
3.3 Between-ness centrality

In this section we discuss an example of a centrality measure that is not

based on walks. Given two distinct nodes i and j, a shortest path from i

to j is a path from i to j of minimal length among all the possible paths.
(Note that open paths must have length at least 1 and at most n� 1, where
n = #V ; why?). If k is a third vertex, distinct from i and j, a shortest path

through k from i to j is a shortest path from i to j that goes through k.
Between-ness centrality is defined on the vertex i as

bi =
X

j 6=i 6=k

�jk(i)

�jk

where �jk is the number of shortest paths from j to k and �jk(i) is the number
of shortest paths from j to k through i.

Between-ness centrality was first proposed in 1977 by L. Freeman. Al-
though we will not study it in detail, it is interesting to compare its compu-
tational complexity with walk-based centralities, because between-ness cen-
tralities is among the best purely graph theoretical centrality measure in
terms of computational costs. Indeed, the current best algorithm (by U.
Brandes in 2001) can compute between-ness centrality in O(#V#E) oper-
ation for a general graph. A typical real-life network is very sparse, with
#E = O(#V ) = O(n), so this means an O(n2). However, in some special
cases this reduces to O(n) (for a tree) or O(n3/2) (for a planar graph). It
is interesting to compare these asymptotic costs with those of computing
Katz centrality. Let us again assume that we are studying a typical real-life
network and that the adjacency matrix has O(n) nonzero elements; iterative
solvers can be used that rely on Krylov subspace methods, which require
to compute a matrix-vector multiplication at each iteration. This requires
an amount of multiplications and additions of the same order of the nonzero
elements in the matrix, i.e., O(n) in the case of our thought experiment. The
number of needed iterations for a good accuracy of the approximate d solu-
tion is typically much smaller than n. With a clever use of preconditioning
techniques, it can sometimes be brought down even to O(log n) , leading to
O(n log n) cost.

For example, if we were to study the graph of Facebook users, than n is
of the order of a few billions. A typical modern laptop computer can perform
several billions of basic mathematical operations per second: therefore, (at
least by using state-of-the art algorithms) Katz centrality can be computed
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on your laptop in a few seconds using the method described above. On the
other hand, computing between-ness centrality via the Brandes method takes
(unless some special feature of the graph can be exploited) takes on the same
latpop a few billions of seconds, that is, a few decades. It is thus remarkable
how matrix theory based tools can make even such large graph computations
feasible.

3.4 Nonbacktracking centralities

The topic of walk-based centrality is a classical one in network theory. The
original paper by Katz appeared in 1953, and the developments and variants
described in the previous section have been thoroughly studied through the
subsequent decades. However, the Benzi-Klymko theorem described some
concrete limits on how walk-based centrality measures can di↵er: all some-
how interpolate between degree centrality and eigenvector centrality. For
this reason, some authors (including your lecturer) have recently proposed
that, to get more substantially di↵erent centralities, rather than changing
the weights of the walks of length k one could exclude some types of walks,
based on features other than length, and stil having in mind the basic princi-
ple underlying Katz that the less useful a walk is to explore the network the
less weight it should have in the computation of a centrality measure. In this
section, we will describe centrality measure that are based on counting only a
certain type of walks, called nonbacktracking. The resulting nonbacktracking

centrality has first been proposed in 2018 1 by P. Grindrod, D. Higham and
V. Noferini.

3.4.1 Nonbacktracking Walks

The sum (1) includes some traversals that, intuitively, are less relevant than
others. In particular, for every edge ij, (1) incorporates all walks that pass
from i to j and immediately pass back to i, rather than exploring other parts
of the network. Arguably, such traversals are less useful for the purpose of
expoloring a graph, which is the intuition underlying walk-based centralities.

1
Historically, note that this is in a post-Benzi-Klymko-theorem scenario. Indeed, we

mention in passing the following result of Arrigo, Higham and Noferini (2020): variants

of nonbacktracking centrality also follow a universality limiting behaviour, but the limit

for high values of the parameter is di↵erent than the one described by the Benzi-Klymko

theorem.
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In the present subsection of the notes and in the ones following it, we are
going to explore how to perform a more sophisticated counting of the walks,
excluding the ones that behave as described above.

We start by giving a more precise definition.

Definition 3.2. A backtracking walk is a walk that contains at least one

node subsequence of the form uvu (a closed path of length 2), i.e., it visits
u,v and then u in immediate succession.

