

MEC-E1040 Dynamics of structures

Luc St-Pierre

24.10.2023

Why study vibrations?

- Vibrations can be a problem:
 - Lead to fatigue failure (bike, washing machine).
 - Uncomfortable for the user (car, motorbike).
 - High stresses/accelerations (earthquake).
- Vibrations can be useful:
 - Musical instruments.

Material

- All lecture notes, assignments, solutions and relevant information will be communicated via MyCourses.
- If you need additional information, consult the textbook:
 - Daniel J Inman, Engineering Vibration, 4th edition, 2014.

Engineering Vibration

FOURTH EDITION

Daniel J. Inman

Schedule

No traditional lectures:

• No lectures on Mondays, 14.15-16.00. Use this time to go through the material available online.

Seminars:

- Tuesdays, 10.15-12.00 in Otakaari 4, room 215.
- I will provide a summary of the theory and example problems.

Calculation hours:

- Wednesdays, 12.15-14.00 in Otakaari 4, room 216.
- Get help to solve the assignments.

Evaluation

- Assignments (30%)
 - Your best 3 out of 5 weekly assignments.
 - Submit your assignment by **Sunday 23.59**.
 - All assignments should be uploaded via MyCourses.
 - Late submissions will not be accepted.
- Exam (70%)
 - Thursday Dec 7, 13.00-17.00 in Otakaari 4 room 216.
 - In-person, closed-book. You will have a list of formulas.
 - (2nd exam: Friday Feb 23, 13.00-17.00).

Grading

Grade	Final mark %
5	≥90
4	80-89
3	70-79
2	60-69
1	50-59
0 – Fail	≤49

- Assignments (30%)
- Exam (70%)

Learning outcomes

After the course, you will be able to:

- derive the equation of motion for vibrating systems with one or two degrees-of-freedom;
- solve the equation of motion for undamped and damped systems under free or forced vibration;
- compute the natural frequencies and mode shapes of systems with multiple degrees-of-freedom;
- use the theory of vibration to solve design problems.

Contact persons

Teacher in charge:

Luc St-Pierre

luc.st-pierre@aalto.fi

Teaching assistants:

Akseli Leraillez Yaxuan Zhu <u>akseli.leraillez@aalto.fi</u> yaxuan.zhu@aalto.fi

