Lecture 8. Conditional Choice Probability (CCP) estimators

Ciprian Domnisoru

Aalto University

A Review of the Dynamic Discrete Choice Model: Choices

- Each period $t \in\{1,2, \ldots, T\}$ for $T \leq \infty$, an individual chooses among J mutually exclusive actions.
- Let $d_{t j}$ equal one if action $j \in\{1, \ldots, J\}$ is taken at time t and zero otherwise:

$$
\begin{aligned}
& d_{t j} \in\{0,1\} \\
& \sum_{j=1}^{J} d_{t j}=1
\end{aligned}
$$

- Suppose that actions taken at time t can potentially depend on the state $z_{t} \in \mathbb{Z}$.
- A transition probability $F_{t j}\left(z_{t+1} \mid z_{t}\right)$, with density $f_{t j}\left(z_{t+1} \mid z_{t}\right)$ when z_{t} is continuous, determines how z_{t} evolves stochastically over time with actions j.

A Review of the Dynamic Discrete Choice Model: Utility

- The current period payoff at time t from taking action j is $u_{t j}\left(z_{t}\right)$.
- Given choices $\left(d_{t 1}, \ldots, d_{t J}\right)$ in each period $t \in\{1,2, \ldots, T\}$ the individual's lifetime expected utility is:

$$
E\left\{\sum_{t=1}^{T} \sum_{j=1}^{J} \beta^{t-1} d_{t j} u_{t j}\left(z_{t}\right) \mid z_{1}\right\}
$$

where $\beta \in(0,1)$ is the discount factor, and the expectation is taken over z_{t+1}, \ldots, z_{T} given z_{1}.

A Review of the Dynamic Discrete Choice Model

Value function and optimization

- Denote the optimal decision rule by $d_{t}^{o}\left(z_{t}\right) \equiv\left(d_{t 1}^{o}\left(z_{t}\right), \ldots, d_{t J}^{o}\left(z_{t}\right)\right)$.
- The current value function $V_{t}\left(z_{t}\right)$ is then defined as:

$$
\begin{aligned}
V_{t}\left(z_{t}\right) & =E\left\{\sum_{s=t}^{T} \sum_{j=1}^{J} \beta^{s-t} d_{s j}^{o}\left(z_{s}\right) u_{s j}\left(z_{s}\right) \mid z_{t}\right\} \\
& =\sum_{j=1}^{J} d_{t j}^{o}\left(z_{t}\right)\left[u_{t j}\left(z_{t}\right)+\beta \int V_{t+1}\left(z_{t+1}\right) f_{t j}\left(z_{t+1} \mid z_{t}\right) d z_{t+1}\right]
\end{aligned}
$$

- Let $v_{t j}\left(z_{t}\right)$ denote the flow payoff of action j plus the expected future utility of behaving optimally from period $t+1$ on:

$$
v_{t j}\left(z_{t}\right) \equiv u_{t j}\left(z_{t}\right)+\beta \int V_{t+1}\left(z_{t+1}\right) f_{t j}\left(z_{t+1} \mid z_{t}\right) d z_{t+1}
$$

- Bellman's principle implies:

$$
d_{t j}^{o}\left(z_{t}\right) \equiv \prod_{k=1}^{K} \mathbf{1}\left\{v_{t j}\left(z_{t}\right) \geq v_{t k}\left(z_{t}\right)\right\}
$$

A Review of the Dynamic Discrete Choice Model

Parameterizing the data generating process

- Typically we acknowledge that some of the factors affecting individual decision making are unobserved.
- This could explain why we:
- cannot predict individual behavior exactly
- estimate a probability distribution to stochastically characterize individual behavior.
- Accordingly partition $z_{t} \equiv\left(x_{t}, \epsilon_{t}\right)$ where x_{t} is observed, but ϵ_{t} is not.
- We define the data generating process, the DGP, as the probability distribution of the data, that is margined over the unobserved variables.
- The data comprise $\left\{d_{n t 1}, \ldots, d_{n t}, x_{n t}\right\}$ for observations $(n, t) \in\{1, \ldots, N\} \times\{1, \ldots, T\}$.