A nonbacktracking walk is a walk that is not backtracking, i.e., it does

not contain any subsequence of the form uvu.

For brevity we will henceforth often replace the phrase nonbacktracking
walk with NBTW. Our next idea is to refine Katz centrality by performing
a weighted sum of NBTWs, as opposed to all possible walks.

Definition 3.3. For an appropriate value of the real parameter t > 0, the
NBTW centrality of node i is defined by

1 +
nX

j=1

1X

k=1

t
k (pk(A))ij ,

where (pk(A))ij records the number of distinct NBTWs of length k from i to

j.

In the case of Katz centrality, we showed that while the centrality was
defined by a power series, for appropriate values of the Katz parameter it
neatly converged to an expressions corresponding to the solution of a linear
system. We do not (yet) know how to perform the same task, and indeed,
while the matrices pk(A) are functions of the underlying graph (and hence of
A), we cannot immediately express them as simply as Ak. Still, later on the
course we will show how to compute NBTW centrality in terms of a certain
matrix polynomial depending on the original adjacency matrix, A, and study
the role of the parameter t. At this stage, we simply note that 0 < t < 1 is a
natural requirement, so that longer walks carry less weight, and we continue
with an illustrative example that di↵erentiates the new measure from Katz
centrality.

Example 3.3. Consider a star graph with n nodes, as illustrated for the case

n = 9 in Figure 1. Here the central hub node has an undirected edge to each
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of the n� 1 leaf nodes. The adjacency matrix has the form

A =

2

6664

1 · · · 1
1
.
.
.

1

3

7775
2 Rn⇥n

, (5)

where a blank denotes a zero entry. The eigenvalues of A are ±
p
n� 1 and

0 (repeated n � 2 times). Hence, Katz centrality is defined for 0 < ↵ <

1/
p
n� 1.
By symmetry the xi values in the Katz system are equal for all i � 2, and

the equations reduce to x1 � ↵(n � 1)x2 = 1 and x2 � ↵x1 = 1. These solve

to give

x1 =
1 + ↵(n� 1)

1� ↵2(n� 1)
and xi =

1 + ↵

1� ↵2(n� 1)
, for i � 2. (6)

The ratio of hub centrality to leaf centrality is therefore, for i � 2,

x1

xi
=

1 + ↵(n� 1)

1 + ↵
. (7)

1

2

34

5 67

89

Figure 1: A star graph with n = 9 vertices.

Turning to NBTWs, for the star graph it follows directly from Defini-

tion 3.2 that

• node 1 has n�1 NBTWs of length one and no NBTWs of length greater

than one,

• node i for i � 2 has one NBTW of length one, n� 2 NBTWs of length

two, and no NBTWs of length greater than two.
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Hence, in Definition 3.3 the NBTW centralities are

x1 = 1 + (n� 1)t and xi = 1 + t+ (n� 2)t2, for i � 2. (8)

So the ratio of hub centrality to leaf centrality is, for i � 2,

x1

xi
=

1 + (n� 1)t

1 + t+ (n� 2)t2
. (9)

We are interested in large systems, so consider the limit n ! 1. In the

Katz regime we require ↵ < 1/
p
n� 1. If we take ↵ to be a fixed proportion

of this upper limit, say 0.9/
p
n� 1, then in (6) and (7) we have

x1 = O(
p
n), xi = O(1), x1/xi = O(

p
n). (10)

Similarly, for the NBTW version, using t = 0.9/
p
n� 1 in (8) and (9) we

obtain the same asymptotic behaviour. However, in this example the NBTW

centrality measure is valid for any t. So we may consider the case where

t = O(1) as n ! 1, e.g., t = 1/2, in which case

x1 = O(n), xi = O(n), x1/xi !
1

t
= O(1). (11)

So, compared with Katz, the NBTW measure

• has a much less severe restriction on the downweighting parameter, and

• for fixed t and large n, gives a less dramatic distinction between the hub

and the leaves.

3.4.2 Matrix Polynomials and the Deformed Graph Laplacian

We now provide some general background material on matrix polynomials
before introducing and studying the deformed graph Laplacian. Recall that,
given a field F (in these notes, F is either R or C), the set of univariate
polynomials in t with coe�cients in F is denoted by F[t]. Moreover, the set
of square matrices of size n with entries in F[t] is denoted by F[t]n⇥n.

