Linear Quadratic (LQ) optimal
control

"Principle of optimality” or Dynamic Programming (Bellman
1957) is one way to approach the problem. Variational

calculus is another one.

Books:
« Kirk (1998), “Optimal Control Theory”
* Lewis and Syrmos (1995), "Optimal Control”

* Bryson and Ho (1975), “Applied Optimal Control:
Optimization, Estimation, and Control”

« Athans and Falb (1966), “Optimal Control: An Introduction
To The Theory And Its Applications *
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Optimization from control viewpoint

Static
Optimization
Lagrange multipliers  Nymerical methods
Dynamic Shooting methods, TPBVPs
Programming
Weights Calculus of Variations
Euler-Lagrange o - chistochrone problem
equations

Pontryagin’s maximum

principle  Hamiltonian Linear Quadratic
Bang-Bang control (LQ)-optimal control
!'mear r_n_at"x Hamilton-Jacobi-Bellman
inequalities equation
(LMI)
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The Maximum (Minimum) Principle

 Pontryagin + co-workers, 1962
« Classical "Calculus of Variations”

« Calculus of variations in optimal control
problems

* A special case of the maximum principle

« Maximum principle (nonlinear system,
restrictions in state and input variables,
possibly nonlinear cost, minimum time
problems, minimum fuel problems etc.)

 Mathematically involved

Note: Min J = -Max (-J) always
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Concepts

x(t) = f(x(0),u(?),1), x(4) =X, Process

minJ = h(x(t,),t,)+ | g(x(0),u(0).0dt Criterion to be minimized

*States and co-states (adjoint states)
*Hamiltonian function

State equations for states and co-states
«Conditions for the Hamiltonian
*Boundary conditions

*Two-point boundary value problems
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Principle of Optimality

(Bellman 1957)

“An optimal policy has the property that no
matter what the previous decision (i.e. controls)
have been, the remaining decisions must
constitute an optimal policy with regard to the
state resulting from those previous decisions.”

By applying this principle the number of candidates for
the optimal solution can be reduced.

Calculations "backwards in time”.
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Ex. Routing problem
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Discrete-time optimization
problem

K Process
Xpm = (x,u,)

N1 Criterion to be
Ji(x)=g(N.xy)+ 2 L'(xut)  minimized
k=i

Use the principle of optimality. Let the optimal control
be calculated from time k+1 to N for all states
X at time k+1 and consider what happens
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k
Xe = F (x,u,)

J00) = (N, x) + 3 L (o)

Lk ('xk > Mk ) T JZ+1 (xk+1)

JZ (X) = min[Lk (X, )+ JZ+1(xk+1):|

Problem

Determination of
the solution by the
principle of
optimality

Find ux such that the expression is minimized;

optimal cost at time k.
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Solution of the discrete-time LQ-problem by
using dynamic programming

Xy = Ax, + Bu, Process

1 . 1N—1
J = EXNSNXN +§k:i

(§y20, 9020, R>0) symmetric

(x,fok +u, Ru, ) Criterion

.Xl- given XN free

Find uk in inteval [i,N] minimizing the criterion
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« 1

Jy = ExjﬂSNxN, k=N Cost from the end state
| 1 |
Sy = EXN—leN—l + EMN—IRMN—I +EXNSNXN
Backwards in time to time
iInstant N-1
1 1 1
Sy = Exjj\}—leN—l + Eu;—lR”N—l + E(AxN—l + Bu,,_, )T Sy (AxN—l + B”N—l)
ot
0= (%IN L= Ruy_, +BTSN(AXN—1 +B“N—1) Minimize
N-1

u', , =—(B"S,B+R) B'S, Ax,,
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The solution can be presented in the form
Wy, ==Ky Xy Ky, n(B"S,B+R) B'S, 4

By substituting into  J,_, 9ives the optimal cost

3 |
Sy = Exz{fl [(A - BK )T Sy (A - BK )"’ K]]\;—IRKN—I + Q]XN—l

Define

SN—I A (A_BKN—I )TSN(A_BKN—I)_I_K]]\;—IRKN—I "‘Q

. 1 -
Sy = EXN—lSN—lxN—l
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Backwards to the time instant k = N-2

1 1 1
Sy = Eszx;—zQxN—z + E”z{f—zR”N—z + Ex]]\;—lSN—lxN—l

Now determine u,_, , but the equations have the same form
as above. We obtain the general
solution

