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Outline

I Exogeneity and overidentification tests

I Comparing OLS and IV

I Bartik instruments

I Regression discontinuity designs: functional form checks

I Application (placebo tests): Impacts of Public Transit on Traffic
Congestion

I McCrary density test in Stata
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Exogeneity tests

I Consider the equation of interest y1 = δX + βy2 + u1, and the first
stage y2 = πz + v2

I If y2 is endogenous, E (y2u1) 6= 0 and E (v2u1) 6= 0

I Exogeneity test formulated as E (v2u1) = 0. Null hypothesis is that
residuals are uncorrelated.

I u1 = ρv2 + ε. Null hypothesis of exogeneity : ρ=0

I y2 is in fact exogenous, then OLS and 2SLS estimators should differ
only because of sampling error - i.e. they should not give significantly
different results

I y1 = δX + βy2 + ρv̂2 + η
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Exogeneity test
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Multiple instruments and overidentification tests

I More (relevant) instruments can increase the first stage F-stat,
reducing the variance of 2SLS estimates.

I If there are more instruments than endogenous regressors (the model if
“overidentified”), it is possible to test – partially – for instrument
exogeneity.

I Consider two relevant instruments: if 2SLS estimates using
instruments separately are very different, then one or the other (or
both) instruments must be failing the exogeneity restriction.

I Overidentification (or “J”, or “Sargan”) test: regress residuals from
2SLS equation (using X, not X̂ ) on instruments; compute F-stat that
the coefficients on all instruments are zero; J-statistic is mF, where m
is the number of instruments. Under null of exogeneity, ∼ χ2, reject if
larger than some critical value. If m=k, J=0.
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IV vs. OLS

I IV and OLS estimates sometimes vary widely.

I Think about the sign of the expected bias in OLS and the potential
magnitude.

I Add multiple controls to OLS and see how OLS coefficient changes.

I If you think the OLS estimate is biased upwards (coefficient is
overestimated), you would expect to find the IV is smaller than OLS.
However measurement error (attenuation bias) can depress OLS, so IV
may be larger.

I Do you have any reason to believe compliers are special? Might
particularly benefit from the policy?
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Bartik instruments
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Bartik Instruments

I In economics, instrumental variables originated as an attempt to to
isolate exogenous supply or demand shifters in some particular market.

I Last time, you saw the example using shifts in supply of fish caused by
storms to recover demand parameters.
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Bartik Instruments
I ∆WAGEit = α + βit∆Employmentit + εit
I βit Inverse elasticity of labor supply. Regression motivated by local economic development policies. Bartik: ”In response

to an employment shock, employers are more likely to promote less-skilled individuals to avoid raising the occupation’s

real wage. An increase in occupational real wages would be needed to attract individuals of ”normal” skill levels from

outside the labor force or from other metropolitan areas.”

I Goal: isolate local labor demand that is unrelated to changes in local
labor supply.

I ∆Employmentit = ∑K
k=1 zikgik

I zik industry k share in local employment i

I gik growth rate of industry k in location i.

I gik has a nationwide component gk and a local component

I Use ∆Bit = ∑K
k=1 zikgk as an instrument.

I ”Local employment growth rate predicted by interacting local industry
employment shares with national industry employment growth rates.”

I labor, public, development, macroeconomics, international trade, and
finance.
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Bartik/Shift-share instruments

I Trade: impact of Chinese imports on manufacturing employment in
U.S. cities (denoted by i)
∆MANUFit = α + βImportExposureit + εit

I ImportExposureit =∑K
k=1ziktg

US
kt

I Import Exposure correlated with unobservables that also impact
manufacturing employment.

I Autor et al. (2013) instrument:
Bit=∑K

k=1 zik(t−1)g
OTHER
kt

I Lagged (”initial”) shares of employment in city i, gOTHER
kt growth of

Chinese imports in other high-income countries.

I weighted average of a ”shift”: how much China is exporting in
different k product categories, with ”shares” coming from initial
industry composition.
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Bartik/Shift-share instruments

I ∆NATIVEWAGESit = α + βImmigrationit + εit
I Concern: local demand shocks

I Use instrument Bit=∑K
k=1 zik(t−1)g

OVERALL
kt

I z are the lagged shares of immigrants from source country k in city i,
and g is the normalized change in overall immigration from country k
into the U.S. Weighted average of the national inflow rates from each
country (“the shift”), with weights depending on the initial distribution
of immigrants (“the shares”).
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Criticisms

I Goldsmith-Pinkham, Sorkin and Swift (2020, AER). Why are the initial
shares exogeneous? Check how much the initial shares are correlated
with other potential confounders in the initial year. E.g. (computer
manufacturing and education)

