
Structural Models in Behavioral Economics

and Experimental Economics

Erik Wengström

Lund University and Hanken / Helsinki GSE

1



Introduction: Objective and Contents

Objective: Give an overview of applications of structural models

in the context of experimental and behavioral economics.

Contents:

� Why use structural models?

� Basic estimation techniques commonly used on behavioral

data

� Modeling of behavioral heterogeneity

� Example: Social preferences

� Uncertainty in structural models

� Example: Risk preferences
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Basics

� Explicit modeling of preferences, beliefs, and constraints.

� The decision maker derives value: Vc = V (c , x,θ).

� c : choice alternatives in their choice set (whether discrete or

continuous).

� x: variables defining the choice environment x

� θ structural parameters (preferences, beliefs)

� Adding randomness generates a statistical model that provides

a mapping between the distribution of choices (or moments of

this distribution) and the structural parameters θ.

→ impact of counterfactual changes in choice environment, x,

keeping preferences and beliefs, θ, constant.
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Introduction: Advantages and Challenges

Advantages:

� Transparency in mechanisms driving predictions.

Challenges:

� Some often voiced concerns with structural models: i) takes

time ii) stronger assumptions relative to reduced-form

approaches

� Behavioral economics provides rich, explicit models and
experimental methods allow researchers to exogenously vary
components of the decision-making environment.

� Experiments facilitates estimation under weaker assumptions

� Experiments can be used to validate structural models

� Structural models in Behavioral Economics do not need to be

very complicated or hard to analyze
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Example: A basic (principal-agent) model of worker motivation
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A motivating example (Shearer, 2004)

Consider the following model of worker behavior in response to changes

in compensation (see Shearer, 2004).

The economic model is based on a value function capturing utility of

worker i at period t.

Vit = rityit − Ci (eit)

rit is the piece-rate paid to the worker per unit of daily output yit , and

Ci (eit) is an increasing convex function capturing cost of effort eit .

Assume that worker output follows a multiplicative production function:

yit = eitsit ,

where sit denotes random factors like weather conditions which influence

worker output which are unrelated to the effort exerted.
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A motivating example (Shearer, 2004)

To conveniently express the effort cost function Ci (eit), we can use:

Ci (eit) = κi
γe

(γ+1)/γ
it

(γ + 1)

where κi is a worker specific productivity parameter and γ reflects the

elasticity of output to the piece-rate.

Solving for the optimal effort e∗it leads to the following optimal output:

y∗
it =

(ritsit)
γi

κγi

i

.

Taking natural logs on both sides yields

ln (y∗
it ) = γ ln (rit)− γ ln (κi ) + γ ln (sit)

Can be written as a classical linear panel data regression model with

unobserved individual heterogeneity. This transition from the economic

model to a statistically estimable model is enabled by the stochastic

element sit . 7



Observation A: Reduced Behavioral Assumptions (Paarsch and

Shearer)

� Paarsch and Shearer (1999) estimate γ using payroll data from a

tree-planting firm in British Columbia.

� A key issue is endogeneity: the firm sets higher piece-rates rit for

more challenging planting blocks (lower sit), introducing a negative

correlation between sit and rit .

� To address this: added assumptions about how the firm determines

rit , specifically that it’s set to make the least productive worker

indifferent between working and minimum wage.

� Shearer (2004) instead uses experimental data which randomizes

piece-rates across treatment blocks, ensuring variation in rit for a

given sit . No need for additional assumptions.

� This exemplifies the advantage of using experimental data to relax

behavioral assumptions
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Observation B: Reduced Distributional Assumptions

� Above we observed that the experimental setup resulted in weaker

behavioral assumptions. The experimental setup also gives weaker

distributional assumptions.

� Paarsch and Shearer (1999) use Maximum Likelihood for their

model, imposing extra distributional assumptions on sit .

Experimental data allows the use of simpler linear regression

methods with minimal distributional assumptions (conditional

moment restrictions).

� Both observations guide us to a simplified linear regression model,

which can be implemented in standard statistical packages.

� This underscores the utility of experimental data in lessening

behavioral and distributional assumptions during model estimation.
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Observation C: Confounding Factors

� Consider an extension of a simple economic model of worker

motivation above

� Role of gift-giving as an effort-inducing device (Akerlof, 1982;,

Fehr et al., 1993; Gneezy & List, 2006)

� Surprise wage cuts triggers are stronger reaction than wage

increases (Kube, Maréchal, and Puppe, 2013).

