# **Structural Models in Behavioral Economics and Experimental Economics**

Erik Wengström

Lund University and Hanken / Helsinki GSE

**Objective:** Give an overview of applications of structural models in the context of experimental and behavioral economics.

#### **Contents:**

- Why use structural models?
- Basic estimation techniques commonly used on behavioral data
- Modeling of behavioral heterogeneity
  - Example: Social preferences
- Uncertainty in structural models
  - Example: Risk preferences

#### Basics

- Explicit modeling of preferences, beliefs, and constraints.
- The decision maker derives value:  $V_c = V(c, \mathbf{x}, \theta)$ .
  - c: choice alternatives in their choice set (whether discrete or continuous).
  - $\mathbf{x}$ : variables defining the choice environment  $\mathbf{x}$
  - $\theta$  structural parameters (preferences, beliefs)
- Adding randomness generates a statistical model that provides a mapping between the distribution of choices (or moments of this distribution) and the structural parameters θ.
- $\rightarrow$  impact of counterfactual changes in choice environment, **x**, keeping preferences and beliefs,  $\theta$ , constant.

#### Advantages:

• Transparency in mechanisms driving predictions.

#### **Challenges:**

- Some often voiced concerns with structural models: i) takes time ii) stronger assumptions relative to reduced-form approaches
- *Behavioral economics* provides rich, explicit models and *experimental methods* allow researchers to exogenously vary components of the decision-making environment.
  - Experiments facilitates estimation under weaker assumptions
  - Experiments can be used to validate structural models
  - Structural models in Behavioral Economics do not need to be very complicated or hard to analyze

# Example: A basic (principal-agent) model of worker motivation



### A motivating example (Shearer, 2004)

Consider the following model of worker behavior in response to changes in compensation (see Shearer, 2004).

The economic model is based on a value function capturing utility of worker i at period t.

$$V_{it} = r_{it}y_{it} - C_i\left(e_{it}\right)$$

 $r_{it}$  is the piece-rate paid to the worker per unit of daily output  $y_{it}$ , and  $C_i(e_{it})$  is an increasing convex function capturing cost of effort  $e_{it}$ .

Assume that worker output follows a multiplicative production function:

$$y_{it} = e_{it}s_{it},$$

where  $s_{it}$  denotes random factors like weather conditions which influence worker output which are unrelated to the effort exerted.

#### A motivating example (Shearer, 2004)

To conveniently express the effort cost function  $C_i(e_{it})$ , we can use:

$$C_{i}(e_{it}) = \kappa_{i} \frac{\gamma e_{it}^{(\gamma+1)/\gamma}}{(\gamma+1)}$$

where  $\kappa_i$  is a worker specific productivity parameter and  $\gamma$  reflects the elasticity of output to the piece-rate.

Solving for the optimal effort  $e_{it}^*$  leads to the following optimal output:

$$y_{it}^* = \frac{(r_{it}s_{it})^{\gamma_i}}{\kappa_i^{\gamma_i}}.$$

Taking natural logs on both sides yields

$$\ln(y_{it}^*) = \gamma \ln(r_{it}) - \gamma \ln(\kappa_i) + \gamma \ln(s_{it})$$

Can be written as a classical linear panel data regression model with unobserved individual heterogeneity. This transition from the economic model to a statistically estimable model is enabled by the stochastic element  $s_{it}$ .

# Observation A: Reduced Behavioral Assumptions (Paarsch and Shearer)

- Paarsch and Shearer (1999) estimate  $\gamma$  using payroll data from a tree-planting firm in British Columbia.
- A key issue is *endogeneity*: the firm sets higher piece-rates  $r_{it}$  for more challenging planting blocks (lower  $s_{it}$ ), introducing a negative correlation between  $s_{it}$  and  $r_{it}$ .
- To address this: added assumptions about how the firm determines  $r_{it}$ , specifically that it's set to make the least productive worker indifferent between working and minimum wage.
- Shearer (2004) instead uses experimental data which randomizes piece-rates across treatment blocks, ensuring variation in *r<sub>it</sub>* for a given *s<sub>it</sub>*. No need for additional assumptions.
- This exemplifies the advantage of using experimental data to relax behavioral assumptions

# **Observation B: Reduced Distributional Assumptions**

- Above we observed that the experimental setup resulted in weaker behavioral assumptions. The experimental setup also gives weaker distributional assumptions.
- Paarsch and Shearer (1999) use Maximum Likelihood for their model, imposing extra distributional assumptions on s<sub>it</sub>.
   Experimental data allows the use of simpler linear regression methods with minimal distributional assumptions (conditional moment restrictions).
- Both observations guide us to a simplified linear regression model, which can be implemented in standard statistical packages.
- This underscores the utility of experimental data in lessening behavioral and distributional assumptions during model estimation.