For j = 0, 1, . . . , k, let Aj 2 Cn⇥n be square matrices of the same size
with Ak 6= 0. The matrix-valued function P (t) =

Pk
j=0 Ajt

j 2 C[t]n⇥n is
called a square matrix polynomial of degree k. If detP (t) ⌘ 0 then P (t) is
said to be singular, otherwise it is called regular. We now recall some basic
definitions from the spectral theory of regular matrix polynomials.
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The finite eigenvalues of a square regular matrix polynomial of degree k

are the zeros of the scalar polynomial detP (t). Moreover, if deg detP (t) <
kn, we say that1 is an eigenvalue of P (t). If a finite eigenvalue has multiplic-
ity 1 as a root of detP (t) it is called a simple eigenvalue; similarly, an infinite
eigenvalue is simple if deg detP (t) = kn�1. An eigenvalue which is not sim-
ple is called multiple. If � 2 C is a finite eigenvalue of P (t), any nonzero
vector v 2 Cn such that P (�)v = 0 is called an eigenvector associated with
the eigenvalue �. Similarly, if P (t) has at least one infinite eigenvalue, then
any nonzero vector w 2 Cn such that Akw = 0 is an eigenvector associated
with the eigenvalue 1.

The algebraic multiplicity of a finite (resp., infinite) eigenvalue of P (t)
is the multiplicity of the eigenvalue as a root of detP (t) (resp., the number
kn � deg detP (t)). Moreover, we say that a finite eigenvalue � 2 C has
geometric multiplicity n�rankP (�), and similarly the eigenvalue infinity has
geometric multiplicity n� rankAk. An eigenvalue has geometric multiplicity
g if and only if one can find g linearly independent eigenvectors associated
with it. If the algebraic and geometric multiplicities of an eigenvalue coincide,
we say that the eigenvalue is semisimple; otherwise, it is defective.

It is easy to check that, by the definitions above, a regular matrix polyno-
mial of size n and degree k has precisely kn eigenvalues, counted with their
algebraic multiplicities and possibly including infinite eigenvalues. In this
paper, we will focus on a real matrix polynomial, i.e., Ai 2 Rn⇥n. Note that,
even if P (t) 2 R[t]n⇥n, the variable t 2 C is generally allowed to be complex,
and a real matrix polynomial may have nonreal finite eigenvalues.

We now turn our attention to the deformed graph Laplacian: a special
matrix polynomial associated with any graph. The deformed graph Laplacian
has been studied in the engineering literature because of its applications to
consensus algorithms in multi-agent systems and robotics. Here, we will
analyze it more thoroughly using the spectral theory of matrix polynomials,
and we will then focus on its connections to NBTW centrality.

Definition 3.4. Let A 2 Rn⇥n
be the adjacency matrix of an undirected

graph. For any t 2 C, the associated deformed graph Laplacian is the Her-

mitian matrix polynomial

M(t) = I � At+ (�� I)t2 2 R[t]n⇥n
. (12)

Observe that M(1) = L is the graph Laplacian, M(0) = I is the identity
matrix, while M(�1) is the so-called signless graph Laplacian.
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3.4.3 Nonbacktracking Walk Centrality and the Deformed Graph
Laplacian

In subsection 3.4.1 we gave a simple example where the NBTW central-
ity in Definition 3.3 could be computed from first principles. To obtain a
general-purpose algorithm, we derive results that concern the combinatorics
of NBTWs. Although originally derived from a pure mathematics view-
point, these results turn out to be extremely useful from the perspective of
matrix computations in network science, and they also highlight a connection
between NBTWs and the deformed graph Laplacian. Lemma 3.4 gives a re-
currence relation between NBTW counts of di↵erent lengths. Theorem 3.5 is
an immediate corollary that gives an expression for the associated generating
function.

Lemma 3.4. Recall that � denotes the diagonal degree matrix and pr(A)
has (i, j) element that counts the number of NBTWs of length r from i to j.

Then p1(A) = A, p2(A) = A
2 ��, and for r > 2

Apr�1(A) = pr(A) + (�� I)pr�2(A). (13)

Proof. When r = 1, as all walks are nonbacktracking, the formula is easily
verified. For r = 2, observe that the backtracking walks of length 2 are
precisely the closed paths of length 2, and they correspond to the diagonal
elements of A2; this proves the formula.

