Lecture 7
 Duality

- Lagrange dual function
- Lagrange dual problem
- strong duality and Slater's condition
- KKT optimality conditions
- sensitivity analysis
- generalized inequalities

Lagrangian

std form problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1, \ldots, m
\end{array}
$$

- optimal value p^{\star}
- called primal problem (in context of duality)
(for now) we assume
- not necessarily convex
- no equality constraints
- $\operatorname{dom} f_{i}=\mathbf{R}^{n}$

Lagrangian $L: \mathbf{R}^{n+m} \rightarrow \mathbf{R}$

$$
L(x, \lambda)=f_{0}(x)+\lambda_{1} f_{1}(x)+\cdots+\lambda_{m} f_{m}(x)
$$

- λ_{i} called Lagrange multipliers or dual variables
- objective is augmented with weighted sum of constraint fcts

Lagrange dual function

(Lagrange) dual function $g: \mathbf{R}^{m} \rightarrow \mathbf{R} \cup\{-\infty\}$

$$
\begin{aligned}
g(\lambda) & =\inf _{x} L(x, \lambda) \\
& =\inf _{x}\left(f_{0}(x)+\lambda_{1} f_{1}(x)+\cdots+\lambda_{m} f_{m}(x)\right)
\end{aligned}
$$

- can be $-\infty$ for some λ
- g is concave (even if f_{i} not convex!)
- minimum augmented cost as fct of weights

example: LP

$\operatorname{minimize} c^{T} x$
subject to $a_{i}^{T} x-b_{i} \leq 0, i=1, \ldots, m$

$$
\begin{aligned}
L(x, \lambda) & =c^{T} x+\sum_{i} \lambda_{i}\left(a_{i}^{T} x-b_{i}\right) \\
& =-b^{T} \lambda+\left(A^{T} \lambda+c\right)^{T} x
\end{aligned}
$$

hence $g(\lambda)= \begin{cases}-b^{T} \lambda & \text { if } A^{T} \lambda+c=0 \\ -\infty & \text { otherwise }\end{cases}$

Lower bound property

if $\lambda \succeq 0$ and x is primal feasible, then

$$
g(\lambda) \leq f_{0}(x)
$$

proof: if $f_{i}(x) \leq 0$ and $\lambda_{i} \geq 0$,

$$
\begin{aligned}
f_{0}(x) & \geq f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
& \geq \inf _{z}\left(f_{0}(z)+\sum_{i} \lambda_{i} f_{i}(z)\right) \\
& =g(\lambda)
\end{aligned}
$$

$f_{0}(x)-g(\lambda)$ is called the duality gap of (primal feasible) x and $\lambda \succeq 0$
minimize over primal feasible x to get, for any $\lambda \succeq 0$,

$$
g(\lambda) \leq p^{\star}
$$

$\lambda \in \mathbf{R}^{m}$ is dual feasible if $\lambda \succeq 0$ and $g(\lambda)>-\infty$ dual feasible points yield lower bounds on optimal value!

Lagrange dual problem

let's find best lower bound on p^{\star} :

$$
\begin{array}{ll}
\text { maximize } & g(\lambda) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

- called (Lagrange) dual problem
(associated with primal problem)
- always a convex problem, even if primal isn't!
- optimal value denoted d^{\star}
- $d^{\star} \leq p^{\star}$ (called weak duality)
- $p^{\star}-d^{\star}$ is optimal duality gap
strong duality: for convex problems we (usually) have $d^{\star}=p^{\star}$
- hence, duality is especially important and useful in convex optimization
- strong duality does not hold, in general, for nonconvex problems

Implications of strong duality:

- dual optimal λ^{\star} serves as certificate of optimality for primal optimal point x^{\star}
- can solve constrained problem

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, i=1, \ldots, m
\end{array}
$$

by solving unconstrained problem

$$
\operatorname{minimize} f_{0}(x)+\lambda_{1}^{\star} f_{1}(x)+\cdots+\lambda_{m}^{\star} f_{m}(x)
$$

- can express strong duality in symmetric form

$$
d^{\star}=\sup _{\lambda \succeq 0} \inf _{x} L(x, \lambda)=\inf _{x} \sup _{\lambda \succeq 0} L(x, \lambda)=p^{\star}
$$

i.e., strong duality \Longrightarrow can swap inf \& sup
many conditions or constraint qualifications guarantee strong duality for convex problems

