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A Review of the Dynamic Discrete Choice Model: Choices

» Each period t € {1,2,..., T} for T < oo, an individual chooses among J
mutually exclusive actions.

> Let dyj equal one if action j € {1,...,J} is taken at time t and zero otherwise:

dﬁ S {0,1}

J
Jj=1

Suppose that actions taken at time t can potentially depend on the state z; € Z.

v

» A transition probability Fyj (z¢11|2¢), with density fj (z¢41 |z:) when z is
continuous, determines how z; evolves stochastically over time with actions ;.
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A Review of the Dynamic Discrete Choice Model: Utility

» The current period payoff at time t from taking action j is usj(z¢).

» Given choices (dy, ..., d¢y) in each period t € {1,2,..., T} the individual's
lifetime expected utility is:

e £ Lo agunte a |

t=1j=

where B € (0, 1) is the discount factor, and the expectation is taken over
Zi41,..., ZT given zj.
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A Review of the Dynamic Discrete Choice Model

Value function and optimization
» Denote the optimal decision rule by d? (z;) = (dg(zt),- .., d?)(z)).
» The current value function V;(z;) is then defined as:

Ve(ze) = {Z Zﬁs ‘dg (2 USJ(ZS)|Zt}

s=t j=

= Z de(zt) [Utj(zt) —i-,B/ Vir1(ze41)fg (ze41 |2¢ ) dzegn
j=1

» Let v4j(z:) denote the flow payoff of action j plus the expected future utility of
behaving optimally from period t + 1 on:

th(Zt) = Utj<Zt) + ,3/ Vt+1(zt+1)ftj (Zt+1 |Zt) dz; 1
» Bellman’s principle implies:

dg (z) = [Ty 1 {vg(z) = va(z)}
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A Review of the Dynamic Discrete Choice Model

Parameterizing the data generating process

» Typically we acknowledge that some of the factors affecting individual decision
making are unobserved.

» This could explain why we:

» cannot predict individual behavior exactly
P estimate a probability distribution to stochastically characterize individual behavior.

» Accordingly partition z: = (x¢, €;) where x; is observed, but €; is not.

» We define the data generating process, the DGP, as the probability distribution of
the data, that is margined over the unobserved variables.

» The data comprise {dpt1, ..., dnts, Xt} for observations
(n,t)e{l,...,N} x{1,..., T}
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A Review of the Dynamic Discrete Choice Model: Estimation

» We assume ugj(z¢), Fyj (ze+1]2¢) and B are fully characterized by 6 € ®, where for
example ® C IRP, and p is a counting number.

» Thus the DGP is characterized by some unknown 8y € ©.
» Denote the pdf of (x¢t+1,€¢+1) conditional on (d1, ..., diy, xt, €¢) by:

H; (Xt+1y€t+1 ‘Xtyet ;9)

J
= Z dj_:]dg (Xt, €t, 0) ft_] (Xt+1v €41 |Xt1 €t ,0)
Jj=1

» The ML estimator chooses 8 to maximize:
Y1 dnridd; (XaT, €7:6) X

N
T-1
EET/ fi(€1]xn1:0) TT He (Xn,e41, €641 |Xnt, €1 5 6)

...€1 t=1

deqi...det
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A Review of the Dynamic Discrete Choice Model

A computational challenge

» What are the computational challenges to enlarging the state space?

1.
2.
3.

Computing the value function;
Solving for equilibrium in a multiplayer setting;
Integrating over unobserved heterogeneity.

» These challenges have led researchers to compromises on several dimensions:

1.

ARl B

Keep the dimension of the state space small;

Assume all choices and outcomes are observed;

Model unobserved states as a matter of computational convenience;
Consider only one side of market to finesse equilibrium issues;
Adopt parameterizations based on convenient functional forms.
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Separable Transitions in the Observed Variables

A simplification

» We could assume that for all (t,j,xt, et) the transition of the observed variables
does not depend on the unobserved variables:

Fij (Xe+1 |xt, €0 0) = Fij (xet1 [xe 5 0)

» Note Fyj (xe+1|X¢) is identified for each (t,j) from the transitions, so there is no
conceptual reason for parameterizing this distribution.