- Consider an extension of a simple economic model of worker motivation above
- Role of gift-giving as an effort-inducing device (Akerlof, 1982;, Fehr et al., 1993; Gneezy & List, 2006)
- Surprise wage cuts triggers are stronger reaction than wage increases (Kube, Maréchal, and Puppe, 2013).
- Negative reciprocity dominates positive reciprocity?

Consider a economic model that incorporates gifts and reciprocity:

$$V_{it} = r_{it}y_{it} - C_i(e_{it}) + \beta\left(y_{it} - y_{it}^{NG}\right)Gift_{it}$$

*Gift<sub>it</sub>*: Unexpected wage increase or decrease;  $\beta$  reciprocity;  $y_{it}^{NG}$  production absent a gift.

Solving for optimal effort gives:

$$y_{it} = \left(\frac{[r_{it} + \beta \, Gift_{it}]}{\kappa_i}\right)^{\gamma} s_{it}^{\gamma+1}$$

Which can estimated using the following linear least squares equation:

$$\ln(y_{it}) = \alpha_0 + \gamma \log(r_{it} + \beta Gift_{it}) + \alpha_i + \epsilon_{it}$$

#### Structural modeling clarifies confounding factors

- Does finding a bigger productivity effect of wage decrease compared to wage increase provide evidence that negative reciprocity dominates?
- Recall optimal effort:

$$y_{it} = \left(\frac{[r_{it} + \beta \, Gift_{it}]}{\kappa_i}\right)^{\gamma} s_{it}^{\gamma+1}$$

- the structural model makes clear that the effect of a increase in wage/gift will depend on the cost of effort function γ.
- Using a piece rate of r<sub>it</sub> = 0.16 and parameters values from Bellemare and Shearer (2011) β = 0.001 and γ = 0.39, a wage increase of \$100 leads to an increase average worker productivity by 20.8%, while a wage cut of \$100 is predicted to decrease average worker productivity by 31.7%.
- *Note*: Predictions based on given values of *β*, i.e. reciprocity is held constant.

- First-order conditions (FOC) can be a basis for structural model estimation.
- FOCs often reveal the impact of model structure and variables on behavior more transparently than the utility function.
- Example: The FOCs for the cost-of-effort function can indicate how wage changes would affect effort, even before empirical estimation.

#### **Estimation Using First-Order Conditions**

• Suppose in an experiment, subject *i* has to choose *y<sub>i</sub>* from a real interval and the value is given by:

 $V(y_i, \mathbf{x}_i, \boldsymbol{\theta})$ 

• The optimal  $y_i^*$  solves:

$$V'(y_i^*, \mathbf{x}_i, \boldsymbol{ heta}) = 0$$

• The first-order condition approach requires that a closed-form expression for  $y_i^*$  can be obtained:

 $F(\mathbf{x}_i, \boldsymbol{\theta})$ 

- Reduced-form models specify F(·) mainly for data-fitting and are thus not necessarily related to V'(·).
- Model is deterministic, assuming all subjects with same x<sub>i</sub> choose the same y<sub>i</sub><sup>\*</sup>.
- Note: Incorporating heterogeneity in behavior is crucial for taking the model to data.
- · Next: we discuss two approaches of introducing heterogeneity.

### **Modeling Preference Heterogeneity**

- Introducing heterogeneity through structural parameters is often of primary interest to researchers.
- Equation extended to capture heterogeneity across subjects:

$$y_i^* = F(\mathbf{x}_i, \boldsymbol{\theta}_i)$$

- $\theta_i$  now indexed by *i*; assume for simplicity it is scalar  $\theta_i$ .
- Simple model for preference heterogeneity:

$$\theta_i = \mathbf{z}_i \boldsymbol{\theta} + \epsilon_i^{\theta}$$

- **z**<sub>i</sub> is a vector of observable characteristics (e.g., age, gender).
- heta captures the importance of these characteristics.
- $\epsilon_i^{\theta}$  represents unobserved preference heterogeneity.
- Downside: The approach may not account for decision-making noise or other deviations.

