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Generalized Method of Moments

I Introduced by Hansen, L. (1982), Large Sample Properties of Generalized Method
of Moments Estimators, Econometrica 50, 1029-1054.

In this paper we study the large sample properties of a class of generalized
method of moments (GMM) estimators which subsumes many standard
econometric estimators. To motivate this class, consider an econometric
model whose parameter vector we wish to estimate. The model implies a
family of orthogonality conditions that embed any economic theoretical
restrictions that we wish to impose or test.
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Portfolio Choices (Hansen and Singleton,1982)
The consumer optimization problem

I Suppose there are J financial securities.
I Let ptj denote the price of the j th security in period t consumption units, and

qt−1,j the amount a consumer owns at the beginning of the period.
I Let rtj denote the real return on assets purchased in period t−1.
I The investor’s budget constraint is:

ct +
J

∑
j=1

ptjqtj ≤
J

∑
j=1

rtjpt−1,jqt−1,j

I At t the consumer maximizes a concave objective function with linear constraints,
choosing (qs1, ...,qsJ) to maximize:

u (ct)+Et

[
T

∑
s=t+1

β
s−tu (cs)

]
subject to the sequence of all the future budget constraints.
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Portfolio Choices
First order conditions

I Nonsatiation guarantees:

ct =
J

∑
j=1

(rtjpt−1,jqt−1,j −ptjqtj)

I The interior first order condition (FOC) for each k ∈ {1, . . . ,J} requires:

ptku
′

(
J

∑
j=1

(rtjpt−1,jqt−1,j −ptjqtj)

)

≥ Et

[
ptk rt+1,kβu′

(
J

∑
j=1

(rt+1,jptjqtj −pt+1,jqt+1,j)

)]

with equality holding if qtj > 0.
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Portfolio Choices
Estimation and testing

I For any r ×1 vector xt belonging to the information set at t and all k :

0= Et

[
rt+1,kβ

u′ (ct+1)

u′ (ct)
−1
]
= E

[
rt+1,kβ

u′ (ct+1)

u′ (ct)
−1 |xt

]
and hence:

0= E

{
xt

[
rt+1,kβ

u′ (ct+1)

u′ (ct)
−1
]}

I Given a sample of length T we can estimate the 1× l vector (β ,α) for a
parametrically defined utility function u (ct ;α) by solving:

0= AT

T

∑
t=1

xt

[
rt+1,kβ

u′ (ct+1;α)

u′ (ct ;α)
−1
]

where AT is an l × r weighting matrix.
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Summary
I Basic model of consumption and portfolio choice
I From the Euler equations, we derive a nonlinear moment condition model used to

estimate the preference parameters of the agent: no need to explicitly solve for the
stochastic equilibrium.

I GMM: assumptions about population moment conditions that come from economic
models -> solve for the parameters that make those assumptions hold in our data

I Moment conditions: first-order conditions from economic models; econometric
model: instruments must be uncorrelated with errors;

I Specification test for the validity of the moment conditions E [xi εi ]=0 (J-test of
overidentifying1 restrictions). Derive a statistic with a known distribution when
this assumption holds - deviations from this distribution seen as evidence of our
conditions not holding. For the optimal matrix, χ2 with K-L d.f.

I GMM is limited-information estimation method, does not need a specification of
likelihood, ML is a special case!

1L of the K sample moment conditions can be set exactly equal to zero: we are measuring how
close the remaining K-L overidentifying restrictions are.
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Model of consumption and portfolio choice

The optimum of the agent is characterized by the first order conditions, which can be
expressed as:

1= Et

[
rt+1,kβ

u′(ct+1)

u′(ct)

]
where:
I Et is the expectation conditional on the information available at time t.
I rt+1,k is the gross real return on asset k

I β
u′(ct+1)
u′(ct)

is the marginal rate of substitution (MRS)

If you think of rt+1,k as the inverse of relative prices, this model is simply equating
MRS with relative prices in expectation.
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Determine moment equations from the model

Subtract 1 from each side and bring it inside the expectation, so we have an expression
equal to zero:

Et

[
rt+1,kβ

u′(ct+1)

u′(ct)
−1
]
= 0

This is a population moment equation.

Under the assumption this model is true, we want to use data (rt+1,ct ,ct+1) and
estimate preference parameters, i.e., (α,β ) or (γ,β ).
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Parameterizing the utility function

We will parameterize the utility function, first using the same as in HS.

u(ct) = (1+α)−1c1+α
t

Notice this utility function exhibits constant relative risk aversion (CRRA) if α < 0. 2

The population moment becomes a specific nonlinear function of data and parameters:

Et

[
rt+1,kβ

u′(ct+1)

u′(ct)
−1
]
= 0⇒ Et

[
rt+1,kβ

(
ct+1

ct

)α

−1
]
= 0

2This utility function is concave with respect to wealth/consumption for c ∈ R+ if α < 0. The
coefficient of relative risk aversion, by definition, is − cu′′(c)

u′(c)
. You can show that for this utility function,

the coefficient is constant (it equals 1+α).
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Dataset
Following HS, we use aggregate real consumption data per capita from FRED.3 We
need:
I aggregate consumption data, nondurables & services
I consumption prices indices (CPIs) for both nondurables and services
I US population

