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Duality

Lagrangian

std form problem

minimize f0(x)
subject to fi(x) � 0; i = 1; : : : ;m

� optimal value p?

� called primal problem (in context of duality)

(for now) we assume

� not necessarily convex

� no equality constraints

� dom fi = R
n

Lagrangian L : Rn+m ! R

L(x; �) = f0(x) + �1f1(x) + � � � + �mfm(x)

� �i called Lagrange multipliers or dual variables

� objective is augmented with weighted sum of
constraint fcts
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Lagrange dual function

(Lagrange) dual function g : Rm ! R [ f�1g

g(�) = inf
x
L(x; �)

= inf
x

(f0(x) + �1f1(x) + � � � + �mfm(x))

� can be �1 for some �

� g is concave (even if fi not convex!)

� minimum augmented cost as fct of weights

example: LP

minimize cTx
subject to aTi x� bi � 0; i = 1; : : : ;m

L(x; �) = cTx +
X
i
�i(a

T
i x� bi)

= �bT� + (AT� + c)Tx

hence g(�) =

8>><
>>:
�bT� if AT� + c = 0
�1 otherwise
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Lower bound property

if � � 0 and x is primal feasible, then

g(�) � f0(x)

proof: if fi(x) � 0 and �i � 0,

f0(x) � f0(x) +
X
i
�ifi(x)

� inf
z

0
B@f0(z) +

X
i
�ifi(z)

1
CA

= g(�)

f0(x)� g(�) is called the duality gap of (primal feasible)
x and � � 0

minimize over primal feasible x to get, for any � � 0,

g(�) � p?

� 2 Rm is dual feasible if � � 0 and g(�) > �1

dual feasible points yield lower bounds on optimal value!
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Lagrange dual problem

let's �nd best lower bound on p?:

maximize g(�)
subject to � � 0

� called (Lagrange) dual problem
(associated with primal problem)

� always a convex problem, even if primal isn't!

� optimal value denoted d?

� d? � p? (called weak duality)

� p? � d? is optimal duality gap

strong duality: for convex problems we (usually) have
d? = p?

� hence, duality is especially important and useful in
convex optimization

� strong duality does not hold, in general, for
nonconvex problems
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Implications of strong duality:

� dual optimal �? serves as certi�cate of optimality
for primal optimal point x?

� can solve constrained problem

minimize f0(x)
subject to fi(x) � 0; i = 1; : : : ;m

by solving unconstrained problem

minimize f0(x) + �?1f1(x) + � � � + �?mfm(x)

� can express strong duality in symmetric form

d? = sup
��0

inf
x
L(x; �) = inf

x
sup
��0

L(x; �) = p?

i.e., strong duality =) can swap inf & sup

many conditions or constraint quali�cations guarantee
strong duality for convex problems

Slater's condition: if primal problem is strictly feasible
(and convex) then we have p? = d?
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Dual of LP

(primal) LP
minimize cTx
subject to Ax � b

� n vbles, m inequality constraints

dual of LP is

maximize bT�
subject to AT� + c = 0

� � 0

� dual of LP is also an LP (indeed, in std LP format)

� m vbles, n equality constraints, m nonnegativity
contraints

for LP we have strong duality except in one
(pathological) case: primal and dual both infeasible
(p? = +1, d? = �1)
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Dual of QP

(primal) QP
minimize xTPx
subject to Ax � b

we assume P � 0 for simplicity

Lagrangian is L(x; �) = xTPx + �T (Ax� b)

rxL(x; �) = 0 yields x = �(1=2)P�1AT�, hence dual
function is

g(�) = �(1=4)�TAP�1AT�� bT�

� concave quadratic function

� all � � 0 are dual feasible

dual of QP is

maximize �(1=4)�TAP�1AT�� bT�
subject to � � 0

. . . another QP



Duality

Duality in algorithms

many algorithms produce at iteration k

� a primal feasible x(k)

� and a dual feasible �(k)

with f0(x
(k))� g(�(k))! 0 as k !1

hence at iteration k we know p? 2
�
g(�(k)); f0(x

(k))
�

� useful for stopping criteria

� algorithms that use dual solution are often more
e�cient (e.g., LP)
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Nonheuristic stopping criteria

absolute error = f0(x
(k))� p? � �

stopping criterion:

until
 
f0(x

(k))� g(�(k)) � �
!

relative error =
f0(x

(k))� p?