Slater's condition: if primal problem is strictly feasible (and convex) then we have $p^{\star}=d^{\star}$

Dual of LP

(primal) LP
$\operatorname{minimize} \quad c^{T} x$
subject to $A x \preceq b$

- n vbles, m inequality constraints
dual of LP is

$$
\begin{array}{ll}
\text { maximize } & b^{T} \lambda \\
\text { subject to } & A^{T} \lambda+c=0 \\
& \lambda \succeq 0
\end{array}
$$

- dual of LP is also an LP (indeed, in std LP format)
- m vbles, n equality constraints, m nonnegativity contraints
for LP we have strong duality except in one (pathological) case: primal and dual both infeasible $\left(p^{\star}=+\infty, d^{\star}=-\infty\right)$

Dual of QP

(primal) QP
minimize $x^{T} P x$
subject to $A x \preceq b$
we assume $P \succ 0$ for simplicity

Lagrangian is $L(x, \lambda)=x^{T} P x+\lambda^{T}(A x-b)$
$\nabla_{x} L(x, \lambda)=0$ yields $x=-(1 / 2) P^{-1} A^{T} \lambda$, hence dual function is

$$
g(\lambda)=-(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda
$$

- concave quadratic function
- all $\lambda \succeq 0$ are dual feasible dual of QP is
maximize $-(1 / 4) \lambda^{T} A P^{-1} A^{T} \lambda-b^{T} \lambda$
subject to $\lambda \succeq 0$
... another QP

Duality in algorithms

many algorithms produce at iteration k

- a primal feasible $x^{(k)}$
- and a dual feasible $\lambda^{(k)}$
with $f_{0}\left(x^{(k)}\right)-g\left(\lambda^{(k)}\right) \rightarrow 0$ as $k \rightarrow \infty$
hence at iteration k we know $p^{\star} \in\left[g\left(\lambda^{(k)}\right), f_{0}\left(x^{(k)}\right)\right]$
- useful for stopping criteria
- algorithms that use dual solution are often more efficient (e.g., LP)

Nonheuristic stopping criteria

absolute error $=f_{0}\left(x^{(k)}\right)-p^{\star} \leq \epsilon$
stopping criterion:

$$
\text { until }\left(f_{0}\left(x^{(k)}\right)-g\left(\lambda^{(k)}\right) \leq \epsilon\right)
$$

relative error $=\frac{f_{0}\left(x^{(k)}\right)-p^{\star}}{\left|p^{\star}\right|} \leq \epsilon$ stopping criterion:

$$
\begin{gathered}
\text { until } \quad\left(g\left(\lambda^{(k)}\right)>0 \quad \& \quad \frac{f_{0}\left(x^{(k)}\right)-g\left(\lambda^{(k)}\right)}{g\left(\lambda^{(k)}\right)} \leq \epsilon\right) \\
\text { or } \quad\left(f_{0}\left(x^{(k)}\right)<0 \quad \& \quad \frac{f_{0}\left(x^{(k)}\right)-g\left(\lambda^{(k)}\right)}{f_{0}\left(x^{(k)}\right)} \leq \epsilon\right)
\end{gathered}
$$

achieve target value ℓ or, prove ℓ is unachievable (i.e., determine either $p^{\star} \leq \ell$ or $p^{\star}>\ell$)
stopping criterion:

$$
\text { until }\left(f_{0}\left(x^{(k)}\right) \leq \ell \text { or } g\left(\lambda^{(k)}\right)>\ell\right)
$$

Complementary slackness

suppose $x^{\star}, \lambda^{\star}$ are primal, dual feasible with zero duality gap (hence, they are primal, dual optimal)

$$
\begin{aligned}
f_{0}\left(x^{\star}\right) & =g\left(\lambda^{\star}\right) \\
& =\inf _{x}\left(f_{0}(x)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}(x)\right) \\
& \leq f_{0}\left(x^{\star}\right)+\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)
\end{aligned}
$$

hence we have $\sum_{i=1}^{m} \lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0$, and so

$$
\lambda_{i}^{\star} f_{i}\left(x^{\star}\right)=0, \quad i=1, \ldots, m
$$

- called complementary slackness condition
- i th constraint inactive at optimum $\Longrightarrow \lambda_{i}=0$
- $\lambda_{i}^{\star}>0$ at optimum $\Longrightarrow i$ th constraint active at optimum

