Applied Microeconometrics II, Lecture 5

Ciprian Domnisoru Aalto University

Outline

- Motivational look back at omitted variable bias
- Synthetic control method
- Summarizing DD robustness checks.

Omitted variable bias

- Omitted variable bias arises if an omitted variable is both: (i) a determinant of Y and (ii) correlated with at least one included regressor.
- When reviewing research:
 - identify a plausible candidate for the omitted variable
 - predict the direction of the bias, based on its expected correlation with X and Y
 - demonstrate the effect by controlling for the omitted variable or a proxy, and showing how results change
- two-way fixed effects/ difference in differences estimators do a great deal to alleviate omitted variable bias

OVB example

reg fatality	yrate beertax	, robust				
inear regress	sion			Number of	obs =	336
				F(1, 334)	=	47.59
				Prob > F	=	0.0000
				R-squared	=	0.0934
				Root MSE	=	.54374
atalityrate	Coef.	Robust Std. Err.		P> t	[95% Conf	. Interval]
beertax	.3646054	.0528524	6.90	0.000	.2606399	.468571
Deertax		.0471297	39.32	0.000	1,760599	1,946016

OVB example

	reg fatality	rate beertax	year2-year7	state2-s	state48, c	luster(sta	te)
	Linear regress	ion			Number o	f obs		336
					F(6, 47)			
					Prob > F			
					R-square	d		0.9089
					Root MSE			.18788
			(Std.	Err. adj	justed for	48 cluste	rs	in state)
ĺ			Robust					
	fatalityrate	Coef.	Std. Err.		P> t	[95% Con	f.	Interval]
ĺ	beertax	6399799	.3857867	-1.66	0.104	-1.416083		.1361229
	year2	0799029	.0379069	-2.11	0.040	1561617		003644
	year3	0724206	.0474088	-1.53	0.133	1677948		.0229537
	year4	1239763	.0497587	-2.49	0.016	2240779		0238747
	year5	0378645	.0616479	-0.61	0.542	1618841		.0861552
	year6	0509021	.0687224	-0.74	0.463	1891536		.0873495
	year7	0518038	.0695801	-0.74	0.460	1917809		.0881732
	state2	5468622	.5064424	-1.08	0.286	-1.565693		.4719685
	state3	6385298	.3986016	-1.60	0.116	-1.440413		.1633531
	state4	-1.485192	.5892726	-2.52	0.015	-2.670655		2997283
	state5	-1.461534	.5521075	-2.65	0.011	-2.572231		3508375

OVB example

reg fatality	rate beertax	year2-year7	state2-s	state48,	robust		
Linear regress	sion			Number	of obs		336
				F(54, 2	281)		128.89
				Prob >			0.0000
				R-squar	ed		0.9089
				Root MS	E		.18788
		Robust					
fatalityrate	Coef.	Std. Err.		P> t	[95%	Conf.	Interval]
beertax	6399799	.2547149	-2.51	0.013	-1.141	371	1385884
year2	0799029	.0502708	-1.59	0.113	1788	579	.0190522
year3	0724206	.0452466	-1.60	0.111	161	486	.0166448
year4	1239763	.0460017	-2.70	0.007	214	528	0334246
year5	0378645	.0486527	-0.78	0.437	1336	344	.0579055
year6	0509021	.0516113	-0.99	0.325	1524	958	.0506917
year7	0518038	.05387	-0.96	0.337	1578	438	.0542361
state2	5468622	.3569504	-1.53	0.127	-1.249	498	.155774
state3	6385298	.292595	-2.18	0.030	-1.214	486	0625735
state4	-1.485192	.4121171	-3.60	0.000	-2.29	642	6739631

Omitted Variable Bias

The appropriate equation is a long regression

$$Y_i = \alpha' + \beta' P_i + \gamma' X_i + e'_i$$

but instead we estimate a short regression leaving out X_i

$$Y_i = \alpha^s + \beta^s P_i + e_i^s$$

In the short regression we have bias since we don't account for selection
 The omitted variable bias (OVB) formula shows

$$\beta^s = \beta' + \pi_1 \gamma'$$

where π_1 is the coefficient of the regression

$$X_i = \pi_0 + \pi_1 P_i + u_i$$

Essentially in the *short* regression β^s estimates the effect of P_i including effects that result from X_i.

