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I Difference in difference methods: extensions of the 2 X 2 model.

I DD as a form of fixed effects regression

I Panel data (multiple years and (staggered) treatments),
(treatment/control unit) time trends, clustering, under treatment
homogeneity and heterogeneity

I DiD functional form assumptions

I Triple differences (DDD)

I Examples: DD with spatial variation as control

I Event studies

I Synthetic control methods
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Difference in differences 2X2 design
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Difference in differences : multiple periods and treatments
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Differences in differences: rationale

I In a quasi-experimental setting, confounding factors are likely to bias
our estimates. Think of internal validity concerns expressed last time:
history (events occurring simultaneously), maturation.

I In the difference in differences strategy, the quasi-control group should
ideally be affected by the same confounding effects. Ex: recessions
affecting both control and treatment groups.

I The evolution of the control group serves as a counterfactual.

I We are left with many other concerns: e.g. selection into treatment.

I To some extent, these can be addressed by checking the paralell trends
asumption ; assessing whether adoption was quasi-random; checking
other policies were not adopted at the same time; no spillovers
between treatment and control.

I We are left with concerns about time-varying unobservables. How are
these concerns addressed in randomized experiments?
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Differences in differences: regression model

I Regression model for entity i and time t:

Yit = α + βTREATi + γPOSTt + δDD(TREATi × POSTt) + eit
I Yit= number of full-time equivalent employees working in

establishment i, in state s (PA or NJ), in period t (Feb 1992, Nov
1992).

I TREATi= 0/1 variable equal to 1 for observations in NJ.

I POSTt=0/1 variable equal to 1 for observations in November 1992.

I TREATs ∗ POSTt=interaction term equal to 1 in NJ in November
1992.
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Differences in differences: regression model

I Regression model for entity i and time t:

Yit = α + βTREATi + γPOSTt + δDD(TREATi × POSTt) + eit
I A more flexible specification uses a dummy variable for each entity i

and for each time period t

Yit = α +
N−1
∑
j=1

βjDEntityji +
T−1
∑
p=1

γpDTimept

+δDD(TREATi × POSTt) + eit

I DEntityji is a dummy variable equals to 1 when i = j and zero
otherwise (N is the number of entities – e.g. individuals, firms,
counties, states, countries, etc.)

I DTimept is a dummy variable equals to 1 when t = p and zero
otherwise (T is the number of time periods in the sample)
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Regression DD with Entity and Time Fixed Effects (FE)

I These two models are identical when we have only two entities and
two time periods

I Example: minimum wage case with 2-by-2 DD table
I Entities: NJ and PA
I Time periods: February and November, 1992

Yit = α + βTREATi + γPOSTt + δDD(TREATi × POSTt) + eit

Yit = α + βNJD NJi + γNovD Novt + δDD(TREATi × POSTt) + eit

I βNJ is what we call state (entity) fixed effect (βNJ = β)

I γNov is what we call month (time) fixed effect (γNov = γ)
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Minimum Wage Case with 2-by-2 DD Table

First regression DD model

Entity Time Yit Constant Treati Postt Treati × Postt
NJ Feb 20 1 1 0 0
NJ Nov 21 1 1 1 1

PA Feb 23 1 0 0 0
PA Nov 21 1 0 1 0

Second regression DD model

Entity Time Yit Constant D NJi D Novt Treati × Postt
NJ Feb 20 1 1 0 0
NJ Nov 21 1 1 1 1

PA Feb 23 1 0 0 0
PA Nov 21 1 0 1 0
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Regression DD with Entity and Time Fixed Effects (FE)

I It’s conventional to express the regression DD model with dummy
variables with entity-specific coefficients and time- specific coefficients
only, that is, we wouldn’t write

Yit = α +
N−1
∑
j=1

βjDEntityji +
T−1
∑
p=1

γpDTimept

+δDD(TREATi × POSTt) + eit

I Instead, we would express the regression DD model as

Yit = α + βi + γt + δDD(TREATi × POSTt) + eit

I βi is a set of entity (e.g. state) fixed effects

I γt is a set of time (e.g. month) fixed effects
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Regression DD-FE
I Alright, let us express the regression DD model as

Yit = α + βi + γt + δDD(TREATi × POSTt) + eit

I A more flexible model would replace the interaction term
TREATi × POSTt to allow

1. the binary treatment to vary over time, or

2. the treatment to be categorical (e.g. high, medium, low) or continuous
– instead of binary (treatment vs. control)