� Negative reciprocity dominates positive reciprocity?
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Modeling Reciprocity

Consider a economic model that incorporates gifts and reciprocity:

Vit = rityit − Ci (eit) + β
(
yit − yNG

it

)
Giftit

Giftit : Unexpected wage increase or decrease; β reciprocity; yNG
it

production absent a gift.

Solving for optimal effort gives:

yit =

(
[rit + βGiftit ]

κi

)γ

sγ+1
it

Which can estimated using the following linear least squares equation:

ln (yit) = α0 + γ log (rit + βGiftit) + αi + ϵit
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Structural modeling clarifies confounding factors

� Does finding a bigger productivity effect of wage decrease compared

to wage increase provide evidence that negative reciprocity

dominates?

� Recall optimal effort:

yit =

(
[rit + βGiftit ]

κi

)γ

sγ+1
it

� the structural model makes clear that the effect of a increase in

wage/gift will depend on the cost of effort function γ.

� Using a piece rate of rit = 0.16 and parameters values from

Bellemare and Shearer (2011) β = 0.001 and γ = 0.39, a wage

increase of $100 leads to an increase average worker productivity by

20.8%, while a wage cut of $100 is predicted to decrease average

worker productivity by 31.7%.

� Note: Predictions based on given values of β, i.e. reciprocity is held

constant. 12



Estimation Using First-Order Conditions

� First-order conditions (FOC) can be a basis for structural model

estimation.

� FOCs often reveal the impact of model structure and variables on

behavior more transparently than the utility function.

� Example: The FOCs for the cost-of-effort function can indicate how

wage changes would affect effort, even before empirical estimation.
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Estimation Using First-Order Conditions

� Suppose in an experiment, subject i has to choose yi from a real

interval and the value is given by:

V (yi , xi ,θ)

� The optimal y∗
i solves:

V ′(y∗
i , xi ,θ) = 0

� The first-order condition approach requires that a closed-form

expression for y∗
i can be obtained:

F (xi ,θ)

� Reduced-form models specify F (·) mainly for data-fitting and are

thus not necessarily related to V ′(·).
� Model is deterministic, assuming all subjects with same xi choose

the same y∗
i .

� Note: Incorporating heterogeneity in behavior is crucial for taking

the model to data.

� Next: we discuss two approaches of introducing heterogeneity.
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Modeling Preference Heterogeneity

� Introducing heterogeneity through structural parameters is often of

primary interest to researchers.

� Equation extended to capture heterogeneity across subjects:

y∗
i = F (xi ,θi )

� θi now indexed by i ; assume for simplicity it is scalar θi .

� Simple model for preference heterogeneity:

θi = ziθ + ϵθi

� zi is a vector of observable characteristics (e.g., age, gender).

� θ captures the importance of these characteristics.

� ϵθi represents unobserved preference heterogeneity.

� Downside: The approach may not account for decision-making noise

or other deviations.
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Adding random disturbances

� Additive random disturbances capture deviations from model

structure.

� In the worker motivation example above, random factors

where incorporated in production function

� The error term do not need to come from the economic model

� Example: Andreoni and Miller (2002) test altruistic behavior

in dictator games.
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Dictator Game

Dictator

Dictator Payoff:

Receiver Payoff:

(TokenEndowment − x) ∗ KeepValue

(x) ∗ PassValue

Receiver Payoff:

Dictator Payoff:TokenEndowment ∗ KeepValue

0

Pass $x

Pass $0
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Dictator Game Tree

Dictator

Dictator Payoff:

Receiver Payoff:

(TokenEndowment − x) ∗ KeepValue

(x) ∗ PassValue

Receiver Payoff:

Dictator Payoff:TokenEndowment ∗ KeepValue

0

Pass $x

Pass $0

Figure 1: Dictator Game Tree
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Allocation Choices in Andreoni and Miller (2002)

Budget Token Endowment Hold Value Pass Value Rel. Price of Giving Avg Tokens Passed

1 40 3 1 3 8.0

2 40 1 3 0.33 12.8

3 60 1 1 1 12.7

4 60 1 2 0.5 19.4

5 75 2 1 2 15.5

6 75 1 2 0.5 22.7

7 60 1 1 1 14.6

8 100 1 1 1 23.0

� Dictators had multiple choices varying in budget and relative prices.

� This design allowed testing for rationality in giving and to

investigate how the cost of giving affected decisions

� Moreover, subjects can be categorized according to their social

preferences

� Classifies 43% of subjects as either selfish, Leontief, or perfect

substitutes.

