
3 Centrality Measures

A centrality measure, or index, on a network is a nonnegative function defined
on each vertex, and that ranks the nodes according to their importance (hence
the word “centrality”) within the network itself. Many classical centrality
indices were introduced in the 1950s, but research in this area is still very
active at the time when these lecture notes are being written (early 2020s).

Of course, a problem with this idea is that what “importance” means is
not clearly defined at all. As a consequence, mathematically it is difficult,
when not impossible, to decide whether one centrality meaasure is better
worse than another at quantifying importance of nodes. Thus, in practice
choices are made by looking either at the application at hand, or at compu-
tational issues, or at a compromise between these two criteria.

Chances are that, indeed, intuitions of what importance should mean ex-
ists for many applications, but are application-dependent. As a consequence,
a centrality measure may appear entirely appropriate and justified for one
application, and not at all satisfactory for another. Regarding computation,
one can compare the complexity of computing centrality measures; a class
of centrality indices that is particularly interesting from this point of view is
that of centrality based on the combinatorics of walks. The reason is that the
latter can be computed by means of adjacency matrices. This implies that
such centralities can be computed using numerical linear algebraic libraries,
that are typically extremely reliable and computationally efficients.

While centralities can be defined and studied also for weighted or directed
graphs, in the course we focus on simple graphs. Students interested in the
more general scenario can investigate it as a project.

3.1 Degree centrality

One of the simplest possible centralities can be defined on its vertex simply
by taking its degrees. The underlying intuition is the degree is a (naive)
measure of how well connected a vertex is to other vertices. For a simple
graph, we mention two ways of computing the degree centrality starting
from the adjacency matrix:

1. As the degree of node i is the number of edges starting from node i, we
can compute it as the sum of all the nonzero elements in the ith row
of A. Therefore the vector of degree centralities is d = Ae.
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2. The degree of node i is also equal to to the number of closed paths of
length 2 starting from and ending on that vertex (why?). Hence, the
vector of degree centralities is d = diag(A2).

3.2 Katz centrality

The first centrality truly based on the combinatorics of walk that we analyse
is called Katz centrality. The name is to honour its discoverer, as this measure
was first introduced by the social scientist L. Katz in the 1950s. It is based
on the idea to measure the centrality of a node as the weighted sum of all the
possible walks departing by it, with a weight that decreases exponentially
with the length of the walk. Intuitively, this means that the easier it is to
explore the network starting from a given node the more important the node
is. Moreover, the downweight based on the walk length can be interpreted
by arguing that longer walks are more expensive means of exploration than
shorter walks, and therefore have lesser importance for the node centrality.

These principles can be translated into formulae. Let us consider a net-
work represented by a simple graph G having adjacency matrix A. Recall
that the number of walks from node i to node j having length k is Ak

ij.
We consider the sum of all walks of length k, downweighted by αk where
α ∈ (0, 1) is called the Katz parameter; moreover, to compute the centrality
of node i, we sum over all possible endvertices j. As a result, we obtain that
the centrality of node i is

vi =
n�

j=1

∞�

k=0

αkAk
ij (1)

and therefore the vector of Katz centralities can be expressed as

v =

� ∞�

k=0

αkAk

�
e (2)

where e ∈ Rn is the vector whose components are all equal to 1.
It is known in matrix theory that the matrix power series between brack-

ets, equal to I + αA + α2A2 + . . . , and often called the resolvent, converges
to (I−αA)−1 for all (possibly complex) values of α of modulus less than ρ−1

where ρ is the spectral radius of A, i.e., the modulus of the largest eigenvalue
of A.
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This is a general result: in the special case of our interest, where A is an
adjacency matrix, we know (by Perron-Frobenius theory) that ρ is actually
an eigenvalue. We give below a proof in the case where A is symmetric.

Theorem 3.1. Let A be the adjacency matrix of an undirected graph such
that its spectral radius is ρ. Then, for all (possibly complex) |z| < ρ−1,

∞�

k=0

zkAk = (I − zA)−1.

