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Course outline and learning objectives

• Data, descriptive statistics and causality

1 introduction, data

2 samples and descriptive statistics

3 conditional descriptive statistics

4 today: causality and research design

5 statistical inference and randomization

6 revealed preferences in observed data

• Quasi-experimental methods

Todays’ learning objectives:
• Good understanding of:

1 causality
2 counterfactual
3 potential outcomes
4 treatment effect
5 selection bias

• Good understanding of why randomi-
zation eliminates selection bias
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Causal questions

• Thus far, we have focused on descriptive questions (lectures 1–3)
• aim: measure the actual state of the world
• ”what is joint distribution of X and Y?”

• We would often need to evaluate the impact of X on Y, e.g.
• education on earnings
• marketing campaign on sales
• carbon tax on emissions
• R&D subsidy on innovation
• fiscal stimulus on unemployment

• These are causal questions
• aim: compare counterfactual states of the world
• ”how would Y change if we changed X?”

▶ we typically refer to Y as ”outcome” and to X as ”treatment”
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Counterfactual states of the world

• Are almost impossible to observe for any
single individual/entity!

• where everything else is the same except
the treatment (”ceteris paribus”)

• sometimes possible with highly controlled
lab experiments in the natural sciences

• but harder when studying people.

• But we can often find counterfactuals for
the average person in a sample

• important to consider issues of sampling
errors and representativeness (of wider
population)

Source: Mastering Econometrics
from pre-class assignment 2
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Identifying causal relationships via experiments

• Today’s lecture will focus on answering causal questions using
experimental designs

• how to design comparisons to test for causality in observed relationships
• the simplest context for learning relevant statistical concepts

• It is often helpful to ask:
what would be the ideal experiment for answering this question?

• Even when we can’t run an experiment

• helpful benchmark for ”naturally occurring” or ”quasi” experiments
• we’ll discuss examples of ”natural experiment” involving actual

randomization already next week
• you’ll see other types of quasi-experimental approaches in lectures 7–12
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Elements of causal questions

1 Treatment
• impact of [...]

2 Counterfactual
• impact in comparison to [...]

3 Outcome
• impact on [...]

4 Population
• impact for [...]

• Think of a causal question!
• Hold it in your head or write it down. We will revisit.

• What is the causal question in the paper you read for the pre-class assignment?
• my quick take: what is the impact of Jakarta’s high-occupancy vehicle restriction in

comparison to unrestricted road travel on drivers’ travel times?
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The causal question in Hanna et al. (2017)

What is the impact of Jakarta’s high-occupancy vehicle restriction in comparison to
unrestricted road travel on drivers’ travel times?

• Treatment: Lifting of the HOV restriction
• Counterfactuals:

1 State of the world just before the treatment
2 Google’s prediction under ”typical traffic

conditions”

Source: Google Maps
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unrestricted road travel on drivers’ travel times?

• Treatment: Lifting of the HOV restriction
• Counterfactuals:

1 State of the world just before the treatment
2 Google’s prediction under ”typical traffic

conditions”

• Population: drivers on trips that might use
these routes

Source: Rema Hanna et al., Citywide effects of high-occupancy
vehicle restrictions: Evidence from “three-in-one” in Jakarta.

Science 357, 89-93 (2017).
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Potential Outcomes

• We focus on binary (0/1) treatments and denote treatment status of individual i as

Di =

{
1 if she receives the treament

0 if she doesn’t

• We denote outcomes by y and define

potential outcome =

{
y1i if Di = 1

y0i if Di = 0

in words: y1i is the outcome of individual i in the state of the world where she is
treated and y0i is her outcome in the state of the world where she was not treated
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Only one potential outcome can occur

Two roads diverged in a yellow wood,
And sorry I could not travel both
And be one traveler, long I stood
And looked down one as far as I could
To where it bent in the undergrowth;

...

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

Robert Frost (1915): The Road Not Taken
Robert Lee Frost (1874–1963) was an American
poet, who frequently wrote about settings from
rural life, using them to examine complex social
and philosophical themes. Source: Wikipedia
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Treatment effect

• The treatment effect for individual i is:

y1i − y0i

in words: difference in the potential outcomes with and without the treatment

• The fundamental challenge of causal inference is that we cannot
observe both y1i and y0i for the same individual. Instead, we observe

yi =

{
y1i if Di = 1

y0i if Di = 0
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Average treatment effect

• We can never identify the treatment effect for an individual person,
but sometimes we can estimate average treatment effects:

Average treatment effect (ATE) = E [y1i − y0i ]

ATE for the treated (ATT) = E [y1i − y0i |Di = 1]

where E [a|b] is the expectation of a conditional on b

• Why ATE and ATT?
• treatment effect may be different for those getting the treatment than it

would be for those not getting it
• internal validity: do we learn the true effect for the treated population?
• external validity: can we extrapolate to other populations?
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Research designs and control groups

• We use a comparison or control group to approximate what would
have happened to the treated in the absence of the treatment

• that is, we estimate the counterfactual E[y0i |Di = 1]

• In economics parlance, this approach is know as “design-based” or
“experimental” approach

• the alternative often is a ”structural” approach, where we use
quantitative economic models to simulate counterfactual states of the
world

• Invalid control group leads to selection bias
• whether the control group provides a good counterfactual or not is the

key question of all design-based causal inference
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How to find a control group in Hanna et al. (2017)?

