
Lectures 6 and 7 . Dynamic discrete choice: full solution
methods

Ciprian Domnisoru

Aalto University

1 / 43

Overview of Rust (1987)
This is a path-breaking paper that introduces a methodology to
estimate a single-agent dynamic discrete choice (DDC) models.

Main contributions
1. An illustrative application in a simple model of engine replacement.
2. Development and implementation of Nested Fixed Point Algorithm
3. Formulation of assumptions that makes DDC models tractable
4. The first researcher to obtain ML estimates of DDC models
5. Bottom-up approach: Micro-aggregated demand for durable assets

Policy experiments:
▶ How does changes in replacement cost affect the demand for engines

and the equilibrium distribution of mileage?

3 / 1

2 / 43

Dynamic discrete choice examples

Occupational Choice (Keane and Wolpin, JPE 1997)

Retirement (Rust and Phelan, ECMA 1997)

Brand choice and advertising (Erdem and Keane, MaScience 1996)

Choice of college major (Arcidiacono, JoE 2004)

Individual migration decisions (Kennan and Walker, ECMA 2011)

High school attendance and work decisions (Eckstein and Wolpin, ECMA 1999)

Sales and dynamics of consumer inventory behavior (Hendel and Nevo, ECMA
2006)

Advertising, learning, and consumer choice in experience good markets
(Ackerberg, IER 2003)

Route choice models (Fosgerau et al, Transp. Res. B)

Fertility and labor supply decisions (Francesconi, JoLE 2002)

Residential and Work-location choice (Buchinsky et al, ECMA 2015)

3 / 43

Methods used to estimate dynamic discrete choice methods

Rust (1987): MLE using Nested-Fixed Point Algorithm (NFXP)

Hotz and Miller (1993): CCP estimator - (two step estimator)

Keane and Wolpin (1994): Simulation and interpolation

Rust (1997): Randomization algorithm (breaks curse of dimensionality)

Aguirregabiria and Mira (2002): Nested Pseudo Likelihood (NPL).

Bajari, Benkard and Levin (2007): Two step-minimum distance (equilibrium
inequalities).

Arcidiacono Miller (2002): CCP with unobserved heterogeneity (EM
Algorithm).

Norets (2009): Bayesian Estimation (allows for serial correlation in ε)

Su and Judd (2012): MLE using constrained optimization (MPEC)

4 / 43

Formulating, solving and estimating a dynamic model
Components of the dynamic model
▶ Decision variables: vector describing the choices, dt ∈ C(st)

▶ State variables: vector of variables, st , that describe all relevant
information about the modeled decision process

▶ Instantaneous payoff: utility function, u(st , dt), with time separable
discounted utility

▶ Motion rules: agent’s beliefs of how state variable evolve through time,
conditional on states and choices. Here formalized by a Markov transition
density p(st+1 | st , dt)

Solution is given by:
▶ Value function: maximum attainable utility V (st)

▶ Policy function: mapping from state space to action space that returns
the optimal choice, d⋆(st)

Structural Estimation
▶ Parametrize model: utility function u(st , dt ; θu), motion rules for states

p(st+1 | st , dt ; θp), choice sets C(st ; θc), etc.
▶ Search for (policy invariant) parameters θ so that model fits targeted

aspects of data on (a subset of) decisions, states, payoff’s, etc.
7 / 1

5 / 43

Zurcher’s Bus Engine Replacement Problem
▶ Choice set: Binary choice set, C(xt) = {0, 1}.

▶ Engine replacement (dt = 1) or ordinary maintenance (dt = 0)
▶ State variables: Harold Zurcher observes st = (xt , εt):

▶ xt : mileage at time t since last engine overhaul/replacement
▶ εt = [εt(dt = 0), εt(dt = 1)]: decision specific state variable

▶ Utility function: U(xt , εt , dt ; θ1) =

u(xt , dt , θ1) + εt(dt) =

{
−RC − c(0, θ1) + εt(1) if dt = 1
−c(xt , θ1) + εt(0) if dt = 0 (1)

