suppose a large porous rock is submerged

« o under water for a long time, will the water
How far can | go?” - idea of a reach the center of the stone?

cluster (Of size S, Wlth 3 given p) (Broadbent and Hammersley, 1957)

What is this transition at a p_ like? =

What does it depend on and not +I H L
depend on? i
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Main definitions

\
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» a cluster is a group of nearest-neighbor occupied sites
» the size s of a cluster is the number of sites in this cluster
« the critical occupation probability p_is the probability p at

which an infinite cluster appears for the first time in an infinite
lattice



Conductivity of random systems

Electrical transport properties of percolating random networks . _
EPL, 91 (2010) 47002
of carbon nanotube bundles

CNT bundle systems: some CNT segments are
semiconducting, some are metallic due to impurities

(or not). Make a network: is it a good transistor?
Which network conducts or in other words
percolates?
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B Average tube density (D) ]O ] O 20 30 40

segments and solid (blue) lines metallic segments. The networks ( ) ,
Stick unit area density (p)



Main properties in a lattice

 bond percolation - all nodes on the lattice are occupied, the
edges between neighbors may be open (present) with
probability p or closed with probability 1-p; edges are
assumed to be independent
o example: liquid poured on top of some porous material

» site percolation - all edges are open, a nhode is occupied
with probability p
* more general approach
» every bond model may be reformulated as a site model on a

different lattice but not vice versa

- onset of percolation - critical occupation probability p,
« probability that a site belongs to the infinite cluster, P_(p)
« geometry of the infinite cluster at p=p_and p>p,

Main quanﬁﬁes or quesﬁons « if one excludes the infinite cluster:

» average cluster size, y(p)
« typical size of the largest cluster, s (p)

« typical radius (linear size) of the largest cluster, &(p)



Examples of thresholds

2D vs 3D (or ND): p. and its
trends

Site vs. bond thresholds

In a fixed dimension:
threshold vs. lattice type

(Value: math vs. physics vs.
numerics)

| Lattice

1d

2d [[ul.l‘.‘.'l.‘utn]n

0.6062 | 1 =2sin(7/18

) == (0.65271

2d Square

0.592746

1/2

2d Triangular

1/2

2sin(m/18) = (0.34729

Diamond

(), 388

Simple cubic

().248%

(. 1803

FCC

.119

Hypercubic

3d
3d
Jd BCC
3d
Id
5d

(.1601

Hypercubic




Percolation property

The largest cluster
either percolates or
not.

This defines a
probability and a
phase transition.

The transition is
second order:
correlation length

diverges continuously.

(Or: it is usually 2
order.)
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What Is the percolating cluster like?

The mass is not volume-like

The structure is “tenuous” - the
cluster can be broken up by
“cutting” or “red bonds” - if you
do transport phenomena
(conductivity...) on the cluster the
physics comes from these.

The perimeter is an interesting
random walk-process - Stochastic
Lowner Evolution....



Mass of the spanning cluster, correlation
length

fractal dimension Dy 0 — [

91/48 in 2D, an universal value o* |
(little bit less than 2!) o b

Mass scaling above defines an 5 ;
exponent for the mass above the 0
transition, B, 2D 5/36, 3D 0.14 " |

Correlation length exponent &, 2D N
4/3, 3D 0.88 T /

Exponents universal! (Bond/site,
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lattice type)
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Example: 1D case (in probability)

Exactly solvable, but boring case.

Similar problems are found on
trees (Bethe lattice, Cayley tree).

s¢(p)

They generalize into other
connectivity problems (“2-
connectivity” or rigidity, O g "('"i}'ﬁ e e
combinatorial
optimization/Satisfiability
problems...).




Notes on scale-free behavior

Re-scale lengths {=¢/B=¢/(1+e),
(Or hmE) _ S'=8/C=S/(1+ ce),
D" = AD = D(1 + ae).
avalanche/cluster
size and the pdf D'(S") = AD(S) = AD(CS') = (1 + ae)D((1 + ce)S’).
also re-scale.
, , D(S") = D'(S') = (1 + ae)D((1 + ce)S"),
Pdf invariant, solve 4D (
for D(S). 0 =aeD + ceS 35
dD B _E
More complicated dS ¢S’

examples (book).

D = DyS~%/*.



Renormalization (easy case)

1. Divide the lattice into blocks of linear size b (in terms of the lattice constant) with each block
containing a few sites (spin).

(]
2. Neuat, the coarse graining procedure takes place. The sites in the blocks are averaged in some Real-space’ k-space IS the usual
way (to be specified more precisely shortly) and the entire block is replaced by a single su-
and hard case...

per site (spin) which is occupied with a probability according to the renormalisation group
transformation p' = Ry(p).

In the combined procedure 1 and 2, one should keep the symmetry of the original lattice such
that we can repeat the coarse graining procedure again. The result of these two operations are
to create a new lattice whose fundamental spacing is b times as large as the original lattice.