A Review of the Dynamic Discrete Choice Model: Estimation

- We assume $u_{t j}\left(z_{t}\right), F_{t j}\left(z_{t+1} \mid z_{t}\right)$ and β are fully characterized by $\theta \in \Theta$, where for example $\Theta \subseteq \mathbb{R}^{p}$, and p is a counting number.
- Thus the DGP is characterized by some unknown $\theta_{0} \in \Theta$.
- Denote the pdf of $\left(x_{t+1}, \epsilon_{t+1}\right)$ conditional on $\left(d_{t 1}, \ldots, d_{t J}, x_{t}, \epsilon_{t}\right)$ by:

$$
\begin{aligned}
& H_{t}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}, \epsilon_{t} ; \theta\right) \\
\equiv & \sum_{j=1}^{J} d_{t j} d_{t j}^{\circ}\left(x_{t}, \epsilon_{t} ; \theta\right) f_{t j}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}, \epsilon_{t} ; \theta\right)
\end{aligned}
$$

- The ML estimator chooses θ to maximize:

$$
\prod_{n=1}^{N} \int_{\epsilon_{T} \ldots \epsilon_{1}}\left[\begin{array}{l}
\sum_{j=1}^{J} d_{n T j} d_{T_{j}}^{o}\left(x_{n T}, \epsilon_{T} ; \theta\right) \times \\
f_{1}\left(\epsilon_{1} \mid x_{n 1} ; \theta\right) \prod_{t=1}^{T-1} H_{t}\left(x_{n, t+1}, \epsilon_{t+1} \mid x_{n t}, \epsilon_{t} ; \theta\right)
\end{array}\right] d \epsilon_{1} \ldots d \epsilon_{T}
$$

A Review of the Dynamic Discrete Choice Model

A computational challenge

- What are the computational challenges to enlarging the state space?

1. Computing the value function;
2. Solving for equilibrium in a multiplayer setting;
3. Integrating over unobserved heterogeneity.

- These challenges have led researchers to compromises on several dimensions:

1. Keep the dimension of the state space small;
2. Assume all choices and outcomes are observed;
3. Model unobserved states as a matter of computational convenience;
4. Consider only one side of market to finesse equilibrium issues;
5. Adopt parameterizations based on convenient functional forms.

Separable Transitions in the Observed Variables

A simplification

- We could assume that for all $\left(t, j, x_{t}, \epsilon_{t}\right)$ the transition of the observed variables does not depend on the unobserved variables:

$$
F_{t j}\left(x_{t+1} \mid x_{t}, \epsilon_{t} ; \theta\right)=F_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right)
$$

- Note $F_{t j}\left(x_{t+1} \mid x_{t}\right)$ is identified for each (t, j) from the transitions, so there is no conceptual reason for parameterizing this distribution.
- The ML estimator maximizes the same criterion function but $H_{t}\left(x_{n, t+1}, \epsilon_{t+1} \mid x_{n t}, \epsilon_{t} ; \theta\right)$ simplifies to:

$$
\begin{aligned}
& H_{t}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}, \epsilon_{t} ; \theta\right) \equiv \\
& \sum_{j=1}^{J} d_{t j} d_{t j}^{\circ}\left(x_{t}, \epsilon_{t} ; \theta\right) f_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right) f_{t+1}\left(\epsilon_{t+1} \mid x_{t+1}, x_{t}, \epsilon_{t} ; \theta\right)
\end{aligned}
$$

Separable Transitions in the Observed Variables

Exploiting separability in estimation

- Instead of jointly estimating the parameters, we could use a two stage estimator to reduce computation costs:

1. Estimate $F_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right)$ with a cell estimator, a parametric function, or a nonparametric estimator, with $\widehat{F}_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right)$.
2. Define:

$$
\begin{aligned}
& \widehat{H}_{t}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}, \epsilon_{t} ; \theta\right) \equiv \\
& \sum_{j=1}^{J} d_{t j} d_{t j}^{o}\left(x_{t}, \epsilon_{t} ; \theta\right) \widehat{f}_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right) f_{t+1}\left(\epsilon_{t+1} \mid x_{t+1}, x_{t}, \epsilon_{t} ; \theta\right)
\end{aligned}
$$

