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● Learn the basic concepts of machine learning and its use for human activity 
recognition

● Learn the most common machine learning methods: k-Nearest Neighbors, Support 
Vector Machines, Decision Trees, and Random Forest

Expected Outcomes



● How many of you have heard about Machine Learning (ML)?

● How many of you have taken a course in programming?

● How many of you have taken a course in ML?

● Can you describe the terms classification and clustering? What is the 
difference between them?

Quick Survey



Let’s first talk about classification, traditional 
programming, and the concept of machine learning

TRADITIONAL 
PROGRAMMING



● Can you separate the dogs from the cats?
● Easy, right?

Sorting data



● Classification is the task of sorting data into different groups or classes 
based on their characteristics. Example: images of dogs vs. cats

Classification



● As we now know, classification means sorting into groups (categories)

● Regression means predicting continuous values. For example, predicting house 
prices based on features such as square footage, number of bedrooms, and 
location.

Classification vs. Regression



● Supervised learning is when the machine learn from examples and their 
correct class (named label)

● An example of unsupervised learning is clustering.

● Clustering is a way of finding patterns and organizing things that seem 
alike together

Clustering



● Now let’s focus on classification
● One example closer to us: classifying hand gestures based on accelerometer 

readings.

Classification



● Considering this scenario, how to classify accelerometer data between (let’s 
say) two different hand gestures?

Classification



● The traditional way: involves writing explicit rules that transform input 
data into an output.

● How exactly? Look at the data and find patterns that correlate the input 
with the output. Not always easy.

Traditional Programming



● Suppose the two gestures are punching the air and raising the hand. 
● Can you identify the corresponding gesture for each of the graphs below?

Traditional Programming



● How do you identify them?
● Punching has significantly higher total accelerometer magnitude (in white). 

PUNCHING RAISING THE HAND

Traditional Programming



● What if we had more than 10 sensors placed on the individual’s body?

● What if we wanted to recognize more than 10 activities (e.g., walking, 
running, playing football, going upstairs, and going downstairs)?

● Traditional programming requires significant human labor and expertise

Traditional Programming



● Traditional programming works well for very simple tasks (e.g., binary 
classification of very simple gestures with very few sensors)

Traditional Programming



● Machine learning: automatically learn the rules with a set of samples (data 
+ desired output)

● Useful for handling large and complex data sets or tasks that are difficult 
to program manually

The Concept of Machine Learning



● In the example of classification: provide lots of samples of the classes we 
want to recognize.

● Typically, the more samples, the better.

The Concept of Machine Learning



● Did you notice that we had to analyze a sequence of data to perform the 
classification?

● We call this sequence of data a window
● This window slides across the data, thus being called a sliding window

Sliding Windows



● Typically, slidings windows overlap with each 
other. 

● The window length and step size are parameters 
defined by you.

● What are the benefits and drawbacks of a larger 
overlap? How about a smaller overlap?

Sliding Windows



● Larger overlap: more frequent analysis but larger 
computational resources utilization

● Smaller overlap: less frequent analysis but 
smaller computational resources utilization

Sliding Windows



● The process of splitting the data stream into 
sliding windows is named segmentation

● Depending on the length, a single sliding window 
can encompass multiple classes

● And, in such case, the predominant class is the 
class we assign to that window.

● No guideline for choosing window length and step 
size. Typically, values between 0.5 to 5 seconds 
are used for window length, with overlap varying 
from 50% to 80%

Sliding Windows



Sliding Windows

Sliding from left to right. Notice 
the overlap



● In a very simple case (2 classes, 3 sensor channels), it can be simple to 
define a good sliding window length.

● How about when we have 3 IMUs (27 sensor channels) and 18 classes?

Sliding Windows



Let’s talk about features, training, inference, and 
other terms.

THE BASICS OF 
MACHINE LEARNING



● How to create an ML algorithm?

1. Various data samples (input + ground truth) need to be collected. These 
samples form the so-called training set

2. The programmer needs to define something called features

3. …

● Ground truth or label is the correct class for each sample

The Phases of Machine Learning (ML)

PUNCHING RAISING THE HAND



● Features are representations extracted from the input data.
● Examples of features: maximum value, more examples?