- Additive random disturbances capture deviations from model structure.
- In the worker motivation example above, random factors where incorporated in production function
- The error term do not need to come from the economic model
- Example: Andreoni and Miller (2002) test altruistic behavior in dictator games.







Figure 1: Dictator Game Tree

# Allocation Choices in Andreoni and Miller (2002)

| Budget | Token Endowment | Hold Value | Pass Value | Rel. Price of Giving | Avg Tokens Passed |  |
|--------|-----------------|------------|------------|----------------------|-------------------|--|
| 1      | 40              | 3          | 1          | 3                    | 8.0               |  |
| 2      | 40              | 1          | 3          | 0.33                 | 12.8              |  |
| 3      | 60              | 1          | 1          | 1                    | 12.7              |  |
| 4      | 60              | 1          | 2          | 0.5                  | 19.4              |  |
| 5      | 75              | 2          | 1          | 2                    | 15.5              |  |
| 6      | 75              | 1          | 2          | 0.5                  | 22.7              |  |
| 7      | 60              | 1          | 1          | 1                    | 14.6              |  |
| 8      | 100             | 1          | 1          | 1                    | 23.0              |  |

- Dictators had multiple choices varying in budget and relative prices.
- This design allowed testing for rationality in giving and to investigate how the cost of giving affected decisions
- Moreover, subjects can be categorized according to their social preferences
- Classifies 43% of subjects as either selfish, Leontief, or perfect substitutes.
- Remaining 57% modeled with a structural approach.

Utility function defined over payoffs of dictators  $(\pi_i^d)$  and the other subject  $(\pi_i^o)$ :

$$V_{i} = \left[\alpha \left(\pi_{i}^{d}\right)^{\rho} + (1-\alpha) \left(\pi_{i}^{o}\right)^{\rho}\right]^{1/\rho}$$

where  $\sigma = 1/(\rho - 1)$  is the elasticity of substitution between dictator and the other subject, which here captures the relative weight put inequality minimizing vs. efficiency.

 $\alpha$  captures the weight put on own payoffs versus the other persons payoffs (i.e. the degree of selfishness).

### Andreoni and Miller (2002)

Budget constraint is  $m = \pi_d + p\pi_p$ , with  $m = M/p_d$  and  $p = p_p/p_d$ , where *M* denotes the budget, and  $(p_p, p_d)$  are the prices. First-order condition yields

$$\pi^d_{ig} = rac{\gamma_0}{p^{\gamma_1}+\gamma_0} m_{ig}$$

where  $\gamma_0 = \left(\frac{\alpha}{1-\alpha}\right)^{1/(1-\rho)}$  and  $\gamma_1 = -\frac{\rho}{1-\rho}$  are estimated in a first step.

# An error term is added to the first order conditions yielding a statistical model which is estimated by Maximum Likelihood

Based on the first-stage estimates  $\gamma_0, \gamma_1$ , structural parameters can be recovered in a second step using

$$\rho = \frac{\gamma_1}{\gamma_1 - 1}, \quad \sigma = (\gamma_1 - 1), \quad \alpha = \frac{1}{1 + \gamma_0^{1/(\gamma_1 - 1)}}$$

Standard errors of estimated structural parameters can be computed using the delta method.

#### TABLE IV

#### ESTIMATES OF PARAMETERS (STANDARD ERRORS) FOR CES UTILITY FUNCTIONS FOR THE THREE WEAK TYPES

|                                         | Weak<br>Selfish | Weak<br>Leontief | Weak<br>Perf. Subst. |
|-----------------------------------------|-----------------|------------------|----------------------|
| $\overline{A = [a/(1-a)]^{1/(1-\rho)}}$ | 20.183          | 1.6023           | 2.536                |
|                                         | (5.586)         | (0.081)          | (0.311)              |
| $r = -\rho/(1-\rho)$                    | -1.636          | 0.259            | -2.022               |
|                                         | (0.265)         | (0.067)          | (0.188)              |
| а                                       | 0.758           | 0.654            | 0.576                |
| ρ                                       | 0.621           | -0.350           | 0.669                |
| σ                                       | -2.636          | -0.741           | -3.022               |
| s.eself                                 | 0.2216          | 0.179            | 0.244                |
|                                         | (0.011)         | (0.009)          | (0.014)              |
| ln likelihood                           | -107.620        | 52.117           | -69.583              |
| Number of cases                         | 380             | 230              | 242                  |

# Combining Preference Heterogeneity and Random Disturbances

- Exclusively focusing on preference heterogeneity or random disturbances can be limiting.
- Preference heterogeneity observed in laboratory and field experiments.
- Importance of accommodating departures that capture unobserved preferences and model deviations.
- Proposal: Combine preference heterogeneity and random disturbances.

