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A Review of the Dynamic Discrete Choice Model: Choices

▶ Each period t ∈ {1, 2, . . . ,T} for T ≤ ∞, an individual chooses among J
mutually exclusive actions.

▶ Let dtj equal one if action j ∈ {1, . . . , J} is taken at time t and zero otherwise:

dtj ∈ {0, 1}

J

∑
j=1

dtj = 1

▶ Suppose that actions taken at time t can potentially depend on the state zt ∈ Z.

▶ A transition probability Ftj (zt+1 |zt ), with density ftj (zt+1 |zt ) when zt is
continuous, determines how zt evolves stochastically over time with actions j .
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A Review of the Dynamic Discrete Choice Model: Utility

▶ The current period payoff at time t from taking action j is utj (zt).

▶ Given choices (dt1, . . . , dtJ) in each period t ∈ {1, 2, . . . ,T} the individual’s
lifetime expected utility is:

E

{
T

∑
t=1

J

∑
j=1

βt−1dtjutj (zt) |z1

}

where β ∈ (0, 1) is the discount factor, and the expectation is taken over
zt+1, . . . , zT given z1.
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A Review of the Dynamic Discrete Choice Model
Value function and optimization

▶ Denote the optimal decision rule by do
t (zt) ≡ (do

t1(zt), . . . , do
tJ(zt)).

▶ The current value function Vt(zt) is then defined as:

Vt(zt) = E

{
T

∑
s=t

J

∑
j=1

βs−tdo
sj (zs) usj (zs) |zt

}

=
J

∑
j=1

do
tj (zt)

[
utj (zt) + β

∫
Vt+1(zt+1)ftj (zt+1 |zt ) dzt+1

]
▶ Let vtj (zt) denote the flow payoff of action j plus the expected future utility of

behaving optimally from period t + 1 on:

vtj (zt) ≡ utj (zt) + β
∫

Vt+1(zt+1)ftj (zt+1 |zt ) dzt+1

▶ Bellman’s principle implies:

do
tj (zt) ≡ ∏K

k=1
1 {vtj (zt) ≥ vtk(zt)}

4 / 25



A Review of the Dynamic Discrete Choice Model
Parameterizing the data generating process

▶ Typically we acknowledge that some of the factors affecting individual decision
making are unobserved.

▶ This could explain why we:
▶ cannot predict individual behavior exactly
▶ estimate a probability distribution to stochastically characterize individual behavior.

▶ Accordingly partition zt ≡ (xt , ϵt) where xt is observed, but ϵt is not.

▶ We define the data generating process, the DGP, as the probability distribution of
the data, that is margined over the unobserved variables.

▶ The data comprise {dnt1, . . . , dntJ , xnt} for observations
(n, t) ∈ {1, . . . ,N} × {1, . . . ,T}.
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A Review of the Dynamic Discrete Choice Model: Estimation

▶ We assume utj (zt), Ftj (zt+1|zt) and β are fully characterized by θ ∈ Θ, where for
example Θ ⊆ Rp, and p is a counting number.

▶ Thus the DGP is characterized by some unknown θ0 ∈ Θ.

▶ Denote the pdf of (xt+1, ϵt+1) conditional on (dt1, . . . , dtJ , xt , ϵt) by:

Ht (xt+1, ϵt+1 |xt , ϵt ; θ)

≡
J

∑
j=1

dtjd
o
tj (xt , ϵt ; θ) ftj (xt+1, ϵt+1 |xt , ϵt ; θ)

▶ The ML estimator chooses θ to maximize:

N

∏
n=1

∫
ϵT ...ϵ1

 ∑J
j=1 dnTjd

o
Tj (xnT , ϵT ; θ)×

f1 (ϵ1 |xn1 ; θ)
T−1

∏
t=1

Ht (xn,t+1, ϵt+1 |xnt , ϵt ; θ)

 dϵ1 . . . dϵT
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A Review of the Dynamic Discrete Choice Model
A computational challenge

▶ What are the computational challenges to enlarging the state space?

