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 FULL MATCHING APPROACH TO INSTRUMENTAL VARIABLES
 ESTIMATION WITH APPLICATION TO THE EFFECT

 OF MALARIA ON STUNTING

 By Hyunseung Kang*, Benno Kreuels'-*, Jürgen May*
 and Dylan S. Small*

 University of Pennsylvania* , University Medical Centre + and
 Bernhard Nocht Institute for Tropical Medicine *

 Most previous studies of the causal relationship between malaria and
 stunting have been studies where potential confounders are controlled via
 regression-based methods, but these studies may have been biased by unob-
 served confounders. Instrumental variables (IV) regression offers a way to
 control for unmeasured confounders where, in our case, the sickle cell trait

 can be used as an instrument. However, for the instrument to be valid, it may

 still be important to account for measured confounders. The most commonly
 used instrumental variable regression method, two-stage least squares, relies
 on parametric assumptions on the effects of measured confounders to ac-
 count for them. Additionally, two-stage least squares lacks transparency with
 respect to covariate balance and weighing of subjects and does not blind the
 researcher to the outcome data. To address these drawbacks, we propose an
 alternative method for IV estimation based on full matching. We evaluate our
 new procedure on simulated data and real data concerning the causal effect
 of malaria on stunting among children. We estimate that the risk of stunting
 among children with the sickle cell trait decreases by 0.22 per every malaria
 episode prevented by the sickle cell trait, a substantial effect of malaria on
 stunting (p-value: 0.01 1, 95% CI: 0.044, 1).

 1. Introduction.

 1.1. Motivation: Does malaria cause stunting ? From January 2003 to January
 2004, 1070 infants from Ghana, Africa, were recruited to a clinical trial on Inter-
 mittent Preventative Treatment for malaria (IPT) [Kobbe et al. (2007)]. From the
 time of recruitment at 3 months of age until two years of age, each child was
 monitored monthly for the presence of malaria parasites with measurements every
 three months of length/height. Table 1 lists the baseline characteristics of the 1070
 infants in our data.

 One of the public health questions of interest from this clinical study was
 whether malaria caused stunted growth among children. In 2013 alone, there were

 Received June 2015; revised August 2015.
 Key words and phrases. Full matching, instrumental variables, malaria, stunting, two-stage least

 squares.
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 FULL MATCHING IV ESTIMATION 337

 128 million estimated cases of malaria in sub-Saharan Africa, with most cases oc-
 curring in children under the age of 5 [World Health Organization (2014)]. Stunt-
 ing, defined as a child's height being two standard deviations below the mean for
 his/her age, is a key indicator of child development [WHO Multicentre Growth
 Reference Study Group (2006)]. If malaria does cause stunted growth, several in-
 tervention strategies can be implemented to mitigate stunted growth, such as dis-
 tribution of mosquito nets, control of the mosquito population during seasons of
 high malarial incidence and surveillance of mosquito populations.
 The current body of evidence suggests that there is a strong positive relationship

 between malaria exposure and stunted growth [Crookston et al. (2010), Deen, Wal-
 raven and von Seidlein (2002), Deribew et al. (2010), Ehrhardt et al. (2006), Fillol
 et al. (2009), Genton et al. (1998), Nyakeriga et al. (2004)]. Unfortunately, a funda-
 mental limitation with these prior studies is that they are observational studies and,
 consequently, there is always a concern that important confounders were not con-
 trolled for. For example, Fillol et al. (2009) and Deribew et al. (2010) stated that a
 limitation in their studies was not controlling for diet, specifically a child's intake
 of micronutrients such as vitamins, zinc or iron, as these micronutrients could im-

 pact a child's growth as well as his immune system's ability to fight off a malaria
 episode. In addition, Ehrhardt et al. (2006) and Crookston et al. (2010) suggested
 controlling for socioeconomic factors in future studies of malaria and malnutrition
 because affluent families are more likely to provide mosquito nets and nutritious
 food to their children compared to impoverished families. Short of a randomized
 clinical trial, which is unethical in this context, unmeasured confounders are likely
 present in all the aforementioned studies because of the practical limitations of
 accounting for all possible confounders.

 1.2. Instrumental variables and sickle cell trait. Instrumental variables (IVs)
 is an alternative method to estimate the causal effect of an exposure on the out-
 come when there is unmeasured confounding, provided that a valid instrument is
 available [Angrist, Imbens and Rubin (1996), Baiocchi, Cheng and Small (2014),
 Brookhart and Schneeweiss (2007), Cheng, Qin and Zhang (2009), Hernán and
 Robins (2006), Swanson and Hernán (2013)]. The core assumptions for a vari-
 able to be a valid instrumental variable are that the variable (Al) is associated
 with the exposure, (A2) has no direct pathways to the outcome, and (A3) is not
 associated with any unmeasured confounders after controlling for the measured
 confounders (see Figure 1 and Section 2.3 for more detailed discussions). If mea-
 sured covariates are available, like in our data, the plausibility of the instrument
 satisfying the three core assumptions can be improved by conditioning on the co-
 variates, especially (A3). For our study of analyzing the causal effect of malaria
 on stunting, we follow a recent approach by Davey Smith and Ebrahim (2003)
 and especially Kang et al. (2013) where genotypie variations are used as instru-
 ments and propose to use the presence of a sickle cell genotype (HbAS) versus
 carrying the normal hemoglobin type (HbAA) as an instrument. The sickle cell
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 FIG. 1 . Causal diagram for the malaria study. Numbers (AI), (A2), (A3) represent MR assump-
 tions.

 genotype (Hb AS) is a condition where a person inherits from one parent a mutated
 copy of the hemoglobin beta (HBB) gene called the sickle cell gene mutation that
 bends red blood cells into a sickle (crescent) shape, but inherits a normal copy of
 the HBB gene from the other parent. The sickle cell trait protects against malaria,
 but is thought to be otherwise mostly asymptomatic [Aidoo et al. (2002)]. Note
 that we exclude from the analysis people who have two copies of the HBB gene,
 that is, people who suffer from sickle cell disease which causes severe symptoms;
 sickle cell disease (two copies of the HBB gene) is thought to persist despite its
 evolutionary disadvantage because of the sickle cell trait (one copy of the HBB
 gene) protecting against malaria [May et al. (2007)]. We discuss in detail the va-
 lidity of the sickle cell trait IV in Section 2.3. In addition, we propose to combine
 the covariates that were already measured for this data in Table 1 to increase the
 plausibility of our sickle cell trait being a valid instrument.