Date-Range Frequency FRED Code Series Description
1/1959-9/2020 Monthly PCEND Nondurables (Billions USD)
1/1959-9/2020 Monthly DNDGRG3M086SBEA Nondurables CPI (Index: 2012 = 100)
1/1959-9/2020 Monthly PCES Services (Billions USD)
1/1959-9/2020 Monthly DSERRG3M086SBEA Services CPI (Index: 2012 = 100)
1/1959-9/2020 Monthly POPTHM US Population (Thousands)

Then we calculate (for example) real nondurables per capita via:

real nondurables per capitat =
(nondurablest ∗1e9)/(nondurables CPIt/100)

(populationt ∗1e3)
3St. Louis Federal Reserve Bank Data, available here: https://fred.stlouisfred.org/
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Dataset

HS uses NYSE data, but we use S&P500 indices from WRDS/CRSP.4 We need:
I monthly equally-weighted returns including dividends
I monthly value-weighted returns including dividends
I monthly risk-free rate (we used 1yr T-Bill rate from FRED)

FRED/WRDS Date Range Frequency FRED Code Series Description
WRDS 1/1946-12/2019 Monthly - Equally-Weighted Returns (including dividends)
WRDS 1/1946-12/2019 Monthly - Value-Weighted Returns (including dividends)
FRED 4/1953-10/2020 Monthly GS1 1yr Treasury Constants Maturity Rate (%)

Then we can calculate (for example) real value-weighted gross returns via:

real value-weighted returnt =
(value-weighted returnt)+1

CPIt
CPIt−1

4Only available with a license (e.g. through your university library).
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Determine orthogonality conditions
Notice that we can label the expression inside the expectation as error.

Et

rt+1,kβ

(
ct+1

ct

)α

−1︸ ︷︷ ︸
εt

= 0

Let xt ∈ It , with It information known by the agent and xt observable by econometrician
at time t. By definition, Et [εt ] := E[εt |It ]. So Et [εt ] = 0 implies:

E[xtεt ] = E[E[xtεt |xt , It ]]
= E[xtE[εt |It ]]
= 0

We therefore have the orthogonality conditions (plural for vector xt):

E
[
xt ·
(
rt+1,kβ

(
ct+1

ct

)α

−1
)]

= 0
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Unconditional expectations based on conditional expectations

I Very common in GMM to use the law of iterated expectations to derive
unconditional expectations based on conditional expectations.

I Take the OLS model, y = x ′β +u , we assume E (u | x) = 0.
I Implies E(xu)=0, because, by law of iterated expectations,

E (xu) = Ex [E (xu|x)] = Ex [xE (u | x)] = 0
I E (xu) = E [x(y −x ′β )] = 0
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Orthogonality conditions

The first line estimated of Table III in HS uses equally- and value-weighted returns,
with one lag each of the consumption ratio and equally- and value-weighted returns.
This is a set of 8 population moment conditions in 2 parameters (α,β ):

E




1
ct

ct−1

rt,ew
tt,vw

 ·(rt+1,ewβ

(
ct+1

ct

)α

−1
)= 0

E




1
ct

ct−1

rt,ew
tt,vw

 ·(rt+1,vwβ

(
ct+1

ct

)α

−1
)= 0
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Because in each specification the number of orthogonality conditions exceeds the
number of parameters to be estimated, the system is overidentified. This has two
implications:
I How to weight each equation? (Answer: invertible weighting matrix S!)
I No parameters exactly satisfy all equations.

This is why we use a GMM estimator, which selects parameters that minimize the
sample moment error:

θ
(N)
GMM = S∗N

 1
N

N

∑
n=1

(
x(n)t ·

(
r
(n)
t+1β

(
c
(n)
t+1

c
(n)
t

)α

−1

))
The estimator is efficient if S∗N is a consistent estimator of the covariance matrix of the
population orthogonality conditions. It can be obtained through the two-step efficient
GMM estimation procedure.
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Optimal weighting matrix

I Let S = Cov(zu), covariance of the moment conditions. Using a weight matrix
which is the inverse of the moment covariance matrix. W = S−1 produces the
most efficient asymptotically normal estimator.

I Difficulty: you need W for estimation of u, but you don’t have it.
I Cov (zu)=E (u2zz ′)=σ2 E (zz’) for i.i.d. errors
I βGMM minimizes the objective Q(β ) = { 1

N ∑i ziui (β )}′W { 1
N ∑i ziui (β )}

I Because σ2 positive scalar, ignore when minimizing objective
I Ŵ1 = ( 1

N ∑i ziz
′
i )
−1

I Given Ŵ1, solve for β̂1

I Use residuals at the value β1, estimate S = 1
N ∑i u

2
i ziz

′
i

I re-solve minimization , using Ŵ2 = Ŝ−1
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Tests of overidentifying restrictions

Take the Q from objective (slide 13). Then, under the null hypothesis that your moment
conditions hold, and using the optimal weighting matrix, J = N×Q ∼ χ2 with K-L d.f.
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Testing equality of parameters before and after Hansen sample
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Other hints for Assignment 1

I Unit root indicates time dependence
I If we can’t reject the null, we would worry about the sensitivity of the estimates to

the time period selected. A stationary time series’ properties don’t depend on the
time at which you observe it.

I dfuller ratio nds , lags(6) trend
I Alternate utility function parameterization: Think about function’s properties and

economic implications. Calculate marginal utility; adjust orthogonality conditions;
run estimation; discuss.
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