I Borusyak, Hull, and Jaravel (2018). Exogenous shares sufficient, but
not necessary; Can identify effects if shocks are “as good as random”

I Jaeger et al. (2018). In immigration literature, Bartik instrument
supposed to be exogenous to local demand shocks. However, if
adjustment to shocks long-term, Bartik instrument biased. More
reliable for initial immigration shares that rely on older, idiosyncratic
policies.
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Regression discontinuity designs: functional form
specification
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Sharp Regression Discontinuity (RD) Design
Things to consider: 1) Is the outcome continuous around the threshold? 2) Is

there any manipulation? 3) Are there competing factors/policies? 4) How does the

outcome evolve in the absence of the policy: linearly? non-linearly?
150 Chapter 4

Figure 4.2
A sharp RD estimate of MLDA mortality effects
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Notes: This figure plots death rates from all causes against age in months.
The lines in the figure show fitted values from a regression of death rates on
an over-21 dummy and age in months (the vertical dashed line indicates the
minimum legal drinking age (MLDA) cutoff).

Sharp RD

The story linking the MLDA with a sharp and sustained rise
in death rates is told in Figure 4.2. This figure plots death rates
(measured as deaths per 100,000 persons per year) by month of
age (defined as 30-day intervals), centered around the twenty-
first birthday. The X-axis extends 2 years in either direction,
and each dot in the figure is the death rate in one monthly
interval. Death rates fluctuate from month to month, but few
rates to the left of the age-21 cutoff are above 95. At ages over
21, however, death rates shift up, and few of those to the right
of the age-21 cutoff are below 95.

Happily, the odds a young person dies decrease with age, a
fact that can be seen in the downward-sloping lines fit to the
death rates plotted in Figure 4.2. But extrapolating the trend
line drawn to the left of the cutoff, we might have expected an
age-21 death rate of about 92; in the language of Chapter 1,
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Sharp Regression Discontinuity (RD) Design

I A simple RD design analysis of the MLDA estimates causal effects
using a regression like

M̄a = α + ρDa + γa+ ea

I Ma is the death rate in month a
I month is a 30-day interval counting from the 21st birthday

I Da is the treatment dummy

Da =

{
1 if a ≥ 21

0 if a < 21

I a is a linear control for age measured in months
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Sharp Regression Discontinuity (RD) Design

I Mortality clearly changes with the running variable, a, for reasons
unrelated to the MLDA
I deaths rates from disease-related causes like cancer (known as internal

causes) are low but increasing for those in their late teens and early 20s
I deaths from external causes, primarily car accidents, homicides, and

suicides, fall

I To separate this trend variation from any possible MLDA effects, an
RD analysis controls for smooth variation in death rates generated by a

I the negative slope captured by γ reflects smoothly declining death
rates among young people as they mature
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RD Specifics

I RD tools aren’t guaranteed to produce reliable causal estimates
I challenge: mistaking a nonlinearity for a discontinuity
I figure may exhibit a nonlinear trend with sharp turns to the left and

right of the cutoff – like a discontinuity – but there is none

I Figure 4.3 shows three cases
I Panel A: relationship between running variable (X ) and the outcome

(Y ) is linear, with a clear jump in E [Y |X ] at cutoff
I Panel B: relationship between X and Y is nonlinear, but jump in

E [Y |X ] at the cutoff is still plain to see
I Panel C: relationship between X and Y is nonlinear, with no jump in

E [Y |X ] at the cutoff (RD challenge)
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RD Specifics
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RD Specifics
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RD Specifics

I Two strategies to reduce likelihood of RD mistakes
I 1st: modeling nonlinearity directly
I 2nd: focusing solely on observations near the cutoff

I Nonlinear modeling strategy
I typically, polynomial functions of the running variable
I example: model with quadratic running variable control

M̄a = α + ρDa + γ1a+ γ2a
2 + ea

I ideally, results are insensitive to degree of nonlinearity
I Gelman and Imbens (2019) warning on using higher degree polynomials.
I Polynomial selection procedures developed by Pei et al. (2018) -

asymptotic mean squared error.
I you must report how RD estimates change with model
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RD Specifics

I Alternative strategy: different slopes left and right of cutoff
I in practice, allow interactions of running variable a with Da

M̄a = α + ρDa + γ(a− a0) + δ[(a− a0)Da] + ea

I running variable centered around the cutoff (a0 = 21)

I subtle implication: away from cutoff a0, MLDA treatment effect is given
by ρ + δ(a− a0)

I estimates away from cutoff constitute bold extrapolation
I no data on counterfactual death rates in a world where drinking at ages

substantially older than 21 is forbidden
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RD Specifics