jp?j
� �

stopping criterion:

until
0
@g(�(k)) > 0 & f0(x

(k))�g(�(k))

g(�(k))
� �

1
A

or
0
@f0(x(k)) < 0 & f0(x

(k))�g(�(k))

f0(x
(k))

� �
1
A

achieve target value ` or, prove ` is unachievable (i.e.,
determine either p? � ` or p? > `)

stopping criterion:

until
 
f0(x

(k)) � ` or g(�(k)) > `
!
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Complementary slackness

suppose x?, �? are primal, dual feasible with zero duality
gap (hence, they are primal, dual optimal)

f0(x
?) = g(�?)

= inf
x

0
B@f0(x) +

mX
i=1

�?ifi(x)
1
CA

� f0(x
?) +

mX
i=1

�?ifi(x
?)

hence we have
mX
i=1

�?ifi(x
?) = 0, and so

�?ifi(x
?) = 0; i = 1; : : : ;m

� called complementary slackness condition

� ith constraint inactive at optimum =) �i = 0

� �?i > 0 at optimum =) ith constraint active at
optimum
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KKT optimality conditions

suppose fi are di�erentiable, x?, �? are primal, dual
optimal

then we have

fi(x
?) � 0
�?i � 0

rf0(x?) +
X
i
�?irfi(x

?) = 0

�?ifi(x
?) = 0

the Karush-Kuhn-Tucker (KKT) optimality conditions

conversely, any x?, �? that satisfy KKT are primal, dual
optimal

for convex problems, KKT are necessary and su�cient
optimality conditions, provided

� strong duality holds

� primal & dual optima are attained
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Geometric interpretation of dual problem

consider set

A = f (u; t) 2 Rm+1 j 9x fi(x) � ui; f0(x) � t g

� A convex if fi are

� g(�) = inf

8>>><
>>>:

2
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(Idea of) proof

problem convex, strictly feasible =) strong duality

u

t

A

t+ �Tu = g(�)

g(�)
"
1

�

#"
1

�?

#

p?

� (0; p?) 2 @A

� hence 9 supporting hyperplane to A at (0; p?):

(u; t) 2 A =) �0(t� p?) + �Tu � 0

� �0 � 0, � � 0, (�; �0) 6= 0

� strong duality () 9 supp. hyperplane with �0 > 0:
for �? = �=�0, we have

p? � t + �?Tu 8(t; u) 2 A

p? � g(�?)

� Slater's condition: there exists (u; t) 2 A with u � 0;
implies that all supporting hyperplanes at (0; p?) are
non-vertical (�0 > 0)
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Sensitivity analysis via duality

de�ne p?(u) as the optimal value of

minimize f0(x)
subject to fi(x) � ui; i = 1; : : : ;m

0

0

u

p
?
(u
)

epi p?

p?(0)� �?Tu

�? gives lower bound on p?(u)

p?(u) � p? �
mX
i=1

�?iui

� if �?i large: ui < 0 greatly increases p?

� if �?i small: ui > 0 does not decrease p? too much

if p?(u) is di�erentiable, �?i = �
@p?(0)

@ui

�?i is sensitivity of p? w.r.t. ith constraint
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Equality constraints

minimize f0(x)
subject to fi(x) � 0; i = 1; : : : ;m

gi(x) = 0; i = 1; : : : ; p

optimal value p?

de�ne Lagrangian L : Rn+m+p ! R as

L(x; �; �) = f0(x) +
mX
i=1

�ifi(x) +
pX

i=1
�igi(x)

dual function is g(�; �) = infxL(x; �; �)

(�; �) is dual feasible if � � 0 and g(�; �) > �1
(no sign condition on �)

lower bound property: if x is primal feasible and
(�; �) is dual feasible, then g(�; �) � f0(x)

hence, g(�; �) � p?
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dual problem: �nd best lower bound

maximize g(�; �)
subject to � � 0

(note � unconstrained) optimal value d?

weak duality: d? � p? always

strong duality: if primal is convex then (usually)
d? = p?

Slater condition: if primal is strictly feasible (and
convex) then d? = p?