Recall: We could estimate the model using:

$$\ln(y_{it}) = \alpha_0 + \gamma \log(r_{it} + \beta Gift_{it}) + \alpha_i + \epsilon_{it}$$

Reciprocity parameter can vary with respect to covariates x (e.g., gender, age, tenure).

That is, we can allow for heterogeneity of  $\beta$  with respect to covariates  $x_{it}$ , by assuming  $\beta_i = \beta_0 + \beta_1 x_{it}$ . This leads to:

$$\log(y_{it}) = \alpha_0 + \gamma \log(r_{it} + \beta_0 Gift_{it} + \beta_1 Gift_{it} x_{it}) + \alpha_i + \varepsilon_{it}$$

# Introduction to Estimation Using Discrete Choice Models

- Discrete choice approach is predominant in behavioral economics.
- Structural models sometimes lack easily interpretable or usable first-order conditions.
- Discrete choice models naturally fit many experimental designs where subjects make discrete decisions.
- We build upon the random utility framework.
- Introduction to the basic random utility framework followed by its extensions for more heterogeneity.

## **Random Utility Framework**

- Subjects derive value  $V_{ij}$  for each alternative j in set J.
- Value function:  $V_{ij} = \mathbf{x}_{ij} \boldsymbol{\theta}$ , linear in observable characteristics  $x_{ij}$ .
- Basic random utility model (RUM) introduces random disturbances (Fechner errors):

$$\tilde{V}_{ij} = V_{ij} + \lambda \varepsilon_{ij} = \mathbf{x}_{ij} \boldsymbol{\theta} + \lambda \varepsilon_{ij}$$

- $\varepsilon_{ij}$ : random disturbance and  $\lambda$ : noise parameter
- Subject choose the alternative with highest valuation (including noise)
- Noise becomes more important when subject are close to indifferent
- Can be interpreted as either decision errors or unobserved preferences

#### Description

The Ultimatum Game involves two players. The proposer offer the responder a discrete share of an amount  $\Pi$ . The responder can accept (j = a) or reject (j = r) the proposal. If the responder accepts, the money is split as proposed. If rejected, both get nothing.

Assume the utility of each alternative is given by:

$$\begin{split} \tilde{V}_{ia} &= V_{ia} + \lambda \varepsilon_{ia} = \mathbf{x}_{ia} \boldsymbol{\theta} + \lambda \varepsilon_{ia} \\ \tilde{V}_{ir} &= V_{ir} + \lambda \varepsilon_{ir} = \mathbf{x}_{ir} \boldsymbol{\theta} + \lambda \varepsilon_{ir} \end{split}$$

Where  $\mathbf{x}_{ij}$  are alternative-specific explanatory variables,  $\lambda$  is the noise parameter

Responders choose option  $j \in (a, r)$  that maximizes their value functions with error.

With i.i.d. extreme value Type 1 errors with constant main across alternatives we obtain the following Conditional Logit formula:

$$\Pr(y_i = a \mid \mathbf{x}_i) = \frac{\exp\left(\frac{\mathbf{x}_i\theta}{\lambda}\right)}{\exp\left(\frac{\mathbf{x}_{is}\theta}{\lambda}\right) + \exp\left(\frac{\mathbf{x}_{ir}\theta}{\lambda}\right)}$$

- $\boldsymbol{\theta}$  and  $\boldsymbol{\lambda}$  can not all be estimated
- Common to normalize one coefficient to 1.