I Mixing both strategies

M̄a = α + ρDa + γ1(a− a0) + δ1[(a− a0)Da]

+γ2(a− a0)
2 + δ2[(a− a0)

2Da] + ea

I Treatment effect away from cutoff a0 is now given by

ρ + δ1(a− a0) + δ2(a− a0)
2

I Figure 4.4 shows trend function estimated by equation above
I which model is better, fancy or simple?
I no rules here, just thoughtful look at the data
I ideally, results not highly sensitive to modeling choices
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RD Specifics 158 Chapter 4

Figure 4.4
Quadratic control in an RD design
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Notes: This figure plots death rates from all causes against age in months.
Dashed lines in the figure show fitted values from a regression of death rates
on an over-21 dummy and age in months. The solid lines plot fitted values
from a regression of mortality on an over-21 dummy and a quadratic in
age, interacted with the over-21 dummy (the vertical dashed line indicates
the minimum legal drinking age [MLDA] cutoff).

hand, when the trend relationship between running variable
and outcomes is approximately linear, limited extrapolation
seems justified. The jump in death rates at the cutoff shows
that drinking behavior responds to alcohol access in a manner
that is reflected in death rates, an important point of principle,
while the MLDA treatment effect extrapolated as far out as
age 23 still looks substantial and seems believable, on the
order of 5 extra deaths per 100,000. This pattern highlights
the value of “visual RD,” that is, careful assessment of plots
like Figure 4.4.

How convincing is the argument that the jump in Figure 4.4
is indeed due to drinking? Data on death rates by cause of
death help us make the case. Although alcohol is poisonous,
few people die from alcohol poisoning alone, and deaths from
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Sharp RD Estimates
160 Chapter 4

Table 4.1
Sharp RD estimates of MLDA effects on mortality

Ages 19–22 Ages 20–21Dependent
variable (1) (2) (3) (4)

All deaths 7.66 9.55 9.75 9.61
(1.51) (1.83) (2.06) (2.29)

Motor vehicle 4.53 4.66 4.76 5.89
accidents (.72) (1.09) (1.08) (1.33)

Suicide 1.79 1.81 1.72 1.30
(.50) (.78) (.73) (1.14)

Homicide .10 .20 .16 −.45
(.45) (.50) (.59) (.93)

Other external .84 1.80 1.41 1.63
causes (.42) (.56) (.59) (.75)

All internal .39 1.07 1.69 1.25
causes (.54) (.80) (.74) (1.01)

Alcohol-related .44 .80 .74 1.03
causes (.21) (.32) (.33) (.41)

Controls age age, age2, age age, age2,
interacted interacted

with over-21 with over-21

Sample size 48 48 24 24

Notes: This table reports coefficients on an over-21 dummy from regressions
of month-of-age-specific death rates by cause on an over-21 dummy and linear or
interacted quadratic age controls. Standard errors are reported in parentheses.

of potentially misleading nonlinear trends. At the same time,
there isn’t much of a jump in deaths due to internal causes,
while the standard errors in Table 4.1 suggest that the small
jump in internal deaths seen in the figure is likely due to chance.

In addition to straightforward regression estimation, an ap-
proach that masters refer to as parametric RD, a second RD
strategy exploits the fact that the problem of distinguishing
jumps from nonlinear trends grows less vexing as we zero in
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Fuzzy RD example
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Fuzzy RD example

The first stage specification regresses the age at which individuals report
leaving full time education (Si ) on the policy instrument variable, an
indicator for whether their cohort was affected by the school leaving age
increase (Zi ), controlling for f 1 and f 2, functions of the year of birth cohort
before and respectively after the reform, as well as for survey year fixed
effects λt .

Si = α0 + α1Zi + f 1(Bi − C ) + f 2(Bi − C ) + λt + εi (1)

The 2SLS estimates are obtained by regressing the log of wages on years of
completed schooling Si , which are instrumented using the post-reform
cohort indicator variable Zi .

lnWi = γ0 + γ1Ŝi + f 1(Bi − C ) + f 2(Bi − C ) + λt + εi (2)
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Fuzzy RD example: Grenet(2013)
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Fuzzy RD example: Domnisoru (2021)
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Fuzzy RD example: Domnisoru(2021)
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Nonparametric RD

I Parametric RD: straightforward regression estimation
I Nonparametric RD: estimation focusing on points close to the cutoff

I compares averages in a narrow window just to the left and just to the
right of the cutoff

I problem of distinguishing jumps from nonlinear trends becomes less
important as we zero in on points close to the cutoff

I drawback: if window is too narrow, estimates are likely to be too
imprecise to be useful

I trade-off: reduction in bias near the boundary increases variance from
throwing data away
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Nonparametric RD

I Nonparametric RD amounts to estimating equation below in a narrow
window around the cutoff, that is, a0 − b ≤ a ≤ a0 + b

M̄a = α + ρDa + γa+ ea

I b describes the width of the window and is called bandwidth

I local-linear kernel regression: you fit linear regressions to each
observation in the data and their neighbouring observations, weighted by
a smooth kernel distribution. The further away from the observation in
question, the less weight the data contribute to that regression. When
all the little linear components are added together, the resulting function
is smooth.

