# The Perron-Frobenius theorem 

Vanni Noferini (Aalto University)

Aalto University

October 30, 2023

## Historical remarks

- The theorem was proved first by O. Perron (then a student) in 1907 for positive matrices


## Historical remarks

- The theorem was proved first by O. Perron (then a student) in 1907 for positive matrices
- In 1912 the already famous G. Frobenius was able to weaken the assumption and consider certain classes of non-negative matrices


## Historical remarks

- The theorem was proved first by O. Perron (then a student) in 1907 for positive matrices
- In 1912 the already famous G. Frobenius was able to weaken the assumption and consider certain classes of non-negative matrices
- I will state it for graphs (nlog).


## The theorem

## Theorem

Let $G$ be a strongly connected graph with adjaceny matrix $A$. Suppose that the largest (in modulus) eigenvalue of $A$ has modulus $\rho$. Then:
(1) $\rho>0$ is an eigenvalue of $A$ called the Perron-Frobenius eigenvalue;
(2) $\rho$ is simple;
(3) there is an eigenvector $v>0$, i.e., all its entries are real positive numbers, such that $A v=\rho v$;
(9) the previous property does not hold for any other eigenvalue of $A$ other than $\rho$;
(5) if, in addition, there is an integer $k$ such that all the entries of $A^{k}$ are positive, then all eigenvalues other than $\rho$ are strictly less than $\rho$.

## The assumptions are needed

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

Then:

## The assumptions are needed

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

Then:

- The corresponding graph is not strongly connected! (Assumption is false)


## The assumptions are needed

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] .
$$

Then:

- The corresponding graph is not strongly connected! (Assumption is false)
- The largest eigenvalue is 0 which is not a positive number (statement 1 fails)


## The assumptions are needed

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Then:

- The corresponding graph is not strongly connected! (Assumption is false)
- The largest eigenvalue is 0 which is not a positive number (statement 1 fails)
- 0 as algebraic multiplicity 2 (statement 2 fails)


## The assumptions are needed

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Then:

- The corresponding graph is not strongly connected! (Assumption is false)
- The largest eigenvalue is 0 which is not a positive number (statement 1 fails)
- 0 as algebraic multiplicity 2 (statement 2 fails)
- The eigenvectors associated to 0 are the nonzero multiples of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ no way to pick a positive one (statement 3 fails)


## How about statement 5?

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

## How about statement 5?

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

This time the graph is strongly connected, however $A^{k}=A$ if $k$ is odd or $A^{k}=l$ if $k$ is even. So $A^{k}$ is never positive.

## How about statement 5?

Consider

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

This time the graph is strongly connected, however $A^{k}=A$ if $k$ is odd or $A^{k}=l$ if $k$ is even. So $A^{k}$ is never positive.
$A$ has eigenvalues 1 and -1 , so item 5 fails. (Exercise: check that items 1 through 4 are true though!)

