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Exogeneity and overidentification tests
Comparing OLS and IV
Bartik instruments

Regression discontinuity designs: functional form checks
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Application (placebo tests): Impacts of Public Transit on Traffic
Congestion

v

McCrary density test in Stata
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Exogeneity tests

» Consider the equation of interest y; = §X + By2 + u1, and the first
stage yo =7tz + v
» If y» is endogenous, E(yau1) # 0 and E(vaup) # 0

» Exogeneity test formulated as E(vou;) = 0. Null hypothesis is that
residuals are uncorrelated.

» u; = pva + €. Null hypothesis of exogeneity : p=0

P y2 is in fact exogenous, then OLS and 2SLS estimators should differ
only because of sampling error - i.e. they should not give significantly
different results

> 1 =0X+py2+ph+7
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Multiple instruments and overidentification tests

| 2

>

More (relevant) instruments can increase the first stage F-stat,
reducing the variance of 2SLS estimates.

If there are more instruments than endogenous regressors (the model if
“overidentified” ), it is possible to test — partially — for instrument
exogeneity.

Consider two relevant instruments: if 25LS estimates using
instruments separately are very different, then one or the other (or
both) instruments must be failing the exogeneity restriction.

Overidentification (or “J”, or “Sargan”) test: regress residuals from
2SLS equation (using X, not )A<) on instruments; compute F-stat that
the coefficients on all instruments are zero; J-statistic is mF, where m
is the number of instruments. Under null of exogeneity, ~ x?, reject if
larger than some critical value. If m=k, J=0.
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IV vs. OLS

v

IV and OLS estimates sometimes vary widely.

Think about the sign of the expected bias in OLS and the potential
magnitude.
Add multiple controls to OLS and see how OLS coefficient changes.

If you think the OLS estimate is biased upwards (coefficient is
overestimated), you would expect to find the IV is smaller than OLS.
However measurement error (attenuation bias) can depress OLS, so IV
may be larger.

Do you have any reason to believe compliers are special? Might
particularly benefit from the policy?
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Bartik instruments
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Bartik Instruments

P In economics, instrumental variables originated as an attempt to to

isolate exogenous supply or demand shifters in some particular market.

P Last time, you saw the example using shifts in supply of fish caused by
storms to recover demand parameters.

TABLE 5

Two-stage-least-squares estimates of demand function with stormy

and mixed as instruments

Variable est. (s.e) est. (s.e.)
Av. price effect 101 (042 0947 (046)
Monday ~0013  (018)
Tuesday -0-51 (0-18)
Wednesday -0-56 ©17)
Thursday 010 ©0-17)
Weather on shore 002 (0-16)
Rain on shore 0-07 (0-16)

Note: Standard errors are reported in parentheses.

xford University Press. All rights reserved. This content is excluded from our Creative
nmons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/.

s of instrumental variables with the demand function equal to

Ingi(p)=Po+Pi-Inp+pP,-x+e,
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Bartik Instruments
> AWAGEit = a + BirAEmployment;; + €y
> B Inverse elasticity of labor supply. Regression motivated by local economic development policies. Bartik: "In response
to an employment shock, employers are more likely to promote less-skilled individuals to avoid raising the occupation's

real wage. An increase in occupational real wages would be needed to attract individuals of "normal” skill levels from

outside the labor force or from other metropolitan areas.”

» Goal: isolate local labor demand that is unrelated to changes in local
labor supply.

> AEmployment; = Yi_; zigik

» Zz; industry k share in local employment i

P g growth rate of industry k in location i.

P gy has a nationwide component gx and a local component

» Use ABj; = Z;f:l Zixgk as an instrument.

P> "Local employment growth rate predicted by interacting local industry
employment shares with national industry employment growth rates.”

P labor, public, development, macroeconomics, international trade, and

finance.
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Bartik /Shift-share instruments

| 2

\4

Trade: impact of Chinese imports on manufacturing employment in
U.S. cities (denoted by i)

AMANUF;; = a + BlmportExposurejs + €j¢

ImportExposure;; :fo:lz,-ktg,gs

Import Exposure correlated with unobservables that also impact
manufacturing employment.

