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● Basics of neural networks (architecture, weights, loss function, optimizer, 
etc.) 

● Basics of deep learning (automatic feature extraction, convolutions, long 
short-term memory)

Overview



We will talk about the basic concept of neural 
networks and what they can be used for

WHAT ARE NEURAL 
NETWORKS?



● (Artificial) neural networks consist of a machine learning method.

● They are inspired in how our brains work.

● Just like in our brains, (artificial) neural networks are composed of 
interconnected neurons

Neural Networks



● Let’s start looking at the simplest possible neural network

● And let’s consider again the case of classifying “walking” and “running”

● The neural network on the right classifies the samples on the left with 80% 
success rate (accuracy).

Neural Networks



● Let’s see how it works step by step.

● Let’s start classifying the first sample (3.2, 1.8) 

● We will plug the values 3.2 and 1.8 at the input layer and perform some 
calculations according to the diagram.

Neural Networks



● Our goal is to find what comes out of the yellow neural (the output – the 
end).

● We start from the left to calculate what comes out of the red and blue 
neurons.
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● Sample: (3.2, 1.8)
● Red neuron gives: 3.2*(-0.5) + 1.8*(0.6) + 0.4  = -0.12

                       weight      weight  bias

● Blue neuron gives: 3.2*(0) + 1.8*(-1)  +  1  = -0.8

                       weight    weight  bias
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● What comes out of the red neuron is -0.12 and what comes out of the blue one 
is -0.8

● Now, we can determine what comes out of the yellow neuron
● Yellow neuron gives: -0.12*(-1) + -0.8*(-1) + (-1)  = -0.08

                           weight     weight  bias
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● How to make sense of the value -0.08?

● We will see how neural networks are built. But in the way this one was 
built, negative values represent the class “walking”, whereas positive 
values represent “running”

● Hence, this neural network correctly classifies the sample (3.2, 1.8)
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● Sample: (2.7, 3.6)
● Red neuron gives: 2.7*(-0.5) + 3.6*(0.6) + 0.4  = 1.21

                       weight      weight  bias

● Blue neuron gives: 2.7*(0) +  3.6*(-1)  +  1  = -2.6

                       weight    weight   bias
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● What comes out of the red neuron is 1.21 and what comes out of the blue one 
is -2.6

● Now, we can determine what comes out of the yellow neuron
● Yellow neuron gives: 1.21*(-1) + -2.6*(-1) + (-1)  = 0.39

                           weight     weight  bias
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● And what does 0.39 represent? The “running” class

● Instead of having values ranging from -inf to inf, we could have values 
ranging from 0 to 1. These values could represent the probability.

● We can do this by applying the sigmoid function. 

  probability = 1/(1 + exp(-output))
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● Hence, for the sample (3.2, 1.8) instead of -0.08, we have:

  probability = 1/(1 + exp(0.08)) = 48.0%

● For the sample (2.7, 3.6) instead of 0.39, we have:

  probability = 1/(1 + np.exp(-0.39)) = 59.6%
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● Hence, for the sample (3.2, 1.8) instead of -0.08, we have:

  probability = 1/(1 + exp(0.08)) = 48.0%

Interpretation: the sample (3.2, 1.8) has a probability of 48.0% of being of 
class “running” (the positive class). Alternatively, 52% of being of class 
“walking”

● For the sample (2.7, 3.6) instead of 0.39, we have:

  probability = 1/(1 + np.exp(-0.39)) = 59.6%

Interpretation: the sample (2.7, 3.6) has a probability of 59.6% of being of 
class “running” (the positive class). Alternatively, 40.6% of being of class 
“walking”. The probability is a confidence score!
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● What if we have more than two classes? 

● Consider the additional class “sitting” in our example

● When we have more than two classes, the number of output nodes are equal to 
the number of classes.
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● A neural network that works well classifying these samples is shown below.

● Note: we are using colors only for the purpose of illustrating better.