� Remaining 57% modeled with a structural approach.
19



Andreoni and Miller (2002)

Utility function defined over payoffs of dictators
(
πd
i

)
and the other

subject (πo
i ):

Vi =
[
α
(
πd
i

)ρ
+ (1− α) (πo

i )
ρ
]1/ρ

where σ = 1/(ρ− 1) is the elasticity of substitution between dictator and

the other subject, which here captures the relative weight put inequality

minimizing vs. efficiency.

α captures the weight put on own payoffs versus the other persons

payoffs (i.e. the degree of selfishness).
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Andreoni and Miller (2002)

Budget constraint is m = πd + pπp, with m = M/pd and p = pp/pd ,

where M denotes the budget, and (pp, pd) are the prices. First-order

condition yields

πd
ig =

γ0
pγ1 + γ0

mig

where γ0 =
(

α
1−α

)1/(1−ρ)

and γ1 = − ρ
1−ρ are estimated in a first step.

An error term is added to the first order conditions yielding a

statistical model which is estimated by Maximum Likelihood

Based on the first-stage estimates γ0, γ1, structural parameters can be

recovered in a second step using

ρ =
γ1

γ1 − 1
, σ = (γ1 − 1) , α =

1

1 + γ
1/(γ1−1)
0

Standard errors of estimated structural parameters can be computed

using the delta method. 21



Andreoni and Miller (2002)
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Combining Preference Heterogeneity and Random Distur-

bances

� Exclusively focusing on preference heterogeneity or random

disturbances can be limiting.

� Preference heterogeneity observed in laboratory and field

experiments.

� Importance of accommodating departures that capture

unobserved preferences and model deviations.

� Proposal: Combine preference heterogeneity and random

disturbances.
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Example: Gift giving revisited

Recall: We could estimate the model using:

ln (yit) = α0 + γ log (rit + βGiftit) + αi + ϵit

Reciprocity parameter can vary with respect to covariates x (e.g.,

gender, age, tenure).

That is, we can allow for heterogeneity of β with respect to

covariates xit , by assuming βi = β0 + β1xit . This leads to:

log (yit) = α0 + γ log (rit + β0Giftit + β1Giftitxit) + αi + εit
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Introduction to Estimation Using Discrete Choice Models

� Discrete choice approach is predominant in behavioral

economics.

� Structural models sometimes lack easily interpretable or

usable first-order conditions.

� Discrete choice models naturally fit many experimental

designs where subjects make discrete decisions.

� We build upon the random utility framework.

� Introduction to the basic random utility framework followed

by its extensions for more heterogeneity.
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Random Utility Framework

� Subjects derive value Vij for each alternative j in set J.

� Value function: Vij = xijθ, linear in observable characteristics

xij .

� Basic random utility model (RUM) introduces random

disturbances (Fechner errors):

Ṽij = Vij + λεij = xijθ + λεij

� εij : random disturbance and λ: noise parameter

� Subject choose the alternative with highest valuation

(including noise)

� Noise becomes more important when subject are close to

indifferent

� Can be interpreted as either decision errors or unobserved

preferences 26



Application to Ultimatum Game

Description

The Ultimatum Game involves two players. The proposer offer the

responder a discrete share of an amount Π. The responder can accept

(j = a) or reject (j = r) the proposal. If the responder accepts, the

money is split as proposed. If rejected, both get nothing.

Assume the utility of each alternative is given by:

Ṽia = Via + λεia = xiaθ + λεia

Ṽir = Vir + λεir = xirθ + λεir

Where xij are alternative-specific explanatory variables, λ is the noise

parameter

Responders choose option j ∈ (a, r) that maximizes their value functions

with error.
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Ultimatum Game Example: Estimation

With i.i.d. extreme value Type 1 errors with constant main across

alternatives we obtain the following Conditional Logit formula:

Pr (yi = a | xi ) =
exp

(
xiθ
λ

)
exp

(
xiaθ
λ

)
+ exp

(
xirθ
λ

)

� θ and λ can not all be estimated

� Common to normalize one coefficient to 1.
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Ultimatum Game Example: Fehr and Schmidt (1999) prefer-

ences

Assume the responder has Fehr and Schmidt (1999) inequality averse

preferences. The utility of rejecting is Vir = 0 and utility of accepting is:

Via = πia − αmax (0,Π− 2πia)− βmax (0, 2πia − Π)

= xiaθ

i.e. we have

xia = [πia,max (0,Π− 2πia) ,max (0, 2πia − Π)]

θ = (1,−α,−β)′

Here coefficient of own payoffs πia is normalized to 1 which allows λ to

be estimated freely. Also allows interpreting α and β as the the price the

subject is willing to pay for reducing inequality by one unit.
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Random Utility Model with Preference Heterogeneity

Part of heterogeneity in behavior in a given treatment condition

possibly reflects preference heterogeneity, implying that θi varies

across i .

