Statistical Mechanics
EO0415

Fall 2023, lecture 8
Quantum phase transitions



... take home...

“I chose the article “Brain entropy mapping using fMRI” since | am in general interested in brain and
neuro related concepts. | have not heard of brain entropy (BEN) before, so this is a new topic for me.

The article presents how functional MRI (fMRI) can be analyzed with the help of brain entropy to
view brain activity. The fMRI data are time-dependent voxels, hundreds of thousands of which need
to be analyzed. For one voxel and so-called embedded vectors are used to compute the sample
entropy with a logarithmic function, where the inputs are sums of all the voxel values. The data
describes regional changes in cerebral blood flow and metabolism. The article does not really specify
the meaning behind using entropy, except that the brain aims to keep orderly, so “fighting” against
entropy is necessary. The point of the analysis seems to be to see if entropy is a good way to view
how much activity there is in a region in the brain. Abnormal changes also would be seen from the
entropy measurements. The article concludes with disc”ussion of the successful results: the results
agreed with previous theoretical estimations. The description of why this entropy was a useful metric
was quite faint from a physics point of view. “
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Quantum Ising

transverse-field quantum Ising model: {1): nearest neighbours
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Paramagnet

- e
o } 6¥1=)i = +|=+)i where | =) = %(m +14)
For g — +o0, [g.5.) = [];1—)i
spins align with applied field: “quantum paramagnet”
g.s. is symmetric under spin flip: U|g.s.) = |g.s.)
(9.5./67|g.s.) =0 U Haf
product state, so no correlations: (g.s.|E:“r,-zf’:‘rj-z|g.s.)J = 0jj
For large finite g, |g.s.) = [];|->); + perturbative corrections in 1/g
correlations (g.s.|676%[g.s.) ~ e =%l/& with £ — 0 for g = o

“kinetic energy (i.e., off-diagonal term) wins"
(“kinetic” / “potential” depends on choice of basis)



Ferromagnet

H=-JY 6767 —Jg)» 6&F
(i) r‘

For g = 0, two degenerate ground states: |ft) = [[,|"); and [4}) = T4
spins align with each other: ferromagnet
both states break spin-flip symmetry (U[}) = [{))
(9.5.1671g9.s.) = 1
product state: (g.s.|6767|g.5.) = (9.5./679.5.)(9.5./67|g.5.) = 1
For g = 0%, superpositions |ft) £ |{}) are e'states, but splitting — 0 as N — oo

N = oc: macroscopic superpos’'ns unstable; take |1), |{}) as degenerate g.s.

for small g and N = oc, |g.s.;) = [],|1); + perturbative corrections in g
lg.s._) = ] [,|4); + perturbative corrections in g

“potential energy (i.e., diagonal term) wins”



Partititon function

at temperature T = 1/, partition function
Z = Tre PH

= Z{s|e"m{'|s) for any (orthonormal) basis {|s)}
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Quantum model to classical
mapping

Z= Y (sole™[s1)(s1le”|sa)(sa| - |sp—1)(Sp—1]e”""|s0)
S0.51,00S1- 1 c o1
) _ To ] I [ | | | I
choose basis states |s) corresponding s
to classical configurations s [ e i T S
m | | | | | | |
. _ £
define £(s,s") = —log(s|e™*|s") = [£(s', 5)]" S0 001
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where sy = s eriodicity in T 5 _ , >
0 (p y ) 0 d-dimensional space (lattice)
m:f. classical statistical system with reduced Hamiltonian E \

on (d + 1)-dimensional lattice (with p.b.c.)