● A feature vector is a list of more than one feature

● Feature extraction is the process of extracting these representation from 
the input data

The Phases of Machine Learning (ML)



● Features are representations extracted from the input data.
● Examples of features: maximum value, minimum value, mean, standard 

deviation, zero-crossing rate, peak-to-peak amplitude.

● A feature vector is a list of more than one feature

● Feature extraction is the process of extracting these representation from 
the input data

The Phases of Machine Learning (ML)



● After extracting the features, the training set should look like this
● A list where the columns (except for the last one) represent features 
● The last column is the ground truth
● Each row represents a sample (also called data point).
● Each sample is obtained by extracting features off a sliding window

The Phases of Machine Learning (ML)



● How to create an ML algorithm?

1. Various data samples (input + output) need to be collected. These samples 
form the so-called training set

2. The programmer needs to define something called features

3. Feature extraction

4. The programmer chooses the algorithm (we will study these later) and 
start the learning (training)

● The training (or learning) is when the machine learning algorithm learns to 
predict classes

The Phases of Machine Learning (ML)



● When the training is over, you have a model. The model is a set of 
instructions that is able to predict classes from the input data.

● When is the training over? You define it. We will learn more about this 
later on.

The Phases of Machine Learning (ML)



● What is next? Validation!

● Validation is when you evaluate the model. For this, you use validation data 
(must not be the same as training data).

● During the validation, you pass validation data as input to the model and 
compare its output with the ground truth. In other terms, you perform 
inference on the validation data.

The Phases of Machine Learning (ML)



● The results of the validation (e.g., accuracy) can be used to make decisions 
about the algorithm or features.

● For instance, if the validation accuracy is low (let’s say, 40%), then we 
might want to modify the algorithm, train for a little longer, or better 
select features. 

● After performing modifications, we restart the training.

The Phases of Machine Learning (ML)



● The outcome of the new training is a new model, which is hopefully better.

● If not, we restart all over again.

● What if the validation accuracy is never good enough? In this case, you 
might have bigger problems. Maybe it is impossible to predict the classes 
from the sample data

The Phases of Machine Learning (ML)



● What bigger problems?

1. Maybe it is impossible to predict the classes from the data because the 
sensors are faulty or do not provide enough information for this task.

2. Maybe the training data were not sufficient
3. There could be problems in the ground truth (erroneous ground truth)
4. Errors in the code

The Phases of Machine Learning (ML)



● Let’s suppose the validation accuracy is good enough. What is next?

● The final test. We evaluate the final performance (accuracy) on a new set of 
data – the so-called test set. 

● Why not get the final performance of the model on the validation set? 
● In other words, why is the validation performance not the final one?

The Phases of Machine Learning (ML)



● The validation performance is an overly optimistic estimate of the model's 
actual generalization capability; because the model has been tailored during 
the training to achieve the highest validation performance possible.

The Phases of Machine Learning (ML)



● Can we cite all the steps again?

The Phases of Machine Learning (ML)



k NEAREST 
NEIGHBORS



● Let’s learn the first classification algorithm

● Let’s consider again the punching vs. raising hand problem.

● Suppose we utilize the features of

maximum total acceleration and average

total acceleration

● We then plot the samples in a 2D graph

Support Vector Machines



● In the graph, each green square represents a sample of the “raising hand” 
class, whereas each blue circle represents a sample of the “punching” class.

● Now suppose we want to find out the class of a certain sample (represented 
as X in the image)

● Can you tell an easy way to classify X?

k Nearest Neighbors (kNN)



● In the graph, each green square represents a sample of the “raising hand” 
class, whereas each blue circle represents a sample of the “punching” class.

● Now suppose we want to find out the class of a certain sample (represented 
as X in the image)

● KNN works by finding the K nearest neighbors 

   to the sample we want to predict the class

k Nearest Neighbors (kNN)



● Let’s make k = 3. We then find the 3 nearest neighbors to X.
● Check the classes of the nearest neighbors. The majority class is the class 

of X.

k Nearest Neighbors (kNN)



● The performance in kNN can be sensitive to the choice of the number of 
neighbors k. 

● Picking the right k value is important for accurate predictions.

