Lecture 7 Duality

- Lagrange dual function
- Lagrange dual problem
- strong duality and Slater's condition
- KKT optimality conditions
- sensitivity analysis
- generalized inequalities

std form problem

minimize $f_0(x)$ subject to $f_i(x) \leq 0, \ i = 1, \dots, m$

- \bullet optimal value p^{\star}
- called *primal problem* (in context of duality)

(for now) we assume

- not necessarily convex
- no equality constraints
- dom $f_i = \mathbf{R}^n$

Lagrangian $L: \mathbf{R}^{n+m} \to \mathbf{R}$

 $L(x,\lambda) = f_0(x) + \lambda_1 f_1(x) + \dots + \lambda_m f_m(x)$

- λ_i called Lagrange multipliers or dual variables
- objective is *augmented* with weighted sum of constraint fcts

(Lagrange) dual function $g: \mathbf{R}^m \to \mathbf{R} \cup \{-\infty\}$

$$g(\lambda) = \inf_{x} L(x, \lambda)$$

= $\inf_{x} (f_0(x) + \lambda_1 f_1(x) + \dots + \lambda_m f_m(x))$

- ullet can be $-\infty$ for some λ
- g is concave (even if f_i not convex!)
- minimum augmented cost as fct of weights

example: LP

minimize $c^T x$ subject to $a_i^T x - b_i \leq 0, \ i = 1, \dots, m$

$$L(x,\lambda) = c^T x + \sum_i \lambda_i (a_i^T x - b_i)$$

= $-b^T \lambda + (A^T \lambda + c)^T x$

hence $g(\lambda) = \begin{cases} -b^T \lambda & \text{if } A^T \lambda + c = 0 \\ -\infty & \text{otherwise} \end{cases}$

if $\lambda \succeq 0$ and x is primal feasible, then $g(\lambda) \leq f_0(x)$

proof: if
$$f_i(x) \leq 0$$
 and $\lambda_i \geq 0$,
 $f_0(x) \geq f_0(x) + \sum_i \lambda_i f_i(x)$
 $\geq \inf_z \left(f_0(z) + \sum_i \lambda_i f_i(z) \right)$
 $= g(\lambda)$

 $f_0(x) - g(\lambda)$ is called the *duality gap* of (primal feasible) x and $\lambda \succeq 0$

minimize over primal feasible x to get, for any $\lambda \succeq 0$,

$$g(\lambda) \le p^\star$$

 $\lambda \in {\bf R}^m$ is dual feasible if $\lambda \succeq 0$ and $g(\lambda) > -\infty$

dual feasible points yield lower bounds on optimal value!

let's find **best** lower bound on p^* :

 $\begin{array}{ll} \text{maximize} & g(\lambda) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

- called (Lagrange) dual problem (associated with primal problem)
- always a convex problem, even if primal isn't!
- ullet optimal value denoted d^{\star}
- $d^{\star} \leq p^{\star}$ (called *weak duality*)
- $p^{\star} d^{\star}$ is optimal duality gap

strong duality: for convex problems we (usually) have $d^{\star} = p^{\star}$

- hence, duality is especially important and useful in convex optimization
- strong duality does not hold, in general, for nonconvex problems

Duality

Implications of strong duality:

- dual optimal λ^{\star} serves as certificate of optimality for primal optimal point x^{\star}
- can solve *constrained* problem

minimize $f_0(x)$ subject to $f_i(x) \leq 0, i = 1, \dots, m$

by solving unconstrained problem

minimize $f_0(x) + \lambda_1^\star f_1(x) + \cdots + \lambda_m^\star f_m(x)$

• can express strong duality in symmetric form

$$d^{\star} = \sup_{\lambda \succeq 0} \inf_{x} L(x, \lambda) = \inf_{x} \sup_{\lambda \succeq 0} L(x, \lambda) = p^{\star}$$

i.e., strong duality \Longrightarrow can swap inf & sup

many conditions or *constraint qualifications* guarantee strong duality for convex problems

Slater's condition: if primal problem is strictly feasible (and convex) then we have $p^* = d^*$

(primal) LP

minimize $c^T x$ subject to $Ax \preceq b$

 \bullet *n* vbles, *m* inequality constraints

dual of LP is

maximize
$$b^T \lambda$$

subject to $A^T \lambda + c = 0$
 $\lambda \succeq 0$

- dual of LP is also an LP (indeed, in std LP format)
- $\bullet\ m$ vbles, n equality constraints, m nonnegativity contraints

for LP we have strong duality except in one (pathological) case: primal and dual *both* infeasible $(p^* = +\infty, d^* = -\infty)$

(primal) QP minimize $x^T P x$ subject to $Ax \leq b$ we assume $P \succ 0$ for simplicity