3. the treatment intensity – categorical or continuous – to vary over time

I To take all these cases into account, we express the regression DD
model with fixed effects – regression DD-FE model – as

Yit = α + δDDTREATit + βi + γt + eit

I it is also conventional to write the FE’s next to the error term
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Minimum Wage Case - Panel Data

To run the regression DD model in Stata, we need a panel dataset

Yit = α + δDDTREATit + βi + γt + eit

or Yit = α + δDDWageit + βi + γt + eit

State Year Yit DNJ DNY D93 D94 Treatit Wageit
NJ 1992 20 1 0 0 0 0 4.25
NJ 1993 21 1 0 1 0 1 5.05
NJ 1994 22 1 0 0 1 1 5.75

NY 1992 22 0 1 0 0 0 4.25
NY 1993 23 0 1 1 0 1 4.75
NY 1994 22 0 1 0 1 0 4.25

PA 1992 19 0 0 0 0 0 4.25
PA 1993 19 0 0 1 0 0 4.25
PA 1994 19 0 0 0 1 0 4.25
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Regression DD-FE: Treatment at More Aggregated Level

I In the general regression DD model, the treatment happens at the
entity i level

Yit = α + δDDTREATit + βi + γt + eit

I Sometimes, however, the treatment happens at a higher entity level s,
but we observe information at a more disaggregated level i . In this
case, we can write the model as

Yist = α + δDDTREATst + βi + γt + eist

I for example, the minimum wage changes at the state level, but we
observe information at the individual level
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Panel (or FE) Regression

I It turns out that the regression DD-FE model solves the omitted
variable bias problem for a number of unobserved explanatory variables

Yit = α + δDDTREATit + βi + γt + eit

I the set of fixed effects βi controls for any variables associated with
entity i that we do not observe, and do not vary over time, such as
innate ability for individual i

I the set of fixed effects γt controls for any unobserved variables that
affect simultaneously all entities at each time t, such as macroeconomic
conditions

I recall that these FE’s are dummy variables that incorporate any
information – observed or unobserved – specific to entity i or time t
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Panel (or FE) Regression
I The model below is more general than the regression DD-FE

Yit = α + δZit + θXit + βi + γt + eit

I Zit is the explanatory variable of interest
I Xit is a vector of other explanatory variables (control variables).

I Nevertheless, without a natural experiment (as in the DD setting – e.g.
policy change), the evidence of this regression model may be less
convincing than regression DD-FE model

I Zit may still be correlated to time-varying unobserved variables

I Anyways, the cost of this panel-regression (or FE) model is that we
cannot estimate the coefficients of variables that are constant over
time for entity i , such as gender or race, or vary over time equally for
all entities, such as the Central Bank interest rate
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Panel (or FE) Regression: FE Estimation
I To see how the panel regression model solves OVB for time-constant

unobserved explanatory variables, let us discuss an alternative way to
estimate that model

I To simplify the discussion, let us assume that we have a panel
regression model with entity FE’s only (no time FE’s)

Yit = α + δZit + θXit + βi + eit

I First, take the average over time for each entity (or within each group
defined by the entity), for each variable in that equation, that is,

Ȳi = α + δZ̄i + θX̄i + βi + ēi

I Now, subtract the second equation from the first equation

(Yit − Ȳi ) = δ(Zit − Z̄i ) + θ(Xit − X̄i ) + (eit − ēi )
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Panel (or FE) Regression: FE Estimation

I The resulting FE model uses only demeaned variables

(Yit − Ȳi ) = δ(Zit − Z̄i ) + θ(Xit − X̄i ) + (eit − ēi )

I it eliminates the intercept and entity FE’s (and any other time-constant
explanatory variables such as gender and race)

I FE estimation: run an OLS regression on this demeaned model instead
of the original model

I FE estimation exploits only the variation in the demeaned variables –
within-group variation
I the R2 of this demeaned model will reflect only the predictive power of

the demeaned variables, not the variation explained by the original
variables

I that is, do not draw comparisons between the R2 from OLS on the
original model and this one – the within-group R2
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Estimation in Stata

I Panel-regression model (or FE model)

Yit = α + δZit + θXit + βi + eit

I first option: reg Y Z X i.EntityVar
I second option: areg Y Z X, absorb(EntityVar)

I The FE model with demeaned variables

(Yit − Ȳi ) = δ(Zit − Z̄i ) + θ(Xit − X̄i ) + (eit − ēi )

I first option: reg (Y − Ȳ ) (Z − Z̄ ) (X − X̄ )
I second option:

I xtset EntityVar
I xtreg Y Z X, fe
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Probing DD Assumptions: Impact of MLDA on Mortality

I The multistate regression DD model to estimate the impact of MLDA
on death rates can be expressed as

Yst = α + δDDLegalst + βs + γt + est

I Yst represents death rate in state s and year t

I Legalst measures the proportion of 18-20-years-olds allowed to drink in
state s and year t

I the set of fixed effects βs controls for any state-specific variables –
observed and unobserved – that do not vary over time, such as
topography, climate, and average road quality

I the set of fixed effects γt controls for any observed and unobserved
variables that affect simultaneously all states at each time t, such as
interest rates, consumer expectations, and other macroeconomic
conditions
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Probing DD Assumptions: Impact of MLDA on Mortality196 Chapter 5

Table 5.2
Regression DD estimates of MLDA effects on death rates

Dependent variable (1) (2) (3) (4)

All deaths 10.80 8.47 12.41 9.65
(4.59) (5.10) (4.60) (4.64)

Motor vehicle accidents 7.59 6.64 7.50 6.46
(2.50) (2.66) (2.27) (2.24)

Suicide .59 .47 1.49 1.26
(.59) (.79) (.88) (.89)

All internal causes 1.33 .08 1.89 1.28
(1.59) (1.93) (1.78) (1.45)

State trends No Yes No Yes

Weights No No Yes Yes

Notes: This table reports regression DD estimates of minimum legal
drinking age (MLDA) effects on the death rates (per 100,000) of 18–20-
year-olds. The table shows coefficients on the proportion of legal drinkers
by state and year from models controlling for state and year effects. The
models used to construct the estimates in columns (2) and (4) include state-
specific linear time trends. Columns (3) and (4) show weighted least squares
estimates, weighting by state population. The sample size is 714. Standard
errors are reported in parentheses.

causes. The regression DD evidence for an effect on suicide is
weaker than the corresponding RD evidence in Table 4.1. At
the same time, both strategies suggest any increase in numbers
of suicides is smaller than for MVA deaths.

Probing DD Assumptions

Samples that include many states and years allow us to relax
the common trends assumption, that is, to introduce a degree
of nonparallel evolution in outcomes between states in the
absence of a treatment effect. A regression DD model with
controls for state-specific trends looks like

Angrist third pages 2014/10/16 10:34 p. 196 (chap05) Princeton Editorial Associates, PCA ZzTEX 16.2

 

 

 

 

 

 

 

From Mastering ‘Metrics: The Path from Cause to Effect. © 2015 Princeton University Press. Used by permission. 
All rights reserved. 

19 / 36



Probing DD Assumptions: Impact of MLDA on Mortality

I Causal interpretation relies on common trends assumption

I Samples that include many states and years allow us to relax that
assumption
I i.e., allow us to introduce a degree of nonparallel evolution in outcomes

between states in the absence of a treatment effect

I A regression DD model with controls for state-specific trends looks like

Yst = α + δDDLegalst + βs + (θs × t) + γt + est

I this model presumes that in the absence of a treatment effect, death
rates in state s deviate from common year effects by following the linear
trend captured by the coefficient θs
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DD Estimate with Parallel Trends198 Chapter 5

Figure 5.4
An MLDA effect in states with parallel trends

Allatsea

Alabaster

D
ea

th
 r

at
e 

(p
er

 1
00

,0
00

)

1970

120

110

100

90

80

1975 1980 1985
Year

Figure 5.5
A spurious MLDA effect in states where trends are not parallel
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Spurious DD Estimate: Trends Are Not Parallel

198 Chapter 5

Figure 5.4
An MLDA effect in states with parallel trends
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Figure 5.5
A spurious MLDA effect in states where trends are not parallel
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DD Estimate with State-Specific Linear TrendsDifferences-in-Differences 199

Figure 5.6
A real MLDA effect, visible even though trends are not parallel
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shows how regression DD captures treatment effects in the face
of uncommon trends. Death rates in Allatsea increase more
steeply than in Alabaster throughout the sample period. But
the Allatsea increase is especially steep from 1974 to 1975,
when Allatsea lowered its MLDA. The coefficient on LEGALst

in equation (5.6) picks this up, while the model allows for the
fact that death rates in different states were on different tra-
jectories from the get-go.