● Choosing an odd number for k prevents ties

k Nearest Neighbors (kNN)



● Low value for k → sensitive to outliers
● In the following case, the predicted class would be the green square for k = 

1 due to the outlier close to X

k Nearest Neighbors (kNN)



● High value for k → bias
● What if we had much more samples for the green square class? 

k Nearest Neighbors (kNN)



● High value for k → bias
● What if we had much more samples for the green square class? 
● If we choose k = 7, inevitably more samples of the green square class would 

be present in the list of 7 nearest neighbors.

k Nearest Neighbors (kNN)



● How to choose the best k? A good starting value for k is sqrt(N), where N is 
the number of samples.

● In this case, N = 10. So, sqrt(10) = 3.16, k = 3. Hence, we would avoid 
bias.

k Nearest Neighbors (kNN)



● k = sqrt(N) is just a starting point.

● The optimal k is selected using the validation set.

● The way it is done is by trying different values of k and finding the 
accuracy of the KNN classifier with the validation set.

● The larger the validation set, the more reliable is the accuracy.

k Nearest Neighbors (kNN)



● kNN can be computationally expensive when the dataset grows larger, since it 
needs to search through all stored data points to find nearest neighbors.

● kNN is useful when you have small to medium-sized datasets

● So, if we have a small dataset, how do we select the best k? 

k Nearest Neighbors (kNN)



● Like mentioned before, a large validation set provides better accuracy 
estimate. 

● But, if we have a small dataset and want to use KNN, how do we do?

● K-Fold Cross Validation

k Nearest Neighbors (kNN)



● Note the capital K, differently than kNN

● K-Fold Cross Validation is a technique for model performance evaluation. It 
replaces the traditional validation approach.

● Randomly split the training set into K equal-sized subsets

The subsets should have similar class distribution

● Perform learning and testing K times

K-Fold Cross Validation



● Calculate the accuracy for each subset, average the accuracies. 

● Repeat this K-Fold Cross Validation process for different values of k (not 
capital) and select the k that provides the best average accuracy.

K-Fold Cross Validation



SUPPORT VECTOR 
MACHINES



● Consider again the same scenario and let’s plot each sample from the 
training set

k Nearest Neighbors (kNN)



● In the graph, each green square represents a sample of the “raising hand” 
class, whereas each blue circle represents a sample of the “punching” class.

● Support Vector Machines draw a line to divide these two classes.

● But where is it best to draw the line?

Support Vector Machines



● Smart way of drawing the line: you choose the line that has the most space 
between it and the nearest sample of each class.

● This space is like a safety margin.

● The closest “punching” and “raising hand”

samples are the support vectors.

Support Vector Machines



● What if we have more than 2 features? In the case of 3 features, the space 
is three-dimensional and instead of a line, we have a plane. Above 3 
features, we have a hyperplane. 

● The math behind finding the line, plane, or hyperplane is not explored in 
this course. We can use existing coding libraries for this task.

Support Vector Machines



● What if we have more than 2 classes? We have two strategies for that: 
One-vs-One (OvO) and One-vs-All (OvA).

● In the strategy OvO, we create an individual classifier for each pair of 
classes. 

● Hence, if we have 5 classes, in OvO we will have 10 classifiers. 

● During prediction, each binary classifier votes for one of the classes.

● The class with the most votes is the predicted class.

Support Vector Machines



● OvA is simpler. In this strategy, the number of classifiers is the number of 
classes.

● You train a binary SVM for each class versus the rest of the classes.

● During prediction, each binary classifier gives a confidence score for its 
class.

● The class with the highest confidence score is the predicted class.

Support Vector Machines



● The confidence score is a measure of how close to the line (plane, or 
hyperplane) are the predicted data. 

Support Vector Machines



● For those familiar with mathematics, the SVM is defined as a hyperplane of 
equation ω⋅x+b = 0

● The vector ω and the constant b consists of the coefficients or weights

● Denoting x’ as the feature vector of a certain sample, ω⋅x’+ b is the 
decision. That is, positive values of ω⋅x’+ b represent one class, whereas 
negative values represent another class

● The confidence score is calculate as the distance between x’ and the 
hyperplane defined by ω⋅x+b = 0

Support Vector Machines



● The confidence score is calculate as the distance between x’ and the 
hyperplane defined by ω⋅x+b = 0

● This is equal to: |ω⋅x’+b|/||ω||

● It is possible to obtain a probability score (instead of distance) of a 
feature vector pertaining to a certain class. We will learn a bit more about 
it in the exercise sessions.