Autor et al. (2013) instrument:

K
Bit=Y_1_1 Zix(—1) 850 'R
Lagged ("initial") shares of employment in city i, gkotTHER growth of

Chinese imports in other high-income countries.

weighted average of a "shift”: how much China is exporting in
different k product categories, with "shares’ coming from initial
industry composition.
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Bartik /Shift-share instruments

vVvyyvyy

ANATIVEWAGES;; = a + BImmigration; + €z

Concern: local demand shocks

Use instrument Bi;=Y_5_; z,-k(t_l)gkOtVERALL

z are the lagged shares of immigrants from source country k in city i,
and g is the normalized change in overall immigration from country k
into the U.S. Weighted average of the national inflow rates from each
country (“the shift”), with weights depending on the initial distribution
of immigrants (“the shares”).
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Criticisms

» Goldsmith-Pinkham, Sorkin and Swift (2020, AER). Why are the initial
shares exogeneous? Check how much the initial shares are correlated
with other potential confounders in the initial year. E.g. (computer
manufacturing and education)

» Borusyak, Hull, and Jaravel (2018). Exogenous shares sufficient, but
not necessary; Can identify effects if shocks are “as good as random”

» Jaeger et al. (2018). In immigration literature, Bartik instrument
supposed to be exogenous to local demand shocks. However, if
adjustment to shocks long-term, Bartik instrument biased. More
reliable for initial immigration shares that rely on older, idiosyncratic
policies.
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Regression discontinuity designs: functional form
specification
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Sharp Regression Discontinuity (RD) Design

Things to consider: 1) Is the outcome continuous around the threshold? 2) Is
there any manipulation? 3) Are there competing factors/policies? 4) How does the
outcome evolve in the absence of the policy: linearly? non-linearly?

FIGURE 4.2
A sharp RD estimate of MLDA mortality effects
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Notes: This figure plots death rates from all causes against age in months.
The lines in the figure show fitted values from a regression of death rates on
an over-21 dummy and age in months (the vertical dashed line indicates the
minimum legal drinking age (MLDA) cutoff).
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Sharp Regression Discontinuity (RD) Design

» A simple RD design analysis of the MLDA estimates causal effects
using a regression like

M, =a+pD,+va+e,
» M, is the death rate in month a

» month is a 30-day interval counting from the 21st birthday
» D, is the treatment dummy

1 ifa>21
Da: .
0 ifa<?2l

» ais a linear control for age measured in months
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Sharp Regression Discontinuity (RD) Design

» Mortality clearly changes with the running variable, a, for reasons
unrelated to the MLDA

» deaths rates from disease-related causes like cancer (known as internal
causes) are low but increasing for those in their late teens and early 20s
» deaths from external causes, primarily car accidents, homicides, and
suicides, fall
» To separate this trend variation from any possible MLDA effects, an
RD analysis controls for smooth variation in death rates generated by a

P the negative slope captured by 7 reflects smoothly declining death
rates among young people as they mature
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RD Specifics

» RD tools aren't guaranteed to produce reliable causal estimates
» challenge: mistaking a nonlinearity for a discontinuity
» figure may exhibit a nonlinear trend with sharp turns to the left and
right of the cutoff — like a discontinuity — but there is none
» Figure 4.3 shows three cases

» Panel A: relationship between running variable (X) and the outcome
(Y) is linear, with a clear jump in E[Y|X] at cutoff

» Panel B: relationship between X and Y is nonlinear, but jump in
E[Y|X] at the cutoff is still plain to see

» Panel C: relationship between X and Y is nonlinear, with no jump in
E[Y|X] at the cutoff (RD challenge)
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RD Specifics

F1GURE 4.3
RD in action, three ways
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RD Specifics
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Notes: Panel A shows RD with a linear model for E[Y;|X;]; panel B adds
some curvature. Panel C shows nonlinearity mistaken for a discontinuity. The
vertical dashed line indicates a hypothetical RD cutoff.