» The ML estimator maximizes the same criterion function but
Ht (Xn't+]_, €t+1 |Xnt, €t ,0) SImpIIerS to:

H; (Xt+1:€t+1 |th €t :9) =

J
'21 dijdg (xe, €4:0) fj (Xet1 |xe 5 0) frr1 (€e41 [Xet1, Xe, €2 5 0)
J:
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Separable Transitions in the Observed Variables
Exploiting separability in estimation
» Instead of jointly estimating the parameters, we could use a two stage estimator
to reduce computation costs:
1. Estimate Fyj (xg41 |xt ;0) with a cell estimator, a parametric function, or a

nonparametric estimator, with ,Etj (Xex1 |xt 3 0).
2. Define:

'qt (Xt+1, €641 X, € ;0) =

J .
_21 dijdg (xe, €6:0) fij (xer1 [xe 10) fer1 (€41 [Xer1, Xe, €2 1 6)
iz

3. Choose 0 to maximize:
Y71 da7jd9; (XoT, €73 6) X

N
H / T-1__
N fi (€1 |xn1;0) TT Hi (X t+1. €641 |Xnt, €1 5 60)

t=1

dej...det

4. Correct standard errors induced at the first stage of estimation.
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Conditional independence

» Separable transitions do not, however, free us from:

1. the curse of multiple integration.
2. numerical optimization to obtain the value function.

» Suppose we assume in addition that €;41, conditional on x;1, is independent of
x¢ (plausible) and e; (questionable).

» Conditional independence embodies both assumptions:

Fij (Xe+1 |xe,€:) = Fg (xe+1 |xe ;0)

Fei1(€e41 [Xex1, X0 €0) = Gy (€r41 |Xeq1:6)

» Conditional independence implies:

th (Xt+1.€t+1 |Xt:€t) = th (Xt+1 |Xt ;9) Gt11 (€t+1 |Xt+1 :9)
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Conditional Independence
Simplifying expressions within the likelihood

» Conditional independence implies:

o 1dnTjd%- (xar€7:8) 81 (€1 xmn : 6)

X Ht | He (xet1, €041 |xe, €1 0)
= Zj:l dn1jd7; (XaT. €7:0) g1 (€1 |Xm1 ; 0)

X HtT;ll Zj:l [dyd? (xe, €4:0) fij (xeq1 |xe :0) Gey1 (€eq1 [xey1:0)]
- HZ:? Zj:l dyjfe; (Xer1 [ 1 0)

X HtT:1 ijl dijdg (xe, €4;0) ge (€r |xe 5 0)
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ML under conditional independence

» Hence the contribution of n € {1,..., N} to the likelihood is:

/

€T...€1

-

€T...€1

T—
= Ht:l

J
dnTjd%' (XnT, €T, 9) X
Jj=1

g1 (€1]xn1;0) TT He (Xe41, €41 |Xe, €65 60)

L t=

d€1...d€T

T J
I dtjdo' (Xtyet?e) 8t (et |Xt ;9)

1 J
Yy deify (xesn [xe)

T J
X Ht:]_ /Zj:]. dt_]dg (Xt, €t) 8t (et |Xt' ,0) det
€t

T-1 d€1

d€T
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Conditional choice probabilities defined

» Under conditional independence, we define for each (t, x;) the conditional choice
probability (CCP) for action j as:

Ptj (xt) = dtoj (Xt: et) gt (et ‘Xt> de;
€t

= E [dtj (xt, €¢r) \xt]
J

— [ TTH{valxesee) < vilxe.e0)} e e ) dee

€t k=1

» Using this notation, the Iog likelihood can now be compactly expressed as:

=1 t=1

3

1y
Z Z ntJIn ft_] Xn,t+1 |Xnt 9)]
J:

T J
ZZ dntj In pyj (x¢; 0)

n=1t=1j=1

+
™=
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Reformulating the primitives

» Conditional independence implies that vij(x, €¢) only depends on €; through
ugj(xe, €¢) because:

th(Xtyet) = utj(Xtret
+,B/ / { Vir1(Xeq1, €)% }
ftJ Xt+1 ’Xt)gl”rl( ‘Xt+1)dxt+1d€
€ Xt+1

» Without further loss of generality we now redefine the primitives by:
> the preferences uf;(x) = E [ug(xe, €¢) [x]
» the observed variables transitions i (x¢11|xt)
> and the distribution of unobserved variables g; (€} |x¢) where
€f = (741, €j,) and €, € R for all (j, t), and:

62<j = ugj(xt, €r) — E [ugj(xe, €r) | Xt ]
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Conditional value functions defined