▶ State variables process
▶ εt is iid with conditional density q(εt |xt , θ2)
▶ xt (mileage since last replacement)

p(xt+1|xt , dt , θ2) =

{
g(xt+1 − 0, θ3) if dt = 1
g(xt+1 − xt , θ3) if dt = 0 (2)

If engine is replaced, state of bus regenerates to xt = 0.
▶ Parameters to be estimated θ = (RC , θ1, θ3)

(Fixed parameters: (β, θ2))
8 / 1

6 / 43

General Behavioral Framework
The decision problem
▶ The decision maker chooses a sequence of actions to maximize

expected discounted utility over a (in)finite horizon

Vθ (st) = sup
Π

E

 T∑
j=0

βjU (st+j , dt+j ; θ1) |st , dt

where
▶ Π = (ft , ft+1, ..,) , dt = ft (st , θ) ∈ C (xt) = {1, 2, .., J}
▶ β ∈ (0, 1) is the discount factor
▶ U (st , dt ; θ1) is a choice and state specific utility function
▶ We may consider an infinite horizon , i.e. T = ∞
▶ E summarizes expectations of future states given st and dt

9 / 1

7 / 43

Recursive form of the maximization problem
▶ By Bellman Principle of Optimality, the value function V (s)

constitutes the solution of the following functional (Bellman)
equation

V (x , ε) ≡ T (V)(x , ε) = max
d∈C(x)

{
u(x , ε, d) + βE

[
V (x ′, ε′)

∣∣x , ε, d]}
▶ Expectations are taken over the next period values of state

s ′ = (x ′, ε′) given it’s controlled motion rule, p(s ′ | s, d)

E
[
V (x ′, ε′)

∣∣x , ε, d] = ∫
X

∫
Ω

V (x ′, ε′)p(x ′, ε′|x , ε, d)dx ′dε′

where ε = (ε(1), . . . , ε(J)) ∈ RJ

Hard to compute fixed point V such that T (V) = V
▶ x is continuous and ε is continuous and J-dimensional
▶ V (x , ε) is high dimensional
▶ Evaluating E may require high dimensional integration
▶ Evaluating V (x ′, ε′) may require high dimensional

interpolation/approximation
▶ V (x , ε) is non-differentiable

10 / 1
8 / 43

Rust’s Assumptions

1. Additive separability in preferences (AS):

U(st , d) = u(xt , d ; θ1) + εt(d)

2. Conditional independence (CI):
State variables, st = (xt , εt) obeys a (conditional independent)
controlled Markov process with probability density

p(xt+1, εt+1|xt , εt , d , θ2, θ3) = q(εt+1|xt+1, θ2)p(xt+1|xt , d , θ3)

3. Extreme value Type I (EV1) distribution of ε (EV)
Each of the choice specific state variables, εt(d) are assumed to be
iid. extreme value distributed with CDF

F (εt(d);µ, λ) = exp(− exp(−(εt(d)− µ)/λ)) for εt(d) ∈ R

with µ = 0 and λ = 1

11 / 1

9 / 43

Rust’s Assumptions simplifies DP problem

V (x , ε) = max
d∈C(x)

{
u(x , d)+ε(d)+β

∫
X

∫
Ω

V (x ′, ε′)p(x ′|x , d)q(ε′|x ′)dx ′dε′
}

1. Separate out the deterministic part of choice specific value v(x , d)
(assumptions SA and CI)

2. Reformulate Bellman equation on reduced state space
(assumption CI)

3. Compute the expectation of maximum using properties of EV1
(assumption EV)

12 / 1

10 / 43

1. DP problem under AS and CI
Separate out the deterministic part of choice specific value v(x , d)

V (x , ε) = max
d∈C(x)

{
u(x , d)+β

∫
X

(∫
Ω

V (x ′, ε′)q(ε′|x ′)dε′
)
p(x ′|x , d)dx ′+ε(d)

}
So that

V (x ′, ε′) = max
d∈C

{
v(x ′, d) + ε′(d)

}
where

v(x , d) = u(x , d) + βE
[
V (x ′, ε′)

∣∣x , d]

13 / 1

11 / 43

2a. Bellman equation in expected value function space
Let EV (x , d) = E

[
V (x ′, ε′)

∣∣x , d] denote the expected value function.