1. Computing the value function;
2. Solving for equilibrium in a multiplayer setting;
3. Integrating over unobserved heterogeneity.

▶ These challenges have led researchers to compromises on several dimensions:

1. Keep the dimension of the state space small;
2. Assume all choices and outcomes are observed;
3. Model unobserved states as a matter of computational convenience;
4. Consider only one side of market to finesse equilibrium issues;
5. Adopt parameterizations based on convenient functional forms.
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Separable Transitions in the Observed Variables
A simplification

▶ We could assume that for all (t, j , xt , ϵt) the transition of the observed variables
does not depend on the unobserved variables:

Ftj (xt+1 |xt , ϵt ; θ) = Ftj (xt+1 |xt ; θ)

▶ Note Ftj (xt+1 |xt ) is identified for each (t, j) from the transitions, so there is no
conceptual reason for parameterizing this distribution.

▶ The ML estimator maximizes the same criterion function but
Ht (xn,t+1, ϵt+1 |xnt , ϵt ; θ) simplifies to:

Ht (xt+1, ϵt+1 |xt , ϵt ; θ) ≡
J

∑
j=1

dtjd
o
tj (xt , ϵt ; θ) ftj (xt+1 |xt ; θ) ft+1 (ϵt+1 |xt+1, xt , ϵt ; θ)
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Separable Transitions in the Observed Variables
Exploiting separability in estimation

▶ Instead of jointly estimating the parameters, we could use a two stage estimator
to reduce computation costs:
1. Estimate Ftj (xt+1 |xt ; θ) with a cell estimator, a parametric function, or a

nonparametric estimator, with F̂tj (xt+1 |xt ; θ).
2. Define:

Ĥt (xt+1, ϵt+1 |xt , ϵt ; θ) ≡
J

∑
j=1

dtjd
o
tj (xt , ϵt ; θ) f̂tj (xt+1 |xt ; θ) ft+1 (ϵt+1 |xt+1, xt , ϵt ; θ)

3. Choose θ to maximize:

N

∏
n=1

∫
ϵT ...ϵ1

 ∑J
j=1 dnTjd

o
Tj (xnT , ϵT ; θ)×

f1 (ϵ1 |xn1 ; θ)
T−1
∏
t=1

Ĥt (xn,t+1, ϵt+1 |xnt , ϵt ; θ)

 dϵ1 . . . dϵT

4. Correct standard errors induced at the first stage of estimation.
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Conditional independence

▶ Separable transitions do not, however, free us from:

1. the curse of multiple integration.
2. numerical optimization to obtain the value function.

▶ Suppose we assume in addition that ϵt+1, conditional on xt+1, is independent of
xt (plausible) and ϵt (questionable).

▶ Conditional independence embodies both assumptions:

Ftj (xt+1 |xt , ϵt ) = Ftj (xt+1 |xt ; θ)

Ft+1 (ϵt+1 |xt+1, xt , ϵt ) = Gt+1 (ϵt+1 |xt+1 ; θ)

▶ Conditional independence implies:

Ftj (xt+1, ϵt+1 |xt , ϵt ) = Ftj (xt+1 |xt ; θ)Gt+1 (ϵt+1 |xt+1 ; θ)
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Conditional Independence
Simplifying expressions within the likelihood

▶ Conditional independence implies:

∑J

j=1
dnTjd

o
Tj (xnT , ϵT ; θ) g1 (ϵ1 |xn1 ; θ)

×∏T−1

t=1
Ht (xt+1, ϵt+1 |xt , ϵt ; θ)

= ∑J

j=1
dnTjd

o
Tj (xnT , ϵT ; θ) g1 (ϵ1 |xn1 ; θ)

×∏T−1

t=1 ∑J

j=1

[
dtjd

o
tj (xt , ϵt ; θ) ftj (xt+1 |xt ; θ) gt+1 (ϵt+1 |xt+1 ; θ)

