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IV review

I Y = α + βX + u

I

I X = α
′
+ δZ + v

I Y = α + β2SLS X̂ + ε

I Use only X̂ , the part of the variation in X that is explained by its
correlation with Z, and uncorrelated with U.
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IV Regression: 2SLS

I Using regression to form an IV estimate—one binary instrument (Zi )
I First Method

1. Estimate the reduced form with this regression

Yi = α0 + ρZi + e0i

the coefficient in this regression has the interpretation

ρ = E [Yi |Zi = 1]− E [Yi |Zi = 0]

2. Estimate the first stage with this regression

Xi = α1 + φZi + e1i

the coefficient in this regression has the interpretation

φ = E [Xi |Zi = 1]− E [Xi |Zi = 0]

3. Form ratio λ = ρ
φ = C (Yi ,Zi )/V (Zi )

C (Xi ,Zi )/V (Zi )
= C (Yi ,Zi )

C (Xi ,Zi )
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IV Regression: 2SLS

I Using regression to form an IV estimate—one binary instrument (Zi )
I Second Method (2SLS)

1. Estimate the first stage with this regression

Xi = α1 + φZi + e1i

and form fitted values X̂i

2. Estimate the regression

Yi = α2 + λX̂i + e2i

This results in the coefficient

λ2SLS =
C (Yi , X̂i )

V (X̂i )
=

C (Yi , α1 + φZi )

V (α1 + φZi )

=
φC (Yi ,Zi )

φ2V (Zi )
=

C (Yi ,Zi )/V (Zi )

φ
=

ρ

φ
= λ

I Second method is same as the first!
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OLS vs. 2SLS bias and weak instruments

I β̂OLS
1 =Cov (X ,Y )

Var (X )
=β1+

Cov (X ,u)
Var (X )

I Notice the bias depends on the exogeneity of X

I β̂2SLS
1 =Cov (Z ,Y )

Cov (Z ,X )
=β1+

Cov (Z ,u)
Cov (Z ,X )

I The 2SLS bias depends on two conditions: exogeneity and relevance.

I In the presence of weak (low relevance) instruments, the bias in 2SLS
can be much larger than the OLS bias.

I To make matters worse, the standard normal asymptotic approximation
for the sampling distribution of the 2SLS estimator relies on the
correlation between instruments and the endogeneous regressor. If
correlation is close to zero, approximation will not be accurate.

I Corrections for this start at F>10 in the homoskedastic case, but then
critical F can increase when we adjust for heteroskedasticity, clustering,
and relax other assumptions...F> 16− 25...>100 (Lee et al., 2020.
Valid t-ratio Inference for IV).
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AR confidence intervals for weak instruments: weakiv
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AR confidence intervals for weak instruments: weakiv
command

I The AR statistic is the F-stat testing the hypothesis that the
coefficients on Z are 0 in a regression of Y − X β0 on Z and other
covs. Valid test if instruments are weak.

I Limitation: rejection can arise bc. β0 is false OR Z is endogenous; less
powerful.

Finlay, K., Magnusson, L.M., Schaffer, M.E. 2013. weakiv: Weak-instrument-robust tests and confidence intervals for
instrumental-variable (IV) estimation of linear, probit and tobit models.
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IV as a method to address simultaneous causality
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Simultaneous causality

Simultaneous causality bias in the OLS regression of ln(Supply) on ln(Price)
arises because both price and quantity are determined by the interaction of
demand and supply.
IV estimates the demand curve by isolating shifts in price and quantity that
arise from shifts in supply. Z is a variable that shifts supply but not demand
(shifts supply exogeneously).
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Simultaneous causality

ln(Supply) = β0 + β1ln(Price) + u
price and quantity are jointly determined by the interactions of supply and
demand

Need to find a variable that shifts supply but not demand
Z=rainfall
1) regress ln(price) on rainfall : This isolates changes in log price that arise
from supply (part of supply, at least).

2) regress ln(supply) on ̂ln(price): The regression counterpart of using
shifts in the supply curve to trace out the demand curve.
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Example

Angrist, Graddy, Imbens (2000). The interpretation of instrumental
variables estimators in simultaneous equation models with an application to
the demand for fish
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Simultaneous causality

log(violentcrime) = α1 + α2log(policeforce) + α3X3 + u1 and
log(policeforce) = β1 + β2log(violentcrime) + β3W3 + v1

Y1 = α1 + α2Y2 + α3X3 + u1

Y2 = β1 + β2Y1+ β3W3+v1

Y2 = β1 + β2(α1 + α2Y2 + α3X3 + u1) + β3W3 + v1

Y2(1− β2α2) =β1 + β2α1 + β2α3X3 + β3W3 + β2u1 + v1

Cov(Y2, u1) =
β2Var (u1)

1−β2α2
. Hence OLS is biased if β2 6= 0.
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Simultaneous causality

log(violentcrime) = α1 + α2log(policeforce) + α3X3 + u1

I Use instrument for log(policeforce): indicators for mayoral and
gubernatorial election in year T (Levitt, AER 1997).