Lagrangian is $L(x,\lambda) = x^T P x + \lambda^T (A x - b)$

 $\nabla_x L(x,\lambda)=0$ yields $x=-(1/2)P^{-1}A^T\lambda,$ hence dual function is

$$g(\lambda) = -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda$$

- concave quadratic function
- all $\lambda \succeq 0$ are dual feasible

```
dual of QP is

maximize -(1/4)\lambda^T A P^{-1} A^T \lambda - b^T \lambda

subject to \lambda \succeq 0

... another QP
```

many algorithms produce at iteration \boldsymbol{k}

- \bullet a primal feasible $x^{(k)}$
- ullet and a dual feasible $\lambda^{(k)}$

with $f_0(x^{(k)}) - g(\lambda^{(k)}) \to 0$ as $k \to \infty$

hence at iteration k we **know** $p^{\star} \in [g(\lambda^{(k)}), f_0(x^{(k)})]$

- useful for stopping criteria
- algorithms that use dual solution are often more efficient (*e.g.*, LP)

absolute error
$$= f_0(x^{(k)}) - p^\star \leq \epsilon$$

stopping criterion:

until
$$\left(f_0(x^{(k)}) - g(\lambda^{(k)}) \le \epsilon\right)$$

relative error
$$= rac{f_0(x^{(k)}) - p^{\star}}{|p^{\star}|} \leq \epsilon$$

stopping criterion:

until
$$\left(g(\lambda^{(k)}) > 0 \& \frac{f_0(x^{(k)}) - g(\lambda^{(k)})}{g(\lambda^{(k)})} \le \epsilon\right)$$

or $\left(f_0(x^{(k)}) < 0 \& \frac{f_0(x^{(k)}) - g(\lambda^{(k)})}{f_0(x^{(k)})} \le \epsilon\right)$

achieve **target value** ℓ or, prove ℓ is unachievable (*i.e.*, determine either $p^* \leq \ell$ or $p^* > \ell$)

stopping criterion:

until
$$\left(f_0(x^{(k)}) \le \ell \text{ or } g(\lambda^{(k)}) > \ell\right)$$

suppose x^* , λ^* are primal, dual feasible with zero duality gap (hence, they are primal, dual optimal)

$$f_0(x^*) = g(\lambda^*)$$

= $\inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) \right)$
 $\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*)$

hence we have
$$\sum\limits_{i=1}^m\lambda_i^\star f_i(x^\star)=0$$
, and so $\lambda_i^\star f_i(x^\star)=0, \quad i=1,\ldots,m$

- called **complementary slackness** condition
- *i*th constraint inactive at optimum $\implies \lambda_i = 0$
- $\lambda_i^{\star} > 0$ at optimum $\implies i$ th constraint active at optimum

suppose f_i are differentiable, $x^\star, \, \lambda^\star$ are primal, dual optimal

then we have

$$f_i(x^*) \leq 0$$

$$\lambda_i^* \geq 0$$

$$\nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0$$

$$\lambda_i^* f_i(x^*) = 0$$

the Karush-Kuhn-Tucker (KKT) optimality conditions

conversely, any $x^{\star}\text{, }\lambda^{\star}$ that satisfy KKT are primal, dual optimal

for convex problems, KKT are necessary and sufficient optimality conditions, provided

- strong duality holds
- primal & dual optima are attained

Geometric interpretation of dual problem

consider set

$$\mathcal{A} = \{ (u, t) \in \mathbf{R}^{m+1} \mid \exists x \ f_i(x) \le u_i, \ f_0(x) \le t \}$$

•
$$\mathcal{A}$$
 convex if f_i are
• $g(\lambda) = \inf \left\{ \begin{bmatrix} \lambda \\ 1 \end{bmatrix}^T \begin{bmatrix} u \\ t \end{bmatrix} \mid \begin{bmatrix} u \\ t \end{bmatrix} \in \mathcal{A} \right\}$

problem convex, strictly feasible \implies strong duality

- $\bullet \ (0,p^{\star}) \in \partial \mathcal{A}$
- hence \exists supporting hyperplane to \mathcal{A} at $(0, p^{\star})$:

$$(u,t) \in \mathcal{A} \Longrightarrow \mu_0(t-p^\star) + \mu^T u \ge 0$$

• $\mu_0 \geq 0$, $\mu \succeq 0$, $(\mu, \mu_0) \neq 0$

• strong duality $\iff \exists$ supp. hyperplane with $\mu_0 > 0$: for $\lambda^* = \mu/\mu_0$, we have

$$\begin{array}{ll} p^{\star} \leq t + \lambda^{\star T} u \ \forall (t, u) \in \mathcal{A} \\ p^{\star} \leq g(\lambda^{\star}) \end{array}$$