K,=(B"S,,B+R)'B'S, 4

”Z =—-K,x,

S, =(4-BK,)' S, (4-BK,)+K'RK +0Q
.1

J. :Exlzskxk
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Continuous-time case: The Hamilton-
Jacobi-Bellman equation

X(t) — f(X(f),I/l(t), t) System
J=h(x(t,),t,)+ f g(x(7),u(zr),r)dr  Criterion

Consider the problem as a part of the larger problem

J(x(1),t, LL(Q) =h(x(t,),t,)+ J- g(x(7),u(r),r)dr

Let us try to minimize this for all admissible x(t) and for all

tStf
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The minimum cost function is then

J*(x(2),1) = Qig,{f g(x(7),u(r),7)dr +h(x(t,).t,)}
u(r) ¢

By dividing the optimization interval to two parts we obtain

t+At Ly
J*(x(t),t)=min { | gdr+ [ gdr+h(x(t,).t,)} At small
u(r) t t+At

Use the principle of optimality to get

t+At
J*(x(t),£) = min { j gdr +J *(x(t+At),t + At)}
u(r) t

t<r<t f
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Expand J (x(¢ + At),t+ At) as a Taylor series about the point
(x(2),t) gives

t+At 8J %
J*(x(t),t) = min { j gdt+J *(x(¢),?) +[ Py (x(t),t)}At
u(r) t
tﬁrétf

+ {a;a]x " (x(2), z)} [x(t+ A1) —x(1)]}

and for small At

J*(x(0),2) ~ min_ { g (x(2), u(t),£)At + J * (x(2),1)
u(t)

+J, (x(0),0) At + J (x(2),0)[ [ (x(2),u(t),1)| At

Aalto University
School of Electrical
B Engineering



Minimization (terms that do not depend on u)

0=~ J, (x(t),t)At + min {g(x(t),u(t),t)At
u(t)

+J (x(@),0) f (x(2),u(t),)| At}
Dividing by A7 and letting Ar — 0 gives
0 =J; (x(2),2) +min, {g(x(1),u(t),t) +J (x(0), )| f (x(2),u(®),0) ]}

u(t)
Setting t = £, the boundary condition is found

T (x(t),t,) = h(x(t,),t,)
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Define the Hamiltonian as
H (x(t),u(t),J,,t) = g(x(0),u(t),t) + J . (x(t),0)| £ (x(t),u(t),1)]
and

H (x(0),u” (x(t),J,1),J,,t) = min, H (x(2),u(t), ], 1)
u(t)
since the minimizing control depends on X,J: and t.

The H-J-B equation can be written in the form

0=J, (x(2),t)+ H(x(t),u (x(2),J.,1),J_,1)
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Example:  x(¢) = x(t)+u(t)

MmJ—ix (T)+j u'(t)dt (T fixed)

H(x,u,J;:,z‘) =iu2 +J;(x+u)
.. . oH 1 "
Necessary condition for optimality 3 = > u+J =0
u

O°H 1 . . . -
Note: 3 =5>0 implying this is a minimum (because

. of linear system with quadratic criterion)

Aalto University
School of Electrical
B Engineering



u (1) =-2J_(x(1),t)

Substitute into H-J-B

S T S *
0=J +Z[—2Jx]2 v x2S

=J [T [T ]
Boundary condition

J (x(T),T) = ixz (T)
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Next, guess a solution form (for LQ problems this may work)

J (x(8),t) = %K (O)x* (1) = J_(x(2),1) = K(t)x(¢)

This is the Riccati transformation

u (t)=-2K(@)x(¢)
Setting K(T) = V2 fulfils the boundary condition.

* 1 .
Now . (x(t),t)=§K(t)x2(t) and the H-J-B gives

0= %K (x> (1) - K*()x* () + K ()x*(¢)
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That must be satisfied for all x(f)

1 T—t

—K@) - KX () +K()=0= K(1) = ——

2 el e U

= u (1) =-2J (x(1),t) = 2K (t)x(1)

The solution is in the form of a state feedback control
law.
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Linear Regulator Problems
4 LQ problem, Q positive semi-
1) = AD)X() + B(D)u?) definite, R positive definite
J= %xT (t Y Hx(t,)+ | %[xT(t)Q(t)x(t) +u” (OR()u(t) |dt

)