Often, we wish to decompose preference heterogeneity:

� Observable individual characteristics.

� Unobserved heterogeneity.

The unobservable part is usually larger, and capturing it is more

complex (see for example von Gaudecker, van Soest and

Wengström, 2011).
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Approaches for Unobserved Heterogeneity

Three main methods in behavioral economics:

1. Parametric approach: E.g. assume that parameters are

normally distributed and estimate the distribution parameters.

2. Finite mixture (non-parametric): Each subject belong to a

class k defined by a common parameter vector θk

3. Individual-level estimation (non-parametric): Estimate the

model on individual separately
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Uncertainty in Structural Models

Decision-making under uncertainty is central in experimental and

behavioral economics.

� So far: Models without uncertainty.

� Now: Estimation of structural models with uncertainty.

� Challenge: Value functions aren’t simple linear combinations.
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von Gaudecker, van Soest and Wengström, 2011

� Measuring risk preferences via experimental designs.

� Builds on earlier work by Hey and Orme (1994), Holt and

Laury (2002) and others

� Online experiment with N = 1422 (CentERpanel)

� Unbalanced panel of binary decisions between lotteries

πA
j , π

B
j , j = 1 . . . Ji with Ji ∈ {28, 32, . . . , 56}

� Large set of controls (CentERpanel): sex, age, education,

household income, wealth, financial experience/knowledge,

short / long completion time.
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Screenshot of Lottery 5, First Screen

Progress:  70% Instructions Help

Please, make a choice between A and B for each of the decision problems below.

  

Option A 
-outcome IMMEDIATELY revealed

Option B 
-outcome revealed in THREE 
MONTHS

Choice

A B

€ 21 with probability 25%
€ 18 with probability 75%

€ 54 with probability 25%
€ -9 with probability 75%

€ 21 with probability 50%
€ 18 with probability 50%

€ 54 with probability 50%
€ -9 with probability 50%

€ 21 with probability 75%
€ 18 with probability 25%

€ 54 with probability 75%
€ -9 with probability 25%

€ 21 with probability
100%
€ 18 with probability 0%

€ 54 with probability
100%
€ -9 with probability 0%

   

 Continue
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Payoffs from the Seven Lotteries

Option A Option B

Payoff Uncertainty Low High Uncertainty Low High

Configuration Resolution Payoff Payoff Resolution Payoff Payoff

1 early 27 33 early 0 69

2 early 39 48 early 9 87

3 early 12 15 early -15 48

4 early 33 36 late 6 69

5 early 18 21 late -9 54

6 early 24 27 early -3 60

7 late 15 18 late -12 51

Note: The order was randomised.
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Expected Utility of Income

� Start from a simple exponential utility model with loss

aversion:

u(z , γ, λ) =


− 1

γ e
−γz for z ≥ 0

λ−1
γ − λ

γ e
−γz for z < 0

where z ∈ R denote lottery outcomes, γ ∈ R is the coefficient

of absolute risk aversion, λ ∈ R+ is the loss aversion

parameter

� Why not power utility? Problems around the origin, difficult

to incorporate uncertainty resolution preferences with positive

and negative payoffs. But some robustness checks in the

paper (worse fit).
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Uncertainty Resolution Preferences

� We also estimate a preference of uncertainty resolution ρ

using the framework of Kreps & Porteus (1978):

� This gives a slightly modified utility function.

v(z , γ, λ, ρ) =


max{−λ

γ , 0} − 1
γ e

−γρSz for z ≥ 0

max{−λ
γ , 0}+

λ−1
γ − λ

γ e
−γρSz for z < 0
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Overall Likelihood: Certainty Equivalents and Errors

� Binary choice between lotteries πA and πB . Take the

difference in certainty equivalents between the lotteries for

choice j by individual i :

∆CEij = CE(πB
j , γi , λi , ρi )− CE(πA

j , γi , λi , ρi )

� The actual choice is then: Yij = I {∆CEij + τεij > 0}; εij ∼ Λ

� Likelihood of each observation:

lij = (1− ωi ) Λ

(
(2Yij − 1)

1

τ
∆CEij

(
πA
j , π

B
j , γi , λi , ρi

))
+

ωi

2
,

� Two sources of error: Monetary cost of “wrong” choice τ ,

probability for random behaviour ωi .
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Distributional Assumptions

� Write: ηi = gη(X
η
i β

η + ξηi ), ηi = {γi , λi , ρi , ωi}

where the gη(·) serve to impose the theoretical parameter

restrictions.