KKT optimality conditions

suppose f_{i} are differentiable, $x^{\star}, \lambda^{\star}$ are primal, dual optimal
then we have

$$
\begin{aligned}
f_{i}\left(x^{\star}\right) & \leq 0 \\
\lambda_{i}^{\star} & \geq 0 \\
\nabla f_{0}\left(x^{\star}\right)+\sum_{i} \lambda_{i}^{\star} \nabla f_{i}\left(x^{\star}\right) & =0 \\
\lambda_{i}^{\star} f_{i}\left(x^{\star}\right) & =0
\end{aligned}
$$

the Karush-Kuhn-Tucker (KKT) optimality conditions
conversely, any $x^{\star}, \lambda^{\star}$ that satisfy KKT are primal, dual optimal
for convex problems, KKT are necessary and sufficient optimality conditions, provided

- strong duality holds
- primal \& dual optima are attained

Geometric interpretation of dual problem

consider set

$$
\mathcal{A}=\left\{(u, t) \in \mathbf{R}^{m+1} \mid \exists x f_{i}(x) \leq u_{i}, \quad f_{0}(x) \leq t\right\}
$$

- \mathcal{A} convex if f_{i} are
- $g(\lambda)=\inf \left\{\left.\left[\begin{array}{l}\lambda \\ 1\end{array}\right]^{T}\left[\begin{array}{l}u \\ t\end{array}\right] \right\rvert\,\left[\begin{array}{l}u \\ t\end{array}\right] \in \mathcal{A}\right\}$

(Idea of) proof

problem convex, strictly feasible \Longrightarrow strong duality

- $\left(0, p^{\star}\right) \in \partial \mathcal{A}$
- hence \exists supporting hyperplane to \mathcal{A} at $\left(0, p^{\star}\right)$:

$$
(u, t) \in \mathcal{A} \Longrightarrow \mu_{0}\left(t-p^{\star}\right)+\mu^{T} u \geq 0
$$

- $\mu_{0} \geq 0, \mu \succeq 0,\left(\mu, \mu_{0}\right) \neq 0$
- strong duality $\Longleftrightarrow \exists$ supp. hyperplane with $\mu_{0}>0$: for $\lambda^{\star}=\mu / \mu_{0}$, we have

$$
\begin{aligned}
p^{\star} & \leq t+\lambda^{\star T} u \quad \forall(t, u) \in \mathcal{A} \\
p^{\star} & \leq g\left(\lambda^{\star}\right)
\end{aligned}
$$

- Slater's condition: there exists $(u, t) \in \mathcal{A}$ with $u \prec 0$; implies that all supporting hyperplanes at $\left(0, p^{\star}\right)$ are non-vertical $\left(\mu_{0}>0\right)$

Sensitivity analysis via duality

define $p^{\star}(u)$ as the optimal value of minimize $f_{0}(x)$ subject to $f_{i}(x) \leq u_{i}, \quad i=1, \ldots, m$

λ^{\star} gives lower bound on $p^{\star}(u)$

$$
p^{\star}(u) \geq p^{\star}-\sum_{i=1}^{m} \lambda_{i}^{\star} u_{i}
$$

- if λ_{i}^{\star} large: $u_{i}<0$ greatly increases p^{\star}
- if λ_{i}^{\star} small: $u_{i}>0$ does not decrease p^{\star} too much
if $p^{\star}(u)$ is differentiable, $\lambda_{i}^{\star}=-\frac{\partial p^{\star}(0)}{\partial u_{i}}$
λ_{i}^{\star} is sensitivity of p^{\star} w.r.t. i th constraint

Equality constraints

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& g_{i}(x)=0, \quad i=1, \ldots, p
\end{array}
$$

optimal value p^{\star}
define Lagrangian $L: \mathbf{R}^{n+m+p} \rightarrow \mathbf{R}$ as

$$
L(x, \lambda, \nu)=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)+\sum_{i=1}^{p} \nu_{i} g_{i}(x)
$$

dual function is $g(\lambda, \nu)=\inf _{x} L(x, \lambda, \nu)$
(λ, ν) is dual feasible if $\lambda \succeq 0$ and $g(\lambda, \nu)>-\infty$ (no sign condition on ν)
lower bound property: if x is primal feasible and (λ, ν) is dual feasible, then $g(\lambda, \nu) \leq f_{0}(x)$ hence, $g(\lambda, \nu) \leq p^{\star}$
dual problem: find best lower bound

$$
\begin{array}{ll}
\text { maximize } & g(\lambda, \nu) \\
\text { subject to } & \lambda \succeq 0
\end{array}
$$