Proof. As A is a symmetric matrix, by the spectral theorem there exist an
orthogonal matrix Q and a diagonal eigenvalue matrix Λ such that A =
QΛQT . Moreover, all the diagonal entries of Λ satisfy |λi| ≤ ρ. It is then
easy to prove by induction on k that indeed Ak = QΛkQT for all k ≥ 0.
Hence,

∞�

k=0

zkAk = Q
∞�

k=0

zkΛkQT ,

and therefore we may equivalenty study the equivalent infinite sum with the
matrix Λ as an argument. Clearly, each diagonal entry of that sum has the
form ∞�

k=0

zkλk
i =

1

1− zλi

as long as |zλi| < |z|ρ < 1. We conclude that

�

k=0

zkAk = Q




1
1−zρ

1
1−zλ2

. . .
1

1−zλn


QT .

Moreover

Q




1
1−zρ

1
1−zλ2

. . .
1

1−zλn


QT (I − zA) =
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Q




1
1−zρ

1
1−zλ2

. . .
1

1−zλn


QT −Q




zρ
1−zρ

zλ2

1−zλ2

. . .
zλn

1−zλn


QT = I,

proving (by the uniqueness of the matrix inverse) that

Q




1
1−zρ

1
1−zλ2

. . .
1

1−zλn


QT = (I − zA)−1.

This analysis ytelds a restriction on the possibly allowed values of the
Katz parameter α: indeed, Katz centrality is equal to

v = (I − αA)−1e (3)

as long as 0 < α < ρ−1.
From the computational viewpoint, (3) is very attractive. Indeed, Katz

centrality is the solution of the linear system of equations (I − αA)v = e.
There exist extremely efficient software for the solution of linear systems of
equations. If the cofficient matrix is sparse, the numerical methods that
are employed in the available linear algebraic libraries are competitive even
when the dimension of the system is as large as billions. This precisely the
scenario that happens in practice for networks. Indeed, real life networks
are often characterized by having a number of edges which is typically linear
in the number of nodes, thus making the matrix I − αA very sparse (to
see this, compare a number of nonzero entries equal to the n elements of
the diagonal plus the number of edges, which is assumed to be linear in n,
with the potential total number of n2 nonzero elements: in the limit where
n goes to infinity, only a square root of the worst-case number of elements
are nonzero!). This fact, together with other “tricks” that exploit the special
structure of the linear system (3) (features that can lead to speed-ups with
respect to method for general linear systems include, for example, sparsity,
the fact that the right hand side vector has all equal entries, the fact that
the coefficient matrix is the adjacency matrix of a graph) can be exploited
to efficiently compute Katz centrality even for extremely large networks.
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This provides some evidence of the stament previously made that walk-based
centrality measure are computationally attractive.

3.2.1 Variants of Katz centrality

Katz’s idea has been extended in various way. To discuss how, let us think
back about the proof of Theorem 3.1. Essentially, the basic idea was to
exploit the spectral theorem to diagonalize A, and then work individually on
the geometric power series of each eigenvalue. Then, we exploited the result
in basic analysis that states that, for all |z| < 1, the geometric power series
in z converges:

|z| < 1 ⇒
∞�

k=0

zk =
1

1− z
.

This led to the conclusion that, as long as αρ < 1, the matrix power series�∞
k=0 α

kAk also converges.
It is clear that this trick can be generalized, leading to modification of

Katz’s original idea. Indeed, suppose that (ck)k is a sequence of nonnegative
coefficients such that

�
k=0 ckz

k converges for |z| < r, r being the convergence
radius of the power series. Then, similarly to Theorem 3.1, we can argue the
convergence of the matrix power series

0 < α <
r

ρ
⇒

∞�

k=0

ckα
kAk < ∞. (4)

Suppose that f(z) is a function, analytic in (0, r) such that
�

k=0 ckz
k =

f(z). We can then define f(αA) as the limit of the matrix power series (4).
This leads to the so-called total f -total communicability centrality measure:
similarly to Katz centrality, f -total communicability of node i is defined as
the weighted sum of all the walks that start from node i, with the weight for
walks of length k being ckα

k. By slightly modifying the argument we gave for
Katz centrality, we see that (for 0 < α < rρ−1), the f -total communicability
can be computed as the vector

v = f(αA)e.