I
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Simultaneous causality
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IV as method to deal with attrition
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IV in randomized trials

I Individuals may be assigned to treatment (training) but only some
actually participate

I Motivation leads to bias in the estimated treatment effect.

I use IV: send a letter encouraging one randomly selected part of the
treatment group to participate, control gets no letter

I Z = 1 if a letter is sent, X = 1 if the person followed the training
program, Y = 1 if she had found a job after 6 months.

I Remember: IV as Ratio of Coefficients: If you have one endogenous
variable X and one instrument Z, you can regress X on Z to get βXZ

and regress Y on Z to get βYZ , and the IV estimate βIV = βYZ/βXZ .
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IV in randomized trials

I In the special case where X, Y and Z are binary (Wald estimator),

βIV = P(Y=1|Z=1)−P(Y=1|Z=0)
P(X=1|Z=1)−P(X=1|Z=0)

I Remember, four categories: always takers (independent of letter) ,
never takers (regardless of the letter), compliers (only if receive letter)
, deniers (they would have participated, but the letter made them
change their mind).

I Average treatment effect only for compliers: Local Average Treatment
Effect.
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IV in randomized trials

I βIV = P(Y=1|Z=1)−P(Y=1|Z=0)
P(X=1|Z=1)−P(X=1|Z=0)

I Average treatment effect only for compliers: Local Average Treatment
Effect.

I % always takers: % of the no letter group which followed the training

I % never takers: % of the letter group which did not follow the training

I % compliers: % of the letter group which followed the training
(includes compliers + always takers) - % of the no letter group which
followed the training (always takers).

I Monotonicity assumption: no deniers.

I Why is percentage of always takers = the same in the test and in the
control group ?
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IV in randomized trials : using initial assignment as an
instrument

I The Tennessee STAR class size experiement randomly assigned
students to small, regular and large classrooms

I Attrition may bias estimates

I Use initial assignment to a type of class as an instrumental variable for
class size
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IV in randomized trials : using initial assignment as an
instrument

I
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IV in randomized trials

I
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Using IV to address measurement error
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Measurement Error (ME)

I Suppose you’ve dreamed of running the regression

Yi = α + βS∗i + ei

I but data on S∗i are unavailable
I you only observe a mismeasured version, Si

I Write relationship between observed and desired regressor as

Si = S∗i +mi

I mi is the measurement error in Si
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Using IV to Address Measurement Error

I Without covariates, the IV formula for the coefficient on Si in a
bivariate regression is

βIV =
Cov(Yi ,Zi )

Cov(Si ,Zi )

I where Zi is the instrument

I Provided the instrument is uncorrelated with the measurement error
and the residual, ei , IV eliminates the bias due to mismeasured Si
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Using IV to Address Measurement Error

I To see why IV works in this context, substitute for Yi and Si

βIV =
Cov(Yi ,Zi )

Cov(Si ,Zi )
=

Cov(α + βS∗i + ei ,Zi )

Cov(S∗i +mi ,Zi )

=
βCov(S∗i ,Zi ) + Cov(ei ,Zi )

Cov(S∗i ,Zi ) + Cov(mi ,Zi )

I Again, provided the instrument is uncorrelated with the measurement
error and the residual, IV eliminates the bias due to mismeasured Si .
That is,

I if C (ei ,Zi ) = C (mi ,Zi ) = 0, then

βIV = β
C (S∗i ,Zi )

C (S∗i ,Zi )
= β
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Using IV to Address Measurement Error

I For the problem of measurement error in a regressor, a common choice
of instrument (Zi ) is the rank of the mismeasured variable

I although the mismeasured variable contains an element of measurement
error, if that error is relatively small, it will not alter the rank of the
observation in the distribution

I be cautious: mismeasurement can be large in many settings

I Other popular instruments are lagged values of the regressor of interest
when it is observed over a number of periods of time

I the past might explain the present values of the regressor

I and should affect the outcome only through this channel
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Random Measurement Error in the Dependent Variable

I Should we be concerned about bias in this case?
I NO, there is no bias if measurement error is random, only larger

standard errors

I To see why, suppose you’ve dreamed of running the regression

Y ∗i = α + βSi + ei

I but data on Y ∗i are unavailable
I you only observe a mismeasured version, Yi

I Write relationship between observed and desired outcome as

Yi = Y ∗i +mi

I mi is the measurement error in Yi
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Measurement Error in the Dependent Variable

I The regression equation becomes

Y ∗i = α + βSi + ei

Y ∗i +mi = α + βSi + (ei +mi )

Yi = α + βSi + ui

I Notice we can still run the standard OLS on

Yi = α + βSi + ui

I and there would be no bias in β
I but V (ui ) = V (ei ) + V (mi ) > V (ei )

I Because the standard errors of the estimated β depend on V (ui ), then
they would be larger than in the dream regression
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