3. Choose θ to maximize:

$$
\prod_{n=1}^{N} \int_{\epsilon_{T} \ldots \epsilon_{1}}\left[\begin{array}{l}
\sum_{j=1}^{J} d_{n T j} d_{T_{j}}^{\circ}\left(x_{n T}, \epsilon_{T} ; \theta\right) \times \\
f_{1}\left(\epsilon_{1} \mid x_{n 1} ; \theta\right) \prod_{t=1}^{T-1} \widehat{H}_{t}\left(x_{n, t+1}, \epsilon_{t+1} \mid x_{n t}, \epsilon_{t} ; \theta\right)
\end{array}\right] d \epsilon_{1} \ldots d \epsilon_{T}
$$

4. Correct standard errors induced at the first stage of estimation.

Conditional independence

- Separable transitions do not, however, free us from:

1. the curse of multiple integration.
2. numerical optimization to obtain the value function.

- Suppose we assume in addition that ϵ_{t+1}, conditional on x_{t+1}, is independent of x_{t} (plausible) and ϵ_{t} (questionable).
- Conditional independence embodies both assumptions:

$$
\begin{aligned}
F_{t j}\left(x_{t+1} \mid x_{t}, \epsilon_{t}\right) & =F_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right) \\
F_{t+1}\left(\epsilon_{t+1} \mid x_{t+1}, x_{t}, \epsilon_{t}\right) & =G_{t+1}\left(\epsilon_{t+1} \mid x_{t+1} ; \theta\right)
\end{aligned}
$$

- Conditional independence implies:

$$
F_{t j}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}, \epsilon_{t}\right)=F_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right) G_{t+1}\left(\epsilon_{t+1} \mid x_{t+1} ; \theta\right)
$$

Conditional Independence

Simplifying expressions within the likelihood

- Conditional independence implies:

$$
\begin{aligned}
& \sum_{j=1}^{J} d_{n T j} d_{T j}^{o}\left(x_{n T}, \epsilon_{T} ; \theta\right) g_{1}\left(\epsilon_{1} \mid x_{n 1} ; \theta\right) \\
& \times \prod_{t=1}^{T-1} H_{t}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}, \epsilon_{t} ; \theta\right) \\
= & \sum_{j=1}^{J} d_{n T j} d_{T j}^{\circ}\left(x_{n T}, \epsilon_{T} ; \theta\right) g_{1}\left(\epsilon_{1} \mid x_{n 1} ; \theta\right) \\
& \times \prod_{t=1}^{T-1} \sum_{j=1}^{J}\left[d_{t j} d_{t j}^{o}\left(x_{t}, \epsilon_{t} ; \theta\right) f_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right) g_{t+1}\left(\epsilon_{t+1} \mid x_{t+1} ; \theta\right)\right] \\
= & \prod_{t=1}^{T-1} \sum_{j=1}^{J} d_{t j} f_{t j}\left(x_{t+1} \mid x_{t} ; \theta\right) \\
& \times \prod_{t=1}^{T} \sum_{j=1}^{J} d_{t j} d_{t j}^{o}\left(x_{t}, \epsilon_{t} ; \theta\right) g_{t}\left(\epsilon_{t} \mid x_{t} ; \theta\right)
\end{aligned}
$$

ML under conditional independence

- Hence the contribution of $n \in\{1, \ldots, N\}$ to the likelihood is:

$$
\begin{aligned}
& \int_{\epsilon_{T} \ldots \epsilon_{1}}\left[\begin{array}{l}
\sum_{j=1}^{J} d_{n T j} d_{T j}^{o}\left(x_{n T}, \epsilon_{T} ; \theta\right) \times \\
g_{1}\left(\epsilon_{1} \mid x_{n 1} ; \theta\right) \prod_{t=1}^{T-1} H_{t}\left(x_{t+1}, \epsilon_{t+1} \mid x_{t}, \epsilon_{t} ; \theta\right)
\end{array}\right] d \epsilon_{1} \ldots d \epsilon_{T} \\
= & \int_{\epsilon_{T} \ldots \epsilon_{1}}\left[\begin{array}{l}
\prod_{t=1}^{T-1} \sum_{j=1}^{J} d_{t j} f_{t j}\left(x_{t+1} \mid x_{t}\right) \times \\
\prod_{t=1}^{T} \sum_{j=1}^{J} d_{t j} d_{t j}^{o}\left(x_{t}, \epsilon_{t} ; \theta\right) g_{t}\left(\epsilon_{t} \mid x_{t} ; \theta\right)
\end{array}\right] d \epsilon_{1} \ldots d \epsilon_{T} \\
= & \prod_{t=1}^{T-1} \sum_{j=1}^{J} d_{t j} f_{t j}\left(x_{t+1} \mid x_{t}\right) \\
& \times \prod_{t=1}^{T} \int_{\epsilon_{t}}^{T} \sum_{j=1}^{J} d_{t j} d_{t j}^{o}\left(x_{t}, \epsilon_{t}\right) g_{t}\left(\epsilon_{t} \mid x_{t} ; \theta\right) d \epsilon_{t}
\end{aligned}
$$

Conditional choice probabilities defined

- Under conditional independence, we define for each $\left(t, x_{t}\right)$ the conditional choice probability (CCP) for action j as:

$$
\begin{aligned}
p_{t j}\left(x_{t}\right) & \equiv \int_{\epsilon_{t}} d_{t j}^{o}\left(x_{t}, \epsilon_{t}\right) g_{t}\left(\epsilon_{t} \mid x_{t}\right) d \epsilon_{t} \\
& =E\left[d_{t j}^{o}\left(x_{t}, \epsilon_{t}\right) \mid x_{t}\right] \\
& =\int_{\epsilon_{t}} \prod_{k=1}^{J} I\left\{v_{t k}\left(x_{t}, \epsilon_{t}\right) \leq v_{t j}\left(x_{t}, \epsilon_{t}\right)\right\} g_{t}\left(\epsilon_{t} \mid x_{t}\right) d \epsilon_{t}
\end{aligned}
$$

- Using this notation, the log likelihood can now be compactly expressed as:

$$
\begin{aligned}
& \sum_{n=1}^{N} \sum_{t=1}^{T-1} \sum_{j=1}^{J} d_{n t j} \ln \left[f_{t j}\left(x_{n, t+1} \mid x_{n t} ; \theta\right)\right] \\
& +\sum_{n=1}^{N} \sum_{t=1}^{T} \sum_{j=1}^{J} d_{n t j} \ln p_{t j}\left(x_{t} ; \theta\right)
\end{aligned}
$$

Reformulating the primitives

- Conditional independence implies that $v_{t j}\left(x_{t}, \epsilon_{t}\right)$ only depends on ϵ_{t} through $u_{t j}\left(x_{t}, \epsilon_{t}\right)$ because:

$$
\begin{aligned}
v_{t j}\left(x_{t}, \epsilon_{t}\right) \equiv & u_{t j}\left(x_{t}, \epsilon_{t}\right) \\
& +\beta \int_{\epsilon} \int_{x_{t+1}}\left\{\begin{array}{c}
V_{t+1}\left(x_{t+1}, \epsilon\right) \times \\
f_{t j}\left(x_{t+1} \mid x_{t}\right) g_{t+1}\left(\epsilon \mid x_{t+1}\right) d x_{t+1} d \epsilon
\end{array}\right\}
\end{aligned}
$$

- Without further loss of generality we now redefine the primitives by:
- the preferences $u_{t j}^{*}\left(x_{t}\right) \equiv E\left[u_{t j}\left(x_{t}, \epsilon_{t}\right) \mid x_{t}\right]$
- the observed variables transitions $f_{j t}\left(x_{t+1} \mid x_{t}\right)$
- and the distribution of unobserved variables $g_{t}^{*}\left(\epsilon_{t}^{*} \mid x_{t}\right)$ where $\epsilon_{t}^{*} \equiv\left(\epsilon_{1 t}^{*}, \ldots, \epsilon_{J t}^{*}\right)$ and $\epsilon_{j t}^{*} \in \mathbb{R}$ for all (j, t), and:

$$
\epsilon_{t j}^{*} \equiv u_{t j}\left(x_{t}, \epsilon_{t}\right)-E\left[u_{t j}\left(x_{t}, \epsilon_{t}\right) \mid x_{t}\right]
$$