» Given conditional independence, define the conditional value function as:
Vg1 (Xeq1, €%) X }
vi(xe) = ufi(xe) + / /
tJ( ) = Y )P { ftj Xt4+1 |Xt)gt+1( €" |Xxe41) dxe1de”
€ Xtt1
» Thus py (x) is found by integrating over (€};,...,€},) in the regions:
e — € < vi(xe) — v (xe)
hold for all k € {1,...,J}. That is ps(x¢) can be rewritten:

J
/ H 1 {Vtk(Xntr €t) < th(Xntr €t)}gt (et ’Xt) de;

€t =

-/ 1‘[ I {eh €y < viln) = viel) & (€5 ) de;

Gtk

15/25



Connection with static models

» Suppose we only had data on the last period T, and wished to estimate the
preferences determining choices in T.

> By definition this is a static problem in which vi;(x7) = uf;(xT).

» For example to the probability of observing the J choice is:

e*TJ—O—u’;EJ(x)T) e’frJ+u’§-J((xT)) o

_ —ui (xr —u¥ L (xT

prolxr) = [ ot L [Tt [ g e fxr) dey
—c0 —0o0 —0

» The only essential difference between a estimating a static discrete choice model
using ML and a estimating a dynamic model satisfying conditional independence
using ML is that parameterizations of v;;(x¢) based on uj;(x;) do not have a
closed form, but must be computed numerically.
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Bus Engines (Rust,1987)

Another renewal problem

| 2

>

v

The job matching model (JPE 1984) is a renewal problem: with only one
occupation and an infinite number of jobs, every new job match restarts life.

However the model does not satisfy conditional independence, because posterior
beliefs are unobserved state variables.

Replacing bus engines is also a renewal problem.

Mr. Zurcher decides whether to replace the existing engine (dyg = 1), or keep it
for at least one more period (dy, = 1).

If Zurcher keeps the engine (di» = 1) bus mileage advances to x¢+1 = x¢ + 1;
alternatively dyg = 1 and x¢41 = 1.

Buses are also differentiated by a fixed characteristic s € {0, 1}.

The choice-specific shocks €;; are iid Type 1 extreme value (T1EV).
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The value function and optimal decision rule

» Zurcher maximizes the expected discounted sum of payoffs:

E { Z B [dia(B1x¢ + 025 + €12) + dtletl]}
t—1

» Because this is a stationary infinite horizon problem, age and time have no role.

» Let V(x,s) denote the ex-ante value function at the beginning of period t, the
discounted sum of current and future payoffs just before €; is realized and before
the decision at t is made.

» We also define the conditional value function for each choice as:

()= [ BV ifj=1
s _{91x+925+5V(x+1,s) if j =2

» Optimizing behavior implies:
dy (x,s,€t) = 1{er — €1 < wvi(x,s) —va(x,5)} =1—d5 (x,s,€t)

18/25



Bus Engines: The DGP and the CCPs

» We suppose the data comprises a cross section of N observations of buses
ne{l,..., N} reporting their:
» fixed characteristics s,
» engine miles x,,
> and maintenance decision (dn1, dn2).
» Let p1(x,s) denote the conditional choice probability (CCP) of replacing the
engine given x and s.
» Stationarity and T1EV imply that for all ¢ :

p1(x,s) = Ldf(x,s,et)g(et)det

= /€ 1{€t2_€t1 < Vl(XvS)_V2(Xv5)}g(€t‘xt)d€t

= {1+expva(x,s) —vi(x,s)]}
» An ML estimator could be formed off this equation following the steps described

above.
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Bus Engines: Exploiting the renewal property

» In future lectures we show that if €j is T1EV, then for all (x, s, j):
V(x,s) = vj(x,s) — Blog [pj(x,s)] +0.57...
» Therefore the conditional value function of not replacing is:

v(x,s) = 6Oix+0s+BV(x,s+1)
= Oix+bs+p{vi(x+15s)—pi(x+15s)+057...}

» Similarly:
vi(x,s) =BV (1,s) =B{wvi(l,s) —In[p1(1,s)] +0.57}...
» Because bus engine miles is the only factor affecting bus value given s:
vi(x+1,5) =wv(l,s)
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Bus Engines: Using CCPs to represent differences in continuation values

> Hence:
va(x,s) —vi(x,s) = 01x+ 025+ BIn[p1(1l,s)] — BIn[pi(x+1,5)]

» Therefore:

1

1+exp[va(x,s) = vi(x,s)]
1

1+ exp {B1x + bas 4 pIn | 2025 |

pi(x,s) =

» Intuitively the CCP for current replacement is the CCP for a static model with an
offset term.