(note ν unconstrained) optimal value d^{\star}
weak duality: $d^{\star} \leq p^{\star}$ always
strong duality: if primal is convex then (usually) $d^{\star}=p^{\star}$

Slater condition: if primal is strictly feasible (and convex) then $d^{\star}=p^{\star}$

KKT conditions:

$$
\begin{aligned}
f_{i}(\tilde{x}) & \leq 0 \\
g_{i}(\tilde{x}) & =0 \\
\tilde{\lambda}_{i} & \geq 0 \\
\nabla f_{0}(\tilde{x})+\sum_{i} \tilde{\lambda}_{i} \nabla f_{i}(\tilde{x})+\sum_{i} \tilde{\nu}_{i} \nabla g_{i}(\tilde{x}) & =0 \\
\tilde{\lambda}_{i} f_{i}(\tilde{x}) & =0
\end{aligned}
$$

example: opt cond. for equality constraints only

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & A x=b
\end{array}
$$

x^{\star} optimal if and only if $\exists \nu^{\star}$ s.t.

$$
\nabla f_{0}\left(x^{\star}\right)+A^{T} \nu^{\star}=0
$$

Example: equality constrained least-squares

$$
\begin{aligned}
& \operatorname{minimize} \quad x^{T} x \\
& \text { subject to } A x=b
\end{aligned}
$$

A is fat, full rank
(soln is $\left.x^{\star}=A^{T}\left(A A^{T}\right)^{-1} b\right)$
dual function is

$$
g(\nu)=\inf _{x}\left(x^{T} x+\nu^{T}(A x-b)\right)=-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu
$$

dual problem is

$$
\text { maximize }-\frac{1}{4} \nu^{T} A A^{T} \nu-b^{T} \nu
$$

(soln is $\left.\nu^{\star}=-2\left(A A^{T}\right)^{-1} b\right)$
can check $d^{\star}=p^{\star}$

Example: geometric programming

simple (unconstrained) case
primal problem:

$$
\text { minimize } \log \sum_{i=1}^{m} \exp \left(a_{i}^{T} x-b_{i}\right)
$$

dual fct is constant $g=p^{\star}$
(we have strong duality, but it's useless)
now rewrite primal problem as

$$
\begin{array}{ll}
\operatorname{minimize} & \log \sum_{i=1}^{m} \exp y_{i} \\
\text { subject to } y=A x-b
\end{array}
$$

- introduce m new vbles y_{1}, \ldots, y_{m}
- introduce m new equality constraints $y=A x-b$
dual function

$$
g(\nu)=\inf _{x, y}\left(\log \sum_{i=1}^{m} \exp y_{i}+\nu^{T}(A x-b-y)\right)
$$

- infimum is $-\infty$ if $A^{T} \nu \neq 0$
- assuming $A^{T} \nu=0$, let's minimize over y :

$$
\exp y_{i} / \sum_{j=1}^{n} \exp y_{j}=\nu_{i}
$$

solvable iff $\nu_{i}>0, \mathbf{1}^{T} \nu=1$

$$
g(\nu)=-\sum_{i} \nu_{i} \log \nu_{i}-b^{T} \nu
$$

dual problem

$$
\begin{array}{ll}
\text { maximize } & -b^{T} \nu-\sum_{i} \nu_{i} \log \nu_{i} \\
\text { subject to } & \nu \succ 0 \\
& \mathbf{1}^{T} \nu=1 \\
& A^{T} \nu=0
\end{array}
$$

we have strong duality
connection between primal GP and dual entropy problem:

- useful
- not obvious
moral: apparently trivial reformulations of primal yield different duals

Generalized inequalities

$$
\begin{array}{ll}
\operatorname{minimize} & f_{0}(x) \\
\text { subject to } & f_{i}(x) \preceq_{K_{i}} 0, \quad i=1, \ldots, L
\end{array}
$$

where

- $\preceq_{K_{i}}$ are generalized inequalities on $\mathbf{R}^{m_{i}}$
- $f_{i}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m_{i}}$ are K_{i}-convex