From Mastering ‘Metrics: The Path from Cause to Effect. © 2015 Princeton University Press. Used by permission.
allrights reserved.
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RD Specifics

» Two strategies to reduce likelihood of RD mistakes
» 1st: modeling nonlinearity directly
» 2nd: focusing solely on observations near the cutoff
» Nonlinear modeling strategy

» typically, polynomial functions of the running variable
» example: model with quadratic running variable control

Ma:“+pDa+’Yla+7232+ea

ideally, results are insensitive to degree of nonlinearity

Gelman and Imbens (2019) warning on using higher degree polynomials.
Polynomial selection procedures developed by Pei et al. (2018) -
asymptotic mean squared error.

» you must report how RD estimates change with model

vyy

19/58



RD Specifics

P Alternative strategy: different slopes left and right of cutoff
P in practice, allow interactions of running variable a with D,

M, =wa+pD,+v(a—ag) +6[(a—ag)Da] + e,

» running variable centered around the cutoff (ag = 21)

» subtle implication: away from cutoff ag, MLDA treatment effect is given
by p+d(a— ap)

P estimates away from cutoff constitute bold extrapolation
» no data on counterfactual death rates in a world where drinking at ages
substantially older than 21 is forbidden
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RD Specifics

> Mixing both strategies
M, =wa+ pD, + vy1(a— ao) + 61[(a — a0) D]
+v2(a —a0)? + 62[(a — a0)°D,] + e,
> Treatment effect away from cutoff ag is now given by
p+d1(a—ag) +62(a—ap)?

» Figure 4.4 shows trend function estimated by equation above
» which model is better, fancy or simple?
» no rules here, just thoughtful look at the data
» ideally, results not highly sensitive to modeling choices
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RD Specifics
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FIGURE 4.4

Quadratic control in an RD design
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Notes: This figure plots death rates from all causes against age in months.
Dashed lines in the figure show fitted values from a regression of death rates
on an over-21 dummy and age in months. The solid lines plot fitted values
from a regression of mortality on an over-21 dummy and a quadratic in
age, interacted with the over-21 dummy (the vertical dashed line indicates

the minimum legal drinking age [MLDA] cutoff).
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Sharp RD Estimates

TasLE 4.1
Sharp RD estimates of MLDA effects on mortality
D dent Ages 19-22 Ages 20-21
variable (1) (2) (3) “4)
All deaths 7.66 9.55 9.75 9.61
(1.51) (1.83) (2.06) (2.29)
Motor vehicle 4.53 4.66 4.76 5.89
accidents (.72) (1.09) (1.08) (1.33)
Suicide 1.79 1.81 1.72 1.30
(.50) (.78) (.73) (1.14)
Homicide .10 .20 .16 —.45
(.45) (.50) (.59) (.93)
Other external .84 1.80 1.41 1.63
causes (.42) (.56) (.59) (.75)
All internal 39 1.07 1.69 1.25
causes (.54) (.80) (.74) (1.01)
Alcohol-related 44 .80 74 1.03
causes (.21) (.32) (.33) (.41)
Controls age age, age?, age age, age?,
interacted interacted
with over-21 with over-21
Sample size 48 48 24 24

Notes: This table reports coefficients on an over-21 dummy from regressions
of month-of-age-specific death rates by cause on an over-21 dummy and linear or

interacted quadratic age controls. Standard

rted

th
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Fuzzy RD example

(a) Effects of the reform on the fraction of the cohort leaving school before age 16

~ A R . —=— Left school at age 14
— - Left school age 14 or younger

"m’_ - - - Left school age 15 or younger

Fraction of cohort
2
L

T L 8 T T T T T T T
1944 1946 1948 1950 1952 1954 1956 1958 1960 1962
Year of birth
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Fuzzy RD example

The first stage specification regresses the age at which individuals report
leaving full time education (S;) on the policy instrument variable, an
indicator for whether their cohort was affected by the school leaving age
increase (Z;), controlling for f* and f2, functions of the year of birth cohort
before and respectively after the reform, as well as for survey year fixed
effects A;.

Si=ao+aZ+f(Bi—C)+*(Bi—C)+ A+ € (1)

The 2SLS estimates are obtained by regressing the log of wages on years of
completed schooling S;, which are instrumented using the post-reform
cohort indicator variable Z;.