Conditional value functions defined

- Given conditional independence, define the conditional value function as:

$$
v_{t j}^{*}\left(x_{t}\right) \equiv u_{t j}^{*}\left(x_{t}\right)+\beta \int_{\epsilon} \int_{x_{t+1}}\left\{\begin{array}{l}
v_{t+1}\left(x_{t+1}, \epsilon^{*}\right) \times \\
f_{t j}\left(x_{t+1} \mid x_{t}\right) g_{t+1}^{*}
\end{array}\left(\epsilon^{*} \mid x_{t+1}\right) d x_{t+1} d \epsilon^{*}\right\}
$$

- Thus $p_{t j}(x)$ is found by integrating over $\left(\epsilon_{t 1}^{*}, \ldots, \epsilon_{t J}^{*}\right)$ in the regions:

$$
\epsilon_{t k}^{*}-\epsilon_{t j}^{*} \leq v_{t j}^{*}\left(x_{t}\right)-v_{t k}^{*}\left(x_{t}\right)
$$

hold for all $k \in\{1, \ldots, J\}$. That is $p_{t j}\left(x_{t}\right)$ can be rewritten:

$$
\begin{aligned}
& \int_{\epsilon_{t}} \prod_{k=1}^{J} 1\left\{v_{t k}\left(x_{n t}, \epsilon_{t}\right) \leq v_{t j}\left(x_{n t}, \epsilon_{t}\right)\right\} g_{t}\left(\epsilon_{t} \mid x_{t}\right) d \epsilon_{t} \\
= & \int_{\epsilon_{t}} \prod_{k=1}^{J} I\left\{\epsilon_{t k}^{*}-\epsilon_{t j}^{*} \leq v_{t j}^{*}\left(x_{n t}\right)-v_{t k}^{*}\left(x_{n t}\right)\right\} g_{t}^{*}\left(\epsilon_{t}^{*} \mid x_{t}\right) d \epsilon_{t}^{*}
\end{aligned}
$$

Connection with static models

- Suppose we only had data on the last period T, and wished to estimate the preferences determining choices in T.
- By definition this is a static problem in which $v_{T j}^{*}\left(x_{T}\right) \equiv u_{T j}^{*}\left(x_{T}\right)$.
- For example to the probability of observing the $J^{\text {th }}$ choice is:

$$
p_{T J}\left(x_{T}\right) \equiv \int_{-\infty}^{\epsilon_{T J}^{*}+u_{T J}^{*}\left(x_{T}\right)} \ldots \int_{-\infty}^{\epsilon_{T}^{*}, u_{T,-1}^{*}\left(x_{T}\right)} \int_{-\infty}^{\left.-u_{T}^{*}\right)} g_{T}^{*}\left(\epsilon_{T}^{*} \mid x_{T}\right) d \epsilon_{T}^{*}
$$

- The only essential difference between a estimating a static discrete choice model using ML and a estimating a dynamic model satisfying conditional independence using ML is that parameterizations of $v_{t j}^{*}\left(x_{t}\right)$ based on $u_{t j}^{*}\left(x_{t}\right)$ do not have a closed form, but must be computed numerically.

Bus Engines (Rust,1987)

Another renewal problem

- The job matching model (JPE 1984) is a renewal problem: with only one occupation and an infinite number of jobs, every new job match restarts life.
- However the model does not satisfy conditional independence, because posterior beliefs are unobserved state variables.
- Replacing bus engines is also a renewal problem.
- Mr. Zurcher decides whether to replace the existing engine ($d_{t 1}=1$), or keep it for at least one more period $\left(d_{t 2}=1\right)$.
- If Zurcher keeps the engine $\left(d_{t 2}=1\right)$ bus mileage advances to $x_{t+1}=x_{t}+1$; alternatively $d_{t 1}=1$ and $x_{t+1}=1$.
- Buses are also differentiated by a fixed characteristic $s \in\{0,1\}$.
- The choice-specific shocks $\epsilon_{t j}$ are iid Type 1 extreme value (T1EV).