Omitted Variable Bias

• The OLS estimator of β^s is

$$\beta^{s} = rac{Cov(Y_i, P_i)}{Var(P_i)}$$

Substitutes in the "true" long regression for $\ln Y_i$

$$\beta^{s} = \frac{Cov(\alpha^{l} + \beta^{l}P_{i} + \gamma^{l}X_{i} + e_{i}^{l}, P_{i})}{Var(P_{i})}$$

$$= \frac{\beta^{l}Var(P_{i}) + \gamma^{l}Cov(X_{i}, P_{i}) + Cov(e_{i}^{l}, P_{i})}{Var(P_{i})}$$

$$= \beta^{l} + \frac{Cov(X_{i}, P_{i})}{Var(P_{i})}\gamma^{l}$$

$$= \beta^{l} + \pi_{1}\gamma^{l}$$

Angrist and Pishcke: short equals long plus the effect of omitted times the regression of omitted on included

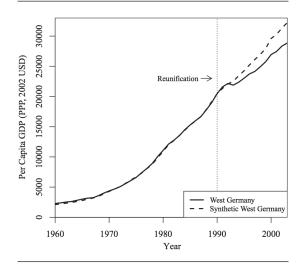
Omitted Variable Bias in diff-in-diff context

The appropriate equation is a long regression

$$Y_{it} = \alpha' + \beta' P_{it} + \gamma' X_{it} + \delta_t + \lambda_i + e'_{it}$$

but instead we estimate a short regression leaving out X_{it}

$$Y_{it} = \alpha^s + \beta^s P_{it} + \delta_t + \lambda_i + e_{it}^s$$


- In the difference in differences context, a variable correlated with the treatment effect as well as the outcome would be a failure of the paralell trends assumption- selection into treatment / bad controls.
- In two-way fixed effects models without quasi-exogeneous variation, correlation of the independent variable with time-varying covariates represent OVB bias.
- Other mechanical biases remain, particularly when panels are unbalanced and treatments heterogeneous over time within unit.

The Synthetic Control Method

Synthetic Control Method

- The synthetic control method provides a systematic way to choose comparison units in *small-sample* comparative case studies
- Distinctive feature of comparative studies: units of analysis are often aggregate entities – countries, regions, states – for which suitable single comparisons often do not exist
- a combination of comparison units the "synthetic control" often does a better job of reproducing the characteristics of a treated unit than any single comparison unit alone
- comparison unit is selected as the weighted average of all potential comparison units that best resembles the characteristics of the case of interest
- Example: Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2015. "Comparative Politics and the Synthetic Control Method." *American Journal of Political Science*, 59(2): 495-510.

FIGURE 2 Trends in per Capita GDP: West Germany versus Synthetic West Germany

The Synthetic Control Method: Set-up

- Suppose that there is a sample of J+1 units (e.g., countries) indexed by j
 - unit j = 1 is the case of interest, or the "treated unit"
 - the unit exposed to the event or intervention of interest
 - units j = 2 to j = J + 1 are potential comparisons
 - they constitute the "donor pool", a reservoir of potential comparison units
 - comparison units are meant to approximate the counterfactual of the treated unit in the absence of intervention
 - thus, it is important to restrict the donor pool to units with outcomes that are thought to be driven by the same structural process as for the treated unit
 - in the application, we will investigate the effects of the 1990 German reunification on the economic prosperity in West Germany
 - and the set of potential comparisons is a sample of OECD countries

The Synthetic Control Method: Set-up

- We assume that the sample is a balanced panel
 - a longitudinal dataset where all units are observed at the same time periods, t = 1, ..., T
- We also assume that the sample includes
 - \blacktriangleright a positive number of preintervention periods, T_0
 - \blacktriangleright a positive number of postintervention periods, T_1

$$T = T_0 + T_1$$

- The goal of the study is to measure the effect of the intervention of interest on some postintervention outcome
 - unit 1 is exposed to the intervention ("treatment") during periods $T_0 + 1, ..., T$
 - and the intervention has no effect during the pretreatment period 1, ..., T_0

The Synthetic Control Estimator

We define a synthetic control as a weighted average of the units in the donor pool

- $0 \le w_j \le 1$ for j = 2, ..., J, and $w_2 + ... + w_{J+1} = 1$
- ► a synthetic control can be represented by a (J × 1) vector of weights W = (w₂, ..., w_{J+1})'
- Choosing a particular value for W is equivalent to choosing a synthetic control
 - the method selects the value of W such that the characteristics of the treated unit are best resembled by the characteristics of the synthetic control