/nVV,':’)/0—|—')’1§,'—|—f1(8,'—C)+f2(B;—C)—|—/\t+€; (2)
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Fuzzy RD example: Grenet(2013)

(b) Men
235

2,30

225

220

215
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Fig. 5. Impact of the 1967 Berthoin reform in France on the log hourly wages (in 2005
euros), calculated for female and male wage earners separately (school cohorts 1944—1962)
Notes: The dots show the average log of hourly wage in France, grouped at the school cohort
cell for the subsample of female and male wage earners who were born between 1944 and
1962. The solid line represents the fitted values from a global fourth-order polynomial
regression, allowing for an intercept shift at the 1953 school cohort.
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Fuzzy RD example: Domnisoru (2021)
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Fuzzy RD example: Domnisoru(2021)
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Nonparametric RD

» Parametric RD: straightforward regression estimation
» Nonparametric RD: estimation focusing on points close to the cutoff
P compares averages in a narrow window just to the left and just to the
right of the cutoff

» problem of distinguishing jumps from nonlinear trends becomes less
important as we zero in on points close to the cutoff

» drawback: if window is too narrow, estimates are likely to be too
imprecise to be useful

» trade-off: reduction in bias near the boundary increases variance from
throwing data away
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Nonparametric RD

» Nonparametric RD amounts to estimating equation below in a narrow
window around the cutoff, thatis, ag — b < a<ay+ b

My, =a+pD,+ va+ e,

» b describes the width of the window and is called bandwidth

» local-linear kernel regression: you fit linear regressions to each
observation in the data and their neighbouring observations, weighted by
a smooth kernel distribution. The further away from the observation in
question, the less weight the data contribute to that regression. When
all the little linear components are added together, the resulting function
is smooth.

» Note we are not making any assumptions about the functional form

> High bandwidth: high bias, low variance (more data points, farther from
the cutoff)

» Low bandwidth: low bias, high variance (fewer data points, closer to the
cutoff)
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Table 2: Effects of the Berthoin Reform on Educational Attainment and Monthly Earnings, LFS
data, Local Linear Regression Estimates, Men

Bandwidth First (s.e.) Reduced (s.e.) 2SLS (s.e.)
stage form
A. Full sample
4 342k (.032) .009%* (.004) .028** (.011)
5 320 (.036) .O11*** (.003) .034#+** (.011)
6 207 (.043) .011%*** (.003) .038*** (.010)
7 270%** (.050) .010%* (.004) .038*** (.012)
8 247 (.053) .008* (.004) .034%* (.014)
9 230 (.055) .007 (.004) .030* (.016)
10 217 (.055) .006 (.004) .029* (.017)
B. Parents in lower education occupations
4 370 (.054) .016%** (.004) .0427%** (.008)
5 3614 (.047) .019%** (.005) .053%** (.009)
6 345k (.042) .024%** (.005) .069%** (.014)
7 318 (.049) .025%** (.005) .079%** (.018)
8 208 (.052) .024%** (.006) .080*** (.019)
9 282 (.053) .021%** (.005) .076%** (.019)
10 282 (.053) .019%** (.005) .076%** (.019)
C. Parents in higher education occupations
4 232k (.065) -.006 (.004) -.027%* (.013)
5 219%* (.095) -.008 (.008) -.038 (.046)
6 190%* (.094) -.009 (.007) -.050 (.053)
7 167* (.092) -.010 (.006) -.064 (.061)
8 .140 (.088) -.012% (.006) -.088 (.079)
9 122 (.085) -.012%* (.005) -.100 (.093)
10 109 (.082) -.011 (.008) -.105 (.103)
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Application (placebo tests): Impacts of Public Transit
on Traffic Congestion
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Application: Impacts of Public Transit on Traffic
Congestion