(Note that, although it has got a special name for historical reasons, Katz
centrality can now be seen as a particular case of f -total communicability,
corresponding to the function f(z) = (1−z)−1.) For certain common choices
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of f , for example the exponential function (ck = 1/k!), very efficient numer-
ical methods exist so that this is not just a mathematical curiosity, but an
effectively computable centrality. We observe, however, that f -total com-
municability can (at least mathematically, and ignoring for a moment the
question of whether it can be computed efficiently) be defined for any func-
tion f analytic on open subinterval of (0, 1) of positive measure, and such
that the coefficients of its power series centered at 0 are nonnegative. It is
possible to prove that the set of such functions is infinite and indeed even
uncountable: therefore we now have constructed a fairly large zoo of family
of centrality measures, each of them being defined for an (also uncountable)
set of parameters α: definitely a large pool from which we can pick a cen-
trality measure, and indeed, chossing a good one is an interesting problem.
Similary, choosing the best value of the parameter α is an interesting and
nontrivial question, which we will discuss in the next subsection.

We conclude this subsection by mentioning that other variants of Katz
centrality are possible. For example, some authors have proposed that rather
than counting every walk starting from node i, one could count only closed
walks, i.e., walk starting from and ending on node i. This centrality measure
is known as f -subgraph centrality. For a general function f , this leads to the
formula

vi =
∞�

k=0

ckα
kAk

ii = f(αA)ii,

that is, the vector of f -subgraph centralities is the vector containing the
diagonal elements of the matrix f(αA) (formally defined as above). The
problem of computing subgraph centrality is apparently more computation-
ally demanding than that of computing total communicability. For example,
for the subgraph analougue of Katz, one would need to compute all the di-
agonal entries of (I − αA)−1, which with a naive approach involves solving
n linear systems. In practice, this problem has been carefully studied, and
efficient methods (mainly based on so-called low-rank approximation of large
matrices) have been devised so that even subgraph centralities can be ap-
proximated with very competitive computational costs, at least in the case
of A being sufficiently sparse. A full discussion is beyond the goals of this
course, but students interested in these aspects can ask for a project in this
direction.
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3.2.2 Limiting behaviour of Katz centrality

Katz centrality is defined for a whole interval of possible values for α, which
generates the question of which one to pick. Generally, the ranking of the
nodes do depend on α. Again, this is one question whose answer is likely
to be application dependent, and particular choices may easily be excellent
for one kind of network but poor for another. Let us prove the following
theorem, which describes what the behaviour of the Katz centrality ranking
in the limit of small and large values of the parameter.

Definition 3.1. Let G be a simple connected graph with adjacency matrix
A. The associated eigenvector centrality is the centrality measure induced by
any positive Perron-Frobenius eigenvector of A.

Theorem 3.2. Consider a simple connected graph and suppose that there
are no ties in the ranking of either degree centrality of eigenvector centrality.
The limit of Katz centrality for α → 0+ gives the same ranking of nodes as
degree centrality. The limit of Katz centrality for α → ρ− gives the same
ranking of nodes as eigenvector centrality.

Proof. Consider the Taylor expansion in α

v = e+ αAe+ o(α);

since e is a constant vector, it does not influence the ranking. Similarly,
dividing by the scalar factor α does not change the ranking. Therefore, for
sufficiently small value of α, v ranks the nodes in the same way as Ae =
diag(Δ).

For the second part, observe that, by the very same arguments as in
Theorem 3.1, we have that

(I − αA)−1e =
n�

i=1

qiλi(α)q
T
i e → λ1(α)q1q

T
1 e+ l.o.t.

and note that
lim

α→ρ−1
q1

must be the eigenvector corresponding to the null space of (I−ρ−1A), which
is the Perron-Frobenius eigenvector of A.
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For the more general case of f -total communicability and f -subgraph
centrality, a recent (2015) result by M. Benzi and C. Klymko shows that
the very same limiting behaviour holds: the raking produced in the limit
of α → 0 is the same as degree centrality, and the raking produced in the
limit of α approaching the largest possible value (which depends both on f
and A) is eigevenctor centrality, defined as above as the centrality measure
prescribed by a positive Perron-Frobenius eigenvector of A. This elegant
result shows that there is a qualitative universality (at least in the sense of
the ranking produced by extremal values of α). A possible project that can
be done for the course exam is to read in detail the research paper proving
the Benzi-Klymko theorem, and expose it.
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