Eq = Z [E1(s;) + Eox(si,5i41)] E;: layer configuration energy
i E»: interaction between adjacent layers

M—-1
= Z { [E1(si) + Ex(si+1)] + Eo(si, Six1) } = Z E(si.sit1)
i=0

o /

if £(s,s’) is real, interpret Z as partition f'n for classical (d + 1)-dimensional system




Summary

quantum classical

imaginary time T extra spatial dimension 7

, 1 . . . .
inverse temperature 3 = T system size L, in 7 direction

Boltzmann weight (transfer
matrix) e €550 = (sle~¥H|s’)

sum over trajectories sum over configurations
(“path integral”) (canonical ensemble)

imaginary-time evolution e~#*

classical critical phenomena
in d + 1 dimensions

quantum critical phenomena
at T = 0 in d dimensions

Imaginary time T
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d-dimensional space (lattice)

at zero temperature, § = 1/T = oc: imaginary-time direction is infinite

n.b., distinct from relationship between classical stochastic dynamics

(in d dimensions) and quantum mechanics (in d dimensions)



ISing again

transverse-field quantum Ising model: H = —JZ&;?&J-Z — JQZS;-“
(i) d
define £(s,s") = — log(s|e™"|s") use &7 basis, |1);.]4);: )
z= Y o T E(s150) s) = {s1. 8. ...sn}) =TI s,
50,51, Sh1
for sufficiently small a, use e?(AtB) = ea4eaB[1 | O(3)]
(s|eM ) ~ (s] €9 500 /20 71 | )
— <S| ean > 6r ‘5’> eajl::.”.} s/s] {S|eaéx|5’} _ A(Q)EB(Q}SEF
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sing I

transverse-field quantum Ising model: ‘H = —JZﬁfﬁf — Jch’ij—‘
i

{if)
Z — Z e_Z:ﬁEl 5(51'.5r'—'_)

50,5100y Sp-1
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For a — 0, B(a) = —2 logtanh o

Imaginary time 7

E(s,s') = —aJZs;’sj — B(aJg) Zs;s{
() i

layer configuration energy ) w "

d-dimensional space (lattice)

jen)

interaction between adjacent layers

e Transverse-field Ising model in d dimensions maps to highly anisotropic
(a — 0) classical Ising model in d + 1 dimensions

e By universality, quantum Ising model has identical critical properties
to isotropic classical Ising model in d 4+ 1 dimensions



Ising chain

transverse-field quantum Ising model in 1D:
H=—JY [6767,+ 967

!
(related to 2D classical Ising model, so ordering transition at g.)

for g = o0, [g.5.) =TI;[—)i

excited states have +—+—+—+——+——+—+

flipped spins

for large g, use perturbation +—+—+—+—+—+—+

theory, with 6H = >, 6767,

OH creates flipped spins in pairs & +—+—+—+—+—+—+

hops them between sites

=) =1+ 1) o |
) =25 (1) = 11) 6l) = 1=)

I
S

so treat flipped spins as particles



Use a transformation....

; _
Treat flipped spins as particles +—+—+—+—+—j+——+

either:

e as bosons—but then need interactions 07 =1 =2 ni =0
to forbid two flipped spins on one site 57 = p, + b! n=1

e as fermions—double occupation automatically forbidden,
but fermion operators anticommute on different sites:

{Cf. C_: } = 5:,;

(g} ={d. =6

all ol . ~p
67,671 = —2i€u,870;;

Jordan—Wigner transformation (in 1D): add a string of minus signs

pty

o7 =1-—2n; nj = cjcj-
67 = —(c C‘-T)H(l 2n;)
J<i

including this string, [67,6F] = 0 for i # J, as required



... dilagonalize... exact spectrum.

transverse-field quantum Ising model in 1D: H = —JZ 6767, + 967

JW transformation: &7 =1 — 2n; nj = CJT ¢
&7 = —(ci+c) ] —2n)
J<i
6767, = (ci+c)(c+ ) [ —2m) T (- 2np)
J<i J=<i+l
= (¢ + Cj)(c,- i+ ) (1 —2m;) {ci, C:,T} =0y
= (—ci+ ) (e + ) {c.gy={c ¢t =46;
result: quadratic Hamiltonian in terms of fermion operators
L ; (see practice
H=-J Z (Cil Cit1 + C:T—lcf + C:T CJ'T+l + Gi1G — ngiT Ci + g) ;rcjblems}
f.