The Synthetic Control Estimator

- ► Let X₁ be a (k × 1) vector containing the values of the preintervention characteristics of the treated unit that we aim to match as closely as possible
- Some risk of specification search: Ferman, Bruno, Cristine Pinto, and Vitor Possebom. 2020. "Cherry Picking with Synthetic Controls." Journal of Policy Analysis and Management.
- Let X₀ be the (k × J) matrix collecting the values of the same variables for the units in the donor pool
 - the preintervention characteristics in X₁ and X₀ may include preintervention values of the outcome variable
- The difference between the preintervention characteristics of the treated unit and a synthetic control is given by the vector X₁ X₀W
 - the synthetic control, W^* , minimizes the size of this difference

Synthetic control: finding the weights

Minimizing the quantity X1-WX₀

$$\|\boldsymbol{X}_1 - \boldsymbol{X}_0 \boldsymbol{W}\| = \left(\sum_{h=1}^k v_h \left(X_{h1} - w_2 X_{h2} - \dots - w_{J+1} X_{hJ+1}\right)^2\right)^{1/2}$$

- Notice an additional v weight: that is the weight we place on various characteristics X (as opposed to the weights placed on control units J).
- The weights v can be chosen based on evaluating how good of a predictor of Y_{1t} they are [subjective assessment of predictive power of X, regression, cross-validation].
- synth command in Stata/Matlab/R, see criticism: Kuosmanen et al. Design Flaw of the Synthetic Control Method. Working paper.

The Synthetic Control Estimator

- Let Y_{jt} be the outcome of unit j at time t
 - ▶ let Y_1 be a $(T_1 \times 1)$ vector collecting the postintervention outcome values for the treated unit: $Y_1 = (Y_{1,T_0+1}, ..., Y_{1,T})'$
 - similarly, let Y_0 be a $(T_1 \times J)$ matrix, where column j contains the postintervention outcomes values for unit j + 1
- ► The synthetic control estimator of the effect of the treatment is given by the comparison $Y_1 Y_0 W^*$
 - comparison between postintervention outcomes between the treated unit, which is exposed to the intervention, and the synthetic control, which is not exposed to the intervention
- ► Alternatively, for a postintervention period t (with t ≥ T₀), the synthetic control estimator of the effect of the treatment is given by the comparison between the outcome for the treated unit and the outcome for the synthetic control at that period

$$Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt}$$

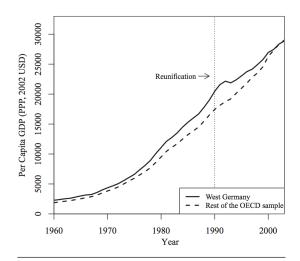
The Synthetic Control Estimator

- The matching variables in X₀ and X₁ are meant to be predictors of postintervention outcomes
 - the may include preintervention values of the outcome variable
- Abadie, Diamond, and Hainmueller (2010) argue that if the number of preintervention periods in the data is large, matching on preintervention outcomes also controls for time-varying unobserved heterogeneity on the outcome
 - intuition: only units that are alike in both observed and unobserved determinants of the outcome variable should produce similar trajectories of the outcome variable over extended periods of time

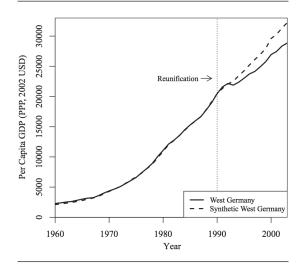
- After the fall of the Berlin Wall on Nov. 9, 1989, the German Democratic Republic and the Federal Republic of Germany ("West Germany") officially reunified on Oct. 3, 1990
 - Abadie, Diamond, and Hainmueller (2015) examines the impact on per capita GDP in West Germany
- Data: annual country-level panel data for the period 1960-2003
 dataset allows for a preintervention period of 30 years
- The synthetic West Germany is constructed as a weighted average of potential control countries in the donor pool
 - donor pool includes a sample of 16 OECD member countries: Australia, Austria, Belgium, Denmark, France, Greece, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal, Spain, Switzerland, the U.K., and the U.S.