● Now let’s try one sample of each class.
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● Each neuron is associated with a class

● Yellow: walking
● Brown: running
● Gray: sitting
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● Sample: (3.2, 1.8) walking
● Red neuron gives: 3.2*(0.7) + 1.8*(0) + (-1.7)  = 0.54

                       weight      weight  bias

● Blue neuron gives: 3.2*(1.3) + 1.8*(1)  +  0  = 5.96

                       weight    weight  bias
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● Sample: (3.2, 1.8) walking
● Yellow neuron gives: 0.54*(1.4) + 5.96*(0) + (0.6)  = 1.35

                           weight     weight  bias

● Brown neuron gives: 0.54*(2)  +  5.96*(0.2) + (-1.3)  = 0.97

                          weight     weight  bias

● Gray neuron gives: 0.54*(0.1)  + 5.96*(-0.2) + (1.5)  = 0.36

                          weight     weight  bias
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● Sample: (4.7, 3.1) running
● Red neuron gives: 4.7*(0.7) + 3.1*(0) + (-1.7)  = 1.59

                       weight      weight  bias

● Blue neuron gives: 4.7*(1.3) + 3.1*(1)  +  0  = 9.21

                       weight    weight  bias
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● Sample: (4.7, 3.1) running
● Yellow neuron gives: 1.59*(1.4) + 9.21*(0) + (0.6)  = 2.82

                           weight     weight  bias

● Brown neuron gives: 1.59*(2)  +  9.21*(0.2) + (-1.3)  = 3.72

                          weight     weight  bias

● Gray neuron gives: 1.59*(0.1)  + 9.21*(-0.2) + (1.5)  = -0.18

                          weight     weight  bias
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● Sample: (0.2, 0.1) sitting
● Red neuron gives: 0.2*(0.7) + 0.1*(0) + (-1.7)  = -1.56

                       weight      weight  bias

● Blue neuron gives: 0.2*(1.3) + 0.1*(1)  +  0  = 0.36

                       weight    weight  bias
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● Sample: (0.2, 0.1) sitting
● Yellow neuron gives: -1.56*(1.4) + 0.36*(0) + (0.6)  = -1.584

                           weight     weight  bias

● Brown neuron gives: -1.56*(2)  +  0.36*(0.2) + (-1.3)  = -4.34

                          weight     weight  bias

● Gray neuron gives: -1.56*(0.1)  + 0.36*(-0.2) + (1.5)  = 1.27

                          weight     weight  bias
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● How do we go from the scores to probabilities: softmax function

● Softmax function is an expansion of the sigmoid function

● probability of a certain class = exp(output of the class)/(exp(class 1) + 
exp(class 2) + … + exp(class n))
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● probability of a certain class = exp(output of the class)/(exp(class 1) + 
exp(class 2) + … + exp(class n))

● Sample: (0.2, 0.1) sitting. First, we calculate:

● Yellow neuron: -1.584 and exp(-1.584) = 0.205
● Brown neuron: -4.34 and exp(-4.34) = 0.013
● Gray neuron: 1.27 and exp(1.27) = 3.560
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● probability of a certain class = exp(output of the class)/(exp(class 1) + 
exp(class 2) + … + exp(class n))

● Sample: (0.2, 0.1) sitting. First, we calculate:

● Yellow neuron: -1.584 and exp(-1.584) = 0.205
● Brown neuron: -4.34 and exp(-4.34) = 0.013
● Gray neuron: 1.27 and exp(1.27) = 3.560

● Yellow neuron (walking): 0.205/(0.205 + 0.013 + 3.560)  = 0.0542 = 5.42%
● Brown neuron (running):  0.013/(0.205 + 0.013 + 3.560)  = 0.00344 = 0.344%
● Gray neuron (sitting): 3.560/(0.205 + 0.013 + 3.560)  = 0.9422 = 94.22%
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● The neural network examples were pretty 
simple. 

● We only had linear operations (sum and 
multiplication), few neurons (2) and only 
one hidden layer.

● In more complex cases (more classes and 
non-linearly separable data), we need more 
hidden layers, neurons, and nonlinear 
operations.
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● How can neural networks deal with non-linearly separable data?

● Utilizing a so-called activation function

● The activation function is a non-linear function  applied right after the 
bias
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● A very simple and widely used activation function is the Rectified Linear 
Unit function or ReLU

● ReLU(x) = max(0, x)
● ReLU(-1) = max(0, -1) = 0 
● ReLU(2) = max(0, 2) = 2
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● How do we build a neural network? That is, how do we find the weights and 
biases from the data + labels?

