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Heterogeneity in econometrics

The “representative consumer” and “representative firm” have been shown to
lack empirical support.

Initial microdata in economics were cross sections, and unobservables were
treated as independent preference shocks.

With the advent of panel data, distinguishing between duration dependence
and permanent unobserved heterogeneity became important for formulating
policy recommendations.

Early work used parametric distributions for the permanent unobservables, but
one remaining question was whether it was possible to distinguish heterogeneity
from state dependence without using parametric assumptions.

The nonparametric method of Heckman and Singer (1984) shows the
distribution of unobservables can be approximated by low dimensional finite
mixtures of types.
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Review: mixed logit and alternatives

Uij = X ′ijβi + εij

You can specify βi | Zi ∼ N(Z ′i γ,Σ)
I Evaluating the likelihood can be difficult with a large number of choices: the

random coefficients have to be integrated out: computationally intensive.

Assume the existence of a finite number of types of individuals,
βi ∈ {b0, b1, ...., bK} with P(βi = bk | Zi ) = pk or

P(βi = bk | Zi ) =
exp(Z ′

i γk )

1+
∑K

l=1 exp(Z
′
i γl )

I Use the EM algorithm (Dempster, Laird, and Rubin, 1977)

3 / 24



Mixed Logit

Mixed logit is a highly flexible model.1

McFadden and Train (2000) show that mixed logit can approximate any RUM.

3 features of mixed logit:

1 allows for random taste variation.

2 unrestricted substitution patterns.

3 correlation of unobservables over time.

1Note: terminology is unfortunately unsettled. Here I use “mixed logit” as in Train; Cameron
and Trivedi also call this model a random parameters logit (section 15.7)
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Mixed Logit

A mixed logit is any model where choice probabilities are given by

pj =

∫
exp(Vj(β))∑
k exp(Vk(β))

f (β)dβ (1)

weighted average of the logit formula evaluated at different values of β, with
the weights given by the density f (β). Weighted average of several functions is
called a mixed function.

Concrete example:
Vji = xjiβi + εji

where i =consumer and j =choice and

βi ∼ N(b,W =
∑

β)

Research estimates parameters b and W along with parameters β.
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Review: Unobserved Heterogeneity in Duration Models

Duration models are very sensitive to the presence of unobserved heterogeneity,
even if it is uncorrelated with the explanatory variables (unlike OLS).

We care whether hazards are actually functions of spell length, a property called
duration dependence, or whether the observed time variation in the aggregate
hazard is just a function of unobserved heterogeneity.

We will use an approach similar to what we introduced in the mixed logit.
Random effects techniques (in biostatistics random effects models are
sometimes referred to as models of frailty)
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Review: Unobserved Heterogeneity in Duration Models

Consider an example: half the population has λ1=1, the other half λ2=2.

At the start (t = 0), the average hazard is 1.5. But at t=1, the survival rate for
each type z=1,2 is exp(−λz) . At that point, the average hazard is the
weighted average between the survivors of each type:

λ̄(1)= 0.5exp(−1)·1+0.5exp(−2)·2
0.5exp(−1)+0.5exp(02) ≈ 1.25

The process appears to have negative duration dependence (it appears for
example that finding a job is more difficult the longer the unemployment spell),
but it is actually a consequence of the unobserved heterogeneity in the hazard
function.
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Review: Unobserved Heterogeneity in Duration Models

Parametric solutions: multiplicative unobservable in the hazard function:

λ(t|x) = v · λ0(t,α)φ(x,β) (2)

Need to integrate over the distribution of v. Common choice for v is Γ(a, b)

Semiparametric approach (Heckman and Singer, 1984): nonparametric
distribution for the unobserved heterogeneity. Discrete distribution: h(v)=πk ,
for v = ηk , k=1...K, where the points of support ηk and their probabilities πk
are estimated.
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Example: Discrete time proportional hazard models with mixture models

Suppose there are individuals i = 1,...,N, who each enter a state (e.g. illness)
at time t = 0 and are observed for j time periods, at which point each person
either remains in the state (censored duration data) or dies.

