
1 Graph theoretical preliminaries

By a network, we will refer to a structure composed by individual elements,
or actors, and by interactions, or connections, between these elements. For
example, the world wide web is a network: the elements are the web pages and
the connections are the hyperlinks that point from one web page to another.
A slightly more complex example is the network made by the behaviour of
the reindeer in a herd in a given day: each reindeer is an actor, and we place
a weighted interaction between any two reindeer: the weight is n if they
come closer than a given threshold (say, 1 meter) n times in a day. For more
examples and discussions see the recommended books.

1.1 Basic definitions

The natural mathematical object to model a network is a graph.

Definition 1.1. A graph G = (V,E) is an ordered pair of sets where:

• V is the set of vertices;

• E ⊆ V × V is the set of edges.

The set of the vertices and the set of the edges of a given graph G will
be denoted by V (G) and E(G), respectively. Frequently used synonyms of
“vertex” include “node” or “point”, and common synonyms of “edge” include
“link” or “line”. And edge has the form (x, y) for some x, y ∈ V ; given the
edge (x, y), we say that the vertices x and y are its endvertices (or endpoints,
or endnodes).

Graphs can either be undirected or directed. An undirected graph G is
such that (x, y) ∈ E(G) ⇔ (y, x). Hence, in an undirected graph, an edge
can (and often is) be represented by the unordered pair of its endpoints
x, y. Conversely, in a directed graph it may happen that (x, y) ∈ E(G) but
(y, x) �∈ E(G). When both (x, y) and (y, x) are in E(G) for a directed graph
G, we say that the edge (x, y) is reciprocal. Below, we will often somewhat
simplify our notation by using the shorthand notation xy to denote the edge
(x, y). We say that the vertex x is the tail (or origin) and that the vertex y
is the head (or destination) of the edge xy.

A loop is an edge of the form (x, x), i.e., an edge whose head and tail
coincide. If a graph G is such that e ∈ E(G) ⇒� ∃x ∈ V (G) : e = (x, x), we
say that G is without loops ; otherwise, G is with loops.
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A weighted graph is a graph G = (V,E) together with a function ω : E →
R+; the positive real number ω(e) is called the weight of the edge e ∈ E. An
unweighted graph is a graph without such a function, or it can equivalently
be seen as a weighted graph together with the weight function constantly
equal to 1, i.e., ω(e) = 1 ∀ e ∈ E.

A simple graph is a graph which is unweighted, undirected, and without
loops.

A walk of length � is a sequence of nodes i1, . . . , i�+1 such that ikik+1 exists
for k = 1, . . . , �; within a walk, both nodes and edges may generally appear
more than once. A path of length � is a walk of length � such that either all
the nodes are distinct (open path) or all the nodes are distinct except for
i1 = i�+1 (closed path). A closed path of length � ≥ 3 is called a cycle of
length �.

Example 1.1. Let us consider the graph G = (V,E) given by V (G) =
{1, 2, 3, 4} and E(G) = {13, 31, 14, 41, 34, 43, 24, 42}. Then G is a simple
graph: it does not have loops, no weights were defined, and it is undirected
since, for every edge in E(G) the reciprocal is also in E(G). An example
of a walk in G is 1, 3, 1, 4, 2: however, this walk is not a path as the node 1
appears twice, and in one occasion not in an extremal position. An example
of an open path in G is 2, 4, 1. An example of a cycle of length 3 in G is
1, 4, 3, 1.

Finally, we recall that an undirected graph G(V,E) is bipartite if there
exists a partition V = V1 ∪ V2, V1 ∩ V2 = ∅ such that, for all ij, ji ∈ E then
either i ∈ V1, j ∈ V2 or i ∈ V2, j ∈ V1.

1.2 Exercises

1. Let G = (V,E) be the Petersen graph, which is defined by V (G) =
{1, 2, 3, 4, 5, 6, 7, 8, 9, 0} and E(G) = {12, 15, 16, 21, 23, 27, 32, 34, 38, 43,
45, 49, 51, 54, 50, 61, 68, 69, 72, 79, 70, 83, 86, 80, 94, 96, 97, 05, 07, 08}. Is
G simple? Give two distinct examples of cycles of length 5 in G.
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2 Algebraic graph theory

In this section, we define some important matrices that are associated with
a graph. First, though, we need to introduce an important equivalence class
on graphs.

Definition 2.1. We say that two graphs G1 = (V1, E1) and G2 = (V2, E2)
are isomorphic, and we write G1 � G2, if there is a bijection f : V1 → V2

such that
∀x, y ∈ V1 xy ∈ E1 ⇔ f(x)f(y) ∈ E2.

The bijection f is called a graph isomorphism; if, moreover, f is a graph
isomorphism of G into itself (i.e., a reordering of the vertices) then it called an
automorphism of G. For all practical purposes of this course, we will identify
graphs that are isomorphic to each other (or, in other words, we can safely
work with the equivalence class of all graphs isomorphic to a given one).
For this reason, we will often informally apply automorphisms to graphs to
simplify proofs and arguments.

The first important matrix that we associate with a graph is called the
adjacency matrix.

Definition 2.2. The adjacency matrix of an unweighted graph G = (V,E),
with V (G) = {1, . . . , n} =: [n], is an n× n matrix A(G) with entries

Aij =

�
1 if ij ∈ E(G);

0 otherwise.

