The Perron-Frobenius theorem

Vanni Noferini (Aalto University)

Aalto University

October 30, 2023

Historical remarks

• The theorem was proved first by O. Perron (then a student) in 1907 for positive matrices

Historical remarks

- The theorem was proved first by O. Perron (then a student) in 1907 for positive matrices
- In 1912 the already famous G. Frobenius was able to weaken the assumption and consider certain classes of non-negative matrices

Historical remarks

- The theorem was proved first by O. Perron (then a student) in 1907 for positive matrices
- In 1912 the already famous G. Frobenius was able to weaken the assumption and consider certain classes of non-negative matrices
- I will state it for graphs (nlog).

The theorem

Theorem

Let G be a strongly connected graph with adjaceny matrix A. Suppose that the largest (in modulus) eigenvalue of A has modulus ρ . Then:

- **1** $\rho > 0$ is an eigenvalue of A called the Perron-Frobenius eigenvalue;
- ρ is simple;
- **3** there is an eigenvector v > 0, i.e., all its entries are real positive numbers, such that $Av = \rho v$;
- **1** the previous property does not hold for any other eigenvalue of A other than ρ ;
- if, in addition, there is an integer k such that all the entries of A^k are positive, then all eigenvalues other than ρ are strictly less than ρ .

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Then:

• The corresponding graph is not strongly connected! (Assumption is false)

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

- The corresponding graph is not strongly connected! (Assumption is false)
- The largest eigenvalue is 0 which is not a positive number (statement 1 fails)

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

- The corresponding graph is not strongly connected! (Assumption is false)
- The largest eigenvalue is 0 which is not a positive number (statement 1 fails)
- 0 as algebraic multiplicity 2 (statement 2 fails)

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

- The corresponding graph is not strongly connected! (Assumption is false)
- The largest eigenvalue is 0 which is not a positive number (statement 1 fails)
- 0 as algebraic multiplicity 2 (statement 2 fails)
- The eigenvectors associated to 0 are the nonzero multiples of $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ no way to pick a positive one (statement 3 fails)

How about statement 5?

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

How about statement 5?

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

This time the graph is strongly connected, however $A^k = A$ if k is odd or $A^k = I$ if k is even. So A^k is never positive.

How about statement 5?

Consider

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

This time the graph is strongly connected, however $A^k = A$ if k is odd or $A^k = I$ if k is even. So A^k is never positive.

A has eigenvalues 1 and -1, so item 5 fails. (Exercise: check that items 1 through 4 are true though!)