Form the Hamiltonian

H (x(t),u(t),J 1) =%XT(l)Q(t)X(t)+%MT(f)R(1)u(t)+J§:(X(t),f)
| A@)x(2) + B(t)u(r)]

and the necessary condition for optimality

%_H(x(t),u(f), J:,f) = uT(t)R(t) + J;k(x(t),t)B(t) _0
u
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0'H
Note that since 7, =% is positive definite and H is a quadratic
form in u, the optimum is global.

u (1) =—R™(O)B" (1)J7 (x(2),1)

= H(x(t),u (t),J.,t)= %xTQx + %J;BR_IBTJ:T

+J. Ax—J_BR'B"J

= %xTQx —%J;BR‘IBTJ;:T +J. Ax
H-J-B: 0=J, +§xTQx—§JXBR_lBTJxT +J Ax

Boundary condition J*(x(tf),tf) :%xT(tf)Hx(tf)
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Guess a solution of the form

J (x(£),1) = 1. (OK()x() Ksymmetric, positive definitive

matrix
and substitute into H-J-B
1 T ¢ 1 T 1 T -1 pT T
O=—x Kx+—x Ox——x KBR B Kx+x KAx
2 2 2
x' KAx = x" (KA+(KA)" —(KA) )x =x" (KA + ATK)x —x' KAx
But i 1 so that
:>xTKAx:—(xTKAx)+—(xTATKx)
2 2
1 ..
0=EXTKX-I-%XTQX—%XTKBR_IBTKX-I—%XT]CZIX-I—%XTATKX
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This equation must hold for all x(t), so that
0=K({)+0(@)-K@)BOR'')B"()K()+ K@) A®)+ A" (1)K (¢)

with the boundary condition
K(t,)=H

This is of course the well-known Riccati equation with a
boundary condition.

The optimal control becomes

u (t)=—R"(OB" (K (0)x(?)
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It can be proven that the condition of optimality (in H-J-B)
IS not only necessary, but also sufficient.

To introduce co-states, take p’ (¢) = J_(x(¢),?)
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Results when control is unbounded and
all signals differentiable

x(t) = f(x(0),u(?),1), x(4) =X,

J = h(x(t,),t,)+ j a(x(t),u(t),t)dt

Take co-states (adjoint states) p; (f) and define the Hamiltonian

H(x,u, p,t)= g(x,u,t)+pr(x,u,t)

The necessary conditions for the solution x*, u™ are
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-

7 (0) = =2 e, e

Ox
%_[Z(x*ﬂ*ap*,t) =0

/\

T
x*= f(x*,u*, p*,t) = (a—HJ
op

\

Boundary conditions:
1. x(%) =X,
2. Free final state p(t,)=0

Fixed final state x(¢,) =x, o
Final state has the cost (x(z,).z,) 1 pt,)=—-(,)
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Example
Ly
Minimize the performance measure  j(y) = I lu2(t) dt
> 2
For the system i (1) = x,(t) ’

% (0) = =, (1) + u(?)

— Control 1s unbounded, final state is required to lie in
x(2)=[5 2]’

Solution

— Form the Hamiltonian

H(x(2),u(?), p(t)) = %uz(l‘) + (0%, () = p, ()%, () + py (Hul?)
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Calculate the necessary conditions for optimality

. oH

; t) = — = (0
p1() 6x1

. X aH * *
pz(t):_a = —-p, () + p, (1)

Xy
aH ES LS
=u (t)+ p,(t)=20
ou

Solve the optimal control and substitute into state
equations and solve the equations

x *()=c +02[1—e_t]+c3[—t—%e_t +%et]+c4[l—%e_t —%et]

x, *¥(H)=ce” +c3[—1+%et +%et]+c4[%et —%et]

p M) =c
D, *¥()=¢[l-€]+c,e
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Solve the system parameters with respect to the boundary
conditions

— x(0)=[0 0T
— X(2)=[5 2]

X, *(£)=7,289 —6,103+6,696¢ " —0,593¢'
X, *(£)=7,289—6,696¢ " —0,593¢'

Note that analytical solutions are seldom possible.

Specifically, Two-Point-Boundary-Value-Problems (TPBVP)
often occur (initial value for state and final value of co-state are
known. “Shooting algorithms” can be used to find
approximative solutions.
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Summary:

Discrete-time case (this is relatively easy to derive starting
from the Principle of Optimality (Dynamic Programming).