The adjacency matrix of a weighted graph G = (V,E) with V (G) = [n] the
adjacency matrix is the n× n matrix A(G) with entries

Aij =

�
ω(ij) if ij ∈ E(G);

0 otherwise.

The adjacency matrix has a natural and useful combinatorial property
related to walks.

Theorem 2.1. Let G be an unweighted graph. Then, Ak
ij is the number of

walks of length k from node i to node j.
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Proof. We give a proof by induction on k. A walk of length 1 is simply a
sequence of 2 nodes i, j such that ij ∈ E(G) ⇐ Aij = 1. Clearly, given any
two nodes i, j, the number of walks of length 1 from i to j is either 1 (iff
Aij = 1) or 0 (iff Aij = 0).

Now denote #w(i, j, k) the number of walks of lenght k from i to j, and
let n be the number of vertices in G. Assume that #w(i, �, k − 1) = Ak−1

i� .
Then,

#w(i, j, k) =
�

�:�j∈V (G)

#w(i, �, k − 1) =
n�

�=1

Ak−1
i� A�j = Ak

ij.

Recall that a permutation matrix P is a square matrix having precisely
one element equal to 1 in each row and column, and every other element equal
to 0. Permutation matrices are orthogonal, i.e., they satisfy the equation
P TP = I. (The proof is left as an exercise).

Theorem 2.2. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs having
adjacency matrices, respectively, A1 and A2. G1

∼= G2 if and only if there
exists a permutation matrix P such that A1 = P TA2P .

Proof. Suppose first that the two adjacency matrices are permutation similar,
i.e., A1 = P TA2P for some permutation matrix P . Then, A1 and A2 have the
same size, say, n. Without loss of generality (up to relabelling the nodes if
necessary) we may therefore assume that V1 = V2 = [n]. For all i = 1, . . . , n,
define the function f(i) = j if and only if the ith column of P is ej (the
jth vector in the canonical basis of Rn). Then, f is a bijection (proof as an
exercise!). Moreover, by definition of f , it is clear that Pei = ef(i).

Suppose now that ij ∈ E1, which by definition of adjacency matrix is
equivalent to (A1)ij = 1. Then,

1 = eTi A1ej = (Pei)
TA2(Pej) = eTf(i)A2ef(j) = (A2)f(i),f(j),

and hence, f(i)f(j) ∈ E2. Therefore the two graphs are isomorphic.
Conversely, suppose that the two graphs are isomorphic. Then, in par-

ticular A1 and A2 have the same size, say, n, and we can again assume
V1 = V2 = [n]. Let f be the bijection associated to the isomorphism and

7



define P to satisfy Pei = ef(i) for all i. Then,

(P TA2P )ij = (Pei)
TA2(Pej) = (A2)f(i),f(j) = Aij =

�
1 if f(i)f(j) ∈ E2 ⇔ ij ∈ E1;

0 otherwise.

It follows that P TA2P = A1.

A consequence of Theorem 2.2 is that the adjacency matrices of isomor-
phic graphs are (permutation) similar. Therefore, they all share the same
eigenvalues. The converse, however, is not true – two graphs may have
isospectral adjacency matrices without being isomorphic to each other.

Note, moreover, that a graph automorphism (or, equivalently by Theorem
2.2, a permutation similarity of adjacency matrices) amounts to a relabelling
of the vertices, i.e., assigning to them arbitrary values in [n].

The following definition has to be interpreted considering all graphs as
directed, i.e., we consider all reciprocal edges (or all undirected edges for an
undirected graph) as a pair of directed edges.

Definition 2.3. The incidence matrix of a graph without loops G = (V,E),
with V (G) = [n] and #E(G) = m, is an n×m matrix B with entries

Bij =





−1 if the tail of edge j is node i;

1 if the head of edge j is node i;

0 otherwise.

Definition 2.4. Let G = (V,E) be a simple graph. The degree of a vertex
v ∈ V (G) is the number of undirected edges having v as an endvertex.

Note that in the definition of degree we are counting undirected edges,
unlike for example in the definition of incidence matrix when we were consid-
ering directed edges. Therefore, for example, if the vertices having endvertex
i are precisely ij, ji, ik and ki, then the degree of i is 2 (and not 4).

Definition 2.5. Let G = (V,E) be a simple graph. The graph Laplacian is
the n × n matrix defined as L = Δ − A, where A = A(G) is the adjacency
matrix of the graph G and Δ is a diagonal matrix such that Δii is the degree
of node i. Moreover, the normalized Laplacian is the matrix Δ−1/2LΔ−1/2 =
I − Δ−1/2AΔ−1/2, where Δ−1/2 is the diagonal matrix whose ith diagonal
entry is (deg i)−1/2.
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Theorem 2.3. For a simple graph, the graph Laplacian and the incidence
matrix are related by the formula L = 1

2
BBT .

Proof. Suppose that the graph has m edges and n nodes. Observe that
(BBT )ij =

�m
k=1 BikBjk. If i �= j, then this sum is equal to −2 if ij, ji ∈

E(G) (recall that a simple graph is undirected) or it is equal to 0 otherwise.
If i = j, then this sum counts the number of directed edges having node i as
an endpoint, i.e., twice the number of undirected edges having node i as an
endpoint, i.e., twice the value of Δii. Hence, BBT = 2Δ− 2A = 2L.
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