For r > 3, observe first that

[Apr�1(A)]ij =
nX

k=1

Aik[pr�1(A)]kj

is tantamount to the sum over all vertices k that are adjacent to node i, of
the number of NBTWof length r�1 from node k to node j. This means that
we are adding an additional first step to a NBTWof length r � 1. There are
two possibilities: either the resulting walk of length r is backtracking or not.
As, by definition, the number of NBTWof length r from node i to node j,
we conclude that the (i, j) element of Apr�1(A) � pr(A) counts the number
of backtracking walks from i to j having the additional special property that
they would become nonbacktracking if we dropped the first step.

It remains to count the latter walks. As they are backtracking in their
first two steps, we note that they must begin as iki . . . j, where k is a node
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adjacent to i. Observe that there are precisely �ii (the degree of node i)
such nodes. However, not all of these nodes are allowed: indeed, let ` be the
node (also adjacent to i) such that the considered walk goes on as iki` . . . j:
if k = `, then this walk would remain backtracking even after dropping the
first, since `i` . . . j is backtracking. Hence, there are only �ii � 1 allowed
choices for k.

Therefore, the number of backtracking walks from i to j that would be-
come nonbacktracking if we dropped the first step have the form iki` . . . j,
where k 6= ` and i` . . . j is any NBTWof length r� 2 from `toj. can be com-
puted as the product of �ii � 1 choices for k, the second vertex in the walk,
times the number of NBTWof length r � 2 from ` to j, which is pr�2(A)`j.
In formulae, since �� I is diagonal, this can equivalently be expressed as

nX

`=1

(�� I)i`pr�2(A)`j = [(�� I)pr�2(A)]ij;

this proves the statement.

Theorem 3.5. Let �(A, t) :=
P1

r=0 pr(A)t
r
, where, for convenience, we

set p0(A) = I, and recall that M(t) denotes the deformed graph Laplacian

associated with A. Suppose moreover that t is such that the power series

converges. Then,

M(t)�(A, t) = (1� t
2)I. (14)

Before proving Theorem 3.5, we observe that it yields a computation
method for NBTW centrality. By Definition 3.3 we see that the NBTW
centrality xi of node i may be computed via x = �(A, t)e where e is the
vector of all ones. From Theorem 3.5 we see that this simplifies to the linear
system

M(t)x = (1� t
2)e. (15)

Therefore, just as with Katz centrality, the (admittedly more complicated
in this case) combinatorial analysis leads a method that involves the solution
of a, possibly very sparse in practice, system of linear equations in order to
compute NBTW centrality. Moreover, we note from (12) that, for any fixed
value of t, M(t) in (15) has the same sparsity structure as the coe�cient
matrix I � ↵A that appears in the original Katz system! Hence, NBTW
centrality may be computed at the same cost as Katz centrality: a very
good property in computational terms, and a somewhat suprising one given
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the more complicated combinatorics involved for NBTWs. Indeed, there are
even some subtleties involved in the that make the computation of NBTW
centrality somewhat more e�cient than Katz.

We next turn to a proof of Theorem 3.5.

Proof of Theorem 3.5. Since for all r � 3 pr(A) = Apr�1(A)+(I��)pr�2(A),
we have

�(A, t) = I+At+(A2��)t2+tA

 1X

r=3

t
r�1

pr�1(A)

!
+t

2(I��)

 1X

r=3

t
r�2

pr�2(A)

!

implying

�(A, t) = I+At+(A2��)t2+ tA(�(A, t)� I�At)+ t
2(I��)(�(A, t)� I)

and hence

M(t)�(A, t) = I + t(A� A) + t
2(A2 ��� A

2 � I +�) = (1� t
2)I,

proving the statement.

3.4.4 Further Spectral Analysis of the Deformed Graph Laplacian

In this section, we discuss how the (finite and infinite) eigenvalues of the
deformed graph Laplacian record features of the underlying graph. We will
prove only some of the results we give. An individual study of all the proofs,
together with additional results on this theme, is available as a possible
student project.

Proposition 3.6 records some basic spectral properties of M(t).