TABLE 2Economic Growth Predictor Means
before German Reunification

	West Germany	Synthetic West Germany	OECD Sample
GDP per capita	15808.9	15802.2	8021.1
Trade openness	56.8	56.9	31.9
Inflation rate	2.6	3.5	7.4
Industry share	34.5	34.4	34.2
Schooling	55.5	55.2	44.1
Investment rate	27.0	27.0	25.9


Notes: GDP per capita, inflation rate, trade openness, and industry share are averaged for the 1981–90 period. Investment rate and schooling are averaged for the 1980–85 period. The last column reports a population-weighted average for the 16 OECD countries in the donor pool.

Country	Synthetic Control Weight	Regression Weight	Country	Synthetic Control Weight	Regression Weight
Australia	0	0.12	Netherlands	0.09	0.14
Austria	0.42	0.26	New Zealand	0	0.12
Belgium	0	0	Norway	0	0.04
Denmark	0	0.08	Portugal	0	-0.08
France	0	0.04	Spain	0	-0.01
Greece	0	-0.09	Switzerland	0.11	0.05
Italy	0	-0.05	United Kingdom	0	0.06
Japan	0.16	0.19	United States	0.22	0.13


TABLE 1 Synthetic and Regression Weights for West Germany

Notes: The synthetic weight is the country weight assigned by the synthetic control method. The regression weight is the weight assigned by linear regression. See text for details.

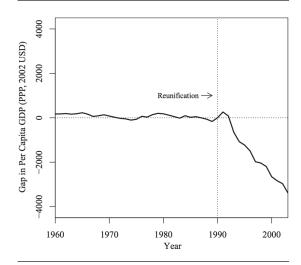
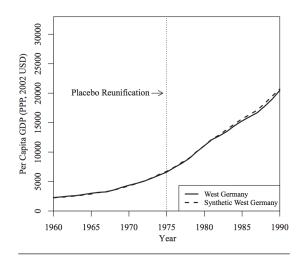

FIGURE 1 Trends in per Capita GDP: West Germany versus Rest of the OECD Sample

FIGURE 2 Trends in per Capita GDP: West Germany versus Synthetic West Germany


FIGURE 3 Per Capita GDP Gap between West Germany and Synthetic West Germany

- To evaluate the credibility of the results, researchers conduct placebo studies
 - 1. treatment of interest is reassigned to a year other than 1990
 - compare effect for West Germany to a placebo effect a period before the reunification actually took place
 - a large placebo estimate would undermine confidence in the results (see Fig 4)
 - 2. treatment of interest is reassigned to different countries
 - compare the estimated effect on West Germany to the distribution of placebo effects obtained for other countries
 - deem the effect significant if the estimated effect for West Germany is unusually large relative to the distribution of placebo effects
 - or, if the ratio of postreunification RMSPE (root mean square prediction error) to prereunification RMSPE for W Germany is larger than for control countries (see figure 5)

$$\blacktriangleright \text{ RMSPE} = \sqrt{\frac{1}{T} \sum_{t=1}^{T} (Y_{1t} - \sum_{j=2}^{J+1} w_j^* Y_{jt})^2}$$

FIGURE 4 Placebo Reunification 1975–Trends in per Capita GDP: West Germany versus Synthetic West Germany

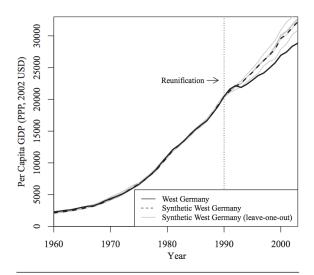


FIGURE 5 Ratio of Postreunification RMSPE to Prereunification RMSPE: West Germany and Control Countries

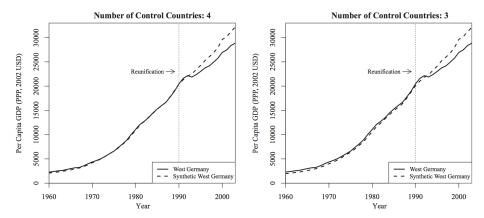
West Germany				
Norway				
Greece				
Italy				
New Zealand				
United States				
Spain				
Australia				
Belgium				
Switzerland				
Austria				
United Kingdom				
Japan				
Netherlands				
France				
Denmark				
Portugal	8			
		5	10	15
	F	Postperiod RM	ISPE / Preperiod RM	SPE