Support Vector Machines



● What if the data are not linearly separable?
● Kernel trick: map the feature vectors into a higher dimensional space

Support Vector Machines



● Consider the 2D data on the left figure. Blue and yellow represent different 
classes.

● A simple kernel trick is the create an additional dimension (a third 
dimension) for all the feature vectors.  

Support Vector Machines



● What could be the third dimension for a feature vector?

Support Vector Machines



● In this special case, the third dimension could simply be the distance of 
the sample to the center (0, 0) 

● Hence, the data becomes linearly separable in 3D
● We go from an accuracy of ~50% to ~90% 

Support Vector Machines



● The most commonly used kernel functions (responsible for performing the 
transforming into higher dimensions) are polynomial and radial basis 
function

● We will skip their mathematical details. Just keep in mind the possibility 
of more complex kernels to handle nonlinear data.

● In the exercise section, we will explore these kernel functions in an easy 
way (no math required). 

Support Vector Machines



DECISION TREES



● Decision Trees are hierarchical structures resembling trees
● The process starts at the root node (which is also a decision node)
● The decision node poses a question regarding a certain feature

Decision Trees



● Splitting happens at the decision node, leading to another decision node or, 
eventually, a leaf node (where the tree ends)

● Note that the tree can ask multiple times about a certain feature. Not only once.

Decision Trees



● How to create a decision tree?
● First, let’s place the data in a structure like a matrix or table
● Consider the problem of classifying between walking and running based on the features 

of “mean total acceleration” and “mean total angular speed”.

Decision Trees



● The next step is to split the data considering the features individually.
● In our case, we have two splits since we have two features.

Decision Trees



● We then sort both splits according to the values of the features

Decision Trees



● Now, let’s consider the feature “mean total acceleration”
● How do we create a decision rule that best splits the following data?
● For instance, let’s consider the following decision rule:

Is the mean total acceleration ≤ 0.7?

Yes: 0 walking, 1 running

No: 5 walking, 4 running

● By doing this, we are separating instances of the data into

two groups: yes and no

● The best split leaves us with two groups (yes and no) that are the most pure

Decision Trees



● How we we quantify impurity? With a measure called “gini impurity” 
● The gini impunity measures how mixed or impure a group of things is.

Is the mean total acceleration ≤ 0.7?

Yes: 0 walking, 1 running

No: 5 walking, 4 running

● Gini impurity: 

1 - (prob of class walking)² - (prob of class running)²

● Gini impurity for branch Yes: 1 - 0² - 1² = 0
● Gini impurity for branch No: 1 - (5/9)² - (4/9)² = 0.4938
● Weighted average of gini impurity for the decision: (1/10)*0 + (9/10)*0.4938 = 0.444

Decision Trees



● Now, let’s consider the following decision rule:

Is the mean total acceleration ≤ 1.0?

Yes: 1 walking, 1 running

No: 4 walking, 4 running

● Gini impurity: 

1 - (prob of class walking)² - (prob of class running)²

● Gini impurity for branch Yes: 1 - (1/2)² - (1/2)² = 0.5
● Gini impurity for branch No: 1 - (4/8)² - (4/8)² = 0.5
● Weighted average of gini impurity: (2/10)*0.5 + (8/10)*0.5 = 0.5

Decision Trees



● We proceed to test all the possible splitting points (mean of consecutive values): 

0.7, 1.0, 1.75, 2.55, 2.95, 3.5, 3.95, 4.2, 4.5

● We choose the splitting point that has the lowest gini impurity
● In our case, this was when mean total acceleration was ≤ 3.5

Decision Trees



● Now, let’s consider the following decision rule:

Is the mean total acceleration ≤ 4.2?

Yes: 5 walking, 3 running

No: 0 walking, 2 running

● Gini impurity: 

1 - (prob of class walking)² - (prob of class running)²

● Gini impurity for branch Yes: 1 - (5/8)² - (3/8)² = 0.468
● Gini impurity for branch No: 1 - (0)² - (1)² = 0
● Average gini impurity for the decision: (8/10)*0.468 + (2/10)*0 = 0.374

Decision Trees



● We proceed to test all possible splitting points for the feature “mean total angular 
speed”. 