]
= ∏T−1

t=1 ∑J

j=1
dtj ftj (xt+1 |xt ; θ)

×∏T

t=1 ∑J

j=1
dtjd

o
tj (xt , ϵt ; θ) gt (ϵt |xt ; θ)
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ML under conditional independence

▶ Hence the contribution of n ∈ {1, . . . ,N} to the likelihood is:

∫
ϵT ...ϵ1


J

∑
j=1

dnTjd
o
Tj (xnT , ϵT ; θ)×

g1 (ϵ1 |xn1 ; θ)
T−1

∏
t=1

Ht (xt+1, ϵt+1 |xt , ϵt ; θ)

 dϵ1 . . . dϵT

=
∫

ϵT ...ϵ1


T−1

∏
t=1

J

∑
j=1

dtj ftj (xt+1 |xt )×
T

∏
t=1

J

∑
j=1

dtjd
o
tj (xt , ϵt ; θ) gt (ϵt |xt ; θ)

 dϵ1 . . . dϵT

= ∏T−1

t=1 ∑J

j=1
dtj ftj (xt+1 |xt )

×∏T

t=1

∫
ϵt

∑J

j=1
dtjd

o
tj (xt , ϵt) gt (ϵt |xt ; θ) dϵt
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Conditional choice probabilities defined
▶ Under conditional independence, we define for each (t, xt) the conditional choice

probability (CCP) for action j as:

ptj (xt) ≡
∫

ϵt
do
tj (xt , ϵt) gt (ϵt |xt ) dϵt

= E
[
do
tj (xt , ϵt) |xt

]
=

∫
ϵt

J

∏
k=1

I {vtk(xt , ϵt) ≤ vtj (xt , ϵt)} gt (ϵt |xt ) dϵt

▶ Using this notation, the log likelihood can now be compactly expressed as:

N

∑
n=1

T−1

∑
t=1

J

∑
j=1

dntj ln [ftj (xn,t+1 |xnt ; θ)]

+
N

∑
n=1

T

∑
t=1

J

∑
j=1

dntj ln ptj (xt ; θ)
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Reformulating the primitives

▶ Conditional independence implies that vtj (xt , ϵt) only depends on ϵt through
utj (xt , ϵt) because:

vtj (xt , ϵt) ≡ utj (xt , ϵt)

+β
∫
ϵ

∫
xt+1

{
Vt+1(xt+1, ϵ)×
ftj (xt+1 |xt ) gt+1 (ϵ |xt+1 ) dxt+1dϵ

}

▶ Without further loss of generality we now redefine the primitives by:
▶ the preferences u∗tj (xt) ≡ E [utj (xt , ϵt) |xt ]
▶ the observed variables transitions fjt (xt+1|xt)
▶ and the distribution of unobserved variables g∗t (ϵ∗t |xt) where

ϵ∗t ≡ (ϵ∗1t , . . . , ϵ∗Jt) and ϵ∗jt ∈ R for all (j , t), and:

ϵ∗tj ≡ utj (xt , ϵt)− E [utj (xt , ϵt) |xt ]
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Conditional value functions defined
▶ Given conditional independence, define the conditional value function as:

v ∗tj (xt) ≡ u∗tj (xt) + β
∫
ϵ

∫
xt+1

{
Vt+1(xt+1, ϵ∗)×
ftj (xt+1 |xt ) g ∗

t+1 (ϵ
∗ |xt+1 ) dxt+1dϵ∗

}

▶ Thus ptj (x) is found by integrating over (ϵ∗t1, . . . , ϵ∗tJ) in the regions:

ϵ∗tk − ϵ∗tj ≤ v ∗tj (xt)− v ∗tk(xt)

hold for all k ∈ {1, . . . , J} . That is ptj (xt) can be rewritten:

∫
ϵt

J

∏
k=1

1 {vtk(xnt , ϵt) ≤ vtj (xnt , ϵt)} gt (ϵt |xt ) dϵt

=
∫

ϵt

J

∏
k=1

I
{

ϵ∗tk − ϵ∗tj ≤ v ∗tj (xnt)− v ∗tk(xnt)
}
g ∗
t (ϵ

∗
t |xt ) dϵ∗t
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Connection with static models

▶ Suppose we only had data on the last period T , and wished to estimate the
preferences determining choices in T .

