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Optimization modelling

• The problem is defined in implicitly terms of

– an Objective function to minimize of maximize

– by choosing optimal values for decision variables

– subject to constraints

• Optimization software solves the problem automatically

– This approach is a dramatically different from explicit (simulation) 

models where the result is obtained by applying some formulas in 

given order

• Most common optimization model types:

– Linear Programming (LP) problem

– Mixed Integer Linear Programming (MILP) problem
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Optimization problem example

• Sample problem with two variables

min x1
2 + x2

2

s.t.

x1 + x2  3

x2  0

x1, x2R

• In a two-dimensional case the problem can be
illustrated and solved graphically
– Constraints define the feasible region in the plane

– Level curves of the objective function show the height
of the terrain
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Optimization problem example

– Constraints define the feasible region in the plane

– Level curves of the objective function show the 
height of the terrain
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General mathematical optimization

problem
Find values for decision variables x that
minimize or maximize the objective function f(x)
subject to constraints:

min f(x) (objective function)

subject to

h(x) = 0 (vector of equality constraints)

g(x) ≤ 0 (vector of inequality constraints)

xRn (or xNn) (vector of decision variables)

If domain of x is Rn, it is a continuous optimization problem

If all xi are integers, it is an integer optimization problem

A mixed integer problem contains both integer and real xi
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Properties of optimization problems

• Consider general problem min (max) f(x) s.t. xX

• A particular solution x = x* is

– feasible if it satisfies all constraints (i.e. x*X)

– infeasible if it does not satisfy all constraints

– optimal if it is feasible and minimizes (maximizes) f(x)

• The problem is

– feasible if at least one feasible solution exists

– infeasible if no feasible solution exists

– unbounded if infinitely good feasible solutions exist

• The problem can have

– no optimal solutions: when the problem is infeasible or
unbounded

– one unique optimal solution

– multiple (equally good) optimal solutions
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Optimization model transformations

• Transformations

– min f(x) = -max -f(x)

– max f(x) = -min -f(x)

– g(x)  0  -g(x)  0

– g(x) = 0  g(x)  0  g(x)  0

– g(x)  0  g(x) + s2 = 0 where s is an unconstrained
real variable

• Constrained problem can be transformed into 
unconstrained by augmenting objective with a 
penalty term, i.e. a barrier function

– min f(x) s.t. g(x)  0  min f(x)+Mmax{g(x),0}
• M is a big positive number
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Optimization model types

• Depending on the structure of the objective
function and constraints, optimization models
can be classified in different ways
– Single variable and multiple variables

– Continuous, discrete or mixed integer problems
• Decision variables are continuous, binary (0/1), general 

integers, or mixed

• Integer programming, mixed integer programming

– Unconstrained and constrained problems

– Convex and non-convex problems
• Linear, quadratic and nonlinear problems

– Single objective and multi-objective problems
• f(x) is a vector of objective functions
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Optimization model types – Exampes

• Sizing of ground source heat pump

– Single objective (minimize life-cycle costs)

– Single continuous variable (size of pump)

– Constrained non-linear convex problem

• Unit commitment of power plants

– Single objective (maximize profit)

– Multiple variables of mixed types

– Constrained non-convex problem

• Investment in new production technology

– Multiple objectives (economic, environmental, policy, …)

– Multiple discrete (binary) variables

– Constrained or unconstrained problem
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Solving optimization problems

• To solve problems it is necessary to understand 
the different problem types and their properties
– There is no universal way to find the optimum or even 

a feasible solution to an arbitrary problem

– Different solution algorithms are required for different 
problem types

• Most important is to determine if the 
optimization problem is convex or not!

– Convex problem = minimize convex objective function in 
a convex region

– Convex problem: relatively easy

– Non-convex problem: potentially very hard
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Impossible to solve non-convex model

• Consider max/min f(x)=sin(x)*sin(ax)
– Each factor has max/min at +1/-1

– If the peaks and valleys coincide then f(x)=+1 or -1

– If a is chosen properly, peaks and valleys never meet

– No optimum, values approaching +1/-1
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Real-life optimization problems

• A real-life model differs from theoretical models 
in several aspects
– Normally the problem is never unbounded

– The existence of a feasible solution can often be 
verified intuitively

– Often many model parameters are uncertain or 
imprecise

– It is not necessary to find the true optimum – a near-
optimal solution and sometimes even a reasonably 
good solution may suffice
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LP and  MILP modelling

• Linear Programming and Mixed Integer Linear

Programming are most commonly used

approaches for practical problems because

– the modelling techniques are very versatile and flexible

– efficient and reliable solvers exist for these problems

• Arbitrary convex optimization problems can be

approximated by LP models

• Many non-convex optimization problems can be

approximated by MILP models
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LP modelling

• By far, the most commonly used optimization
modelling technique

– Applicable for a wide class of different problems

– Easy to formulate

– Easy to understand

– Very large models can be solved efficiently

– Interpretation of results and various sensitivity analyses
are (relatively) easy

• Many energy optimization problems can be
represented as LP models

– Why can LP modelling not always be used?
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Applicability of LP models

• LP models work only in convex problems

– The minimization problem is convex when:

• The minimized objective function is convex

• The feasible region is convex

– The maximization problem is convex when:

• The maximized objective function is concave

• The feasible region is convex

– An LP model is a piecewise linear convex 
model

• How can non-convex problems be 
modelled?