● We find the best impurity when the mean total angular speed is ≤ 2.9
● This results in a gini impurity of 0.32

● Remember that, for the first feature, our best gini impurity was 0.374
● For this reason, we will choose “mean total angular speed ≤ 2.9” to be the root node 

Decision Trees



● We now have two branches, giving us two portions of the dataset. The portion where 
the mean total angular speed ≤ 2.9 and the portion where > 2.9

● We do the same process for both portions of the dataset.

Decision Trees



● Our tree has now depth 2.
● We can keep going or stop here. We decide to keep going to have purer leaf nodes.
● There is only one node that can be further “purified”.

Decision Trees



● All leaf nodes have the lowest possible gini impurity. So we can stop here.

Decision Trees



● When is it best to stop the recursive process of creating the decision tree?
● There is no general rule
● We can choose to stop at a certain depth (for instance, max. depth 5) or when the 

maximum gini impurity of the leaf nodes is lower than a predefined threshold.

● Low depth: possibility of underfitting
● Large depth: possibility of overfitting

● What do we do? Validation to find the best model!

Decision Trees



RANDOM FOREST



● Random Forest is a group of decision trees, each of them employed to solve the same 
problem.

● Hence, instead of building only one decision tree for our classification problem, we 
build several decision trees.

Random Forest



● When we need to classify data, we use all the decision trees individually. Each of 
them will provide us with a class.

● Our final class will be the majority class.

Random Forest



● How do we use randomness to create multiple different decision trees?

● Initially, we specify the number of decision trees we desire within the random 
forest. 

● Consider the “running” and “walking” classification task and suppose that we choose 
the random forest to have five decision trees.

● Next, we employ randomness to generate five distinct subsets from the original 
training dataset. Each of these subsets serves as the training data for an individual 
decision tree.

Random Forest



● To further increase variability we allow data points to 

repeat within the subsets

Random Forest

Subset 1

Subset 2

Subset 3



● Additionally, we randomly exclude 
certain features from each subset, which 
helps diversify our RF.

● The number of features in each subset is 
another decision we need to make.

● In our case, where we only have two 
features, we can remove a maximum of one 
feature from each subset.

Random Forest



● Next, we proceed to train all 
the decision trees in our Random 
Forest.

● Suppose we choose to have 
decision trees with maximum 
depth 2.

Random Forest

Subset 1

Subset 2

Subset 3

Tree 1

Tree 2

Tree 3



● Apart from the maximum depth of the decision trees, recall that we made specific 
choices for three other important values.

● That is, the number of trees, the number of data points in each subset, and the 
number of features considered in each subset.

● Now, the question arises: How can we assess if these choices are suitable and 
effective for our specific problem?

Random Forest



● One interesting aspect of RF is that we do not need a validation set to evaluate it.

● That means that data points that would normally populate a validation set can be all 
assigned to the training set.

● But then, how do we evaluate the performance of the RF?

Random Forest



● One interesting aspect of RF is that we do not need a validation set to evaluate it.

● That means that data points that would normally populate a validation set can be all 
assigned to the training set.

● But then, how do we evaluate the performance of the RF?

Random Forest



● First, let’s go through all data points in the original training set, checking in 
which subsets they are not present.

Random Forest

Subset 1

Subset 2

Subset 3

not in subsets 1 and 3
present in all subsets
not in subset 3
not in subsets 1 and 2
not in subsets 2 and 3
not in subsets 1, 2, and 3
not in subsets 1 and 2
not in subsets 1, 2 and 3
not in subset 3
not in subset 2



● We proceed to classify each data point using the trees where it was not used during 
the training 

Random Forest

not in subsets 1 and 3        → run it through trees 1 and 3
present in all subsets        → not used
not in subset 3               → run it through tree 3
not in subsets 1 and 2        → run it through trees 1 and 2
not in subsets 2 and 3        → run it through trees 2 and 3
not in subsets 1, 2, and 3    → run it through all trees
not in subsets 1 and 2        → run it through trees 1 and 2
not in subsets 1, 2 and 3     → run it through all trees
not in subset 3               → run it through tree 3
not in subset 2               → run it through tree 2



Random Forest

run it through trees 1 and 3  → walking, running
not used
run it through tree 3         → running
run it through trees 1 and 2  → running, running
run it through trees 2 and 3  → running, running
run it through all trees      → running, running, running
run it through trees 1 and 2  → running, walking
run it through all trees      → running, running, running
run it through tree 3         → walking
run it through tree 2         → walking

Tree 1

Tree 2

Tree 3



● Next, we find the majority vote for each data point. 