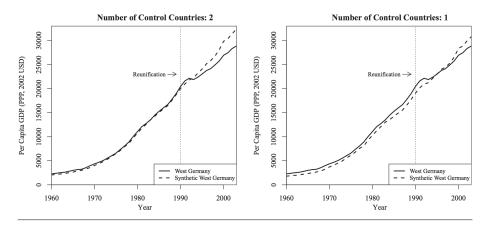
- To evaluate the credibility of the results, researchers run sensitivity analysis
 - 1. test the robustness of main results to changes in the country weights
 - iteratively reestimate the baseline model to construct a synthetic West Germany omitting in each iteration one of the countries that received a positive weight
 - this check allows us to evaluate the extent to which results are driven by any particular control country (see figure 6)
 - 2. test the robustness to reducing the number of units in the synthetic control
 - the original synthetic West Germany is a weighted average of five control countries: Austria, the U.S., Japan, Switzerland, and the Netherlands
 - now construct synthetic controls for West Germany allowing only combinations of four, three, two, and a single control country, respectively (see tables 3 and 4, and figure 7)

FIGURE 6 Leave-One-Out Distribution of the Synthetic Control for West Germany

Synthetic Combination					
Five control countries	Austria	USA	Japan	Switzerland	Netherlands
	0.42	0.22	0.16	0.11	0.09
Four control countries	Austria	USA	Japan	Switzerland	
	0.56	0.22	0.12	0.10	
Three control countries	Austria	USA	Japan		
	0.59	0.26	0.15		
Two control countries	Austria	USA			
	0.76	0.24			
One control country	Austria				
	1				

TABLE 3 Synthetic Weights from Combinations of Control Countries


Notes: Countries and W-weights for synthetic control are constructed from the best-fitting combination of five, four, three, and two countries, as well as one country. See text for details.


TABLE 4 Economic Growth Predictor Means before the German Reunification for Combinations of Control Countries

	West Germany			hetic West Ger ountries in syn			OECD
		5	4	3	2	1	Sample
GDP per capita	15808.9	15802.2	15800.9	15492.9	15580.9	14817.0	8021.1
Trade openness	56.8	56.9	55.9	52.5	61.5	74.6	31.9
Inflation rate	2.6	3.5	3.6	3.6	3.8	3.5	7.4
Industry share	34.5	34.4	34.6	34.8	34.3	35.5	34.2
Schooling	55.5	55.2	57.6	57.7	60.7	60.9	44.1
Investment rate	27.0	27.0	27.2	26.8	25.6	26.6	25.9

Notes: GDP per capita, inflation rate, and trade openness are averaged for the 1981–1990 period. Industry share is averaged for the 1981–1990 period. Investment rate and schooling are averaged for the 1980–1985 period.

- ► Abadie et al. (2010) study the effects of Proposition 99
 - a large-scale tobacco control program that California implemented in 1988
- They use synthetic control methods
 - CA is quite different from other states in tobacco consumption
 - it is difficult to know how CA would have evolved in absence of the tobacco control program

Findings

- following Proposition 99, tobacco consumption fell markedly in CA relative to a comparable synthetic control region
- by the year 2000, annual per-capita cigarette sales in CA were about 26 packs lower than what they would have been in the absence of Proposition 99

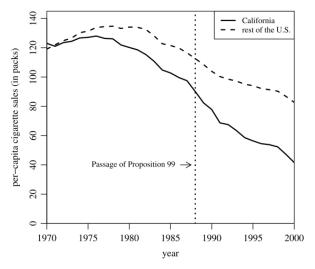


Figure 1. Trends in per-capita cigarette sales: California vs. the rest of the United States.

State	Weight	State	Weight
Alabama	0	Montana	0.199
Alaska	_	Nebraska	0
Arizona	-	Nevada	0.234
Arkansas	0	New Hampshire	0
Colorado	0.164	New Jersey	-
Connecticut	0.069	New Mexico	0
Delaware	0	New York	-
District of Columbia	-	North Carolina	0
Florida	-	North Dakota	0
Georgia	0	Ohio	0
Hawaii	_	Oklahoma	0
Idaho	0	Oregon	-
Illinois	0	Pennsylvania	0
Indiana	0	Rhode Island	0
Iowa	0	South Carolina	0
Kansas	0	South Dakota	0
Kentucky	0	Tennessee	0
Louisiana	0	Texas	0
Maine	0	Utah	0.334
Maryland	_	Vermont	0
Massachusetts	_	Virginia	0
Michigan	_	Washington	-
Minnesota	0	West Virginia	0
Mississippi	0	Wisconsin	0
Missouri	0	Wyoming	0