Because of CI we can now express the Bellman equation in expected
value function space

EV (x , d) = Γ(EV)(x , d) ≡
∫
X

∫
Ω

[V (x ′, ε′)q(ε′|x ′)dε′] p(x ′|x , d)dx ′

where

V (x ′, ε′) = max
d′∈C(x′)

[u(x ′, d ′) + βEV (x ′, d ′) + ε′(d ′)]

▶ Γ is a contraction mapping with unique fixed point EV , i.e.
∥Γ (EV)− Γ (W)∥ ≤ β ∥EV −W ∥

▶ Global convergence of VFI
▶ EV (x , d) is lower dimensional: does not depend on ε

14 / 1

12 / 43

2b. Bellman equation in integrated value function space
Let V̄ (x) = E

[
V (x , ε)

∣∣x] denote the integrated value function

Because of CI we can express Bellman equation in integrated value
function space

V̄ (x) = Γ̄(V̄)(x) ≡
∫
Ω

V (x , ε)q(ε|x)dε

where

V (x , ε) = max
d∈C(x)

[u(x , d) + ε(d) + β

∫
X

V̄ (x ′)p(x ′|x , d)dx ′]

▶ Γ̄ is a contraction mapping with unique fixed point V̄ , i.e.∥∥Γ̄ (V̄)
− Γ̄ (W)

∥∥ ≤ β
∥∥V̄ −W

∥∥
▶ Global convergence of VFI
▶ V̄ (x) is lower dimensional: does not depend on ε and d

15 / 1

13 / 43

3. Compute the expectation of maximum under EV
We can express expectation of maximum using properties of EV1
distribution (assumption EV)

Expectation of maximum, V̄ (x), can be expressed as "the log-sum"

V̄ (x) = E

[
max

d∈{1,...,J}
{v(x , d) + λε(d)} | x

]
= λ log

J∑
j=1

exp(v(x , d)/λ)

Conditional choice probability, P(x , d) has closed form logit expression

P(d | x) = E

[
1

{
d = arg max

j∈{1,...,J}
{v(x , j) + λε(j)}

}
| x

]
=

exp(v(x , d)/λ)∑J
j=1 exp(v(x , j)/λ)

HUGE benefits
▶ Avoids J dimensional numerical integration over ε
▶ P(d | x), V̄ (x) and EV (x , d) are smooth functions.

16 / 1

14 / 43

The DP problem under AS, CI and EV
Putting all this together
▶ Conditional Choice Probabilities (CCPs) are given by

P (d |x , θ) = exp {u (x , d , θ1) + βEVθ (x , d)}∑
j∈C(x) exp {u (x , j , θ1) + βEVθ (x , j)}

▶ The expected value function can be found as the unique fixed point
to the contraction mapping Γθ, defined by

EVθ (x , d) = Γθ(EVθ) (x , d)

=

∫
y

ln

 ∑
d′∈C(y)

exp [u(y , d ′; θ1) + βEVθ (y , d
′)]

p (dy |x , d , θ2)

▶ We have used the subscript θ to emphasize that the Bellman
operator,Γθ depends on the parameters.

▶ In turn, the fixed point, EVθ, and the resulting CCPs, P (d |x , θ) are
implicit functions of the parameters we wish to estimate.

17 / 1 15 / 43

How to deal with continuous mileage state?
Rust discretize the mileage state space x into n grid points

X = {x1, ..., xn} with x1 = 0

Mileage transition probability: for l = 0, . . . , L

p(x ′|x̂k , d , θ2) =

{
Pr{x ′ = xk+l |θ2} = πl if d = 0
Pr{x ′ = x1+l |θ2} = πl if d = 1

▶ where θ2 = [π1, . . . , πL], π0 = 1 −
∑L

l=1 πl , and πl ≥ 0
▶ Mileage in the next period x ′ can move up at most L grid points.
▶ L is determined by the empirical distribution of mileage.