# Ultimatum Game Example: Fehr and Schmidt (1999) preferences

Assume the responder has Fehr and Schmidt (1999) inequality averse preferences. The utility of rejecting is  $V_{ir} = 0$  and utility of accepting is:

$$egin{aligned} &V_{ia} = \pi_{ia} - lpha \max\left(0, \Pi - 2\pi_{ia}
ight) - eta \max\left(0, 2\pi_{ia} - \Pi
ight) \ &= \mathbf{x}_{ia} oldsymbol{ heta} \end{aligned}$$

i.e. we have

$$\begin{aligned} \mathbf{x}_{ia} &= \left[\pi_{ia}, \max\left(0, \Pi - 2\pi_{ia}\right), \max\left(0, 2\pi_{ia} - \Pi\right)\right] \\ \boldsymbol{\theta} &= (1, -\alpha, -\beta)' \end{aligned}$$

Here coefficient of own payoffs  $\pi_{ia}$  is normalized to 1 which allows  $\lambda$  to be estimated freely. Also allows interpreting  $\alpha$  and  $\beta$  as the the price the subject is willing to pay for reducing inequality by one unit.

Part of heterogeneity in behavior in a given treatment condition possibly reflects preference heterogeneity, implying that  $\theta_i$  varies across *i*.

Often, we wish to decompose preference heterogeneity:

- Observable individual characteristics.
- Unobserved heterogeneity.

The unobservable part is usually larger, and capturing it is more complex (see for example von Gaudecker, van Soest and Wengström, 2011).

Three main methods in behavioral economics:

- 1. Parametric approach: E.g. assume that parameters are normally distributed and estimate the distribution parameters.
- Finite mixture (non-parametric): Each subject belong to a class k defined by a common parameter vector θ<sub>k</sub>
- 3. Individual-level estimation (non-parametric): Estimate the model on individual separately

Decision-making under uncertainty is central in experimental and behavioral economics.

- So far: Models without uncertainty.
- Now: Estimation of structural models with uncertainty.
- Challenge: Value functions aren't simple linear combinations.

- Measuring risk preferences via experimental designs.
- Builds on earlier work by Hey and Orme (1994), Holt and Laury (2002) and others
- Online experiment with N = 1422 (CentERpanel)
- Unbalanced panel of binary decisions between lotteries  $\pi_j^A$ ,  $\pi_j^B$ ,  $j = 1 \dots J_i$  with  $J_i \in \{28, 32, \dots, 56\}$
- Large set of controls (CentERpanel): sex, age, education, household income, wealth, financial experience/knowledge, short / long completion time.

#### Screenshot of Lottery 5, First Screen



|               | Option A    |        |        |  | Option B    |        |        |  |
|---------------|-------------|--------|--------|--|-------------|--------|--------|--|
| Payoff        | Uncertainty | Low    | High   |  | Uncertainty | Low    | High   |  |
| Configuration | Resolution  | Payoff | Payoff |  | Resolution  | Payoff | Payoff |  |
|               |             |        |        |  |             |        |        |  |
| 1             | early       | 27     | 33     |  | early       | 0      | 69     |  |
| 2             | early       | 39     | 48     |  | early       | 9      | 87     |  |
| 3             | early       | 12     | 15     |  | early       | -15    | 48     |  |
| 4             | early       | 33     | 36     |  | late        | 6      | 69     |  |
| 5             | early       | 18     | 21     |  | late        | -9     | 54     |  |
| 6             | early       | 24     | 27     |  | early       | -3     | 60     |  |
| 7             | late        | 15     | 18     |  | late        | -12    | 51     |  |

Note: The order was randomised.

#### **Expected Utility of Income**

• Start from a simple exponential utility model with loss aversion:

$$u(z,\gamma,\lambda) = \begin{cases} -rac{1}{\gamma}e^{-\gamma z} & ext{for } z \ge 0 \\ rac{\lambda-1}{\gamma} - rac{\lambda}{\gamma}e^{-\gamma z} & ext{for } z < 0 \end{cases}$$

where  $z \in \mathbb{R}$  denote lottery outcomes,  $\gamma \in \mathbb{R}$  is the coefficient of absolute risk aversion,  $\lambda \in \mathbb{R}_+$  is the loss aversion parameter

### **Expected Utility of Income**

• Start from a simple exponential utility model with loss aversion:

$$u(z,\gamma,\lambda) = \begin{cases} -\frac{1}{\gamma}e^{-\gamma z} & \text{for } z \ge 0\\ \\ \frac{\lambda-1}{\gamma} - \frac{\lambda}{\gamma}e^{-\gamma z} & \text{for } z < 0 \end{cases}$$

where  $z \in \mathbb{R}$  denote lottery outcomes,  $\gamma \in \mathbb{R}$  is the coefficient of absolute risk aversion,  $\lambda \in \mathbb{R}_+$  is the loss aversion parameter

• Why not power utility? Problems around the origin, difficult to incorporate uncertainty resolution preferences with positive and negative payoffs. But some robustness checks in the paper (worse fit).