▶ By definition this is a static problem in which v ∗Tj (xT ) ≡ u∗Tj (xT ).

▶ For example to the probability of observing the Jth choice is:

pTJ (xT ) ≡
∫ ϵ∗TJ+u∗TJ (xT )

−u∗T1(xT )

−∞
. . .

∫ ϵ∗TJ+u∗TJ (xT )
−u∗T ,J−1(xT )

−∞

∫ ∞

−∞
g ∗
T (ϵ∗T |xT ) dϵ∗T

▶ The only essential difference between a estimating a static discrete choice model
using ML and a estimating a dynamic model satisfying conditional independence
using ML is that parameterizations of v ∗tj (xt) based on u∗tj (xt) do not have a
closed form, but must be computed numerically.
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Bus Engines (Rust,1987)
Another renewal problem

▶ The job matching model (JPE 1984) is a renewal problem: with only one
occupation and an infinite number of jobs, every new job match restarts life.

▶ However the model does not satisfy conditional independence, because posterior
beliefs are unobserved state variables.

▶ Replacing bus engines is also a renewal problem.

▶ Mr. Zurcher decides whether to replace the existing engine (dt1 = 1), or keep it
for at least one more period (dt2 = 1).

▶ If Zurcher keeps the engine (dt2 = 1) bus mileage advances to xt+1 = xt + 1;
alternatively dt1 = 1 and xt+1 = 1.

▶ Buses are also differentiated by a fixed characteristic s ∈ {0, 1}.
▶ The choice-specific shocks ϵtj are iid Type 1 extreme value (T1EV).
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The value function and optimal decision rule
▶ Zurcher maximizes the expected discounted sum of payoffs:

E

{
∞

∑
t=1

βt−1 [dt2(θ1xt + θ2s + ϵt2) + dt1ϵt1]

}
▶ Because this is a stationary infinite horizon problem, age and time have no role.

▶ Let V (x , s) denote the ex-ante value function at the beginning of period t, the
discounted sum of current and future payoffs just before ϵt is realized and before
the decision at t is made.

▶ We also define the conditional value function for each choice as:

vj (x , s) =

{
βV (1, s) if j = 1
θ1x + θ2s + βV (x + 1, s) if j = 2

▶ Optimizing behavior implies:

do
1 (x , s, ϵt) = 1 {ϵt2 − ϵt1 ≤ v1(x , s)− v2(x , s)} = 1− do

2 (x , s, ϵt)
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Bus Engines: The DGP and the CCPs
▶ We suppose the data comprises a cross section of N observations of buses

n ∈ {1, . . . ,N} reporting their:
▶ fixed characteristics sn,
▶ engine miles xn,
▶ and maintenance decision (dn1, dn2).

▶ Let p1(x , s) denote the conditional choice probability (CCP) of replacing the
engine given x and s.

▶ Stationarity and T1EV imply that for all t :

p1 (x , s) ≡
∫

ϵt
do
1 (x , s, ϵt) g (ϵt) dϵt

=
∫

ϵt
1 {ϵt2 − ϵt1 ≤ v1(x , s)− v2(x , s)} g (ϵt |xt ) dϵt

= {1+ exp [v2(x , s)− v1(x , s)]}−1

▶ An ML estimator could be formed off this equation following the steps described
above.
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Bus Engines: Exploiting the renewal property
▶ In future lectures we show that if ϵjt is T1EV, then for all (x , s, j):

V (x , s) = vj (x , s)− β log [pj (x , s)] + 0.57 . . .