18 / 1

16 / 43

Transition matrix for mileage is sparse
Transition matrix conditional on keeping engine

Π(d = keep)nxn =

π0 π1 π2 0 ˙ ˙ ˙ 0
0 π0 π1 π2 0 ˙ ˙ 0
0 0 π0 π1 π2 0 ˙ 0
˙ ˙ ˙ ˙ ˙ ˙ ˙
0 π0 π1 π2 0
0 π0 π1 π2
0 π0 1 − π0
0 0 1

19 / 1

17 / 43

Transition matrix for mileage is sparse
Transition matrix conditional on replacing engine

Π(d = replace)nxn =

π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0
π0 π1 π2 0 ˙ ˙ ˙ 0

20 / 1

18 / 43

Bellman equation in matrix form
Bellman equation in expected value function space

EV (d) = Γ(EV) = Π(d) ln

[∑
d′

exp[u(d ′) + βEV (d ′)]

]

Bellman equation in integrated value function space

V̄ = Γ̄(V̄) = ln

[∑
d′

exp[u(d ′) + βΠ(d ′)V̄]

]

where
▶ u(d) = [u(x1, d), .., u(xn, d)]

▶ EV (d) = [EV (x1, d), ..,EV (xn, d)]

▶ V̄ = [V̄ (x1), .., V̄ (xn)]

▶ Π(d) is a n × n state transition matrix conditional on decision d

21 / 1

19 / 43

Structural Estimation
Data: (di,t , xi,t), t = 1, ...,Ti and i = 1, ...,N

Log likelihood function

L(θ,EV θ)) =
N∑
i=1

ℓfi (θ,EV θ)

ℓfi (θ,EV θ) =

Ti∑
t=2

log(P(di,t |xi,t , θ)) +
Ti∑
t=2

log (p(xi,t |xi,t−1, di,t−1, θ3))

where
P(d |x , θ) = exp{u(x , d , θ1) + βEV θ(x , d)}∑

d′∈{0,1}{u(x , d ′, θ1) + βEV θ(x , d ′)}

and

EV θ(x , d) = Γθ(EV θ)(x , d)

=

∫
y

ln

 ∑
d′∈{0,1}

exp[u(y , d ′; θ1) + βEV θ(y , d
′)]

 p(dy |x , d , θ3)

22 / 1

20 / 43

The Nested Fixed Point Algorithm
Since the contraction mapping Γθ always has a unique fixed point, the
constraint EV θ = Γ(EV θ) implies that the fixed point EV θ is an implicit
function of θ.

Hence, NFXP solves the unconstrained optimization problem

max
θ

L(θ,EV θ)

Outer loop (Hill-climbing algorithm):
▶ Likelihood function L(θ,EV θ) is maximized w.r.t. θ

▶ Quasi-Newton algorithm: Usually BHHH, BFGS or a combination.
▶ Each evaluation of L(θ,EV θ) requires solution of EV θ

Inner loop (fixed point algorithm):
The implicit function EV θ defined by EV θ = Γ(EV θ) is solved by:
▶ Successive Approximations (SA)
▶ Newton-Kantorovich (NK) Iterations

23 / 1

21 / 43

NFXP vs. MPEC

The MPEC method does not need a specialized inner loop algorithm to
compute the fixed point.

Instead, it recasts the problem of maximizing the likelihood function as a
constrained optimization problem with respect to the K structural parameters
plus N additional variables, which are the values of value function at a set of N
grid points in the state space.

These N additional variables must satisfy the Bellman equation, which can be
recast as a N “side constraints”.

MPEC also implicitly solves the fixed point problem while searching for
structural parameter values that maximize the likelihood, but using a
general-purpose constrained optimization algorithm

22 / 43

Mathematical Programming with Equilibrium Constraints
MPEC solves the constrained optimization problem

max
θ,EV

L(θ,EV) subject to EV = Γθ(EV)

using general-purpose constrained optimization solvers such as KNITRO

Su and Judd (Ecta 2012) considers two such implementations:

MPEC/AMPL:
▶ AMPL formulates problems and pass it to KNITRO.
▶ Automatic differentiation (Jacobian and Hessian)
▶ Sparsity patterns for Jacobian and Hessian

MPEC/MATLAB:
▶ User need to supply Jacobians, Hessian, and Sparsity Patterns
▶ Su and Judd do not supply analytical derivatives.
▶ ktrlink provides link between MATLAB and KNITRO solvers.