● To break ties between trees, we can check the leaf nodes 
responsible for giving us the prediction. 

Random Forest

trees 1 and 3  → walking, running           →
not used
tree 3         → running                    → running 
trees 1 and 2  → running, running           → running 
trees 2 and 3  → running, running           → running 
all trees      → running, running, running  → running 
trees 1 and 2  → running, walking           → 
all trees      → running, running, running  → running 
tree 3         → walking                    → walking 
tree 2         → walking                    → walking 

Tree 1

Tree 2

Tree 3



● Tree 1 predicted (3.2, 1.8) to be walking and the leaf node 
responsible for this classification has 100% data points of class 
walking.

● Tree 3 predicted (3.2, 1.8) to be running and the leaf node 
responsible for this classification contains also contains 100% 
samples of running.

● Another tie! Which one makes more sense to be the conclusion? 
Walking or running?

Random Forest

trees 1 and 3  → walking, running           →
not used
tree 3         → running                    → running 
trees 1 and 2  → running, running           → running 
trees 2 and 3  → running, running           → running 
all trees      → running, running, running  → running 
trees 1 and 2  → running, walking           → 
all trees      → running, running, running  → running 
tree 3         → walking                    → walking 
tree 2         → walking                    → walking 

Tree 1

Tree 2

Tree 3



● In this exceptional case of tie, we choose the prediction of Tree 3

● Do you know why?

Random Forest

trees 1 and 3  → walking, running           → running 
not used
tree 3         → running                    → running 
trees 1 and 2  → running, running           → running 
trees 2 and 3  → running, running           → running 
all trees      → running, running, running  → running 
trees 1 and 2  → running, walking           → 
all trees      → running, running, running  → running 
tree 3         → walking                    → walking 
tree 2         → walking                    → walking 

Tree 1

Tree 2

Tree 3



● Because there are more samples in the leaf of Tree 3 than of that 
of Tree 1

● Similarly, we break the tie in the sample (4.3, 3.9)

● We get 8 errors out of 9. An error rate of 88.8% (out-of-bag error)

Random Forest

trees 1 and 3  → walking, running           → running 
not used
tree 3         → running                    → running 
trees 1 and 2  → running, running           → running 
trees 2 and 3  → running, running           → running 
all trees      → running, running, running  → running 
trees 1 and 2  → running, walking           → running
all trees      → running, running, running  → running 
tree 3         → walking                    → walking 
tree 2         → walking                    → walking 

Tree 1

Tree 2

Tree 3



● Terminology: The subsets are usually called “bags”, the data points 
that are not included in a certain bag are called “out-of-bag” data 
points.

● The process of building bags is called bootstrapping 
● Combining predictions of different decision trees is called 

aggregating
● These two processes are called bootstrapping aggregating or shortly 

bagging

Random Forest

trees 1 and 3  → walking, running           → running 
not used
tree 3         → running                    → running 
trees 1 and 2  → running, running           → running 
trees 2 and 3  → running, running           → running 
all trees      → running, running, running  → running 
trees 1 and 2  → running, walking           → running
all trees      → running, running, running  → running 
tree 3         → walking                    → walking 
tree 2         → walking                    → walking 

Tree 1

Tree 2

Tree 3



● This OOB error is pretty bad. How can we improve our RF?

● Let’s try increasing the number of samples in the subsets and the number of trees. 

● We keep the maximum depth of the trees set to 2 since our dataset is very small. 

Random Forest



● Different options and their OOB error:

5 trees, 6 samples    → 30%

8 trees, 7 samples    →  40%

10 trees, 8 samples   →  40%

12 trees, 9 samples   →  30%

● The first and last two options seem to be the best. 

● The first option is the simplest and, thus, can be the chosen one.

● What is the next step? Find the performance on the test set.

Random Forest