3. Restore original lattice constant by rescaling the length scales by the factor b.
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Next exercise

4.1 1D Ising HOMEWORK (5 points)

Consider the one-dimensional Ising model, with Hamiltonian

N
H=—JY SiSu—HY S (1)
=1

where S; = %1 are ’spins’ in chain, J is the coupling strength and H the external field.
The 1D Ising model can be solved exactly and here we do it step-by-step.

(a) Start by writing the canonical partition function

Zy = Z exp [—-0H], (2)

{5}

where the second term of the exponential function in the Hamiltonian has form --->".(S; +
SH»l)-

b) From the obtained expression for the partition function, one can modify it to Zy =
P p ) Y
51,50 HY\:I T(S;, Six1). By expanding T(S;, S;11) to a 2 x 2 transfer matriz

T+ +) T+, —)\ _
T*(T(,_H T(7_7>>7(...). (3)

show that the partition function is a trace of a product of N transfer matrices, i.e. Zy =

Te(T)V.

(¢) Solve for the eigenvalues Ay, Ny (with Ay > Xy) of T and argue that Zy ~ N in the
thermodynamic limit.

(d) From the above expression for the partition function, compute the free energy per site
g(T,H) =limy 00 (f% log Zn>.

(e) Finally, you get the magnetization m(1T', H) from the free energy by

dy
m(T.H) = — (ﬁ)T (4)

If H =0, does the system undergo a phase transition as the temperature is lowered?

4.2 The Ising model (Sethna 8.1 p. 174)

The Ising Hamiltonian in 2D is:
H=-7> SS-HY_ S, (5)
(i) ¢

where S; = +1 are ’spins’ on a square lattice, and the sum > . ;) 1s over the four nearest-
neighbor bonds (each pair summed once). It is conventional to set the coupling strength
J = 1 and Boltzmann’s constant kp = 1, which amounts to measuring energies and
temperatures in units of J. The constant H is called the external field, and M = 3. Si is
called the magnetization.

Play with the simulation. At high temperatures, the spins should not be strongly corre-
lated. At low temperatures the spins should align all parallel, giving a large magnetization.
Roughly locate T, | the largest temperature where distant spins remain parallel on average
at H = 0. Ezplore the behaviour by gradually lowering the temperature from just above T..
to just below I, ; does the behaviour gradually change, or jump abruptly (like water freezing
to ice)? Explore the behaviour at T = 2 (below 1,.) as you vary the external field H = +0.1
up and down through the ‘phase boundary’ at H = 0. Does the behaviour vary smoothly in
that case?

If using the software suggested by Sethna, try also changing the update method and see
how the cluster algorithm works in practice.

4.3 Ising self-similarity (Sethna 12.1 p. 282)

Run a large Ising system at zero external field and T = T, = 2/log(1 + 2) &~ 2.26919.
Run for at least a few hundred sweeps to equilibrate. You should see a fairly self-similar



Take home 5

* We concentrate on Sethna Ch 12 and percolation. Study the first two sections (12.1, 12.2). You may
also read through the rest of the chapter. On percolation, there is a lot of material available. We
would recommend http://www.ams.org/publicoutreach/feature-column/fcarc-percolation for a

mathematical viewpoint, which may be entertaining. It shortly explains how percolation is related
to conformal invariance.

Check out also Kim Christensen's lecture notes on easily solvable percolation problems,
https://web.mit.edu/ceder/publications/Percolation.pdf. Spend a moment in understanding how
the cluster size distribution is derived (Equations 1.1-1.3) and the same for the correlation length
in 1D (1.9-1.10, roughly). The analysis of the Bethe lattice percolation is entertaining but it is
useful for our purposes (at most) for showing what kind of quantities one might want to compute.

A final piece of reading is the lecture note for engineers,

http://www.idc-online.com/technical references/pdfs/chemical engineering/Percolation.pdf,
which introduces to some practical applications.



http://www.ams.org/publicoutreach/feature-column/fcarc-percolation
https://web.mit.edu/ceder/publications/Percolation.pdf
http://www.idc-online.com/technical_references/pdfs/chemical_engineering/Percolation.pdf

Note on take-home’s

Please remember, that the
purpose is NOT to answer
correctly. The purpose is that you
answer SOMETHING (and think
about the question and the
material).

That is sufficient for “passing” the
question (read: getting the
points).



.... Questions...

The take-home questions are two. Check the real-space renormalization part of
the KC (1.9 section). Try out that for 1D percolation, eg. draw what happens to the
system as you coarse-grain it (to larger scales).

The last set of notes in particular mentions again the conductivity problem (e.g.
take a system of insulating/conducting sticks, look at the conductivity when such
sticks percolate by varying their fraction and assuming the system is connected
anyways, or a bond percolation system say in 2d). Another variant of this is the
elasticity of the percolation cluster, imagine that the sticks are very very soft or

very hard springs so that the percolation transition leads to the stiffening of the
whole thing.

Both of these "transport quantities" are described by their own exponents
(conductivity and elasticity). The question to answer is: which of these has a
bigger value? Does the conductivity or the elastic modulus increase faster? Do
you have an argument why?