37 / 1

23 / 43

MPEC is used in multiple contexts
Single-Agent Dynamic Discrete Choice Models
▶ Rust (1987): Bus-Engine Replacement Problem
▶ Nested-Fixed Point Problem (NFXP)
▶ Su and Judd (2012): Constrained Optimization Approach

Random-Coefficients Logit Demand Models
▶ BLP (1995): Random-Coefficients Demand Estimation
▶ Nested-Fixed Point Problem (NFXP)
▶ Dube, Fox and Su (2012): Constrained Optimization Approach

Estimating Discrete-Choice Games of Incomplete Information
▶ Aguirregabiria and Mira (2007): NPL (Recursive 2-Step)
▶ Bajari, Benkard and Levin (2007): 2-Step
▶ Pakes, Ostrovsky and Berry (2007): 2-Step
▶ Pesendorfer and Schmidt-Dengler (2008): 2-Step
▶ Pesendorfer and Schmidt-Dengler (2010): comments on AM (2007)
▶ Kasahara and Shimotsu (2012): Modified NPL
▶ Su (2013), Egesdal, Lai and Su (2014): Constrained Optimization

35 / 1

24 / 43

Monte Carlo: Rust’s Table X - Group 1,2, 3

▶ Fixed point dimension: n = 175
▶ Maintenance cost function: c(x , θ1) = 0 : 001 ∗ θ1 ∗ x
▶ Mileage transition: stay or move up at most L = 4 grid points
▶ True parameter values:

▶ θ1 = 2 : 457
▶ RC = 11.726
▶ θ2 = (π1, π2, π3, π4) = (0.0937, 0.4475, 0.4459, 0.0127)

▶ Solve for EV at the true parameter values
▶ Simulate 250 datasets of monthly data for 10 years and 50 buses

40 / 1

25 / 43

Is NFXP a dinosaur method?

41 / 1

26 / 43

NFXP survival kit

Step 1: Read NFXP manual and print out NFXP pocket guide
Step 2: Recenter logit and logsum formulas
Step 3: Use Fixed Point Poly-Algorithm (SA+NK)
Step 4: Provide analytical gradients of Bellman operator
Step 5: Provide analytical gradients of likelihood
Step 6: Use BHHH (outer product of gradients as hessian approx.)

42 / 1

27 / 43

STEP 1: NFXP documentation
References

Rust (1987): "Optimal Replacement of GMC Bus Engines: An
Empirical Model of Harold Zurcher" Econometrica 55-5, pp
999-1033.

Rust (2000): “Nested Fixed Point Algorithm Documentation
Manual: Version 6”
https://editorialexpress.com/jrust/nfxp.html

Iskhakov, F. , J. Rust, B. Schjerning, L. Jinhyuk, and K. Seo (2015):
"Constrained Optimization Approaches to Estimation of Structural
Models : Comment." Econometrica 84-1, pp. 365-370.

43 / 1

28 / 43

STEP 2: Recenter to ensure numerical stability
Logit formulas must be reentered.

Pi =
exp(vi)∑
j exp(vj)

=
exp(vi − v0)∑
j exp(vj − v0)

and “log-sum” must be recentered too

ln
∑
j

exp(vj) = v0 + ln
∑
j

exp(vj − v0)

If v0 is chosen to be v0 = maxj vj we can avoid numerical instability due
to overflow/underflow

46 / 1

29 / 43

Newton’s method

For a continous f(x), at point a, p(x) ≈ f (a) + f ′(a)(x − a) + f ′′(a)
2 (x − a)2 is the

second order approximation. Minimize f by minimizing p(x). xm = a− f ′(a)
f ′′(a) . Finds

critical points, not min or max.