 1.3. Two-stage least squares. The most popular and well-studied among
 methods that use an IV and measured covariates to estimate causal effects is two-

 stage least squares (2SLS) [Angrist and Krueger (1991), Card (1995), Wooldridge
 (2010)]. For example, in Card (1995), which studied the effect of education on
 wages, 2SLS with proximity to a 4-year college as an IV was used to control
 for measured covariates such as race and parents' education. Specifically, 2SLS
 first estimated, via least squares, the predicted exposure (education) given the in-
 strument (proximity to 4-year college) and the measured covariates, and, second,
 regressed the outcome (earnings) on this predicted exposure and the measured
 covariates; the 2SLS estimate of the causal effect is the coefficient on the pre-
 dicted exposure in the second regression. Standard results in econometrics show
 2SLS estimators are consistent and efficient under linear single- variable structural
 equation models with a constant treatment effect [Wooldridge (2010)]. When treat-
 ment effects are not constant, Angrist and Imbens (1995) showed that under certain
 monotonicity assumptions, 2SLS converges to a weighted average of the covariate-
 specific treatment effects with the weights proportional to the average conditional
 variance of the expected value of the treatment given the covariates and the in-
 strument. Other IV methods to estimate causal effects in the presence of measured

This content downloaded from 
������������86.50.141.45 on Thu, 16 Nov 2023 10:03:16 +00:00������������ 

All use subject to https://about.jstor.org/terms



 FULL MATCHING IV ESTIMATION 339

 covariates include Bayesian methods [Imbens and Rubin (1997)], semiparametric
 methods [Abadie (2003), Ogburn, Rotnitzky and Robins (2015), Tan (2006)] and
 nonparametric methods [Frolich (2007)].
 Despite its attractive estimation properties, 2SLS has some drawbacks in (i) lack

 of transparency of the population to which the estimate applies, (ii) lack of blind-
 ing of the analyst/researcher and (iii) dependence on parametric assumptions. First,
 with regards to transparency, suppose that there are some values of the covariates
 for which the instrument is almost always low, some values for which the instru-
 ment is almost always high and some values of the covariates for which the instru-
 ment takes on both low and high values. Then, the 2SLS estimate will put most
 of its weight on the causal effect for subjects with the values of the covariates for
 which the instrument takes on both low and high values, and little weight on sub-
 jects with the values of the covariates for which the instrument usually takes on
 low (or high) values. In our malaria study, this would mean that there might be
 some villages (a covariate) that are receiving little weight in the 2SLS estimate;
 consequently, the 2SLS estimate might not be helpful for understanding the effect
 of malaria on stunting in these villages even though these villages might have con-
 tributed many subjects to the analysis. Although the weighting function in 2SLS
 can be studied, there is nothing in the 2SLS estimation procedure itself that warns
 us when some values of the covariates are receiving little weight and it is rare to
 see discussion of the weighting function for 2SLS in empirical papers.
 Second, 2SLS lacks blinding with respect to the outcome data when adjusting

 for covariates. Cochran (1965), Rubin (2007) and Rosenbaum (2010) argue that
 the best observational studies resemble randomized experiments. An important
 feature of the design of randomized experiments is that when designing the study
 and planning the analysis, the researcher is blinded to the outcome data. How-
 ever, in regression-based procedures for adjusting for covariates like 2SLS, there
 is often judgment that needs to be exercised in choosing covariate adjustment mod-
 els, which require one to look at the outcome data and estimates of causal effects
 to exercise such judgment. It is difficult even for the most honest researcher to
 be completely objective in comparing models when the researcher has an a pri-
 ori hypothesis or expectation about the direction of the causal effect [Rubin and
 Waterman (2006)].
 Third, 2SLS relies on proper specification of how the measured covariates af-

 fect the outcomes. Often, parametric modeling assumptions are made for how the
 measured confounders affect the outcome. In particular, 2SLS, as usually imple-
 mented, relies on the measured confounders having a linear effect on the expected
 outcome. Section 3.1 contains simulation evidence about 2SLS that demonstrates

 its reliance on linear, parametric assumptions.

 1.4. Instrumental variables with full matching. Matching is an alternative
 method to adjust for measured covariates. A matching algorithm groups individu-
 als in the data with different values of the instrument but similar values of the ob-

 served covariates, so that within each group, the only difference between the indi-
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 340 KANG, KREUELS, MAY AND SMALL

 viduals is their values of the instrument [Haviland, Nagin and Rosenbaum (2007),
 Rosenbaum (2010), Stuart (2010)]. For example, in the malaria data, a matching
 algorithm seeks to produce matched sets so that in a matched set, individuals are
 born in the same village and are similar on other measured covariates. The only
 difference between individuals in a matched set is their instrument values. We can

 then compare stunting between individuals with high and low values of the instru-
 ment within a matched set to assess the effect of malaria on stunting [Baiocchi
 et al. (2010)].

 Matching addresses the drawbacks of 2SLS discussed in the previous section.
 First, if there are values of covariates for which almost all subjects have a high (or
 low) value of the IV, then the matching algorithm and associated diagnostics will
 tell us that matched sets cannot be formed when subjects in the matched sets have
 certain values of the covariates but different levels of the IV; thus, it will be trans-

 parent that for these values of the covariates, the causal effect cannot be estimated
 without extrapolation. Relatedly, matching allows us to control the weighting of
 subjects with different values of the covariates to make the weighting transparent,
 such as weighting the covariates in proportion to their population frequency. Sec-
 ond, matching is blind to the outcome data; a matching algorithm only requires
 the measured covariates and the instrument values for each individual in the data.

 Diagnostics can be done and the matching can be adjusted until it is adequate, all
 without looking at the outcome data. Finally, when estimating the causal effect,
 matching makes nonparametric inference; it does not use any parametric assump-
 tions model such as linearity and parametric assumptions on the model.

 Previous work using matching in studying causality is abundant in non-IV set-
 tings; see Stuart (2010) for a complete overview. In contrast, work on using match-
 ing methods on IV estimation is limited to pair matching [Baiocchi et al. (2010)]
 and fixed control matching, that is, each unit with level 1 of the IV is matched to
 a fixed number of units with level 0 of the IV [Kang et al. (2013)]. A drawback
 to these matching methods is that they do not use the full data [Keele and Mor-
 gan (2013), Zubizarreta et al. (2013)]. In particular, Kang et al. (2013) studied the
 same causal effect of interest, malaria on stunting, but with a smaller amount of
 data, because the statistical methodology was limited to matching with fixed con-
 trols. That is, out of the total of 884 individuals available, the matching algorithm
 dropped 25% of the individuals and the final statistical inference was based only
 on 660 individuals.

 In this paper, we develop an IV full matching approach that uses the full data.
 Full matching is the most general, flexible and optimal type of matching [Hansen
 (2004), Rosenbaum (1991, 2010)]. Specifically, full matching is the generaliza-
 tion of any type of matching, such as pair matching, matching with fixed con-
 trols or matching with variable controls. Full matching is also flexible in that it
 can incorporate constraints on matched set structures, such as limiting the number
 of individuals in each matched set, to improve statistical efficiency. Finally, full
 matching is optimal in the sense that it produces matched sets where within each
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 FULL MATCHING IV ESTIMATION 34 1

 set measured covariates between individuals with different instrument values are

 most similar [Rosenbaum (1991)].
 Under IV estimation with full matching, we derive a randomization-based test-

 ing procedure and sensitivity analysis based on the proposed test statistic. We con-
 duct simulation studies to study the performance of 2SLS versus full matching IV
 estimation, specifically analyzing the robustness of both methods to nonlinearity
 (Section 3.1). In the same spirit, we also conduct simulation studies to compare
 our full matching IV estimation with another nonparametric method introduced by
 Frölich (2007) in Section 1.3, specifically looking at bias and variance between
 the two nonparametric methods. Finally, we apply full matching IV estimation to
 analyze the causal effect of malaria on stunting and demonstrate the full matching
 method's transparency in adjusting for covariates.