R. Lahdelma

Convex optimization problem

• A convex optimization problem is of form

min f(x); s.t. x X

– where f() is a convex function and

– X is a convex set

• Similarly max f(x) s.t. xX where f() is a concave

function is a convex optimization problem

• The feasible region X is a convex set when

– functions in inequality constraints g(x)0 are convex

and

– functions in equality constraints h(x)=0 are linear.
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Convex and concave functions

• A function f(x) is convex if 

linear interpolation between any 

two points x and y does not 

yield a lower value than the 

function

• Mathematically

f(x+(1-)y) ≤ f(x)+(1-)f(y) 

for all x, y and [0,1]

• A function f(x) is concave if 

linear interpolation between any 

two points x and y does not 

yield a higher value than the 

function

• Mathematically

f(x+(1-)y) ≥ f(x)+(1-)f(y) 

for all x, y and [0,1]
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Convex and concave functions

• Which functions are convex and which are concave?

– Some functions are neither convex nor concave

– If f(x) is convex, then –f(x) is concave and vice versa

– Only linear functions are both convex and concave
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Convex set

• A set X is convex if the line segment connecting any two 
points x and y of the set is in the set

• Mathematically
– If x,yX, then x+(1- )yX for all [0,1]

• A constraint g(x) ≤ 0 defines a convex set if g(x) is a 
convex function.

• The intersection of convex sets is a convex set
– Thus multiple constraints gi(x) ≤ 0 with convex functions gi(x) 

define a convex set

x

y

X is convex

x
y

X is non-convex
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Convex optimization problems

• Convex optimization problems are relatively easy
to solve because

– A local optimum is also a global optimum

– They can be solved using hill-climbing strategy: 
starting from any feasible point move in a direction
where f(x) improves while maintaining feasibility

– If the functions f(), g(), h() are smooth (first derivatives
are continuous), various gradient-based methods can be
used to identify improving directions

• Non-convex problems are difficult, because a 
local optimum is not in the general case a global
optimum
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Linear programming (LP) models

• An LP model has a linear objective function f(x) and 
linear constraints gi(x):

min (max) c1x1 + c2 x2 + ... cnxn

s.t.

a11x1 + a12x2 + ... a1nxn  b1

a21x1 + a22x2 + ... a2nxn  b2

...

am1x1 + am2x2 + ... amnxn  bm

• Typical matrix representation:

min (max) cx

s.t.

Ax  b

x  0 // traditionally variables are non-negative
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Linear programming (LP) models

• Special case of convex problems

– f(x), g(x) and h(x) are linear functions of x

– The constraints are (hyper-) planes in n dimensions

– The feasible area is an n-dimensional polyhedron

– The optimum is at a corner point at the intersection between some

constraint planes

• Very efficient solution algorithms for LP models exist

– The Simplex algorithm can solve LP models with millions of 

variables and constraints

• Non-linear convex problems can be approximated by LP 

models with arbitrarily good accuracy

• Non-convex problems cannot be represented as LP models
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How to define an LP model?

1. Write down a verbal explanation of what is the goal or

purpose of the model

– E.g. to minimize costs or maximize profit of some specific

operation or activity

2. Define the decision variables (and parameters)

– Use as descriptive or generic names as you like: x1, x2, fuel, …

– Give short description for them

– Also specify the unit (MWh, GJ, €/kg, m3/s, …)

3. Define the objective function to minimize or maximize

as a linear function of the variables

4. Define the constraints as linear inequality or equality

constraints for the variables
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LP example: Dual fuel condensing power plant

• Boiler can use two different fuels simultaneously in 
any proportion

• Boiler produces high pressure steam for a turbine
driving a generator to produce electricity

• After turbine, steam is condensed back into water

• Fuels have different prices and consumption ratios

• Produced power is sold to market

• Typical objective is to maximize profit = revenue
from selling power minus fuel costs

Power plant

- uses fuels

- produces power

Fuel 1

Fuel 2

Power



Dual fuel condensing power plant
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LP example: Dual fuel condensing power plant

• Maximize profit during each hour of operation

• Decision variables

– x1, x2 fuel consumption (MWh)