- We also estimate a preference of uncertainty resolution  $\rho$  using the framework of Kreps & Porteus (1978):
- This gives a slightly modified utility function.

$$v(z,\gamma,\lambda,\rho) = \begin{cases} \max\{-\frac{\lambda}{\gamma},0\} & -\frac{1}{\gamma}e^{-\gamma\rho^{S}z} & \text{for } z \ge 0\\ \max\{-\frac{\lambda}{\gamma},0\} + \frac{\lambda-1}{\gamma} - \frac{\lambda}{\gamma}e^{-\gamma\rho^{S}z} & \text{for } z < 0 \end{cases}$$

### **Overall Likelihood: Certainty Equivalents and Errors**

 Binary choice between lotteries π<sup>A</sup> and π<sup>B</sup>. Take the difference in certainty equivalents between the lotteries for choice *j* by individual *i*:

$$\Delta \mathsf{CE}_{ij} = \mathsf{CE}(\pi_j^B, \gamma_i, \lambda_i, \rho_i) - \mathsf{CE}(\pi_j^A, \gamma_i, \lambda_i, \rho_i)$$

• The actual choice is then:  $Y_{ij} = \mathbb{I} \{ \Delta C E_{ij} + \tau \varepsilon_{ij} > 0 \}; \varepsilon_{ij} \sim \Lambda$ 

#### **Overall Likelihood: Certainty Equivalents and Errors**

 Binary choice between lotteries π<sup>A</sup> and π<sup>B</sup>. Take the difference in certainty equivalents between the lotteries for choice *j* by individual *i*:

$$\Delta \mathsf{CE}_{ij} = \mathsf{CE}(\pi_j^B, \gamma_i, \lambda_i, \rho_i) - \mathsf{CE}(\pi_j^A, \gamma_i, \lambda_i, \rho_i)$$

- The actual choice is then:  $Y_{ij} = \mathbb{I} \{ \Delta C E_{ij} + \tau \varepsilon_{ij} > 0 \}; \varepsilon_{ij} \sim \Lambda$
- Likelihood of each observation:

$$I_{ij} = (1 - \omega_i) \Lambda \left( (2Y_{ij} - 1) \frac{1}{\tau} \Delta \mathsf{CE}_{ij} \left( \pi_j^{\mathcal{A}}, \pi_j^{\mathcal{B}}, \gamma_i, \lambda_i, \rho_i \right) \right) + \frac{\omega_i}{2},$$

 Two sources of error: Monetary cost of "wrong" choice τ, probability for random behaviour ω<sub>i</sub>.

#### **Distributional Assumptions**

• Write: 
$$\eta_i = g_{\eta}(X_i^{\eta}\beta^{\eta} + \xi_i^{\eta}), \quad \eta_i = \{\gamma_i, \lambda_i, \rho_i, \omega_i\}$$

where the  $g_{\eta}(\cdot)$  serve to impose the theoretical parameter restrictions.

• Assume joint normality of:

$$\begin{pmatrix} g_{\gamma}^{-1}(\gamma_{i}) \\ g_{\lambda}^{-1}(\lambda_{i}) \\ g_{\rho}^{-1}(\rho_{i}) \\ g_{\omega}^{-1}(\omega_{i}) \end{pmatrix} \sim N \begin{pmatrix} \begin{pmatrix} X_{i}^{\gamma}\beta^{\gamma} \\ X_{i}^{\lambda}\beta^{\lambda} \\ X_{i}^{\rho}\beta^{\rho} \\ X_{i}^{\omega}\beta^{\omega} \end{pmatrix}, \ \Sigma' \Sigma \end{pmatrix}$$

#### Individual Likelihoods and Estimation Details

• Group the 4 unobserved components in  $\xi_i$ , define  $\xi^* = (\Sigma')^{-1}\xi$  and get the individual likelihood:

$$I_i = \int_{\mathbb{R}^4} \left[ \prod_{j \in J_i} I_{ij} \left( \pi_j^A, \pi_j^B, Y_{ij}, \tau, g(X_i\beta + \xi_i^*) \right) \right] \phi(\xi^*) d\xi^*$$

Approximate the integral by numerical integration with Halton sequences.