 2. Methods.

 2.1. Notation. To introduce the idea of matching in IV estimation, we intro-
 duce the following notation. Let i = 1, . . . , / index the I total matched sets that
 individuals are matched into. Each matched set i contains n¡ > 2 subjects who
 are indexed by j = 1, . . . , n¡ and there are a total of N = J2¡=' n¡ individuals in
 the data. Let Z,;- denote a binary instrument for subject j in matched set i. In
 each matched set /, there are m, subjects with Z,y = 1 and n, - m, subjects with
 Zjj = 0. For instance, in the malaria data, for each /th matched set, there are m¡
 children who inherited the sickle cell trait, HbAS (i.e., Z¡j = 1), and n¡ - m¡ chil-
 dren who inherited HbAA (i.e., Z¡j = 0). Let Z be a random variable that consists
 of the collection of Z,-/ s, Z=(Z'', Z'2, . . . , Z/„;). Define fi as the set that con-

 tains all possible values z of Z, so z € fi if z¡j is binary and Yl"j'=] zij = mi f°r

 all / matched sets. Thus, the cardinality of fi, denoted as |fi|, is |fi| = 11/= i C' ■)•
 Denote Z to be the event that Z € fi.

 For individual j in matched set i, define d'¡j and doij to be the potential expo-
 sure values under Z,; = 1 or Z,y = 0, respectively. With the malaria data, d'¡j and
 doij represent the number of malaria episodes the child would have if she had the
 sickle cell trait, Z¡j = 1, and no sickle cell trait, Z¡j = 0, respectively. Also, define

 (k)

 r Uj to be the outcome individual / would have if she were assigned instrument
 (k)

 value 1 and level k of the exposure, and r^j to be the outcome individual i would
 have if she were assigned instrumental value 0 and level k of the exposure. Then,

 r^'j) and r^'1 1 are the potential outcomes if the individual were assigned levels
 1 and 0 of the instrument respectively and the exposure took its natural level given
 the instrument, resulting in exposures duj and doij, respectively. In the malaria

 data, r^j'^ is a binary variable that represents whether the j th child in the /th
 matched set would be stunted (i.e., 1) or not (i.e., 0) if the child carried the sickle

 cell trait (i.e., if Z(; = 1) and r^'j) is a binary variable that represents whether the
 child would be stunted or not if the child carried no sickle cell trait (i.e., if Z,7 = 0).
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 342 KANG, KREUELS, MAY AND SMALL

 The potential outcome notation assumes the Stable Unit Treatment Value Assump-
 tion where (i) an individual's outcome and exposure depend only on her own value
 of the instrument and not on other people's instrument values and (ii) an individ-
 ual's outcome only depends on her own value of the exposure and not on other
 people's exposure [Rubin (1980)].

 For individual j in matched set /, let R¡j be the binary observed outcome and

 Djj be the observed exposure. The potential outcomes ruj"' ro!j'J' d'ij and do, 7
 and the observed values R¡j , D¡j and Z,7 are related by the following equation:

 (1) RU = rļfZij + r$u' 1 - Zij), Du = dUjZu + d0ij(l - Zu).
 For individual j in matched set /, let X,y- be a vector of observed covariates
 and Uij be the unobserved covariates. For example, in the malaria data, X,;
 represents each child's covariates listed in Table 1, while m,7 is an unmeasured
 confounder, like diet, which was mentioned in Section 1.1. We define the set

 F = {(ruj'j)< roij'j)> duj, doij, Xij, Uij), i = 1, . . . , /, j = 1, . . . , n¡} to be the col-
 lection of potential outcomes and all covariates/confounders, observed and unob-
 served.

 2.2. Full matching algorithm. A matching algorithm controls the bias result-
 ing from different observed covariates by creating I matched sets indexed by /,
 i' = l,...,/, such that individuals within each matched set have similar covariate

 values Xij and the only difference between individuals in each matched set is their
 instrument values, Z¡j. In a full matching algorithm, each matched set i either
 contains m¡ = 1 individual with Z,y = 1 and n¡ - 1 individuals with Z¡¡ = 0 or
 m, = n¡ - 1 individuals with Z,y = 1 and 1 individual with Z(y = 0.

 Rosenbaum (2002, 2010), Hansen (2004) and Stuart (2010) provide an overview
 of matching and a discussion on various distance metrics and tools to measure
 similarity for observed and missing covariates. For the malaria data, Section 4.2
 describes how we used propensity score caliper matching with rank-based Maha-
 lanobis distance to measure covariate similarity. Once we have obtained the dis-
 tance matrix, we use an R package available on CRAN called optmatch developed
 by Hansen and Klopfer (2006) to find the optimal full matching.

 2.3. Conditions for sickle cell trait as a valid instrument. We formalize the
 core assumptions of an instrumental variable below [Angrist, Imbens and Rubin
 (1996), Holland (1988), Yang et al. (2014)] (see Figure 1).

 (Al) The instrument must be associated with the exposure, or in T, 5Z/=|
 E"'=i(^1Ì7 -doìj) #0.

 (A2) The instrument can only affect the outcome if it affects the exposure.

 Since the r's do not depend on z under this assumption, we write r'k¡j = r^j =
 for all k in T (exclusion restriction).
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 FULL MATCHING IV ESTIMATION 343

 (A3) The instrument is effectively randomly assigned within a matched set,
 P(Zjj = 1 'F, Z) = m i /n¡ for each i.

 In Figure 1, (Al) corresponds to there being an association between the instru-
 ment and the exposure, (A2) corresponds to that all directed pathways from the
 instrument to the outcome pass through the exposure and (A3) corresponds to the
 instrument, conditional on measured variables, being unassociated with unmea-
 sured variables that are associated with the outcome.

 We now assess the validity of (A1)-(A3) for the sickle cell trait, the instrument
 for our analysis on the effect of malaria on stunting. For assumption (Al), there
 is substantial evidence that the sickle cell trait does provide protection against
 malaria as compared to people with two normal copies of the HBB gene (HbAA)
 [Aidoo et al. (2002), Cholera et al. (2008), Kreuels et al. (2010), May et al. (2007),
 Williams et al. (2005)]. For assumption (A2), this could be violated if the sickle
 cell trait had effects on stunting other than through causing malaria, for instance,
 if the sickle cell trait was pleiotropic [Davey Smith and Ebrahim (2003)]. We can
 partially test this assumption by examining individuals who carry the sickle cell
 trait, but who grew up in a region where malaria is not present. That is, if assump-
 tion (A2) were violated, heights between individuals with HbAS and HbAA in
 such a region would be different since there would be a direct arrow between the
 sickle cell trait and height. We examined studies among African American chil-
 dren and children from the Dominican Republic and Jamaica for whom the sickle
 cell trait is common, but there is no malaria in the area. These two regions also
 match nutritional and socioeconomic conditions that are closer to our study pop-
 ulation in Ghana so that the populations (and subsequent subpopulations among
 them) are comparable. From these studies from the regions, we found no evidence
 that the sickle cell trait affected a child's physical development [Ashcroft, Desai
 and Richardson (1976), Ashcroft et al. (1978), Kramer, Rooks and Pearson (1978),
 Rehan (1981)]. This supports the validity of assumption (A2).