Lagrangian $L: \mathbf{R}^{n} \times \mathbf{R}^{m_{1}} \times \cdots \times \mathbf{R}^{m_{L}} \rightarrow \mathbf{R}$,

$$
L\left(x, \lambda_{1}, \ldots, \lambda_{m}\right)=f_{0}(x)+\lambda_{1}^{T} f_{1}(x)+\cdots+\lambda_{m}^{T} f_{m}(x)
$$

dual function

$$
g\left(\lambda_{1}, \ldots, \lambda_{m}\right)=\inf _{x}\left(f_{0}(x)+\lambda_{1}^{T} f_{1}(x)+\cdots+\lambda_{L}^{T} f_{L}(x)\right)
$$

λ_{i} dual feasible if $\lambda_{i} \succeq_{K_{i}^{\star}} 0, g\left(\lambda_{1}, \ldots, \lambda_{L}\right)>-\infty$
lower bound property: if x primal feasible and $\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ is dual feasible, then

$$
g\left(\lambda_{1}, \ldots, \lambda_{L}\right) \leq f_{0}(x)
$$

(hence, $g\left(\lambda_{1}, \ldots, \lambda_{L}\right) \leq p^{\star}$)

maximize $g\left(\lambda_{1}, \ldots, \lambda_{L}\right)$
 subject to $\lambda_{i} \succeq_{K_{i}^{\star}} 0, \quad i=1, \ldots, L$

weak duality: $d^{\star} \leq p^{\star}$ always
strong duality: $d^{\star}=p^{\star}$ usually

Slater condition: if primal is strictly feasible, i.e.,

$$
\exists x: \quad f_{i}(x) \prec_{K_{i}} 0, \quad i=1, \ldots, L
$$

then $d^{\star}=p^{\star}$

Example: semidefinite programming

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \\
\text { subject to } & F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n} \preceq 0
\end{array}
$$

Lagrangian

$$
\begin{aligned}
& L(x, Z)=c^{T} x+\operatorname{Tr} Z\left(F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n}\right) \\
Z= & Z^{T} \in \mathbf{R}^{m \times m}
\end{aligned}
$$

dual function

$$
\begin{aligned}
g(Z) & =\inf _{x}\left(c^{T} x+\operatorname{Tr} Z\left(F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n}\right)\right. \\
& = \begin{cases}\operatorname{Tr} F_{0} Z & \text { if } \operatorname{Tr} F_{i} Z+c_{i}=0, \quad i=1, \ldots, n \\
-\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

dual problem
maximize $\operatorname{Tr} F_{0} Z$
subject to $\operatorname{Tr} F_{i} Z+c_{i}=0, \quad i=1, \ldots, n$

$$
Z=Z^{T} \succeq 0
$$

strong duality holds if there exists x with

$$
F_{0}+x_{1} F_{1}+\cdots+x_{n} F_{n} \prec 0
$$

Theorem of alternatives

1. there exist x with $f_{i}(x)<0, i=1, \ldots, m$
2. there exist $\lambda \neq 0$ with $\lambda \succeq 0$,

$$
g(\lambda)=\inf _{x}\left(\lambda_{1} f_{1}(x)+\cdots+\lambda_{m} f_{m}(x)\right) \geq 0
$$

- exactly one of these is true
- called alternatives
- use in practice: λ that satisfies 2 nd condition proves $f_{i}(x)<0$ is infeasible

proof

$1 \Rightarrow \neg 2$: by contradiction
$f_{i}(x)<0,0 \neq \lambda \succeq 0 \Longrightarrow \lambda_{1} f_{1}(x)+\cdots+\lambda_{m} f_{m}(x)<0$
$\neg 1 \Rightarrow 2$:
define $\mathcal{B}=\left\{u \in \mathbf{R}^{m} \mid \exists x: \quad f_{i}(x) \leq u_{i}\right\}$

- $\neg 1 \Longleftrightarrow \mathcal{B} \cap\{u \mid u \prec 0\}=\emptyset$
- hence, exists separating hyperplane: $\lambda \neq 0$,

$$
\begin{aligned}
& u \in \mathcal{B} \Longrightarrow \lambda^{T} u \geq 0 \\
& u \prec 0 \Longrightarrow \lambda^{T} u \leq 0
\end{aligned}
$$

- implies $\lambda \succeq 0$ and

$$
\lambda_{1} f_{1}(x)+\cdots+\lambda_{n} f_{n}(x) \geq 0
$$

for all x