» The offset term accounts for differences in continuation values using future CCPs
that characterize optimal future replacements.
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Bus Engines: CCP estimation
» Consider the following CCP estimator:
1. Form a first stage estimator for p1(x,s) from the relative frequencies:
YN L doal (xn = x)1 (s = 5)
YN 1 (xn=x)1(sn=5)

2. Substitute p1(x, s) into the likelihood as incidental parameters to estimate
(01,62, B) with a logit:

p1(x,s)

dy1 +dpo exp(91xn + 025, + Bln {%}

1,s,
1+ exp(fyxn + a5, + Bin [ 520 ]

3. Correct the standard errors for (61,62, ) induced by the first stage estimates of
p1(x,s).

» Note that in the second stage In [%] enters the logit as an individual

specific component of the data, the B coefficient entering in the same way as 0;
and 92.
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Monte Carlo Study (Arcidiacono and Miller, 2011)

Modifying the bus engine problem

» Suppose bus type s € {0,1 } is equally weighted.

» Two state variables affect wear and tear on the engine:
1. total accumulated mileage:

N | Arifdir=1
Ll = x4+ A¢if dop = 1
2. a permanent route characteristic for the bus, xp, that systematically affects miles
added each period.

» More specifically we assume:

> A € {O, 0.125,.. .,24.875,25} is drawn from a discretized truncated exponential
distribution, with:

f(At|x2) = exp[—x2(Ar — 25)] — exp [—x2 (A — 24.875))]

» x5 is a multiple 0.01 drawn from a discrete equi-probability distribution between 0.25
and 1.25.
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Monte Carlo Study

Including the age of the bus in panel estimation
» Let 0p; denote other bus maintenance costs tied to its vintage.
» This modification renders the optimization problem nonstationary.
» The payoff difference from retaining versus replacing the engine is:
ura(xe1, 5) — Ur1(Xe1, ) = Oor + 01 min {xp1, 25} + 025

» Denoting x; = (x1t, x2) , this implies:

vio(xe, S) — ve1(Xxe,s) = 6Oor + 01 min {x¢1,25} + a5

5 o 5]

AeA pre(x1e +A¢, s

» In the first three columns of the next table each sample simulation has 1000 buses
observed for 20 periods.
» In the fourth column 2000 buses are observed for 10 periods.

» The mean and standard deviations are compiled from 50 simulations.
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Monte Carlo Study: Extract from Table 1 of Arcidiacono and Miller (2011)

TABLE I

MONTE CARLO FOR THE OPTIMAL STOPPING PROBLEM*

5 Observed

sU

Time Effects

Ignoring s s Observed s Unobserved
DGP FIML ccp ccp FIML ccp ccp ccp
) [©] 3) @) 5 (©) ™) ®)
6 (intercept) 2 2.0100 1.9911 2.4330 2.0186 2.0280
(0.0405) (0.0399) (0.0363) (0.1185) (0.1374)
6, (mileage) —0.15 —0.1488 —0.1441 —0.1339 —0.1504 —0.1484 —0.1440 —0.1514
(0.0074) (0.0098) (0.0102) (0.0091) (0.0111) (0.0121) (0.0136)
6, (unobs. state) 1 0.9945 0.9726 1.0073 0.9953 0.9683 1.0067
(0.0611) (0.0668) (0.0919) (0.0985) (0.0636) (0.1417)
B (discount factor) 0.9 0.9102 0.9099 0.9115 0.9004 0.8979 0.9172 0.8870
(0.0411) (0.0554) (0.0591) (0.0473) (0.0585) (0.0639) (0.0752)
Time (minutes) 130.29 0.078 0.033 275.01 6.59 0.079 11.31
(19.73) (0.0041) (0.0020) (15.23) (2.52) (0.0047) (5.71)

@Mean and standard deviations for 50 simulations. For columns 1-6, the observed data consist of 1000 buses for 20 periods. For columns 7 and 8, the intercept () is allowed
to vary over time and the data consist of 2000 buses for 10 periods. See the text and the Supplemental Material for additional details.
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