 Slater's condition: there exists (u, t) ∈ A with u ≺ 0; implies that all supporting hyperplanes at (0, p^{*}) are non-vertical (μ₀ > 0)

Sensitivity analysis via duality

define $p^{\star}(u)$ as the optimal value of

 $\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq u_i, \ i=1,\ldots,m \end{array}$

 λ^\star gives lower bound on $p^\star(u)$

$$p^{\star}(u) \ge p^{\star} - \sum_{i=1}^{m} \lambda_i^{\star} u_i$$

• if λ_i^{\star} large: $u_i < 0$ greatly increases p^{\star}

• if λ_i^{\star} small: $u_i > 0$ does not decrease p^{\star} too much

if $p^{\star}(u)$ is differentiable, $\lambda_i^{\star} = -\frac{\partial p^{\star}(0)}{\partial u_i}$ λ_i^{\star} is sensitivity of p^{\star} w.r.t. *i*th constraint

$$\begin{array}{ll} \mbox{minimize} & f_0(x) \\ \mbox{subject to} & f_i(x) \leq 0, \ i=1,\ldots,m \\ & g_i(x)=0, \ i=1,\ldots,p \end{array}$$

optimal value p^{\star}

define **Lagrangian** $L : \mathbf{R}^{n+m+p} \to \mathbf{R}$ as $L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_i g_i(x)$

dual function is $g(\lambda, \nu) = \inf_x L(x, \lambda, \nu)$

 (λ, ν) is dual feasible if $\lambda \succeq 0$ and $g(\lambda, \nu) > -\infty$ (no sign condition on ν)

lower bound property: if x is primal feasible and (λ, ν) is dual feasible, then $g(\lambda, \nu) \leq f_0(x)$ hence, $g(\lambda, \nu) \leq p^*$ dual problem: find best lower bound

 $\begin{array}{ll} \text{maximize} & g(\lambda,\nu) \\ \text{subject to} & \lambda \succeq 0 \end{array}$

(note u unconstrained) optimal value d^{\star}

weak duality: $d^{\star} \leq p^{\star}$ always

strong duality: if primal is convex then (usually) $d^{\star} = p^{\star}$

Slater condition: if primal is strictly feasible (and convex) then $d^{\star} = p^{\star}$

KKT conditions:

$$\begin{aligned} f_i(\tilde{x}) &\leq 0\\ g_i(\tilde{x}) &= 0\\ \tilde{\lambda}_i &\geq 0\\ \nabla f_0(\tilde{x}) + \sum_i \tilde{\lambda}_i \nabla f_i(\tilde{x}) + \sum_i \tilde{\nu}_i \nabla g_i(\tilde{x}) &= 0\\ \tilde{\lambda}_i f_i(\tilde{x}) &= 0 \end{aligned}$$

example: opt cond. for equality constraints only

minimize
$$f_0(x)$$

subject to $Ax = b$

 x^{\star} optimal if and only if $\exists \nu^{\star} \text{ s.t.}$

$$\nabla f_0(x^\star) + A^T \nu^\star = 0$$

Example: equality constrained least-squares

minimize $x^T x$ subject to Ax = b

 $\begin{array}{l} A \text{ is fat, full rank} \\ \textbf{(soln is } x^{\star} = A^T (AA^T)^{-1} b \textbf{)} \end{array}$

dual function is

$$g(\nu) = \inf_{x} \left(x^T x + \nu^T (Ax - b) \right) = -\frac{1}{4} \nu^T A A^T \nu - b^T \nu$$

dual problem is

maximize
$$-\frac{1}{4}\nu^T A A^T \nu - b^T \nu$$

(soln is $\nu^{\star} = -2(AA^T)^{-1}b$)

can check $d^\star = p^\star$

Example: geometric programming

simple (unconstrained) case

primal problem:

minimize
$$\log \sum_{i=1}^{m} \exp(a_i^T x - b_i)$$

dual fct is constant $g = p^{\star}$

(we have strong duality, but it's useless)

now rewrite primal problem as

minimize $\log \sum_{i=1}^{m} \exp y_i$ subject to y = Ax - b

- introduce m new vbles y_1, \ldots, y_m
- introduce m new equality constraints y = Ax b

Duality

dual function

$$g(\nu) = \inf_{x,y} \left(\log \sum_{i=1}^{m} \exp y_i + \nu^T (Ax - b - y) \right)$$

• infimum is
$$-\infty$$
 if $A^T \nu \neq 0$

• assuming $A^T \nu = 0$, let's minimize over y:

$$\exp y_i \big/ \sum_{j=1}^n \exp y_j = \nu_i$$

solvable iff $\nu_i > 0$, $\mathbf{1}^T \nu = 1$

$$g(\nu) = -\sum_i
u_i \log
u_i - b^T
u$$

dual problem

maximize
$$-b^T \nu - \sum_i \nu_i \log \nu_i$$

subject to $\nu \succ 0$
 $\mathbf{1}^T \nu = 1$
 $A^T \nu = 0$

we have strong duality

connection between primal GP and dual entropy problem:

- useful
- not obvious

moral: apparently trivial reformulations of primal yield different duals

minimize
$$f_0(x)$$

subject to $f_i(x) \preceq_{K_i} 0, \ i=1,\ldots,L$

where

- \leq_{K_i} are generalized inequalities on \mathbf{R}^{m_i}
- $f_i: \mathbf{R}^n \to \mathbf{R}^{m_i}$ are K_i -convex
- **Lagrangian** $L : \mathbf{R}^n \times \mathbf{R}^{m_1} \times \cdots \times \mathbf{R}^{m_L} \to \mathbf{R},$ $L(x, \lambda_1, \dots, \lambda_m) = f_0(x) + \lambda_1^T f_1(x) + \cdots + \lambda_m^T f_m(x)$

dual function

$$g(\lambda_1,\ldots,\lambda_m) = \inf_x \left(f_0(x) + \lambda_1^T f_1(x) + \cdots + \lambda_L^T f_L(x) \right)$$

 λ_i dual feasible if $\lambda_i \succeq_{K_i^{\star}} 0$, $g(\lambda_1, \ldots, \lambda_L) > -\infty$

lower bound property: if x primal feasible and $(\lambda_1, \ldots, \lambda_m)$ is dual feasible, then

 $g(\lambda_1,\ldots,\lambda_L)\leq f_0(x)$ (hence, $g(\lambda_1,\ldots,\lambda_L)\leq p^{\star}$)

Duality

dual problem

maximize
$$g(\lambda_1, \ldots, \lambda_L)$$

subject to $\lambda_i \succeq_{K_i^\star} 0, \ i = 1, \ldots, L$

weak duality: $d^* \le p^*$ always strong duality: $d^* = p^*$ usually

Slater condition: if primal is strictly feasible, *i.e.*, $\exists x: f_i(x) \prec_{K_i} 0, i = 1, \dots, L$ then $d^* = p^*$

Example: semidefinite programming

minimize $c^T x$ subject to $F_0 + x_1 F_1 + \dots + x_n F_n \preceq 0$

Lagrangian

 $L(x,Z) = c^T x + \operatorname{Tr} Z(F_0 + x_1 F_1 + \dots + x_n F_n)$ $Z = Z^T \in \mathbf{R}^{m \times m}$

dual function

$$g(Z) = \inf_{x} \left(c^{T}x + \operatorname{Tr} Z(F_{0} + x_{1}F_{1} + \dots + x_{n}F_{n}) \right)$$
$$= \begin{cases} \operatorname{Tr} F_{0}Z & \text{if } \operatorname{Tr} F_{i}Z + c_{i} = 0, \quad i = 1, \dots, n \\ -\infty & \text{otherwise} \end{cases}$$

dual problem

maximize
$$\operatorname{Tr} F_0 Z$$

subject to $\operatorname{Tr} F_i Z + c_i = 0, \quad i = 1, \dots, n$
 $Z = Z^T \succeq 0$

strong duality holds if there exists x with

$$F_0 + x_1 F_1 + \dots + x_n F_n \prec 0$$

- 1. there exist x with $f_i(x) < 0$, $i = 1, \ldots, m$
- 2. there exist $\lambda \neq 0$ with $\lambda \succeq 0$,

$$g(\lambda) = \inf_{x} \left(\lambda_1 f_1(x) + \dots + \lambda_m f_m(x) \right) \ge 0$$

- exactly one of these is true
- called alternatives
- use in practice: λ that satisfies 2nd condition proves $f_i(x) < 0$ is infeasible

Duality

proof $1 \Rightarrow \neg 2$: by contradiction $f_i(x) < 0, \ 0 \neq \lambda \succeq 0 \Longrightarrow \lambda_1 f_1(x) + \dots + \lambda_m f_m(x) < 0$ $\neg 1 \Rightarrow 2$: define $\mathcal{B} = \{u \in \mathbf{R}^m \mid \exists x : f_i(x) \le u_i\}$

•
$$\neg 1 \iff \mathcal{B} \cap \{u \mid u \prec 0\} = \emptyset$$

• hence, exists separating hyperplane: $\lambda \neq 0$,

$$u \in \mathcal{B} \Longrightarrow \lambda^T u \ge 0$$
$$u \prec 0 \Longrightarrow \lambda^T u \le 0$$

• implies $\lambda \succeq 0$ and

$$\lambda_1 f_1(x) + \dots + \lambda_n f_n(x) \ge 0$$

for all x