● Let’s go step by step!
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● Consider we have input size of 2 and 3 classes.
● STEP 1. define the numbers of hidden layers and their neurons
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● There isn’t a specific guideline for choosing these hyper-parameters
● High number of layers and neurons → more complex neural networks → possible 

to overfit  
● Low number of layers and neurons → less complex neural networks → possible 

to underfit 
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● Trial and error: try certain complexity, train the neural network, and see 
how the neural network performs on the validation set. Choose the complexity 
that gives the best performance on the validation set.
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● STEP 2: initializing weights and biases

● The parameters (weights and biases) can be initialized all to zero, for 
example.

● Or, better, they can be initialized according to certain rules (for example, 
the Xavier Glorot's initialization). But we won’t go into details. 
Scikit-learn uses Glorot’s method for initializing parameters. 

● Terminology note: we often denote the weights and biases of the neural 
network as just weights.
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● The Adam optimizer is the most used one. The details on how it operates 
require university-level calculus and are beyond the scope of this course.

● The loss function is a measure on how good the weights and biases of the 
neural network are. The Adam optimizer utilizes the loss function to update 
the weights and biases. 

● In the optimization, we also have something called learning rate. 
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● But, if the parameters are initialized randomly, won’t the neural network 
perform bad?

● Yes, but the parameters will undergo a process named optimization (i.e., 
learning or training) by an optimizer.

● The goal of the optimization is to improve the weights (and biases) 
gradually with the help of a function named loss function.
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● Let’s learn a little bit more about the training. 

● The training starts by dividing the training set into batches. In the image 
below, each batch (in blue) has two samples. 

● We put each sample of the batch through the neural network and find the 
predictions (output).
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● An error is calculated. This error tells how much the output differs from 
the desired output. 

● Suppose we give the sample (3.2, 1.8) and the neural network predicts it 
“walking” with 5% probability. The error is big because we want the neural 
network to predict it with 100% probability. 

● The error is calculated with the loss function. 
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● The optimizer calculates how much the weights should be adjusted to reduce 
the error.

● The weights are updated and a new batch is processed.

● We call an epoch once we complete this procedure with all the batches. 
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● The training proceeds by using the batches all over again. 

● We will talk later about when the training stops. 

● Question: why don’t we use the entire dataset as a batch? Why do we have to 
split?
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● The optimizer has something called learning rate. The learning is a positive 
number (usually small like 0.001)

● It determines how much the weights are adjusted during the optimization. 

● So, should we set the learning rate to a large number to learn as fast as 
possible? 

● No. The reason is mathematical. But imagine learning to ride a bike. Rushing 
will lead you to commit mistakes that can cause injuries and hinder you from 
learning. 
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● A very small learning rate will slow 
down the process of learning. 

● Using the analogy of learning to 
ride a bike. Being too carefully 
will make the process of learning 
too slow. 

● Usually a learning rate in the range 
from 0.0001 to 0.01 will work well.

Neural Networks



● STEP 1. We define the number of layers and their neurons.
● STEP 2. We initialize the weights and biases.
● STEP 3. We choose an optimizer, loss function, and learning rate. These 

three things will work together to gradually improve the weights.
● STEP 4. We start the learning (training or optimization). 
● STEP 5. The training ends according to certain criteria
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● When to stop the training? Ideas?
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● When to stop the training? 

● Maximum Epochs: Set a maximum number of training epochs.
● Loss Convergence: Monitor the training and validation loss (error) during 

training. Training is typically stopped when the loss reaches a plateau or 
starts increasing on the validation set.

● Validation Performance: Monitor accuracy on the validation set at the end of 
each epoch. Stop training when it no longer improves or starts degrading.

Neural Networks



● Sounds like a lot? No worries. Scikit-learn implements all this. We just 
have to use the already-made functions.

● But that is not all, prior to the training (learning or optimization), we 
need to do something to the data. Look at the table below and try to notice 
something that distinguishes “heart rate”, “acceleration”, and “angular 
speed”.
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● The heart rate readings (in BPM) are much larger than those of acceleration 
and angular speed. 