» Public transit in the U.S.
» 1 percent of passenger miles traveled
» but it attracts strong public support
» Anderson’s (2014) simple choice model
P prediction: transit riders likely to be individuals commuting along routes
with severe roadway delays
» thus, riders have high marginal impacts on traffic congestion
P Testing model prediction
P> data from a strike in 2003 by Los Angeles transit workers
» on October 14, 2003, Metropolitan Transportation Authority (MTA)
workers began a strike that lasted 35 days and shut down MTA bus and
rail lines
» leveraging hourly data on traffic speeds for all major Los Angeles
freeways, Anderson (2014) estimates a sharp RD design using time as
the running variable
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Application: Impacts of Public Transit on Congestion

» Findings
P abrupt increase in average delays of 47 percent — 0.19 minutes per mile
— during peak periods
P> impact many times larger than estimates in the literature

> largest effects on freeways which parallel transit lines with heavy
ridership

» no effects during the same period in neighboring counties unaffected by
the transit strike

» Implications

» annualized congestion relief benefit of operating the LA transit system
between $1.2 to $4.1 billion

» $1.20 to $4.10 per peak-hour transit passenger mile
P net benefits of transit systems much larger than expected
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Application: Impacts of Public Transit on Congestion

» Sharp RD design estimating equation

Yit = & + Pstrikejr + f(date,-t) + 6 Xt + €ir

> y; is the average delay (in minutes per mile) for detector i during hour t

» strikej; is a binary variable equals to one when the strike is in effect and
zero otherwise

» date;; is the date measured in days from the beginning of the strike

» function f(date;;) is specified as y1date;; + y2(date; X striker)

» X represents several control variables to increase the precision of the
estimates (B will be unbiased even without the controls)
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Application: Impacts of Public Transit on Congestion

Average delay by week
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FIGURE 2. WEEKLY PEAK HOUR DELAY ON MAJOR LOS ANGELES FREEWAYS, 7/14/2003 1o 1/30/2004
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Application: Impacts of Public Transit on Congestion

Panel B. Green line freeway (1-105)

Panel A. Red line freeway (US-101)
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Application: Impacts of Public Transit on Congestion

TABLE 4—EFFECT OF STRIKE ON DELAYS DURING ALL PEAK HOURS

Average delay
(in minutes per mile) 1) (2) 3) 4) (5) (6)

Strike 0.194 0.332 0.218 0.190 0.357 0.125
(0.041) (0.076) (0.052) (0.051) (0.128) (0.042)

Date —0.004 —0.003 —0.002 —0.003 —0.005 —0.005
(0.002) (0.003) (0.002) (0.002) (0.004) (0.002)

Date x strike 0.007 0.006 —0.001 0.007 0.012 0.007
(0.002) (0.003) (0.002) (0.003) (0.007) (0.002)

Average delay prestrike 0.409 0.369 0.264 0.357 0.600 0.434

Freeways All 101 105 110 and 710 10 Other

Parallel transit line Red line Greenline  Blueline  Rapid 720

Sample size 178,549 15,854 31,058 19,152 15,357 97,128

Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway
covered by detector i) x (average prestrike traffic flow over detector i ). The observation is the detector-hour, and
the sample is limited to weekdays from 7-10 AM and 2-8 pm within 28 days of the strike’s beginning. Parentheses
contain clustered standard errors that are robust to within-day and within-detector serial correlation. All regressions
include day-of-week and detector fixed effects.
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Application: Impacts of Public Transit on Congestion

Average delay by week
Control highways

] I I
0.8 | |
I I
I I
@ | |
£ 06+ 1 |
- I I
g I o I
» I I
2 I |
2 1 2
£ 0.4+ |/o_|
E . ° I I
(-]
& | 2 :
[0} L) ) | |
o

2 o2- o | |
I I
I I
I I

I I °
I I
0+ I I

T T T T T T T T
0 4 8 12 16 20 24 28

Week
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Application: Impacts of Public Transit on Congestion

Average delay by week
2004 placebo strike (all highways)
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Application: Impacts of Public Transit on Congestion