 Although the results of this test support the validity of (A2), (A2) could still
 be violated. For example, the regions we use to support assumption (A2) may be
 different than Ghana through unmeasured characteristics, which would make the
 populations incomparable. As another example, the sickle cell trait could have a
 direct effect that interacts with the environment in such a way that the direct effect

 is only present in Africa, but not in the United States, the Dominican Republic or
 Jamaica. One specific point of concern raised by a referee is iron supplements. In
 the malaria study that we are considering, children with low hemoglobin received
 iron supplements and iron supplements can reduce the risk of stunting. A potential
 concern is that the sickle cell trait may induce a child to have low iron levels,
 thereby increasing the risk of stunting without going through the malaria pathway
 in Figure 1 and violating (A2). However, Kreuels et al. (2010) found that in the
 malaria study we are considering, children carrying HbAA tend to have lower
 hemoglobin levels than children carrying HbAS. Thus, children with the sickle cell
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 344 KANG, KREUELS, MAY AND SMALL

 trait, HbAS, were less likely to receive iron supplements. Consequently, if there's
 a violation of the exclusion restriction because of iron supplements, it would tend
 to bias our estimate of the increase in stunting from malaria downward and our
 estimate can be regarded as a conservative estimate of the effect of malaria on
 increasing stunting.

 For assumption (A3), this assumption would be questionable in our data if we
 did not control for any population stratification covariates. Population stratification
 is a condition where there are subpopulations, some of which are more likely to
 have the sickle cell trait, and some of which are more likely to be stunted through
 mechanisms other than malaria [Davey Smith and Ebrahim (2003)]. For example,
 in Table 1 which provides the baseline characteristics for our data, we observed that
 the village Tano-Odumasi had more children with HbAA than HbAS. It is possible
 that there are other variables besides HbAA that differ between the village Tano-
 Odumasi and other villages and affect stunting. Hence, assumption (A3) is more
 plausible if we control for observed variables like village of birth. Specifically,
 within the framework of full matching, for each matched set i, if the observed
 variables x,y are similar among all n¡ individuals, it may be more plausible that
 the unobserved variable m ,7 plays no role in the distribution of Z¡j among the
 n¡ children. If (A3) exactly holds and subjects are exactly matched for X¡j , then
 within each matched set i, Z¡j is simply a result of random assignment, where
 Zij = 1 with probability m, /«, and Z¡j = 0 with probability (n, - m, )/n, when
 we condition on the number of units in the matched set with Z,; = 1 being m¡.
 In Section 2.6, we discuss a sensitivity analysis that allows for the possibility that

 even after matching for observed variables, the unobserved variable u¡j may still
 influence the assignment of Z¡j in each matched set i, meaning that assumption
 (A3) is violated.

 There are also other assumptions associated with instrumental variables, most
 notably the Stable Unit Treatment Value Assumption (SUTVA) in Section 2.1
 and the monotonicity assumption in Angrist, Imbens and Rubin (1996). SUTVA,
 within the framework of MR, states that one individual's potential outcomes are
 not affected by the exposures and genotype assignments of other individuals given
 the individual's exposure and genotype assignment, and one individual's potential
 exposure is not affected by the genotype assignment of other individuals given
 the individual's own genotype assignment [Angrist, Imbens and Rubin (1996)].
 This is fairly reasonable in our setting. The outcome, stunting, given an individ-
 ual's own malaria exposure and HbAS status, should not be affected by others'
 malaria exposure and HbAS. The exposure would be affected by others' Hb As
 status if HbAS affected malaria transmission. However, there is no evidence that

 HbAs protects against parasitemia and, hence, there is no evidence that HbAS af-
 fects transmission; HbAS's effect appears to be limited to protection against severe
 disease manifestations from malaria (90%) and mild disease manifestations (30%)
 [Kreuels et al. (2010), Taylor, Parobek and Fairhurst (2012)].
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 Monotonicity, within the framework of MR, states that there are no individ-
 uals who would experience an adverse effect on the exposure from inheriting
 the genotype which is purported to bring positive effect on the exposure. In our
 study, monotonicity is plausible because there are known biological mechanisms
 by which the sickle cell genotype protects against malaria [Cholera et al. (2008),
 Friedman (1978), Friedman and Trager (1981), Williams et al. (2005)] and no
 known mechanisms by which the sickle cell genotype increases the risk of malaria.

 2.4. Effect ratio. We define the parameter of interest, called the effect ratio,
 which is a parameter of the finite population of TV = n¡ individuals charac-
 terized by T'

 (dļ ij) (doij)

 (2) i,,

 EZ-ie;:.,
 The effect ratio is the change in the outcome caused by the instrument divided
 by the change in the exposure caused by the instrument. The effect ratio can be
 identified by taking the ratio of the differences in expected values:

 ^ _ E/=| E%, EiRijlZij = 1 ,T,Z)~ E(Rjj'Zjj - 0, T, Z)
 E,=i £"Li EiDijlZij = 1 , J F,Z)~ E(Dij'Zãj = 0, F, Z) '

 The effect ratio also admits a well-known interpretation in IV literature if all the IV

 assumptions, (A1)-(A3), and the monotonicity assumption whereby d'¡j > doij for
 every i, j in T, are satisfied. Specifically, suppose d'¡j and do¡j are discrete values
 from 0 to M, which is the case with the malaria data where duj and doij are the
 number of malaria episodes. Then, in Proposition 1 of the supplementary article
 [Kang et al. (2016)], we show that

 / n¡ M

 | = 1 j= 1 k= 1

 where

 and X (•) is an indicator function. In words, with the IV assumptions and the mono-
 tonicity assumption, the effect ratio is interpreted as the weighted average of the
 causal effect of a one-unit change in the exposure among individuals in the study
 population whose exposure would be affected by a change in the instrument. Each
 weight Wijk represents whether an individual j in stratum i' s exposure would be
 moved from below k to at or above k by the instrument, relative to the number
 of people in the study population whose exposure would be changed by the in-
 strument. For example, if X = 0. 1 in the malaria data and we assume the said
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 conditions, 0.1 is the weighted average reduction in stunting from a one-unit re-
 duction in malaria episodes among individuals who were protected from malaria
 by the sickle cell trait. Similarly, each weight vjijk represents the jth individual
 in i'th stratum's protection from at least k malaria episodes by carrying the sickle
 cell trait compared to the overall number of individuals who are protected from
 varying degrees of malaria episodes by carrying the sickle cell trait. In short, the
 interpretation of X is akin to Theorem 1 in Angrist and Imbens (1995), except that
 our result is for the finite-sample case and is specific to matching.

 Also, with regards to identification, technically speaking, only assumptions
 (Al) and (A3) are necessary to identify the "bare-bone" interpretation of X in (2),
 the ratio of causal effects of the instrument on the outcome (numerator) and on
 the exposure (denominator) since the numerator and the denominator can both be
 identified by the differences in expectations in (3). However, without (A2), that
 is, the exclusion restriction, and the monotonicity assumption, this ratio of differ-
 ences in expectations in (3) cannot identify the weighted average (4) of effects of
 the exposure described in the above paragraph.