30 / 43

Newton’s method

31 / 43

STEP 3: Use Fixed Point Poly-Algorithm (SA+NK)
Problem: Find fixed point of the contraction mapping, Γθ

EVθ = Γ(EVθ)

Fixed Point Poly-Algorithm:
1. Successive Approximations (SA) by contraction iteration:

EVk+1 = Γθ(EVk)

▶ Error bound: ||EVk+1 − EV || ≤ β||EVk − EV ||
→ Linear convergence → slow when β close to 1

2. Newton-Kantorovich (NK) iteration:
▶ Solve F = [I − Γ](EVθ) = 0 using Newtons method

EVk+1 = EVk − (I − Γ′)−1(I − Γ)(EVk)

Γ′
θ is the Fréchet derivative of Γθ

I is the identity operator on B
0 is the zero element of B

▶ Error bound: ||EVk+1 − EV || ≤ A||EVk − EV ||2
→ Quadratic convergence around fixed point, EV

47 / 1

32 / 43

Value function iteration

Specify some V0

Apply the Bellman operator to V0

Iterate until convergence

The contraction mapping iteration is:

V̄ i+1(xt) = γ + log{exp[−c(xt , θ1) + βθ31V̄
i (xt) + βθ32V̄

i (xt+1) + βθ33V̄
i (xt+2)] +

exp[−c(0, θ1)− RC + βθ31V̄
i (0) + βθ32V̄

i (1) + βθ33V̄
i (2)]}

33 / 43

When to switch to Newton-Kantorovich?
When to switch to Newton-Kantorovich?
▶ Suppose that EV0 = EV + k .

(Initial EV0 equals fixed point EV plus an arbitrary constant)
▶ Another successive approximation does not solve this:

tol0 = ∥EV0 − Γ(EV0)∥ = ∥EV + k − Γ(EV + k)∥
= ∥EV + k − (EV + βk)∥ = (1 − β)k

tol1 = ∥EV1 − Γ(EV1)∥ = ∥EV + βk − Γ(EV + βk)∥
= ∥EV + βk − (EV + β2k)∥ = β(1 − β)k

tol1/tol0 = β

▶ Newton will immediately “strip away” the irrelevant constant k
▶ Switch to Newton whenever tol1/tol0 is sufficiently close to β

53 / 1

34 / 43

The Fixed Point (poly) Algorithm
Fixed Point poly Algorithm

1. Successive contraction iterations

EVk+1 = Γθ(EVk)

until EVk is in the domain of attraction
(i.e. when tolk+1/tolk is close to β)

2. Newton-Kantorovich (quadratic convergence)

EVk+1 = EVk − (I − Γ′)−1(I − Γ)(EVk)

until convergence
(i.e. when ∥EVk+1 − EVk∥ is close to machine precision)

54 / 1

35 / 43

STEP 4: Analytical derivative of Bellman operator
Derivative of Bellman operator, Γ̄′

▶ Needed for the NK iteration
▶ In the discretized approximation, Γ̄′ is a n × n matrix with partial

derivatives of the n × 1 vector function Γ̄(Vθ) with respect to the
n × 1 vector V̄θ

▶ Γ̄′θ is simply β times the choice probability weighted state transition
probability matrix

Γ̄′θ = β
∑
j

Π(j). ∗ P(j)

▶ One line of code in MATLAB
▶ A similar matrix can be derived for Γ′

55 / 1

36 / 43

STEP 1-4: MATLAB implementation of Γ̄θ and Γ̄′θ
function [V1, pk, dBellman_dV]=bellman_iv(V0, mp, u, P)

vK= u(:,1) + mp.beta*P{1}*V0; % Value of keeping
vR= u(:,2) + mp.beta*P{2}*V0; % Value of replacing

% Recenter logsum
maxV=max(vK, vR);
V1=(maxV + log(exp(vK-maxV) + exp(vR-maxV)));

% If requested, compute keep probability
if nargout>1

pk=1./(1+exp((vR-vK)));
end

% If requested, compute derivative of Bellman operator
if nargout>2

dBellman_dV=mp.beta*(P{1}.*pk + P{2}.*(1-pk));
end

end

56 / 1

37 / 43

STEP 1-4: MATLAB implementation of Γθ and Γ′θ
function [ev, pk, dbellman_dev]=bellman_ev(ev0, mp, u, P)

vK= u(:,1) + mp.beta*ev0; % Value off keep
vR= u(:,2) + mp.beta*ev0(1); % Value of replacing

% Need to recenter logsum by subtracting max(vK, vR)
maxV=max(vK, vR);
V=(maxV + log(exp(vK-maxV) + exp(vR-maxV)));
ev=P{1}*V; % compute expected value of keeping