TABLE 9—EFFECT OF PLACEBO STRIKES ON DELAYS

Falsification sample: Orange and Ventura counties October/November 2004
Dependent variable: Average
delay (in minutes per mile) 1) 2 (3) (4) (5 (6)
Strike 0.024 0.025 0.026 0.060 0.082 0.045
(0.027) (0.037) (0.037) (0.042) (0.054)  (0.064)
Date 0.000 —0.001 0.000 —0.002 —0.002  —0.003
(0.001) (0.003) (0.002) (0.002) (0.003)  (0.002)
Date x strike 0.004 0.000 0.006 0.005 0.002 0.007
(0.002) (0.003) (0.003) (0.003) (0.003)  (0.004)
Average delay prestrike 0.205 0.170 0.219 0.433 0.539 0.386
Hours All peak AM peak PM peak All peak AM peak  PM peak
Sample size 13,149 4,296 8,853 177,572 59,532 118,034

Notes: Each column represents a separate VMT-weighted regression, with weights equal to (length of highway
covered by detector i) x (average prestrike traffic flow over detector i ). The observation is the detector-hour, and
the sample is limited to weekdays from 7—10 am and 2—-8 pM within 28 days of the strike’s beginning. Parentheses
contain clustered standard errors that are robust to within-day and within-detector serial correlation. All regressions
include day-of-week and detector fixed effects. In columns 1-3 the strike variable is defined normally but the sam-
ple contains detectors in neighboring counties not subject to the strike. In columns 4-6 the strike variable equals
zero prior to October 12, 2004 and unity after October 12, 2004.
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Manipulation of the running variable
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Manipulation of the running variable

» Manipulation of the running variable generates selection bias

» Hypothetical example (McCrary, 2008): a doctor plans to randomly
assign heart patients to a statin and a placebo to study the effect of
the statin on heart attack within 10 years

» the doctor randomly assigns patients to two different waiting rooms, A
and B, and plans to give those in A the statin and those in B the
placebo

P if some of the patients learn of the planned treatment assignment
mechanism, we would expect them to proceed to waiting room A

» if the doctor does not learn about the patients’ actions and follows the
original protocol, random assignment of patients to separate waiting
rooms may be undone by patient sorting after random assignment
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Manipulation of the running variable: McCrary density test

» McCrary (2008) proposes a formal test for selection bias

P test is based on the intuition that, in the previous example, we would
expect for waiting room A to become crowded

» in the RD context, this is analogous to expecting the running variable to
be discontinuous at the cutoff, with surprisingly many individuals just

barely qualifying for a desirable treatment assignment and surprisingly
few failing to qualify
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Manipulation of the running variable: McCrary density test

P [lllustration with another hypothetical example: gaming the system
with an income-tested job training program (figure depicted in the
next slide)

(A) labor supply response to treatment with no pre-announcement and no
manipulation

(B) labor supply response to treatment with pre-announcement and
manipulation

(C) density of income with no pre-announcement and no manipulation

(D) density of income with pre-announcement and manipulation
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Manipulation of the running variable: McCrary density test

>

Conditional Expectation
Estimate

Income

Density Estimate

20

Income

W

Conditional Expectation
Estimate

Density Estimate

Income

Income

Labor Supply Reduction or Selection Bias?
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Density
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use rddensity_s

rddensity margin

enate.dta

omputing data-driven bandwidth selectors.

Point estimates and standard errors have been adjusted

Use option nomasspoints to suppress this adjustment.)

R0 Manipulation test using local polynomial density estimation

0.000

Left of c

Right

of ¢

Number of obs

ff. Number of obs
Order est. (p)
Order bias (q)
BW est. (h)

unning variable:

640
408

2

3
19.841

margin.

750
460
2
3

Method

P>|T|

Robust

-0.8753

0

.3814

-values of binomi

al tests. (HO:

prob

.5)

Number of obs
Model

BW method
Kernel

VCE method

Window Length / 2

P>|T|

0.430
0.861
1.291
1.722
2.152
2.583
3.013
3.444
3.874
4.305

0.5034
0.2800
0.2976
0.9170
0.7709
1.0000
0.5678
0.6020
0.4785
0.6386

for repeated observations

1390
unrestricted
comb
triangular
jackknife




Placebo test on pretreatment X- Lee, Moretti, and Butler
(2004)
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