The value function and optimal decision rule

- Zurcher maximizes the expected discounted sum of payoffs:

$$
E\left\{\sum_{t=1}^{\infty} \beta^{t-1}\left[d_{t 2}\left(\theta_{1} x_{t}+\theta_{2} s+\epsilon_{t 2}\right)+d_{t 1} \epsilon_{t 1}\right]\right\}
$$

- Because this is a stationary infinite horizon problem, age and time have no role.
- Let $V(x, s)$ denote the ex-ante value function at the beginning of period t, the discounted sum of current and future payoffs just before ϵ_{t} is realized and before the decision at t is made.
- We also define the conditional value function for each choice as:

$$
v_{j}(x, s)= \begin{cases}\beta V(1, s) & \text { if } j=1 \\ \theta_{1} x+\theta_{2} s+\beta V(x+1, s) & \text { if } j=2\end{cases}
$$

- Optimizing behavior implies:

$$
d_{1}^{o}\left(x, s, \epsilon_{t}\right)=\mathbf{1}\left\{\epsilon_{t 2}-\epsilon_{t 1} \leq v_{1}(x, s)-v_{2}(x, s)\right\}=1-d_{2}^{o}\left(x, s, \epsilon_{t}\right)
$$

Bus Engines: The DGP and the CCPs

- We suppose the data comprises a cross section of N observations of buses $n \in\{1, \ldots, N\}$ reporting their:
- fixed characteristics s_{n},
- engine miles x_{n},
- and maintenance decision $\left(d_{n 1}, d_{n 2}\right)$.
- Let $p_{1}(x, s)$ denote the conditional choice probability (CCP) of replacing the engine given x and s.
- Stationarity and T1EV imply that for all t :

$$
\begin{aligned}
p_{1}(x, s) & \equiv \int_{\epsilon_{t}} d_{1}^{o}\left(x, s, \epsilon_{t}\right) g\left(\epsilon_{t}\right) d \epsilon_{t} \\
& =\int_{\epsilon_{t}} \mathbf{1}\left\{\epsilon_{t 2}-\epsilon_{t 1} \leq v_{1}(x, s)-v_{2}(x, s)\right\} g\left(\epsilon_{t} \mid x_{t}\right) d \epsilon_{t} \\
& =\left\{1+\exp \left[v_{2}(x, s)-v_{1}(x, s)\right]\right\}^{-1}
\end{aligned}
$$

- An ML estimator could be formed off this equation following the steps described above.

Bus Engines: Exploiting the renewal property

- In future lectures we show that if $\epsilon_{j t}$ is T1EV, then for all (x, s, j) :

$$
V(x, s)=v_{j}(x, s)-\beta \log \left[p_{j}(x, s)\right]+0.57 \ldots
$$

- Therefore the conditional value function of not replacing is:

$$
\begin{aligned}
v_{2}(x, s) & =\theta_{1} x+\theta_{2} s+\beta V(x, s+1) \\
& =\theta_{1} x+\theta_{2} s+\beta\left\{v_{1}(x+1, s)-p_{1}(x+1, s)+0.57 \ldots\right\}
\end{aligned}
$$

- Similarly:

$$
v_{1}(x, s)=\beta V(1, s)=\beta\left\{v_{1}(1, s)-\ln \left[p_{1}(1, s)\right]+0.57\right\} \ldots
$$

- Because bus engine miles is the only factor affecting bus value given s :

$$
v_{1}(x+1, s)=v_{1}(1, s)
$$

Bus Engines: Using CCPs to represent differences in continuation values

- Hence:

$$
v_{2}(x, s)-v_{1}(x, s)=\theta_{1} x+\theta_{2} s+\beta \ln \left[p_{1}(1, s)\right]-\beta \ln \left[p_{1}(x+1, s)\right]
$$

- Therefore:

$$
\begin{aligned}
p_{1}(x, s) & =\frac{1}{1+\exp \left[v_{2}(x, s)-v_{1}(x, s)\right]} \\
& =\frac{1}{1+\exp \left\{\theta_{1} x+\theta_{2} s+\beta \ln \left[\frac{p_{1}(1, s)}{p_{1}(x+1, s)}\right]\right\}}
\end{aligned}
$$

- Intuitively the CCP for current replacement is the CCP for a static model with an offset term.
- The offset term accounts for differences in continuation values using future CCPs that characterize optimal future replacements.