Table 2. State weights in the synthetic California

	Cal	ifornia	Average of	
Variables	Real	Synthetic	38 control states	
Ln(GDP per capita)	10.08	9.86	9.86	
Percent aged 15-24	17.40	17.40	17.29	
Retail price	89.42	89.41	87.27	
Beer consumption per capita	24.28	24.20	23.75	
Cigarette sales per capita 1988	90.10	91.62	114.20	
Cigarette sales per capita 1980	120.20	120.43	136.58	
Cigarette sales per capita 1975	127.10	126.99	132.81	

Table 1. Cigarette sales predictor means

NOTE: All variables except lagged cigarette sales are averaged for the 1980–1988 period (beer consumption is averaged 1984–1988). GDP per capita is measured in 1997 dollars, retail prices are measured in cents, beer consumption is measured in gallons, and cigarette sales are measured in packs.

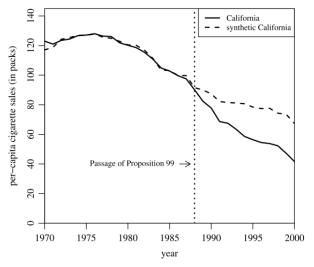
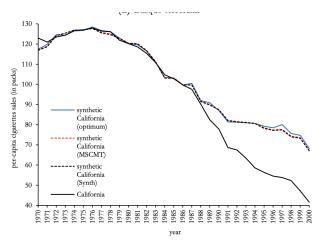



Figure 2. Trends in per-capita cigarette sales: California vs. synthetic California.

Kuosmanen et al. : criticism of synth

(b) California's tobacco control program

Fig. 1. The impact of suboptimal w weights on the evolution of synthetic controls.

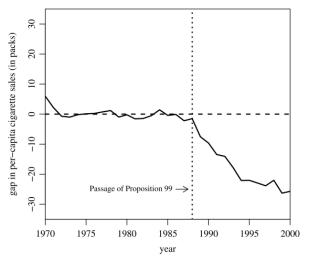


Figure 3. Per-capita cigarette sales gap between California and synthetic California.

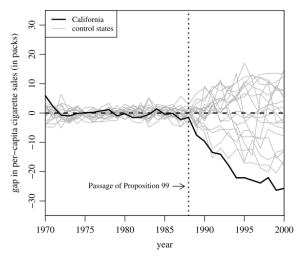


Figure 7. Per-capita cigarette sales gaps in California and placebo gaps in 19 control states (discards states with pre-Proposition 99 MSPE two times higher than California's).

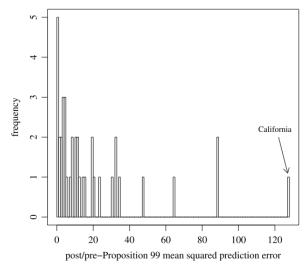


Figure 8. Ratio of post-Proposition 99 MSPE and pre-Proposition 99 MSPE: California and 38 control states.

Difference-in-differences checklist

Difference-in-differences checklist

- Good controls: check for covariates (balance tables), plot pre-trends.
- Did the policies happen when you think they happened?
- Watch out or try to control for packaged policies
- Spillovers to the control group? Think of precautionary behavior in cities that didn't have lockdowns during the COVID-19 pandemic.
- Quasi-exogeneity of the policy: anticipatory behavior?
- Same composition of treatment and control groups? Is migration a risk?
- Triple differences if you have a good second unaffected control group.
- Ideally use balanced panels, keep an eye out for corrections to unbalanced panels and/or treatment heterogeneity over time (Callaway and Sant'Anna, Abraham and Sun, more papers to follow).

Difference-in-differences checklist

- Conducting event studies: useful for picking up pre-trends and detecting reverse causality, mapping treatment intensity over time
- Clustering- use bootstrap if few clusters. If very few treatment units, consider regional variation (impact), RDDs, Fisher permutation test or...
- Synthetic control methods
- Placebo treatments
- In simple two way FE models, use instrumental variable for X_{it} you suspect is correlated with time-varying error term.
- > You may just have to sign and discuss any remaining biases.