#### Individual Likelihoods and Estimation Details

• Group the 4 unobserved components in  $\xi_i$ , define  $\xi^* = (\Sigma')^{-1}\xi$  and get the individual likelihood:

$$I_i = \int_{\mathbb{R}^4} \left[ \prod_{j \in J_i} I_{ij} \left( \pi_j^A, \pi_j^B, Y_{ij}, \tau, g(X_i\beta + \xi_i^*) \right) \right] \phi(\xi^*) d\xi^*$$

- Approximate the integral by numerical integration with Halton sequences.
- Maximise overall likelihood using BFGS algorithm with numerical derivatives, variance-covariance matrix via OPG, delta method for transformed parameters.

- Median utility function concave ( $\gamma = .032$ ), has a kink at zero ( $\lambda = 2.4$ ), uncertainty resolution does not matter for the median subject ( $\rho = 1$ )
- Implied risk premia comparable to other studies
- Median random choice propensity of about 8.3%. Together with  $\tau =$  4.1, this implies:
  - $P(Y_j) = .88$  for  $\Delta CE_j = 10$  Euros and
  - $P(Y_j) = .55$  for  $\Delta CE_j = 1$  Euro.

- Women are more risk averse and loss averse, more inconsistencies.
- Positive age gradient of risk aversion and error frequency. Loss aversion peaks at ages 35-44 and decreases thereafter.
- Higher educated persons: less risk averse, substantially fewer mistakes.
- Little effects of income and wealth but errors decrease in wealth.
- No significant associations for uncertainty resolution preferences.

Apesteguia and Ballester (2018) discussed identification problems associated with estimation of risk preferences based on random utility models.

Consider the following lotteries:

- Lottery A: Pays \$1 with probability 0.9, and \$60 with probability 0.1.
- Lottery B: Pays \$5 with certainty.
- Add type 1 extreme value random disturbances scaled by  $\lambda$  to the expected utility.

We can express the probability of choosing the risk lottery as

$$\Pr(\text{Choose } = A) = \frac{\exp(EU_{iA}(\theta)/\lambda)}{\exp(EU_{iA}(\theta)/\lambda) + \exp(EU_{iB}(\theta)/\lambda)}$$

Expectation: Probability of choosing A decreases with risk aversion  $\theta$ . Apesteguia and Ballester (2018) showed that this may not always be the case.

#### **Monotonicity Issues**



Figure 2: Predicted probability of choosing risky lottery A

#### **Monotonicity Issues**



Figure 3: Expected Utility Difference between Safe and Risky lottery

- Probability of choosing the risky lottery initially decreases with risk aversion before increasing for high levels of risk aversion.
- Non-monotonicity arises due to varying scale of utility with risk aversion.
- Cardinal value of difference in expected utility diminishes and flattens out when  $\theta$  increases.
- Noise level may dominate differences in value functions for high risk aversion.

- Wilcox (2011): RUM approach called "contextual utility" that re-scales valuations.
- Certainty equivalents provide a common metric regardless of  $\theta$ .
- Both methods can restore monotonicity, but not always.
- Apesteguia and Ballester (2018) introduced RPM as an alternative to RUM.

### Random Parameter Model (RPM)

Preserves monotonicity. Randomness is introduced through unobserved heterogeneity of the risk preferences of subjects.

$$U(x_{ij}; \theta_i) = U(x_{ij}; \theta + \epsilon_i)$$

where  $\epsilon_i$  follows a monotone cumulative distribution function over the space of risk preferences.

The model is estimated by Maximum Likelihood

#### Which approach to use?

- Clear objectives essential before implementing a design and conducting experiments.
- For some designs, all approaches work
- RPM preferable in more general choice settings, but can be harder to implement when having more than one parameter to estimate

- Experiments enable exogenous variation of subjects' choice environment
- Behavioral Economics provide a rich set of models of human behavior
- Choice between reduced-form or structural approaches should align with research questions
- Important to decide empirical approach prior to experiment design

- Careful experimental design (including simulations) critical for separate identification of model features.
- Experimental methods can reduce assumptions and validate models.
- Synergies between experiments and structural modeling