KKT conditions:

fi(~x) � 0
gi(~x) = 0

~�i � 0

rf0(~x) +
X
i

~�irfi(~x) +
X
i
~�irgi(~x) = 0

~�ifi(~x) = 0

example: opt cond. for equality constraints only

minimize f0(x)
subject to Ax = b

x? optimal if and only if 9�? s.t.

rf0(x
?) + AT�? = 0
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Example: equality constrained
least-squares

minimize xTx
subject to Ax = b

A is fat, full rank
(soln is x? = AT (AAT )�1b)

dual function is

g(�) = inf
x

�
xTx + �T (Ax� b)

�
= �

1

4
�TAAT� � bT�

dual problem is

maximize �1
4�

TAAT� � bT�

(soln is �? = �2(AAT )�1b)

can check d? = p?
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Example: geometric programming

simple (unconstrained) case

primal problem:

minimize log
mX
i=1

exp(aTi x� bi)

dual fct is constant g = p?

(we have strong duality, but it's useless)

now rewrite primal problem as

minimize log
mX
i=1

exp yi

subject to y = Ax� b

� introduce m new vbles y1; : : : ; ym

� introduce m new equality constraints y = Ax� b
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dual function

g(�) = inf
x;y

0
B@log

mX
i=1

exp yi + �T (Ax� b� y)
1
CA

� in�mum is �1 if AT� 6= 0

� assuming AT� = 0, let's minimize over y:

exp yi
, nX
j=1

exp yj = �i

solvable i� �i > 0, 1T� = 1

g(�) = �
X
i
�i log �i � bT�

dual problem

maximize �bT� �
X
i
�i log �i

subject to � � 0
1
T� = 1

AT� = 0

we have strong duality

connection between primal GP and dual entropy problem:

� useful

� not obvious

moral: apparently trivial reformulations of primal yield
di�erent duals
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Generalized inequalities

minimize f0(x)
subject to fi(x) �Ki

0; i = 1; : : : ; L

where

� �Ki
are generalized inequalities on Rmi

� fi : R
n ! R

mi are Ki-convex

Lagrangian L : Rn �Rm1 � � � � �RmL ! R,

L(x; �1; : : : ; �m) = f0(x) + �T1 f1(x) + � � � + �Tmfm(x)

dual function

g(�1; : : : ; �m) = inf
x

�
f0(x) + �T1 f1(x) + � � � + �TLfL(x)

�

�i dual feasible if �i �K?
i
0, g(�1; : : : ; �L) > �1

lower bound property: if x primal feasible and
(�1; : : : ; �m) is dual feasible, then

g(�1; : : : ; �L) � f0(x)

(hence, g(�1; : : : ; �L) � p?)
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dual problem

maximize g(�1; : : : ; �L)
subject to �i �K?

i
0; i = 1; : : : ; L

weak duality: d? � p? always

strong duality: d? = p? usually

Slater condition: if primal is strictly feasible, i.e.,

9x : fi(x) �Ki
0; i = 1; : : : ; L

then d? = p?
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Example: semide�nite programming

minimize cTx
subject to F0 + x1F1 + � � � + xnFn � 0

Lagrangian

L(x; Z) = cTx +TrZ(F0 + x1F1 + � � � + xnFn)

Z = ZT 2 Rm�m

dual function

g(Z) = inf
x

�
cTx +TrZ(F0 + x1F1 + � � � + xnFn

�

=

8>><
>>:
TrF0Z if TrFiZ + ci = 0; i = 1; : : : ; n
�1 otherwise

dual problem

maximize TrF0Z
subject to TrFiZ + ci = 0; i = 1; : : : ; n

Z = ZT � 0

strong duality holds if there exists x with

F0 + x1F1 + � � � + xnFn � 0
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Theorem of alternatives

1. there exist x with fi(x) < 0, i = 1; : : : ;m

2. there exist � 6= 0 with � � 0,

g(�) = inf
x

(�1f1(x) + � � � + �mfm(x)) � 0

� exactly one of these is true

� called alternatives

� use in practice: � that satis�es 2nd condition proves
fi(x) < 0 is infeasible
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proof
1) :2: by contradiction

fi(x) < 0; 0 6= � � 0 =) �1f1(x) + � � � + �mfm(x) < 0

:1) 2:
de�ne B = fu 2 Rm j 9x : fi(x) � uig

u1

u2

B

� :1() B \ fu j u � 0g = ;

� hence, exists separating hyperplane: � 6= 0,

u 2 B =) �Tu � 0

u � 0 =) �Tu � 0

� implies � � 0 and

�1f1(x) + � � � + �nfn(x) � 0

for all x