 When full matching is used so that all subjects are used in the matching, the
 effect ratio (2) and its equivalent expression (4) are defined for the whole study
 population. Additionally, the effect ratio is invariant to the particular full match it
 used. For instance, if a different distance between pairs of subjects were used that
 resulted in a different full match, the effect ratio would remain the same. Also, one

 of the advantages of using full matching compared to other matching algorithms
 that discard some data, such as pair matching, matching with fixed controls and
 matching with variable controls, is that full matching estimates the effect ratio (2)
 [or, equivalently, (4)] for the whole study population, whereas for the matching
 methods that discard data, these methods only estimate (2) for the data that was not

 discarded, making the parameter estimate dependent on the individuals that were
 discarded from the matching algorithm. In contrast, the full matching algorithm in-

 corporates all the individuals in the data and the effect ratio parameter, specifically
 the subscripts i, j count all the individuals in the data. In fact, the effect ratio (2)
 generalizes previous expressions for the effect ratio with pair matching, n, =2,
 by Baiocchi et al. (2010) or matching with fixed controls, n¡ = c, by Kang et al.
 (2013).

 2.5. Inference for effect ratio. We would like to conduct the following hypoth-
 esis test for the effect ratio X:

 (5) Ho:X = Xo, Ha:X^ Xo .

 To test the hypothesis in (5), we propose the following test statistic:

 ! i
 (6) T(X0) = -£vi(X0),

 1 i= 1
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 where

 n¡ nx

 V/tto) = - T ZijiRij - XoDij)
 m i ^ tli - mi ~|

 and 52(ào), the estimator for the variance of the test statistic, Var {7 (Ao)|Jr, Z }

 ļ i
 (7) S2(ào) = y 77377 ' ļ l) £{ V/(*o) - Hào)}2. ' l) i= i

 Each variable V, (Ào) is the difference in adjusted responses, R¡j - XqD¡j, of those
 individuals with Z¡j = 1 and those with Z,y = 0. Under the null hypothesis in (5),
 these adjusted responses have the same expected value for Zí;- = 1 and Ziy = 0
 and, thus, deviation of T (Ào) from zero suggests Hq is not true.

 Proposition 2 in the supplementary article [Kang et al. (2016)] states that under
 regularity conditions, the asymptotic null distribution of T (Xq)/S(Xo) is standard
 Normal. This provides a point estimate as well as a confidence interval for the
 effect ratio. For the point estimate, in the spirit of Hodges and Lehmann ( 1 963), we

 find the value of À that maximizes the p-value. Specifically, setting T (k)/S(X) = 0

 and solving for X gives an estimate for the effect ratio, X:

 ? E'-i £°-'(z'V - ÍMRi¡ - *'•>
 TL, - ŻMD" - Ďú

 where Ż,-., R¡. and Ď,. are averages of the instrument, response and exposure, re-
 spectively, within each matched set. For confidence interval estimation, say, the
 95% confidence interval, we can solve the equation T (X)/S(X) = ±1.96 for X to
 get the confidence interval for the effect ratio. A closed-form solution for the con-

 fidence interval is provided in Corollary 1 of the supplementary article [Kang et al.
 (2016)].

 For our analysis of the malaria data, the regularity conditions, specifically the
 moment conditions in Proposition 2 of the supplementary article [Kang et al.
 (2016)] [i.e., V*(X) is uniformly bounded], are automatically met because the
 responses are binary (i.e., stunted or not stunted) and the malaria episodes are
 bounded whole numbers. Hence, Proposition 2 and its subsequent Corollary 1 from
 the supplementary article [Kang et al. (2016)] are used to compute the point esti-
 mate, the p-value and the confidence intervals for the casual effect of malaria on
 stunting. Note that the inferences we develop for the effect ratio allow for nonbi-
 nary outcomes and exposures, even though our malaria data have binary outcomes
 and whole-number exposures.
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 2.6. Sensitivity analysis. Sensitivity analysis attempts to measure the influ-
 ence of unobserved confounders on the inference on X. In the case of instrumental

 variables, a sensitivity analysis quantifies how a violation of assumption (A3) in
 Section 2.3 would impact the inference on X [Rosenbaum (2002)]. Specifically, un-
 der assumption (A3), the instrument is assumed to be free from unmeasured con-
 founders or free after conditioning on observed confounders via matching. The lat-
 ter implies that the instruments are assigned randomly, P(Z = z'F, Z) = (|Q|)_I ,
 that is, that within each matched set i , P(Z¡j = 1 |J' Z) = nti /n¡.

 However, as discussed in Section 2.3, even after matching for observed con-
 founders, unmeasured confounders may influence the viability of assumption (A3).
 For example, with the malaria study, within a matched set i, two children, j and
 k, may have the same birth weights, be from the same village and have the same
 covariate values (x,y = x,/¿), but have different probabilities of carrying the Hb AS
 genotype, P(Z¡j = ''JF) ^ P{Z¡k = 1| J") due to unmeasured confounders, de-
 noted as ¡¿¡j and u,k for the / th and &th unit, respectively. Despite our best efforts
 to minimize the observed differences in covariates and to adhere to assumption
 (A3) after conditioning on the matched sets, unmeasured confounders such as a
 child's family's ancestry could still be different between the yth and kth child,
 and this difference could make the inheritance of the sickle cell trait depart from
 randomized assignment, violating assumption (A3).

 To model this deviation from randomized assignment due to unmeasured con-
 founders, let Jtij = P(Z¡j = 1 'F) and Ttļk = P(Z¡k = 1| J7) for each unit j and k
 in the /th matched set. The odds that unit j will receive Z¡j = 1 instead of Z,7 = 0
 are jt¡ j /(I - ttíj). Similarly, the odds for unit k are tt/ ¿ / ( 1 - 7r,¿). Suppose the
 ratio of these odds is bounded by T > 1:

 (8) i < r
 r TTik(l - Ttij)

 If unmeasured confounders play no role in the assignment of Z,y, then n¡j = 7t¡k
 and r = 1 . That is, child j and k have the same probability of receiving Z,;- = 1 in
 matched set i. If there are unmeasured confounders that affect the distribution of

 Z, j , then Ttij re ik and r > 1. For a fixed r > 1, we can obtain lower and upper
 bounds on n¡j, which can be used to derive the null distribution of T (0)/S(0) un-
 der Hq : X = 0 in the presence of unmeasured confounding and be used to compute
 a range of possible /^-values for the hypothesis Hq : X - 0 [Rosenbaum (2002)].
 The range of p-values indicates the effect of unmeasured confounders on the con-
 clusions reached by the inference on X. If the range contains a, the significance
 value, then we cannot reject the null hypothesis at the a level when there is an un-
 measured confounder with an effect quantified by T. In addition, we can amplify
 the interpretation of T using Rosenbaum and Silber (2009) to get a better under-
 standing of the impact of the unmeasured confounding on the outcome and the
 instrument (see the supplementary article [Kang et al. (2016)] for the derivation of
 the sensitivity analysis and the amplification of f).
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 3. Simulation study.