– p power output (MWh)

• Parameters

– r1, r2 consumption ratios for fuels (1)

– c1, c2, c price for fuels and power (€/MWh)

– x1max, x2max upper bounds for fuel consumption (MWh) 

– b hourly maximal production capacity (MWh)
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LP example: Dual fuel condensing power plant

• Objective function

max c*p - c1*x1 - c2*x2 // power sales minus fuel costs

• Constraints

p = x1/r1 + x2/r2 // power depends on fuel use

p  b // capacity limit

x1  x1max,, x2  x2max, x1, x2  0

• Substitute expression for p to eliminate third variable

max (c/r1-c1)*x1 + (c/r2 - c2)*x2

x1/r1 + x2/r2  b // capacity limit

x1  x1max,, x2  x2max, x1, x2  0
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LP example:

Dual fuel condensing power plant, numerical

• Parameters

– Fuel consumption ratios (r1, r2) = (3.33, 2.5)

– Fuel & power prices (c1, c2, c) = (20, 25, 80) €/MWh

– Upper bounds for fuels (x1max, x2max) = (150,100) MWh

– Production capacity b = 60 MWh

max (80/3.33-20)*x1 + (80/2.5-25)*x2 = 4*x1 + 7*x2 

0.3*x1 + 0.4*x2  60

x1  150

x2  100

x1, x2  0
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Graphical representation of LP models

• Models with two variables can be represented
and solved graphically

– Linear constraints are drawn as lines

• The feasible region appears as a polygon

• The feasible region may be unbounded in some direction

• If the constraints are contradictory, the feasible region is 
empty and the model is infeasible

– Level curves of objective function f(x) = K = constant
are draw as dotted lines

• Optimum is where a level curve touches the feasible region
with with maximal or minimal K

• This happens at some corner

• If two corners yield optimal value, all points on the 
connecting edge are optimal (infinite number of optima)
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LP example:

Power plant model, graphical representation

max 4*x1 + 7*x2 

0.3*x1 + 0.4*x2  60

x1  150

x2  100

x1, x2  0

Optimum at

x2=100

x1=66.7
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Properties of LP models

• Similar to a general optimization problem, an LP 
problem can be

– Feasible, if one or more feasible solutions exist

– Infeasible, if no feasible solutions exist, i.e. 
constraints are conflicting

• Example: min 0 s.t. x1, x0

– Unbounded, if infinitely good solutions exist

• Example: max x s.t. x0

• An LP problem has infinite number of optima if
two or more corner solutions yield optimal value

– Then all convex combinations of optimal corner
solutions are optimal
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LP example:

DH boiler

• A dual fuel boiler to produce district heat

– Goal to meet demand (MWh) as cheaply as possible

– Decision variables

• x1, x2 fuel consumption (MWh)

– Parameters

• r1, r2 consumption ratios for fuels (1)

• c1, c2 prices for fuels (€/MWh)

• x1max, x2max upper bounds for fuel consumption (MWh) 

• b demand of heat

min c1*x1 + c2*x2

x1/r1 + x2/r2  b // allowed to produce excess

x1  x1max, x2  x2max, x1, x2  0

DH boiler

- uses fuels

- produces heat

Fuel 1

Fuel 2

Heat



R. Lahdelma

LP example:

DH boiler, numerical example

– Parameters

• Fuel consumption ratios (r1, r2) = (1.25, 1.11)

• Fuel prices (c1, c2) = (20, 25) €/MWh

• Upper bounds for fuels (x1max, x2max) = (150,100) 
MWh

• Heat demand b = 120

min 20*x1 + 25*x2;

0.8*x1 + 0.9*x2  120;

x1  150;

x2  100;

x1, x2  0;
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Review questions

• Please review lecture material and see that you can answer the review

1. Is the optimization problem max x2 + y2 s.t. x,y0 feasible, infeasible or unbounded? Why?

2. Give a feasible solution to the above problem.

3. How many optimal solutions does the problem max x2 s.t. -5x5 have?

4. Transform max x s.t. x5 replacing inequality constraint by equality constraint.

5. Transform max x s.t. x5 into an unconstrained optimization problem.

6. Why is classification of optimization problems important?

7. Classify the following optimization problem: min x2 + y2 s.t. x,y0, xR, yN

8. Why is LP modelling so common?

9. Why are convex optimization problems relatively easy to solve?

10. Give an example of an optimization problem which is difficult or impossible to solve.

11. Does LP apply to non-linear problems? Why, or why not?

12. When can an LP problem have infinite number of optimal solutions?

13. Give an example of an infeasible LP problem

14. Give an examle of a feasible LP problem without optimal solution

15. Give an example of an LP problem with infinite number of optima
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