▶ Therefore the conditional value function of not replacing is:

v2(x , s) = θ1x + θ2s + βV (x , s + 1)

= θ1x + θ2s + β {v1 (x + 1, s)− p1(x + 1, s) + 0.57 . . .}

▶ Similarly:

v1(x , s) = βV (1, s) = β {v1(1, s)− ln [p1(1, s)] + 0.57} . . .

▶ Because bus engine miles is the only factor affecting bus value given s:

v1(x + 1, s) = v1(1, s)
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Bus Engines: Using CCPs to represent differences in continuation values

▶ Hence:

v2(x , s)− v1(x , s) = θ1x + θ2s + β ln [p1(1, s)]− β ln [p1(x + 1, s)]

▶ Therefore:

p1(x , s) =
1

1+ exp [v2(x , s)− v1(x , s)]

=
1

1+ exp
{

θ1x + θ2s + β ln
[

p1(1,s)
p1(x+1,s)

]}
▶ Intuitively the CCP for current replacement is the CCP for a static model with an

offset term.

▶ The offset term accounts for differences in continuation values using future CCPs
that characterize optimal future replacements.
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Bus Engines: CCP estimation
▶ Consider the following CCP estimator:

1. Form a first stage estimator for p1(x , s) from the relative frequencies:

p̂1(x , s) ≡
∑N

n=1 dn1I (xn = x) I (sn = s)

∑N
n=1 I (xn = x) I (sn = s)

2. Substitute p̂1(x , s) into the likelihood as incidental parameters to estimate
(θ1, θ2, β) with a logit:

dn1 + dn2 exp(θ1xn + θ2sn + β ln
[

p̂1(1,sn)
p̂1(xn+1,sn)

]
1+ exp(θ1xn + θ2sn + β ln

[
p̂1(1,sn)

p̂1(xn+1,sn)

]
3. Correct the standard errors for (θ1, θ2, β) induced by the first stage estimates of

p1(x , s).

▶ Note that in the second stage ln
[

p̂1(1,sn)
p̂1(xn+1,sn)

]
enters the logit as an individual

specific component of the data, the β coefficient entering in the same way as θ1
and θ2.
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Monte Carlo Study (Arcidiacono and Miller, 2011)
Modifying the bus engine problem

▶ Suppose bus type s ∈ {0, 1 } is equally weighted.

▶ Two state variables affect wear and tear on the engine:
1. total accumulated mileage:

x1,t+1 =

{
∆t if d1t = 1
x1t + ∆t if d2t = 1

2. a permanent route characteristic for the bus, x2, that systematically affects miles
added each period.

▶ More specifically we assume:
▶ ∆t ∈ {0, 0.125, . . . , 24.875, 25} is drawn from a discretized truncated exponential

distribution, with:

f (∆t |x2) = exp [−x2(∆t − 25)]− exp [−x2(∆t − 24.875)]

▶ x2 is a multiple 0.01 drawn from a discrete equi-probability distribution between 0.25
and 1.25.
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Monte Carlo Study
Including the age of the bus in panel estimation

▶ Let θ0t denote other bus maintenance costs tied to its vintage.
▶ This modification renders the optimization problem nonstationary.
▶ The payoff difference from retaining versus replacing the engine is:

ut2(xt1, s)− ut1(xt1, s) ≡ θ0t + θ1min {xt1, 25}+ θ2s

▶ Denoting xt ≡ (x1t , x2) , this implies:

vt2(xt , s)− vt1(xt , s) = θ0t + θ1min {xt1, 25}+ θ2s

+β ∑
∆t∈Λ

{
ln

[
p1t(∆t , s)

p1t(x1t + ∆t , s)

]}
f (∆t |x2)

▶ In the first three columns of the next table each sample simulation has 1000 buses
observed for 20 periods.

▶ In the fourth column 2000 buses are observed for 10 periods.
▶ The mean and standard deviations are compiled from 50 simulations.
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Monte Carlo Study: Extract from Table 1 of Arcidiacono and Miller (2011)
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