 3.1. Robustness of our method. One of the advantages of matching based IV
 estimation versus traditional IV estimation, such as conventional 2SLS without
 matching, is its robustness to parametric assumptions between the outcome and
 the covariates. Specifically, for conventional 2SLS, in order for the estimate to be
 consistent, the covariates must have a linear effect on the expected outcome. In
 contrast, matching-based IV estimation puts no constraints on the structure of the
 relationship between the outcome and the covariates. In this section, we study this
 phenomena in detail through a simulation study.
 Let the outcome R¡j, the exposure D¡j, the observed covariates X,7 and the

 instrument Z,;- be generated based on the following model known as the structural
 equations model in econometrics [Wooldridge (2010)]:

 Rij = a + ßDjj + f(X-ij) + s¡j,

 D,j = K + TcZjj + p!', j + £; j ,

 (;:r»( [SM»'* °.8]>
 where the parameters a, ß, k and p are all fixed throughout the simulation. The
 parameters a and k are intercepts. The parameter ß is the quantity of interest,
 the effect of the exposure on the outcome, and is also equal to the effect ratio (see
 Section 1 of the supplementary article [Kang et al. (2016)] for details). The param-
 eter n quantifies the strength of the instrument. The function /(•) is a predefined
 function that takes in a vector of observed covariates X,y and produces a scalar
 value that affects the outcome, R¡j . In the simulation, X,7 are five-dimensional
 vectors or X/; = (X//i , . . . , X¡j$). Also, we consider the following list of func-
 tions parametrized by y e R5:

 (a) Linear function: /(X,y) = J2k=' YkX¡jk'

 (b) Quadratic function: /(X,y) = Ykxìjk >

 (c) Cubic function: /(X,7) = ELi YkXfjk;

 (d) Exponential function: / (X(J) = J2Ì=' Yk exp(X,j¿);

 (e) Log function: /(X,7) = ELi nlog(I^O^I);
 (f) Logistic function: /<Xy) =

 (g) Truncated function: / (X,-7) = Ylļ=' YkX(X¡jk > 0) where x(-) is an indi-
 cator function;

 (h) Square root function: /(X,;) = ELi Yky/'X¡jkl

 To generate X,y, we adopt the following scheme. For individuals with Z¡j = 0,
 Xjj comes from a five-dimensional multivariate Normal distribution with mean
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 Linear Quadratic Cubic Exponential
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 FIG. 2. Absolute bias of the median for our method vs. two-stage least squares (2 SLS)for different
 concentration parameters. The solid line indicates 2SLS and the dashed line indicates our method.

 (0, . . . , 0) and an identity covariance matrix. For individuals with Z,y = 1, X,7
 comes from a five-dimensional multivariate Normal with mean (1, 0, . . . , 0) and

 an identity covariance matrix. The instruments, Z( / , are generated randomly with
 P(Zij = 1) = 1/8 and P ( Z¡j = 0) = 7/8, similar to that observed in our malaria
 data. For each generated data set, we compute the estimate of ß using 2SLS and
 our procedure. 2SLS is based on (i) regressing D¡j on Z,7 and X¡j to obtain the

 predicted value of D¡j , say D¡j, and (ii) regressing R¡j on D¡j and X¡7 . We simu-
 late this process 5000 times and compute the estimates of ß produced by the two
 procedures. We measure the performance of the two procedures by computing the
 median absolute deviation, the absolute bias of the median (i.e., the absolute value
 of the bias of the median estimate with respect to ß ) and the Type 1 error rate over

 5000 simulations. For each simulation study, we vary the function /(•) and n.
 Figures 2 and 3 compare performances between 2SLS and our method when

 we fix the sample size, but vary the strength of the instrument (i.e., the strength
 of the effect of the instrument on the treatment) via it. Specifically, we evaluate
 the strength of the instrument using a popular measure known as the concentration

 parameter [Bound, Jaeger and Baker (1995)]. High values of the concentration
 parameter indicate a strong instrument, while low values of it indicate a weak in-
 strument. The concentration parameter is the population value of the first stage
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 FIG. 3 . Type I error rate for our method vs. two-stage least squares ( 2SLS)for different concentra-
 tion parameters. The solid line indicates 2 SLS and the dashed line indicates our method.

 partial F statistic for the instruments when the treatment is regressed on the instru-

 ment and the measured covariates X,y ; this first stage F statistic is often used to
 check instrument strength where an F below 10 suggests that the instruments are
 weak [Stock, Wright and Yogo (2002)]. The sample size is fixed at 800, where 100
 individuals have Z¡j = 1 and 700 individuals have Z,7 = 0, similar to the sample
 size presented in the malaria data. We also vary / (•) based on the functions listed
 in the previous paragraph.
 Figure 2 measures the absolute bias of the median for 2SLS and our method.

 When /(•) is a linear function of the observed covariates x¿7 , 2SLS does slightly
 better than our method. 2SLS doing well for the linear function is to be expected
 since 2SLS is consistent when the model is linear. However, if /(•) is nonlinear,
 our matching estimator does better than 2SLS and is never substantially worse
 for all instrument strengths. For example, for quadratic, cubic, exponential, log
 and square root functions, our method has lower bias than 2SLS for all strengths
 of the instrument. For logistic and truncated functions, our method is similar in
 performance to 2SLS for all strengths of the instrument. In the supplementary
 article [Kang et al. (2016)], we also measure the median absolute deviation of
 2SLS and our method and we find that the price we pay for lower bias of our
 method is a slight increase in dispersion compared to 2SLS.
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 Finally, Figure 3 measures the Type I error rate of 2SLS and our method. Re-
 gardless of the function type and the instrument strength, our method retains the
 nominal 0.05 rate. In fact, even for the linear case where 2SLS is designed to ex-
 cel, our estimator has the correct Type I error rate for all instrument strengths,
 while 2SLS has higher Type I error for weak instruments. For all the nonlinear
 functions, the Type I error rate for 2SLS remains above the 0.05 line, while our
 estimator maintains the nominal Type I error rate. This provides evidence that our
 estimator will have the correct 95% coverage for confidence intervals regardless
 of nonlinearity or instrument strength.

 In summary, the simulation study shows promise that our method is generally
 more robust to assumptions about instrument strength and linearity between the
 outcome and the covariates than 2SLS at the expense of a small increase in disper-
 sion.

 3.2. Comparison to Frölich (2007). In addition to comparing our method
 against the most popular IV estimator, 2SLS, we also compare our method to the
 nonparametric IV method of Frölich (2007) implemented by Frölich and Melly
 (2010). The simulation setup is identical to Section 3.1, except that we discretize
 the exposure value D¡ so that we can compare our method to the method in

 Frölich (2007). Specifically, let Dfj be defined as D¡j in Section 3.1, that is,
 Dfj = K + n Zij + pTXjj + Çij . Then, we define

 A'y = X (D*j < -1) + 2X(-1 < Dfj < 1) + 3x(l < Dfj),

 where x (•) is the indicator function. The response R¡j is generated from the same
 model as in Section 3.1, except with a discretetized D¡j. The rest of the data-
 generating process is identical to Section 3.1.

 For each simulated data, we use the code provided by Frölich and Melly (2010)
 to generate an estimate for ß*, the local average treatment effect, with the default
 settings for the tuning parameters. We also use our method to estimate ß* . Finally,
 for comparison, we run 2SLS on the simulated data. As before, we measure the
 median absolute deviation and the absolute bias of the median. For each simulation

 study, we vary the function /(•) and n, the strength of the instrument.
 Figures 4 and 5 show the absolute bias and median absolute deviation between

 the three methods. Generally speaking, both our method and Frölich's (2007)
 method do better than 2SLS when /(•) is nonlinear. Between our method and
 Frölich's (2007) method, in most cases, our method is better or similar to Frölich's

 (2007) method when it comes to bias. With regards to variability, our method
 and Frölich's (2007) method are very similar to each other. For the quadratic,
 cubic and exponential functions, our simulations show that our method domi-
 nates both in bias and variance compared to Frölich (2007). Further details of the
 simulation in this section can be found in the supplementary article [Kang et al.
 (2016)].
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 FIG. 4. Absolute bias of the median for our method , 2SLS. and Frölich's method for different
 concentration parameters. The solid line indicates 2SLS, the dashed line indicates our method, and
 the dotted line indicates Frölich 's method.