See Lecture 8 of the course ELEC-E8101 Digital and Optimal
Control).

X, =Ax, +Bu,, k>i

1 e

J. ZEX;SNXN +5 (x,kaxk +u,kauk)
k=i

S, >0, 0,20, R, >0
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Solution :
S, =(4-BK,)'S,,,(A-BK,)+K/RK, +0O
Ky = (BkTSk+1Bk + Ry )_lBkTSkHAk: k<N

u, =—K,x,, k<N

R |
J. =—xl.TSl.xl.
2

The Riccati equation can also be written in the form

S, =4 |:Sk+l — 5By (BkTSk+1Bk + R, )_1 BkTSkH:lAk +0,, k<N, S, given
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Continuous-time case:

X=Ax+Bu, t=>t,

J(t,) =%xT(tf)S(zf)x(tf)+%f(xTQx+uTRu)dt

lo

S(t,)>0, 0>0, R>0

Note. The matrices can also be time-varying,
A = A(t) etc. like previously in the discrete case.
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Riccati equation

—S(t)=A"S+SA-SBR'B"S + 0,
boundary condition S(¢,)

K=R'B'S
u=—Kx

T (0) =" 1)S(@)¥(0,)
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But what about the servo problem. How to get rid of the
steady-state error?

X = Ax + Bu
y=0Cx

The optimal control, when reference r is connected
u=—Lx+r

leads to the closed-loop system

x=(A—-BL)x+ Br
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The corresponding transfer function 1s

Y(s) = C|(sT - (4— BL)) " |B R(s)
but the static gain
~C(A-BL)"'B

1s not necessarily one. If the reference 1s a known
constant, a suitable (static) precompensator can be
used, which makes the gain from r to z one.

But what 1f » varies? Solution: add integration to the
system (controller), which removes the error.
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How to add Integration?

Take a new state variable

xn+1

such that
X, =r—y=r—0Cx

An augmented state-space realization 1s obtained

E 0]
3 e oﬂanJ o “* 1]
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Apply the state feeback to this

x ]

u:—[L I”H]Lx 1J+r [, isscalar

The closed loop system 1s then

'x 1 [ 4=BL -BI_ |x | [B]

e T )

When the state moves to a constant value, the component

X,.1 moves to the origin; then the output follows the reference.

Note that this 1s a suboptimal solution.
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Example.

=] inthal _ [O] x|

File Edt “iew Simulation  Format  Tools

Ds@&|s=a(az ) «| &

—»

To Watkspace

+ =
‘ 4’%’_ | ¢ = At BU : ;

= CutD
Step zain ¥ -

State-Space To Wokspace

hd atriz
=ain

Ready 100% T=0.000 oded5
i
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Q=[10;0 1];

R=1;

[L,S,E]=lgr(A,B,Q.,R);

L=0.2361 0.5723

S=1.5158 0.2361
0.2361 0.5723

E =-0.7862 + 1.27201
-0.7862 - 1.27201
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Reference 1s constant; calculate the static gain

=] intha2 _ O] x]

File Edit “iew Simulation  Format  Tools

DEE& s |2z » | &

- —— u
Qutd
In1 To Wakspace
| L I‘; —l'*l b .._x‘=ﬂ::¢+Elu > ¥
+
= Cwx+D
Step : — ¥ . To Wakspace
Zain State-Space
— W
To Wakspaced
I‘{ _
b atriz
zain
Iritializing 1100 T=0.000  [oded5 -
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[A1,B1,C1,D1]=linmod('intha2")

K=1/dcgain(A1,B1,C1,D1)

without pre-compensator

with pre-compensator
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Adding an integrator

[5]intha3 M=l E3

File Edit “iew Simulation Format  Tools

Dw@a|se=eac]r |8

n — - u
Dt
In To Wokspace
_b'+ = h W
il BT e
Step — ¥ To Watspace
State-Space
|—> g
1 1 To Wotspace?
w+ ™ C
s
Integrataor
Ko E
b atriz
2ain
Iritializing 100 T=0.000  |odedS P
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C2=[1 0];

A2=[A zeros(2,1);-C2 0];
B2=[B:0];

Q2=eye(3);

R2=1;
[L,S,E]=1qr(A2,B2,Q2,R2);
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In the lower figure the component x3 has been given more
weight 1n the criterion.
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