Models with state-specific linear trends provide an impor-
tant check on the causal interpretation of any set of regression
DD estimates using multiperiod data. In practice, however, em-
pirical reality may be considerably mushier and harder to inter-
pret than the stylized examples laid out in Figures 5.4–5.6. The
findings generated by a regression model like equation (5.6) are
often imprecise. The sharper the deviation from trend induced
by a causal effect, the more likely we are to be able to uncover
it. On the other hand, if treatment effects emerge only grad-

Angrist third pages 2014/10/16 10:34 p. 199 (chap05) Princeton Editorial Associates, PCA ZzTEX 16.2

 

 

 

 

 

 

 

From Mastering ‘Metrics: The Path from Cause to Effect. © 2015 Princeton University Press. Used by permission. 
All rights reserved. 

23 / 36



DD Estimate with State-Specific Linear Trends

I In models that control for state-specific linear trends, evidence for
MLDA effects comes from sharp deviations from otherwise smooth
trends, even where the trends are not common
I the coefficient on Legalst picks this up, while the model allows for the

fact that death rates were on different trajectories from the get-go

I Models with state-specific linear trends provide an important check on
the causal interpretation of any set of regression DD estimates using
multiperiod data
I for a coherent causal DD analysis of MLDA effects, the introduction of

state-specific trends should have little effect on the regression DD
estimates

I notwithstanding, the addition of trends may increase standard errors –
the loss of precision is due to the fact that treatment effects may
emerge only gradually
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DD Estimates with Competing Policy Changes

I State policymaking is a messy business, with frequent changes on
many fronts

I DD estimates of MLDA effects, with or without state-specific trends,
may be biased by contemporaneous policy changes in other areas
I an important consideration in research on alcohol, for example, is the

price of a drink
I taxes are the most powerful tool the government uses to affect the price

of beverages
I many states levy a heavy tax on beer, measured in dollars per gallon of

alcohol content

I Ideally, regression DD models that include controls for state beer taxes
would generate MLDA estimates similar to those without such controls
I if that’s the case, the MLDA estimates are robust to the inclusion of a

beer tax control
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DD Estimates with Competing Policy ChangesDifferences-in-Differences 201

Table 5.3
Regression DD estimates of MLDA effects controlling for beer taxes

Without trends With trends

Fraction legal Beer tax Fraction legal Beer tax
Dependent variable (1) (2) (3) (4)

All deaths 10.98 1.51 10.03 −5.52
(4.69) (9.07) (4.92) (32.24)

Motor vehicle 7.59 3.82 6.89 26.88
accidents (2.56) (5.40) (2.66) (20.12)

Suicide .45 −3.05 .38 −12.13
(.60) (1.63) (.77) (8.82)

Internal causes 1.46 −1.36 .88 −10.31
(1.61) (3.07) (1.81) (11.64)

Notes: This table reports regression DD estimates of minimum legal drinking age
(MLDA) effects on the death rates (per 100,000) of 18–20-year-olds, controlling for
state beer taxes. The table shows coefficients on the proportion of legal drinkers by
state and year and the beer tax by state and year, from models controlling for state and
year effects. The fraction legal and beer tax variables are included in a single regression
model, estimated without trends to produce the estimates in columns (1) and (2) and
estimated with state-specific linear trends to produce the estimates in columns (3) and
(4). The sample size is 700. Standard errors are reported in parentheses.

less precisely than MLDA effects, most likely because beer
taxes change less often than the MLDA. The beer tax estimates
from models that include state trends are especially noisy. Still,
the Beer Institute will be pleased to learn that these results don’t
speak in favor of further beer tax increases. We’re likewise
pleased to know that our MLDA estimates are robust to the
inclusion of a beer tax control; we’ll share a beer to celebrate!

What Are You Weighting For?

The estimates of equations (5.5) and (5.6) in columns (1)
and (2) of Table 5.2 give all observations equal weight, as
if data from each state were equally valuable. States are not
created equal, however, in at least one important respect: some,
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Weights in difference-in-differences designs

I The DD estimates of MLDA effects were found giving all observations
equal weight, as if data from each state were equally valuable

I States are not created equal, however, in at least one important
respect – population
I some states, like Texas and California, are bigger than most countries,

while others, like Vermont and Wyoming, have populations smaller than
those of many American cities

I we may prefer estimates that reflect this fact by giving more populous
states more weight

I We should then use the regression procedure called weighted least
squares (WLS)
I the standard OLS estimator fits a line by minimizing the sample average

of squared residuals, with each squared residual getting equal weight in
the sum

I as the name suggests, WLS weights each term in the residual sum of
squares by population size or some other researcher- chosen weight
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Population Weighting Has Two Consequences