Bus Engines: CCP estimation

- Consider the following CCP estimator:

1. Form a first stage estimator for $p_{1}(x, s)$ from the relative frequencies:

$$
\hat{p}_{1}(x, s) \equiv \frac{\sum_{n=1}^{N} d_{n 1} I\left(x_{n}=x\right) I\left(s_{n}=s\right)}{\sum_{n=1}^{N} I\left(x_{n}=x\right) I\left(s_{n}=s\right)}
$$

2. Substitute $\hat{p}_{1}(x, s)$ into the likelihood as incidental parameters to estimate $\left(\theta_{1}, \theta_{2}, \beta\right)$ with a logit:

$$
\frac{d_{n 1}+d_{n 2} \exp \left(\theta_{1} x_{n}+\theta_{2} s_{n}+\beta \ln \left[\frac{\hat{\rho}_{1}\left(1, s_{n}\right)}{\hat{\rho}_{1}\left(x_{n}+1, s_{n}\right)}\right]\right.}{1+\exp \left(\theta_{1} x_{n}+\theta_{2} s_{n}+\beta \ln \left[\frac{\hat{\rho}_{1}\left(1, s_{n}\right)}{\hat{\rho}_{1}\left(x_{n}+1, s_{n}\right)}\right]\right.}
$$

3. Correct the standard errors for $\left(\theta_{1}, \theta_{2}, \beta\right)$ induced by the first stage estimates of $p_{1}(x, s)$.

- Note that in the second stage $\ln \left[\frac{\hat{p}_{1}\left(1, s_{n}\right)}{\hat{\rho}_{1}\left(x_{n}+1, s_{n}\right)}\right]$ enters the logit as an individual specific component of the data, the β coefficient entering in the same way as θ_{1} and θ_{2}.

Monte Carlo Study (Arcidiacono and Miller, 2011)

Modifying the bus engine problem

- Suppose bus type $s \in\{0,1\}$ is equally weighted.
- Two state variables affect wear and tear on the engine:

1. total accumulated mileage:

$$
x_{1, t+1}=\left\{\begin{array}{l}
\Delta_{t} \text { if } d_{1 t}=1 \\
x_{1 t}+\Delta_{t} \text { if } d_{2 t}=1
\end{array}\right.
$$

2. a permanent route characteristic for the bus, x_{2}, that systematically affects miles added each period.

- More specifically we assume:
- $\Delta_{t} \in\{0,0.125, \ldots, 24.875,25\}$ is drawn from a discretized truncated exponential distribution, with:

$$
f\left(\Delta_{t} \mid x_{2}\right)=\exp \left[-x_{2}\left(\Delta_{t}-25\right)\right]-\exp \left[-x_{2}\left(\Delta_{t}-24.875\right)\right]
$$

- x_{2} is a multiple 0.01 drawn from a discrete equi-probability distribution between 0.25 and 1.25 .

Monte Carlo Study

Including the age of the bus in panel estimation

- Let $\theta_{0 t}$ denote other bus maintenance costs tied to its vintage.
- This modification renders the optimization problem nonstationary.
- The payoff difference from retaining versus replacing the engine is:

$$
u_{t 2}\left(x_{t 1}, s\right)-u_{t 1}\left(x_{t 1}, s\right) \equiv \theta_{0 t}+\theta_{1} \min \left\{x_{t 1}, 25\right\}+\theta_{2} s
$$

- Denoting $x_{t} \equiv\left(x_{1 t}, x_{2}\right)$, this implies:

$$
\begin{aligned}
v_{t 2}\left(x_{t}, s\right)-v_{t 1}\left(x_{t}, s\right)= & \theta_{0 t}+\theta_{1} \min \left\{x_{t 1}, 25\right\}+\theta_{2} s \\
& +\beta \sum_{\Delta_{t} \in \Lambda}\left\{\ln \left[\frac{p_{1 t}\left(\Delta_{t}, s\right)}{p_{1 t}\left(x_{1 t}+\Delta_{t}, s\right)}\right]\right\} f\left(\Delta_{t} \mid x_{2}\right)
\end{aligned}
$$

- In the first three columns of the next table each sample simulation has 1000 buses observed for 20 periods.
- In the fourth column 2000 buses are observed for 10 periods.
- The mean and standard deviations are compiled from 50 simulations.