● Such a vastly different scale means that the heart rate will influence a lot 
more in the output. (Remember, the neural network does multiplications and 
sums from the inputs)
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● Vastly different scales -> slower training and lower performance.

● Data normalization aims at solving this.

● Ideas on how we can normalize the data?
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● Min-max normalization

1. Find the min and max of each feature
2. new value = (old value - min of the feature)/(max of the feature - min of 

the feature)

Min: 60, 0.3, 0.9

Max: 140, 3.5, 3.2
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● Standardization

1. Find the mean and std of each feature
2. new value = (old value - mean of the feature)/(std  of the feature)

Mean: 95, 1.74, 1.99

Std: 27.38, 1.27, 0.91
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Attention!

● We not only need to normalize the training data, but also the validation and 
test data!

● Moreover, we use the min, max, std, mean of the training data when 
normalizing the validation or test data.

Can you tell why?
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● We need to randomly shuffle the training data before starting each epoch.
● Shuffling means altering the order of the data 
● This randomization helps prevent the model from learning the order of the 

data and potentially overfitting to it.
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Deep Learning



● What we have seen so far is shallow learning.
● The term "deep learning" was coined in the early 2000s.
● A deep neural network is a neural network with many layers. 
● How many layers? there is no universal agreement on when “shallow” learning 

becomes “deep” learning.

Deep Learning



● But there are other characteristics that separate deep learning from shallow 
learning. First, let’s talk about feature learning. Suppose we choose our 
sliding windows to have 32 time steps and 2 channels (total acceleration and 
total angular speed).

Shallow Learning: we extract features from the channels across the entire 
sliding window. So each sliding window is transformed into 2 values (for 
example, the mean total acceleration and the mean total angular speed)

Deep Learning: we do not extract features, but give the whole data of the 
sliding window at once. That is, 32*2 (64) values. The deep neural network 
is supposed to learn features from the “raw” data.

Deep Learning



● Deep Learning has permitted a revolution in terms of accuracy (performance). 
● So, does this mean we should always use deep learning? No!

○ Deep learning requires a lot of data.
○ Deep learning uses a lot of computational effort (memory and 

processing)

Can you explain why?
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● Deep Learning has permitted a revolution in terms of accuracy (performance). 
● So, does this mean we should always use deep learning? No!

○ Deep learning requires a lot of data.
○ Deep learning uses a lot of computational effort (memory and 

processing)

Can you explain why?
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● What we have seen was only one type of architecture named MLP (multi-layer 
perceptron), which is made of fully-connected (or dense) layers.

● Let’s quickly have a look at another type: convolutional neural networks
● The basic operation is the convolution
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● Convolutional neural networks are primarily used for images. But let’s have 
a look considering time-series data.

● 2 dimensions (number of time steps, number of sensor channels)
● The input undergoes a convolution with a convolutional kernel
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● The convolutional kernel has several weights that are learnable.
● In the animation below, we see a convolutional kernel of size 3 x 3 and 

stride 1 x 1
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● Typically, after a convolution, ReLU and max pooling are performed
● In the animation below, we see a max pooling operation with kernel size 2 x 

2 and stride 2 x 2
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● Notice that, at the end of the convolutions and max pooling operations, we 
have a 3D tensor. To get a prediction (classification) from such a 3D 
tensor, we need to flatten it. Flatten transforms it into 1D and passes it 
to a fully-connected layer.
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● LSTMs (Long Short-Term Memory)
● An LSTM layer processes the input (time-series data) step by step. Step n 

depends on all previous steps.
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● The output at each step has the dimension of 5 (the chosen number of units 
for LSTM)

● Eventually, the output after processing all steps with have dimension (8, 5) 
which is the number of time steps and LSTM units
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● From the output, shape (8, 5), we have two options: 
○ Keep everything (8, 5)
○ Or consider only the last (1, 5). Do you know why?

Deep Learning



● A neural network with LSTM layers can look like this. 
● Can you guess the output of each LSTM layer? If the output contains the 

entire sequence or just the last time step?
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● A neural network with LSTM layers can look like this. 
● Can you guess the output of each LSTM layer? If the output contains the 

entire sequence or just the last time step?
○ 1st: entire output
○ 2nd: entire output
○ 3rd: entire output (plus flattening) or just the last time step
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