I First, population weighting generates a people-weighted average
I regression models of treatment effects capture a weighted average of

effects for the groups or cells represented in the dataset
I in a state-year panel, these groups are states, so OLS produces estimates

of average causal effects that ignore population size
I resulting estimates are averages over states, not over people

I with population weighting, causal effects for states like Texas get more
weight than those for states like Vermont

I Population weighting may sound appealing, but it need not be
I the typical citizen is more likely to live in Texas than Vermont, but

changes in the Vermont MLDA provide variation that may be just as
useful as changes in Texas

I you should hope, therefore, that regression estimates from your
state-year are not highly sensitive to weighting
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Population Weighting Has Two Consequences

I Second, population weighting may also increase the precision of
regression estimates
I with far fewer drivers in Vermont than in Texas, MVA death rates in

Vermont are likely to be more variable from year to year than those in
Texas

I in a statistical sense, the data from Texas are more reliable and
therefore, perhaps, worthy of higher weight

I The best scenario is a set of findings (estimates and standard errors)
that are reasonably insensitive to weighting
I in Table 5.2, weighting by state population aged 18-20 does not matter

much for the estimates of MLDA effects
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DiD functional form assumptions

Despite its apparent closeness to the gold standard of randomized
experiments, many inherent assumptions :

I Is the outcome variable in logs or levels? Paralell trends unlikely to
hold in both.

I Treatment effect homogeneity over time? Issue in staggered designs.

I Does turning off a treatment have the same magnitude effect as
turning on a treatment?

I With a continous treatment, is the effect of the treatment on the
outcome linear ? Could test non-linearity by splitting the continous
measure into quartiles and estimating the effect for the four different
quartiles.
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Treatment effect heterogeneity
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Difference in differences : multiple periods and treatments

Yit = α + δDDTREATit + βi + γt + eit

Figure source: Callaway and Sant’Anna (2020)
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What do difference in difference estimates with multiple
treatments measure?

Yit = α + δDDTREATit + βi + γt + eit

I With constant treatment effects and paralell trends holding, we’d like
the DD coefficient to measure the Average Treatment on the Treated:

δDD = ATT = E (Yi ,1(1)− Yi ,1(0)|Treat = 1) =

E(Yi ,1(1) | Treat = 1)− E (Yi ,1(0) | Treat = 1)

I Paralell trends assumption:

E [Yi ,1(0)− Yi ,0(0) | Treat = 1] = E [Yi ,1(0)− Yi ,0(0) | Treat = 0]

I ÂTT = E [Y1 − Y0 | Treat = 1]− E [Y1 − Y0 | Treat = 0]

I Constant TE assumption particularly problematic when treatments are
canceled/reversed. But also if we have treatment heterogeneity within
unit over time.
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What do difference in difference estimates with multiple treatments measure?

If treatment effects are heterogeneous within unit, you won’t be estimating exactly

the ATT, several problems arise:

I If treatment effects vary over time within unit, this introduces biases in your overall

DD estimate, because the already treated units serve as controls for units treated

later.

I Andrew Goodman Bacon. Difference-in-Differences with variation in

treatment timing, Journal of Econometrics, 2021.
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Treatment effect heterogeneity issues and solutions
I With staggered treatments, your DD estimator is a weighted average

of 2X2 comparisons. Weights are positive if effects are time-invariant,
but can become negative under time-varying treatments.

DID = ∆YNew treat − ∆YAlready treat =

TENEW ,t − TEAlready ,t + TEAlready ,t−1

I OLS overweights entities with more variance in treatment status to
achieve a more precise estimate of the treatment effect. (Units in the
middle receive a higher weight- think of the binomial distribution
variance: is it larger for a 50-50 control/treatment split or a 20-80
control/treatment split?). Implication: even if treatments are
homogeneous, you will still not recover an average ATT, but a
weighted average skewed towards the ATTs of the treatments in the
middle.
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Corrections: ongoing research

I stack DD estimates as in Cengiz et al. (2019): ensure no previously
treated units enter as controls, for each treatment cohort create a
dataset with k periods before and after treatment. Run TWFE
regression with interactions for cohort-specific dataset with all FE and
controls. Stata: stackedev

I Break down into 2X2 problems, address the fact that early treated
units get overweighted, address multiple hypothesis testing problems

I Callaway and Sant’Anna (2020): did in R, csdid in Stata. Subset
the data into many 2x2. Staggered treatments turn on and need to
stay on (in their implementation).

I Roth, Sant’Anna, Bilinkski and Poe, “What’s Trending in
Difference-in-Differences? A Synthesis of the Recent Econometrics
Literature”
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