Monte Carlo Study: Extract from Table 1 of Arcidiacono and Miller (2011)

TABLE I
Monte Carlo for the Optimal Stopping Problem ${ }^{\text {a }}$

	DGP (1)	s Observed		Ignorings CCP (4)	s Unobserved		Time Effects		
				${ }_{5}$ Observed			s Unobserved		
		FIML (2)	CCP (3)		FIML (5)	CCP (6)	CCP (7)	CCP (8)	
θ_{0} (intercept)	2	$\begin{gathered} 2.0100 \\ (0.0405) \end{gathered}$	$\begin{gathered} 1.9911 \\ (0.0399) \end{gathered}$		$\begin{gathered} 2.4330 \\ (0.0363) \end{gathered}$	$\begin{gathered} 2.0186 \\ (0.1185) \end{gathered}$	$\begin{gathered} 2.0280 \\ (0.1374) \end{gathered}$		
θ_{1} (mileage)	-0.15	$\begin{gathered} -0.1488 \\ (0.0074) \end{gathered}$	$\begin{gathered} -0.1441 \\ (0.0098) \end{gathered}$	$\begin{gathered} -0.1339 \\ (0.0102) \end{gathered}$	$\begin{gathered} -0.1504 \\ (0.0091) \end{gathered}$	$\begin{gathered} -0.1484 \\ (0.0111) \end{gathered}$	$\begin{gathered} -0.1440 \\ (0.0121) \end{gathered}$	$\begin{gathered} -0.1514 \\ (0.0136) \end{gathered}$	
θ_{2} (unobs. state)	1	$\begin{gathered} 0.9945 \\ (0.0611) \end{gathered}$	$\begin{gathered} 0.9726 \\ (0.0668) \end{gathered}$		$\begin{gathered} 1.0073 \\ (0.0919) \end{gathered}$	$\begin{gathered} 0.9953 \\ (0.0985) \end{gathered}$	$\begin{gathered} 0.9683 \\ (0.0636) \end{gathered}$	$\begin{gathered} 1.0067 \\ (0.1417) \end{gathered}$	
β (discount factor)	0.9	$\begin{gathered} 0.9102 \\ (0.0411) \end{gathered}$	$\begin{gathered} 0.9099 \\ (0.0554) \end{gathered}$	$\begin{gathered} 0.9115 \\ (0.0591) \end{gathered}$	$\begin{gathered} 0.9004 \\ (0.0473) \end{gathered}$	$\begin{gathered} 0.8979 \\ (0.0585) \end{gathered}$	$\begin{gathered} 0.9172 \\ (0.0639) \end{gathered}$	$\begin{gathered} 0.8870 \\ (0.0752) \end{gathered}$	
Time (minutes)		$\begin{aligned} & 130.29 \\ & (19.73) \end{aligned}$	$\begin{aligned} & 0.078 \\ & (0.0041) \end{aligned}$	$\begin{gathered} 0.033 \\ (0.0020) \end{gathered}$	$\begin{aligned} & 275.01 \\ & (15.23) \end{aligned}$	$\begin{gathered} 6.59 \\ (2.52) \end{gathered}$	$\begin{aligned} & 0.079 \\ & (0.0047) \end{aligned}$	$\begin{aligned} & 11.31 \\ & (5.71) \end{aligned}$	

[^0]
[^0]: ${ }^{a}$ Mean and standard deviations for 50 simulations. For columns 1-6, the observed data consist of 1000 buses for 20 periods. For columns 7 and 8 , the intercept (θ_{0}) is allowed to vary over time and the data consist of 2000 buses for 10 periods. See the text and the Supplemental Material for additional details.