� Assume joint normality of:
g−1
γ (γi )

g−1
λ (λi )

g−1
ρ (ρi )

g−1
ω (ωi )

 ∼ N




X γ
i β

γ

Xλ
i β

λ

X ρ
i β

ρ

Xω
i β

ω

 , Σ′Σ
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Individual Likelihoods and Estimation Details

� Group the 4 unobserved components in ξi , define

ξ∗ = (Σ′)−1ξ and get the individual likelihood:

li =

∫
R4

∏
j∈Ji

lij

(
πA
j , π

B
j ,Yij , τ, g(Xiβ + ξ∗i )

)ϕ(ξ∗)dξ∗

� Approximate the integral by numerical integration with Halton

sequences.

� Maximise overall likelihood using BFGS algorithm with

numerical derivatives, variance-covariance matrix via OPG,

delta method for transformed parameters.
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Aggregate Facts: Parameter Estimates

� Median utility function concave (γ = .032), has a kink at zero

(λ = 2.4), uncertainty resolution does not matter for the

median subject (ρ = 1)

� Implied risk premia comparable to other studies

� Median random choice propensity of about 8.3%. Together
with τ = 4.1, this implies:

� P(Yj) = .88 for ∆CEj = 10 Euros and

� P(Yj) = .55 for ∆CEj = 1 Euro.
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Aside: Observable Correlates

� Women are more risk averse and loss averse, more
inconsistencies.

� Positive age gradient of risk aversion and error frequency.
Loss aversion peaks at ages 35-44 and decreases thereafter.

� Higher educated persons: less risk averse, substantially fewer
mistakes.

� Little effects of income and wealth – but errors decrease in
wealth.

� No significant associations for uncertainty resolution
preferences.
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Identification issues

Apesteguia and Ballester (2018) discussed identification problems

associated with estimation of risk preferences based on random

utility models.

Consider the following lotteries:

� Lottery A: Pays $1 with probability 0.9, and $60 with

probability 0.1.

� Lottery B: Pays $5 with certainty.

� Add type 1 extreme value random disturbances scaled by λ to

the expected utility.

43



Probability of Choosing Lottery A

We can express the probability of choosing the risk lottery as

Pr(Choose = A) =
exp (EUiA(θ)/λ)

exp (EUiA(θ)/λ) + exp (EUiB(θ)/λ)

Expectation: Probability of choosing A decreases with risk aversion θ.

Apesteguia and Ballester (2018) showed that this may not always be the

case.
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Monotonicity Issues

Figure 2: Predicted probability of choosing risky lottery A
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Monotonicity Issues

Figure 3: Expected Utility Difference between Safe and Risky lottery
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Understanding Non-Monotonicity

� Probability of choosing the risky lottery initially decreases with

risk aversion before increasing for high levels of risk aversion.

� Non-monotonicity arises due to varying scale of utility with

risk aversion.

� Cardinal value of difference in expected utility diminishes and

flattens out when θ increases.

� Noise level may dominate differences in value functions for

high risk aversion.
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Proposed Solutions

� Wilcox (2011): RUM approach called ”contextual utility” that

re-scales valuations.

� Certainty equivalents provide a common metric regardless of θ.

� Both methods can restore monotonicity, but not always.

� Apesteguia and Ballester (2018) introduced RPM as an

alternative to RUM.
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Random Parameter Model (RPM)

Preserves monotonicity. Randomness is introduced through unobserved

heterogeneity of the risk preferences of subjects.

U (xij ; θi ) = U (xij ; θ + ϵi )

where ϵi follows a monotone cumulative distribution function over the

space of risk preferences.

The model is estimated by Maximum Likelihood

Which approach to use?

� Clear objectives essential before implementing a design and

conducting experiments.

� For some designs, all approaches work

� RPM preferable in more general choice settings, but can be harder

to implement when having more than one parameter to estimate
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Conclusions

� Experiments enable exogenous variation of subjects’ choice

environment

� Behavioral Economics provide a rich set of models of human

behavior

� Choice between reduced-form or structural approaches should

align with research questions

� Important to decide empirical approach prior to experiment

design
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Conclusions

� Careful experimental design (including simulations) critical for

separate identification of model features.

� Experimental methods can reduce assumptions and validate

models.

� Synergies between experiments and structural modeling
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