Without unobserved heterogeneity, the discrete hazard rate in period t (based
on the Prentice-Gloeckler (1978) model) is

ht = 1− exp(−exp(b0 + Xit ∗ b))

where b0 is an intercept and the linear index function, Xit ∗ b, incorporates the
impact of covariates Xit .

The contribution to the sample likelihood for a subject with a spell length of j
periods is

S(j) ∗ (hj/(1− hj))c

where S(j) is the probability of remaining in the state j periods, i.e. the
survivor function, and c is a censoring indicator, equal to one for a completed
spell and zero otherwise.
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Example: Discrete time proportional hazard models with mixture models

Suppose now that each individual belongs to one of a number of different
types, and membership of each class is unobserved. This is parameterized by
allowing the intercept term in the hazard function to differ across types.

Thus, for a model with types z = 1, ...,Z , the hazard function for an individual
belonging to type z is: hzt = 1− exp(−exp(mz + b0 + Xit ∗ b)) and the
probability of belonging to type z is pz .

The mz characterize the discrete points of support of a multinomial distribution
(‘mass points’), with m1 normalized to equal zero and p1 = 1−

∑Z
z=2 pz . The

z th mass point equals mz + b0.

The contribution to the sample likelihood of a subject with observed duration j
is:

L =
∑Z

z=1[pz ∗ Sz(j) ∗ (hzj/(1− hzj))c ]
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Example: hshaz command
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EM algorithm

In general, Expectation-maximization (EM) algorithms are procedures for
maximizing a log likelihood function when standard procedures are numerically
difficult or infeasible.

The procedure was introduced by Dempster, Laird, and Rubin (1977) as a way
of handling missing data. However, it is applicable far more generally and has
been used successfully in many fields of statistics.

In our application, the missing information consists of the type (or class) share
probabilities.
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EM algorithm: Motivational example
Two-component mixture model:

Wi = (Bi ,Y1,i ,Y2,i )
′
for i = 1, ..., n. (3)

Suppose that
{Wi} ≡ i .i .d . (4)

and suppose that

Y1,i ∼ N(µ1, σ
2
1),Y2,i ∼ N(µ2, σ

2
2),

Bi =

{
1 with prob p

0 with prob 1− p

Moreover, let
Yi = (1− Bi )Y1,i + BiY2,i (5)

and assume that Bi ,Y1,i , and Y2,i are mutually independent and that we only
observe Yi and not Bi ,Y1,i , and Y2,i separately
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Probability density function

The pdf of Yi is given by

gY (Y ) = (1− p)φθ1(y) + pφθ2(y), (6)

where for s = 1, 2
θs = (µs , σ

2
s )

′
, (7)
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Log-likelihood function

θ =

 p
θ1
θ2

 =


p
µ1
σ21
µ2
σ22

 and Y =


Y1

Y2
...
Yn

 . (8)

Log-likelihood Function:

l(θ,Y ) =
n∑

i=1

ln
{

(1− p)φθ1(y) + pφθ2(y)
}
. (9)
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EM Algorithm (1/2)

To understand the idea behind the expectation-maximization algorithm, consider the
case where we could observe the values of Bi (the complete data case). Then, the
problem would be a lot easier, since if Bi = 1; then, Yi comes from model 2;
otherwise, it comes from model 1. Hence, if the values of Bi are observable, then
the probability density function of the data would take the form

f (Bi ,Yi |θ)

= f (Yi |Bi , θ1, θ2)f (Bi |p)

=
{[
φθ1(yi )

](1−Bi )
[
φθ2(yi )

]Bi
}{

[1− p](1−Bi )pBi

}
(10)

The likelihood function can be written down as:
L0(θ,B,Y ) =

∏n
i=1 φθ1(yi )

(1−Bi )φθ2(yi )
Bi [1− p](1−Bi )pBi
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EM algorithm (2/2)
Since in reality the values of Bi are typically unknown, the EM algorithm proceeds in
an iterative manner, substituting for each Bi with its expected value

γi (θ) = E [Bi |θ,Y ]

= E [Bi |θ,Yi ] (by independence)