I Note we are not making any assumptions about the functional form
I High bandwidth: high bias, low variance (more data points, farther from

the cutoff)
I Low bandwidth: low bias, high variance (fewer data points, closer to the

cutoff)
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Application (placebo tests): Impacts of Public Transit
on Traffic Congestion
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Application: Impacts of Public Transit on Traffic
Congestion

I Public transit in the U.S.
I 1 percent of passenger miles traveled
I but it attracts strong public support

I Anderson’s (2014) simple choice model
I prediction: transit riders likely to be individuals commuting along routes

with severe roadway delays
I thus, riders have high marginal impacts on traffic congestion

I Testing model prediction
I data from a strike in 2003 by Los Angeles transit workers

I on October 14, 2003, Metropolitan Transportation Authority (MTA)
workers began a strike that lasted 35 days and shut down MTA bus and
rail lines

I leveraging hourly data on traffic speeds for all major Los Angeles
freeways, Anderson (2014) estimates a sharp RD design using time as
the running variable
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Application: Impacts of Public Transit on Congestion

I Findings
I abrupt increase in average delays of 47 percent – 0.19 minutes per mile

– during peak periods
I impact many times larger than estimates in the literature

I largest effects on freeways which parallel transit lines with heavy
ridership

I no effects during the same period in neighboring counties unaffected by
the transit strike

I Implications
I annualized congestion relief benefit of operating the LA transit system

between $1.2 to $4.1 billion
I $1.20 to $4.10 per peak-hour transit passenger mile

I net benefits of transit systems much larger than expected
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Application: Impacts of Public Transit on Congestion

I Sharp RD design estimating equation

yit = α + βstrikeit + f (dateit) + δXit + εit

I yit is the average delay (in minutes per mile) for detector i during hour t
I strikeit is a binary variable equals to one when the strike is in effect and

zero otherwise
I dateit is the date measured in days from the beginning of the strike

I function f (dateit) is specified as γ1dateit + γ2(dateit × strikeit)

I Xit represents several control variables to increase the precision of the
estimates (β will be unbiased even without the controls)
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Application: Impacts of Public Transit on Congestion
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Application: Impacts of Public Transit on Congestion
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Application: Impacts of Public Transit on Congestion
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Application: Impacts of Public Transit on Congestion
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Application: Impacts of Public Transit on Congestion
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Application: Impacts of Public Transit on Congestion
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Manipulation of the running variable
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Manipulation of the running variable

I Manipulation of the running variable generates selection bias

I Hypothetical example (McCrary, 2008): a doctor plans to randomly
assign heart patients to a statin and a placebo to study the effect of
the statin on heart attack within 10 years

I the doctor randomly assigns patients to two different waiting rooms, A
and B, and plans to give those in A the statin and those in B the
placebo

I if some of the patients learn of the planned treatment assignment
mechanism, we would expect them to proceed to waiting room A

I if the doctor does not learn about the patients’ actions and follows the
original protocol, random assignment of patients to separate waiting
rooms may be undone by patient sorting after random assignment
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Manipulation of the running variable: McCrary density test

I McCrary (2008) proposes a formal test for selection bias

I test is based on the intuition that, in the previous example, we would
expect for waiting room A to become crowded

I in the RD context, this is analogous to expecting the running variable to
be discontinuous at the cutoff, with surprisingly many individuals just
barely qualifying for a desirable treatment assignment and surprisingly
few failing to qualify
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Manipulation of the running variable: McCrary density test

I Illustration with another hypothetical example: gaming the system
with an income-tested job training program (figure depicted in the
next slide)

(A) labor supply response to treatment with no pre-announcement and no
manipulation

(B) labor supply response to treatment with pre-announcement and
manipulation

(C) density of income with no pre-announcement and no manipulation

(D) density of income with pre-announcement and manipulation
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Manipulation of the running variable: McCrary density test

Labor Supply Reduction or Selection Bias?
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Placebo test on pretreatment X- Lee, Moretti, and Butler
(2004)
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