% ev(1) is the expected value of replacing

% If requested, also compute choice probability
if nargout>1

pk=1./(1+exp((vR-vK)));
end

% If requested, compute derivative of Bellman operator
if nargout>2

dbellman_dev=mp.beta*(P{1}.*pk');
% Add additional term for derivative wrt ev(1),
% since ev(1) enter logsum for all states
dbellman_dev(:,1)=dbellman_dev(:,1)+mp.beta*P{1}*(1-pk);

end
end

57 / 1

38 / 43

STEP 5: Provide analytical gradients of likelihood
Simple use of chain rule:

3. Gradients (wrt utility parameters) - similar to standard logit

∂ℓ1i (θ)/∂θ1 =
∑
t

∑
j

[yj(it) − P(j |xit , θ)]∂v(xit , j)/∂θ1

2. Derivative of the choice specific value function

∂v(j)/∂θ1 = ∂u(j)/∂θ1 + βΠ(j)∂V̄ /∂θ1

▶ ∂u(j)/∂θ1, is trivial to compute
▶ ∂V̄θ/∂θ can be obtained by the implicit function theorem

∂V̄θ/∂θ = [I − Γ̄′
θ]

−1∂Γ̄/∂θ

where [I − Γ̄′
θ]

−1 is a by-product of the N-K algorithm!!!.
1. Derivative of Bellman operator wrt. θ1

∂Γ̄/∂θ1 = β
∑
j

P(j) · ∂u(j)/∂θ1

where · is the element by element product
58 / 1

39 / 43

STEP 5: MATLAB implementation of scores

function score = score(data, mp, P, pk, px_j, V0, du, dBellman_dV);
y_j=[(1-data.d) data.d]; % choice dummies [keep replace]

% Compute scores (use chain rule - three steps)

% STEP 1: derivative of bellman operator wrt. utility parameters
dbellman=pk.*du(:,:,1) + (1-pk).*du(:,:,2);
if strcmp(mp.bellman_type, 'ev');

dbellman=P{1}*dbellman;
end

% STEP 2: derivative of fixed point, V, wrt. utility parameters
dV=(speye(size(dBellman_dV)) - dBellman_dV)\dbellman;

% STEP 3: derivative of log-likelihood wrt. utility parameters
score=0;
for j=1:size(y_j, 2);

dv= du(:,:,j) + mp.beta*P{j}*dV;
score = score+ (y_j(:,j)-px_j(:,j)).*dv(data.x,:);

end
end

59 / 1

40 / 43

STEP 6: BHHH

▶ Recall Newton-Raphson

θg+1 = θg − λ (ΣiHi (θ
g))−1 Σi si (θ

g)

▶ Berndt, Hall, Hall, and Hausman, (1974):
Use outer product of scores as approx. to Hessian

θg+1 = θg + λ (Σi si s
′
i)

−1
Σi si

▶ Why is this valid? Information identity:

−E [Hi (θ)] = E
[
si (θ) si (θ)

′]
(valid for MLE if model is well specified)

60 / 1

41 / 43

STEP 6: BHHH
Some times linesearch may not help Newtons Method

−1 −0.5 0 0.5 1 1.5 2
−10.4

−10.3

−10.2

−10.1

−10

−9.9

−9.8

−9.7

−9.6

−9.5

−9.4
Non−concave likelihood

θ

θ

Concave region:

Newton−Raphson moves
in the same
direction of the gradient

NR moves UPHILL

Convex region:

Newton−Raphson moves
in the oposite
direction of the gradient

NR moves DOWNHILL
(Wrong, wrong, way)

BHHH: Still good

61 / 1

42 / 43

STEP 6: BHHH
Advantages
▶ Σi si s

′
i is always positive definite

I.e. it always moves uphill for λ small enough
▶ Does not rely on second derivatives

Disadvantages
▶ Only a good approximation

▶ At the true parameters
▶ for large N
▶ for well specified models (in principle only valid for MLE)

▶ Only superlinear convergent - not quadratic
We can always use BHHH for first iterations and the switch to BFGS to
update to get an even more accurate approximation to the hessian matrix
as the iterations start to converge.

62 / 1

43 / 43