= Pr(Bi = 1|θ,Yi )

=
f (Bi = 1 ∩ Yi )|θ)

f (Yi |θ)

=
f (Bi = 1|p)f (Yi |Bi = 1, θ)

f (Yi , θ)

=
pφθ2(yi )

(1− p)φθ1(yi ) + pφθ2(yi )
. (11)

The quantity γi (θ) = E [Bi |θ,Y ] is often called the responsibility of model 2
for observation i.
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...With conditional expectations

Taking conditional expectation of the log-likelihood function, we get

E
[
`0 (θ,B,Y )| θ̂,Y

]
=

n∑
i=1

{(
1− E [Bi | θ̂,Yi

])
lnφθ1(y1) + E

[
Bi

∣∣∣ θ̂,Yi

]
lnφθ2(yi )

}
+

n∑
i=1

{(
1− E

[
Bi |θ̂,Yi

])
ln (1− p) + E

[
Bi |θ̂,Yi

]
ln p
}

=
n∑

i=1

{(
1− γi

(
θ̂
))

lnφθ1(yi ) + γi

(
θ̂
)

lnφθ2 (yi )
}

+
n∑

i=1

{(
1− γi

(
θ̂
))

ln (1− p) + γi

(
θ̂
)

ln p
}

(12)
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EM algorithm

The EM algorithm iterates back and forth between an expectation step and a
maximization step.

Under the expectation step, we do a soft assignment of each observation to
each model, i.e., the current estimates of the parameters are used to assign
responsibilities according to the relative density (under each model) of the
sample points.

Under the maximization step these responsibities are used to construct a
weighted log-likelihood, which we then maximize to update our estimates of the
parameters.
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Step by step (1/2)

More precisely, the EM algorithm goes as follows:
I Step 1: Take initial estimates of the parameters µ̂1,0, σ̂

2
1,0, µ̂

2
2,0, σ̂

2
2,0, p̂0 (to be

specified below)
I Step 2: (Expectation Step) In the k th step, compute the responsibilities

γ̂i,k =
p̂k−1φθ̂2,k−1

(yi )

(1− p̂k−1)φθ̂1,k−1
(yi ) + p̂k−1φθ̂2,k−1

(yi )
for i = 1,..., n; (13)

where

θ̂1,k−1 =
(
µ̂1,k−1, σ̂

2
1,k−1

)′
and θ̂2,k−1 =

(
µ̂2,k−1, σ̂

2
2,k−1

)
. (14)
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Step by step (2/2)

Step 3: (Maximization Step) Compute the weighted means and variances for
the (k + 1)th step as

µ̂1,k =

∑n
i=1 (1− γ̂i ,k) yi∑n
i=1 (1− γ̂i ,k)

, µ̂2,k =

∑n
i=1 γ̂i ,kyi∑n
i=1 γ̂i ,k

, σ̂21,k = ..., σ̂21,k = .. (15)

Also compute the mixing probabilities as

p̂k+1 =
1

n

n∑
i=1

γ̂i ,k . (16)

Step 4: Iterate steps 2 and 3 until convergence.
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Remark

Initial estimates µ̂1,0 and µ̂2,0 could be made by simply choosing two of the
yi ’s. σ̂21,0 and σ̂22,0 could both be set equal to the overall sample variance

1

n

n∑
i=1

(yi − y)2 (17)

and the initial mixing proportion p̂0 can be set to 0.5.
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General Formulation

The more general EM algorithm goes as follows:

Step 1: Take initial estimate of the parameter vector θ̂(0)

Step 2: (Expected Step) In the kth step, compute the responsibilities

Q
(
θ
′
, θ̂ (k−1)

)
= E

[
`0

(
θ
′
,W
)
Y ,|θ̂ (k−1)

]
. (18)

as a function of the dummy argument θ
′
.

Step 3: (Maximization Step) Determine θ̂(k) as

θ̂ (k) = arg max
θ′

Q
(
θ
′
, θ̂ (k−1)

)
(19)

Step 4: Iterate 2 and 3 until convergence.
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