diagonalize with FT and unitary transformation: ¢, = ueyk + ivnik {’yk,’rl} = ki

H = ZER('Y;T(Y — 1) ground state |g.s.): vklg.s.) = 0 (all k)
k

ex = 2JV/1+ g2 — 2gcosk gap A =E; — Egs, = €0 =2J[1 — g|



Chain: QPT

A nonanalyticity in ground state
gap A (in thermodynamic limit)

>
(9707) — const # 0 9~ \_g/ (6767 ~ e~mxl/E(@
as [x; — xj| — o< as |x; — xj| = oc

g = 2JV/14 g2 — 2gcosk
A=2J]1-g|l~|g—gl”
critical exponent zv =1

Sachdev (1999/2011)




Quantum annealing

Energy

Solution

Quantum Tunnelling

Solution

Adiabatic evolution

|dea: take a classical Hamiltonian
(energy function). Instead of doing
things at finite T and lowering it
(Simulated Annealing)... Glauber
dynamics with a decreasing T.

Do the quantum version with
decreasing quantum effects.

Tunneling through barriers.



Kibble-Zurek

Approach a 2" order phase transition at a (fixed) finite rate. Eg. The
Ising transition.

At some point, the correlation time / relaxation timescale becomes so

large, that the system no longer relaxes (“adiabatically”) or is able to
follow the change.

Consequence: topological defects are created. The density depends on
the correlation scale (length) and dimension (“coherent volumes”).

Lots of applications...
Physics depends on the rate of approach (velocity).



Kibble-Zurek mechanism in colloidal monolayers

|
KI b b I e - 2 u re k I I Sven Deutschlinder,! Patrick Dillmann,! Georg Maret,! and Peter Keim!:*

PNAS 2015

quasi-adiabatic

dynamics phase

FIG. 5. Snapshot sections of the colloidal ensemble
(992 x 960 pm?, &~ 4000 particles) illustrating the defect (a.c)
and domain configurations (b,d) at the freeze out temperature

distance to I for the fastest (a,b: I' = 0.0326 1/s, I’ 2 30.3) and slowest
S cooling rate (c,d: T' = 0.000042 1/s, T’ & 66.8). The defects
transition are marked as follows: Particles with five nearest neighbors

are colored red, seven nearest neighbors green and other de-
fects blue. Sixfold coordinated particles are colored grey. Dif-
ferent symmetry broken domains are colored individually and
high symmetry particles are displayed by smaller circles.



Quantum take-home

The classic reference for this stuff is by Subir Sachdeev (Quantum Phase Transitions) but we utilize here
two sets of lecture notes that exploit it. The first set is from Warwick

https://warwick.ac.uk/fac/sci/physics/mpags/modules/theory/cqpt/lectures?9-10.pdf

And if you want another viewpoint, with partly more detail, check lectures 5 and 6 from Dresden
(Lukas Janssen), https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ss18/qpt ss18

For the applications, we have quantum annealing and the Kibble-Zurek mechanism. The take home is
now like this: check those notes so that you recall the main points of QPT. Then pick either a topic on
quantum annealing (including the D-Wave simulator), in other words

https://www.nature.com/articles/s41598-019-49172-3

... or if you want to have more insight on the Kibble-Zurek, you should take

https://www.nature.com/articles/s41586-019-1070-1

And your task is like the previous time "2+8" sentences on the selection and main points.


https://warwick.ac.uk/fac/sci/physics/mpags/modules/theory/cqpt/lectures9-10.pdf
https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ss18/qpt_ss18
https://www.nature.com/articles/s41598-019-49172-3
https://www.nature.com/articles/s41586-019-1070-1