 4. Data analysis of the causal effect of malaria on stunting.

 4.1. Background information. Using the new full matching IV method in this
 paper, we analyze the data set introduced in Section 1 . 1 to study the causal effect
 of malaria on stunting. Following Kreuels et al. (2009), we only consider children
 with the heterozygous strand Hb AS, the sickle cell trait or wildtype Hb AA and
 exclude children with the homozygous strand (HbSS), or a different mutation on
 the same gene leading to hemoglobin C (HbAC, HbCC, HbSC); this reduced the
 sample size from 1070 to 884. Among 884 children, 110 children carried HbAS
 and 774 children carried HbAA.
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 FIG. 5. Median absolute deviation between our method , 2 SLS, and Frölich' s method for different
 concentration parameters. The solid line indicates 2 SLS, the dashed line indicates our method , and
 the dotted line indicates Frölich 's method.

 The instrument was a binary variable indicating either the Hb AS or Hb AA geno-

 type. The exposure of interest was the malarial history, which was defined as the
 total number of malarial episodes during the study. A malaria episode was defined
 as having a parasite density of more than 500 parasites///! and a body temperature
 greater than 38°C or the mother reported a fever within the last 48 hours. The out-
 come was whether the child was stunted at the last recorded visit, which occurred

 when the child was approximately two years old. The difference in episodes of
 malaria between children with HbAS and HbAA is significant [Risk ratio: 0.82,
 p-value: 0.02, 95% CI: (0.70, 0.97)], indicating that the sickle cell trait instrument
 satisfies Assumption (Al) of being associated with the exposure.
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 Table 1 summarizes all the measured covariates in this data. All the covariates

 were collected at the beginning of the study, which is three months after the child's
 birth. We will match on all these covariates for reasons that will be explained
 below. Broadly speaking, for valid inference of the causal effect using instrumental
 variables, we would like to include all confounders for the instrument-outcome
 relationship, that is, covariates that are determined before (or at the same time and
 not affected by) the sickle cell trait and that are associated with the outcome. The
 following covariates in Table 1, village of residence, sex, ethnicity, birth season and
 alpha-globin genotype, represent such potential confounders. They occur before
 (or at the same time and are not affected by) the sickle cell trait and they could
 be associated with the outcome of stunting through population stratification. If
 these covariates were the only instrument-outcome confounders, then we would
 not need to consider matching for other covariates.

 However, other possible confounders in our data include family's socioeco-
 nomic status and parents' sickle cell genotype. Family's socioeconomic status may
 be associated with the sickle cell trait through population stratification and can af-
 fect the outcome of stunting through the nutrition and hygienic environment of the

 child. Parents' sickle cell genotype is associated with the child's sickle cell geno-
 type because of the properties of genetic inheritance and may be associated with
 the outcome of stunting through population stratification. Although these two pos-
 sible confounders were not measured at the time of instrument assignment (i.e.,
 the child's conception), the following covariates in Table 1, birthweight, mother's
 occupation, mother's education, family's financial status and mosquito protection
 are proxies for these variables. Specifically, mother's occupation, mother's edu-
 cation and family's financial status measured three months after the child's birth
 are proxies of family's socioeconomic status at the time of the child's concep-
 tion. Mosquito protection and birthweight are proxies for parents' sickle cell geno-
 type. In particular, mosquito protection at the time of the child's conception (i.e.,
 whether the family's home is protected by nets, screens or nothing) may be asso-
 ciated with parents' sickle cell genotype because a family might be less likely to
 seek additional mosquito protection if members of the family are naturally pro-
 tected by being carriers of the sickle cell genotype; one can see in Table 1 that
 children carrying HbAS tend to have less mosquito protection than children car-
 rying HbAA. Birthweight may be associated with maternal sickle cell genotype
 because a mother having HbAS may be protected from malaria during pregnancy,
 which may increase birthweight [Eisele et al. (2012)].

 But, matching on covariates that are measured or determined after the instru-
 ment such as birthweight, mosquito protection and family's socioeconomic status
 three months after the child's birth could create bias if the instrument could alter

 these values [Rosenbaum (1984)]. However, we think the child's sickle cell trait
 instrument does not alter these covariates because children are generally protected
 from malaria in the first three months of life due to maternal antibodies [Snow et al.

 (1998)] and parents were generally not aware of the child's sickle cell genotype.
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 Consequently, the child's sickle cell genotype does not affect the child's birth-
 weight, family decisions about mosquito protection and family's socioeconomic
 status at the time the child is three months old, and these variables are effectively
 pre-instrument covariates so that matching for them does not create bias [Holland
 (1986), Rosenbaum (1984)]. In short, we match for all the covariates in Table 1
 because they are either pre-instrument potential confounders or effectively pre-
 instrument proxies for unmeasured potential confounders.

 Finally, we note that some of the covariates in Table 1 may not be highly associ-
 ated with the sickle cell trait genotype. For example, sulpadoxine pyrimethamine
 vs. placebo was randomly assigned as part of a randomized trial. However, we still
 have chosen to match on all the covariates because each covariate may be associ-
 ated with the outcome and matching a covariate that is associated with the outcome
 increases efficiency and reduces sensitivity to unobserved biases [Rosenbaum
 (2005), Zubizarreta, Paredes and Rosenbaum (2014)]. Furthermore, Rubin (2009)
 argues for erring on the side of being inclusive when deciding which variables to
 match on (i.e., control for) in an observational study. Failure to match for a covari-
 ate that has an important effect on outcome and is slightly out of balance can cause
 substantial bias.

 In terms of the balance of the covariates in Table 1, before matching, we see that
 there are a few significant differences between the HbAS and HbAA groups, most
 notably in birth weight, village of birth and mosquito protection status. Children
 with the sickle cell trait (HbAS) tend to have high birth weights and lack any
 protection against mosquitos compared to HbAA children. Also, children living in
 the village of Tano-Odumasi tend to inherit HbAA more frequently than HbAS.
 Any one of these differences can contribute to the violation of IV assumption (A3)
 in Section 2.3 if we do not control for these differences. For instance, it is possible
 that children with low birth weights were malnourished at birth, making them more
 prone to malarial episodes and stunted growth compared to children with high birth
 weights. We must control for these differences to eliminate this possibility, which
 we do through full matching.

 4.2. Implementation of full matching on data. We conduct full matching on
 all observed covariates. In particular, we group children with HbAS and without
 HbAS based on all the observed characteristics in Table 1 as well as match for

 patterns of missingness. To measure similarity of the observed and missing covari-
 ates, we use the rank-based Mahalanobis distance as the distance metric for co-
 variate similarity [Rosenbaum (2010)]. In addition, we compute propensity scores
 by logistic regression. Here, the propensity score is an instrumental propensity
 score, which is the probability of having the sickle cell trait given the measured
 confounders [Cheng (2011)]. In addition, children with missing values in their
 covariates were matched to other children with similar patterns of missing data
 [Rosenbaum (2010)]. Once covariate similarity was calculated, the matching al-
 gorithm optmatch in R [Hansen and Klopfer (2006)] matched children carrying
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 Absolute standardized differences of covariates
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 FIG. 6. Absolute standardized differences before and after full matching. Unfilled circles indicate
 differences before matching and filled circles indicate differences after matching.