Source: Rema Hanna et al., Citywide effects of high-occupancy vehicle restrictions: Evidence from “three-in-one” in Jakarta. Science 357, 89-93 (2017).Prottoy A. Akbar (Aalto) 4: Causality and research design Principles of Empirical Analysis 13 / 22
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Regression estimation

• Dependent/outcome variable: travel delay on
segment i , on date d and departure hour h

• Independent/explanatory variable: indicator for
whether date d is after the policy lifting

• postd = 0 before policy lifting (”control” group)
• postd = 1 after policy lifting (”treatment” group)

• Conditional on direction of travel
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How good is the counterfactual?

• What if the timing of event is intended to coincide
with the changes in outcomes?

• as opposed to changes being caused by the
treatment?

• E.g. the delay would have occurred anyway (even
in the absence of the policy lifting)

• What would outcomes have looked like in the
absence of the policy?

• Would the average delay have stayed at α?
• Key assumption: Treated observations would

resemble control observations in the absence of the
treatment
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Selection Bias

• As the amount of data increases, the sample averages approach the
population average (expectations)

Avg [yi |D = 1]︸ ︷︷ ︸
treatment group

− Avg [yi |D = 0]︸ ︷︷ ︸
control group

→ E[yi |D = 1]− E[yi |D = 0]

= E[y1i |D = 1]− E[y0i |D = 0]

• Where the second row emphasizes that we observe y0i only for the
control group, while our objective is to estimate ATT, i.e.

E [y1i − y0i |Di = 1] = E[y1i |D = 1]− E[y0i |D = 1]︸ ︷︷ ︸
never observed

• Selection bias arises when a control group leads to an incorrect
estimate of the counterfactual, i.e. E[y0i |D = 0] ̸= E[y0i |D = 1]
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Selection Bias

• A particularly informative way to illustrate selection bias is:

E[yi |D = 1]− E[yi |D = 0] = E[y1i |D = 1]− E[y0i |D = 0]

= E[y1i |D = 1]− E[y0i |D = 1]︸ ︷︷ ︸
ATT

+

E[y0i |D = 1]− E[y0i |D = 0]︸ ︷︷ ︸
Selection bias

where the first step is from the previous slide and the second step is
taken by simply adding and substracting E[y0i |D = 1]

• i.e. E[y0i |D = 1]− E[y0i |D = 1] = 0, so including it does not change
the result, but allows us to rewrite the equation as ATT+SB

• in words: differences in the average outcomes between treatment and
control groups include the treatment effect and the selection bias (the
difference between the two groups if neither had been treated)
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Selection Bias

• A particularly informative way to illustrate selection bias is:

E[yi |D = 1]− E[yi |D = 0] = E[y1i |D = 1]− E[y0i |D = 0]

= E[y1i |D = 1]− E[y0i |D = 1]︸ ︷︷ ︸
ATT

+

E[y0i |D = 1]− E[y0i |D = 0]︸ ︷︷ ︸
Selection bias

where the first step is from the previous slide and the second step is
taken by simply adding and substracting E[y0i |D = 1]

• i.e. E[y0i |D = 1]− E[y0i |D = 1] = 0, so including it does not change
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Randomization eliminates selection bias

• Random assignment into treatment/control ensures that the control
groups is comparable to the treatment group

• Formally: their potential outcomes are in expectation the same, i.e.

E[y1i |D = 1] = E[y1i |D = 0]

E[y0i |D = 1] = E[y0i |D = 0]

• Thus E[y0i |D = 1]− E[y0i |D = 0] = 0, i.e. no selection bias
• in words: the control group tells us what would have happened to the

treatment group in the absence of the treatment
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Summary

• Causality: how one thing affects another thing
• requires comparing counterfactual states of the world to each other

(”how would Y change if we changed X?”)
• at most, one of them is observed

• Control group in an experimental research design
• the outcomes of the control group are used to infer what would have

happened to the treatment group in the absence of the treatment

• Selection bias occurs when the control group is not comparable to
the treatment group, i.e. E[y0i |D = 0] ̸= E[y0i |D = 1]

= potential outcomes differ between the treatment and control groups

• Randomization eliminates selection bias
• on expectation, the only difference between the groups is that the

treatment group gets the treatment and the control group does not
→ differences in average outcomes must be due to the treatment
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Upcoming

• Pre-class assignment 4
• Read and summarize an article

• Homework 2
• Deadline: Jan 24 at 13:00
• Don’t wait till the last minute!
• An important skill when working with data is to learn to troubleshoot efficiently.
• This learning often involves spending time being ”stuck”.

• Exercise Session 2 tomorrow!

• Use the course Slack channel to seek help and help others in the class
• Quicker than waiting for private responses from the TA or me
• Recall extra incentive: bonus points for active participation
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