 HbAS with children carrying HbAA in a way that, within each matched set, their
 covariates are similar.

 Figure 6 shows covariate balance before and after full matching using absolute
 standardized differences. Absolute standardized differences before matching are
 computed by taking the difference of the means between children with HbAS and
 HbAA for each covariate, taking the absolute value of it, and normalizing it by
 the within group standard deviation before matching (the square root of the av-
 erage of the variances within the groups). Absolute standardized differences after
 matching are computed by taking the differences of the means between children
 with HbAS and HbAA within each strata, averaging this difference across strata,
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 taking the absolute value of it, and normalizing it by the same within group stan-
 dard deviation before matching as before. Before matching, there are differences in

 birth weight, mosquito protection and village of residence between children with
 HbAS and HbAA. After matching, these covariates are balanced. Specifically, the
 standardized differences for birth weight, village of residence and mosquito pro-
 tection are under 0.1, indicating balance [Normand et al. (2001)]. In fact, all the
 covariates are balanced after matching and the ^-values used to test the differ-
 ences between HbAS and HbAA in Table 1 are no longer significant after match-
 ing. Hansen (2004) discusses how the size of matched sets in full matching can be
 restricted. In the supplementary article [Kang et al. (2016)], we compare different
 restrictions on full matching versus unrestricted full matching in terms of balance
 and efficiency. In short, the analysis reveals that unrestricted full matching cre-
 ates the most covariate balance by a substantial amount while having a only slight
 decrease in efficiency compared to other full matching schemes considered and,
 hence, we use unrestricted full matching.

 4.3. Estimate of causal effect of malaria on stunting. Table 2 shows the esti-
 mates of the causal effect of malaria on stunting from different methods, specif-
 ically our matching-based method, conventional two-stage least squares (2SLS)
 and multiple regression. Our matching-based method computed the estimate by
 the procedure outlined in Section 2.5. 2SLS computed the estimate by regressing
 all the measured covariates and the instrument on the exposure and using the pre-
 diction from that regression and the measured covariates to obtain the estimated
 effect. Inference for 2SLS was derived using standard asymptotic Normality argu-
 ments [Wooldridge (2010)]. Finally, the multiple regression estimate was derived
 by regressing the outcome on the exposure and the covariates, and the inference
 on the estimate was based on a standard ř-test.

 We see that the full matching method estimates X to be 0.22. That is, the risk of
 stunting among children with the sickle cell trait is estimated to decrease by 0.22
 times the average malaria episodes prevented by the sickle cell trait. Furthermore,
 we reject the hypothesis Ho : k = 0, that malaria does not cause stunting, at the
 0.05 significance level. The confidence interval X is (0.044, 1.0). Even the lower
 limit of this confidence interval of 0.044 means that malaria has a substantial effect

 Table 2

 Estimates of the causal effect using full matching compared to two- stage least squares and
 multiple regression

 Methods Estimate /'-value 95% confidence interval

 Our method 0.22 0.011 (0.044,1)
 Two-stage least squares 0.21 0.14 (-0.065,0.47)
 Multiple regression 0.018 0.016 (0.0034,0.033)
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 Table 3

 Sensitivity analysis for instrumental variables with full
 matching. The range of significance is the range of p -value s
 over the different possible distributions of the unmeasured
 confounder given a particular value ofT , which represents
 the effect of unobserved confounders on the inference of X

 Gamma Range of significance

 1.1 (0.0082,0.041)
 1.2 (0.0034,0.074)
 1.3 (0.0015,0.12)

 on stunting; it would mean that the risk of stunting among children with the sickle
 cell trait is decreased by 0.044 times the average malaria episodes prevented by
 the sickle cell trait.

 The estimate based on 2SLS is 0.21, similar to our method. However, our
 method achieves statistical significance but 2SLS does not. Also, multiple re-
 gression, which does not control for unmeasured confounders, estimates a much
 smaller effect of 0.018.

 Table 3 shows the sensitivity analysis due to unmeasured confounders. Specif-
 ically, we measure how sensitive our estimate and the p -value in Table 2 are to
 violation of assumption (A3) in Section 2.3, even after matching. We see that our
 results are somewhat sensitive to unmeasured confounders at the 0.05 significance
 level. If there is an unmeasured confounder that increases the odds of inheriting
 Hb AS over HbAA by 10%, that is, T = 1.1, then we would still have strong evi-
 dence that malaria causes stunting. But, if an unmeasured confounder increases the
 odds of inheriting HbAS over HbAA in a child by 20% (i.e., T = 1 .2), the range
 of possible p-values includes 0.05, the significance level, meaning that we would
 not reject the null hypothesis of Ho : À = 0, that malaria does not cause stunting. In
 the supplementary article [Kang et al. (2016)], we amplify the sensitivity analysis
 following Rosenbaum and Silber (2009).

 5. Summary. Overall, in contrast to regression-based IV estimation proce-
 dures like 2SLS, our full matching IV method (i) provided a clear way to assess
 the balance of observed covariates and design the study without looking at the
 outcome data and (ii) provided a method to quantify the effect of unmeasured con-
 founders on our inference of the causal effect. Our method made it explicitly clear
 how these covariates were adjusted by stratifying individuals based on similar co-
 variate values. Finally, like in a randomized experiment, our analysis only looked
 at the outcome data once the balance was acceptable, that is, once the differences
 in birth weight, village of residence and mosquito protection between children
 with HbAS and HbAA were controlled for. If the balance was unacceptable, then
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 comparing the outcomes between the two groups would not provide reliable causal
 inference since any differences in the outcome can be attributed to the differences
 in the covariates. In contrast, conventional 2SLS can only analyze the causal re-
 lationship in the presence of outcome data, making the outcome data necessary
 throughout the entire analysis. Finally, our method is robust to parametric mod-
 eling assumptions between the outcome and the covariates with respect to Type I
 error and point estimate, which cannot be said about 2SLS.

 At the expense of these benefits, especially blinding and transparency with re-
 gards to covariate balance, unfortunately matching estimators tend to be less effi-
 cient than 2SLS or some of the semiparametric methods mentioned in Section 1.3
 when the semiparametric methods' assumptions hold. In practice, our estimator's
 blinding and transparency can be a powerful design and visual tool for applied re-
 searchers to assess the validity of the causal conclusions. However, a more careful
 exploration of the trade-offs between the efficiency of our estimator and the effi-
 ciency of some of the semiparametric and nonparametric methods is an interesting
 direction for future research.

 SUPPLEMENTARY MATERIAL

 Supplement to "Full matching approach to instrumental variables estima-
 tion with application to the effect of malaria on stunting" (DOI: 10.1214/15-
 AOAS894SUPP; .pdf). This document contains theoretical details of our matching
 method along with extended discussions about our estimator and the estimand. We
 also present a more detailed data analysis and additional simulation studies.
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