Proposition 3.6. The following hold:

1. M(t) is a regular matrix polynomial, and 0 is never an eigenvalue of

M(t);

2. 1 is always an eigenvalue of M(t), with geometric multiplicity equal to

the number of connected components (or isolated nodes) of the graph of

A;

3. the geometric multiplicity of 1 as an eigenvalue of M(t) is equal to

the number of leaves, i.e., vertices of degree 1, in the graph of A (in

particular, 1 is an eigenvalue of M(t) if and only if the graph of A

has at least one leaf);
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4. �1 is an eigenvalue of M(t) if and only if the graph of A has at least

one bipartite component. In this case, the geometric multiplicity of

�1 is equal to the number of bipartite components (including isolated

nodes) of the graph of A.

Proof. 1. We have detM(0) = 1, and therefore det(M(t)) cannot be the
zero polynomial; moreover, by the same argument, 0 is not an eigen-
value.

2. Observe that M(1) = L. As we know already, the nullity of L, and
hence the geometric multiplicity of 1 as an eigenvalue of M(t), is equal
to the number of connected components plus the number of isolated
nodes in the graph of A.

3. The geometric multiplicity of the infinite eigenvalue is the nullity of
�� I, which is equal to the number of leaves in the graph of A.

4. M(t) has the eigenvalue �1 , the signless graph Laplacian, defined
as A + �, is a singular matrix , the graph of A has at least one bi-
partite component, where the last equivalence is a result by Cvektovic;
moreover, again by a theorem by Cvektovic, the multiplicity of the
eigenvalue 0 of the signless graph Laplacian, and hence the geometric
multiplicity of �1 as an eigenvalue of M(t), is equal to the number
of bipartite components in the underlying graph (an isolated node is
considered a bipartite component).

The next proposition shows that, for disconnected graphs, it su�ces to
study the individual deformed graph Laplacians associated with each con-
nected component (or isolated node).

Proposition 3.7. Let A 2 Rn⇥n
be the adjacency matrix of a disconnected

graph having c connected components (or isolated nodes) with adjacency ma-

trices Ai, for i = 1, . . . , c; let M(t) be the deformed graph Laplacian associ-

ated with A and Mi(t) be the deformed graph Laplacians associated with Ai,

for i = 1, . . . , c; and let � 2 C [ {1}. Then, � is an eigenvalue of M(t)
if and only if it is an eigenvalue of Mi(t) for some value of i = 1, . . . , c.
Moreover, denote by �(�) (resp. �i(�)) the geometric multiplicity of � as an
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eigenvalue of M(t) (resp. Mi(t)). Similarly, let ↵(�) and ↵i(�) denote the

corresponding algebraic multiplicities. Then, it holds

�(�) =
cX

i=1

�i(�), ↵(�) =
cX

i=1

↵i(�).

We omit a rigorous proof of Proposition 3.7, but we note that one can
be obtained along the same lines of the argument we gave to show that
the spectrum of A is, in the case of several connected components, just the
union of the spectra of the adjacency matrices associated with each connected
component (incljuding isolated nodes)

We now give (without proof) a powerful auxiliary result.

Theorem 3.8. Let A be the adjacency matrix of a simple, undirected, con-

nected graph. Denote by eA the adjacency matrix, possibly of smaller size,

such that the graph of eA is obtained by removing from the graph of A all

the leaves, if any, and the edges connecting these leaves to the rest of the

graph. Suppose that the graph of eA is not empty, i.e., it contains at least one

node. Let M(t), fM(t) be the deformed graph Laplacians associated with A, eA
respectively.

Then, � 2 C is a finite eigenvalue of M(t) if and only if it is a finite

eigenvalue of fM(t). Moreover, the algebraic and geometric multiplicities of

� as an eigenvalue of M(t) and fM(t) are the same.

Theorem 3.8 says that to compute the finite eigenvalues of M(t) we are
allowed to remove all the leaves of the underlying graph, and iterate the
process until we are left with a graph with no leaves. (As a consequence,
if the underlying graph is a forest, then the only finite eigenvalues are ±1,
which must be both semisimple. This observation is recorded as Corollary
3.11 in subsection 3.4.5, with an alternative proof based on the connection
with NBTWs.)

As our first application of Theorem 3.8, we show that the deformed graph
Laplacian can never have finite eigenvalues of modulus larger than 1.

Theorem 3.9. Let M(t) be the deformed graph Laplacian associated with a

simple undirected graph. Suppose that � 2 C is a finite eigenvalue of M(t).
Then, |�|  1.

Proof. By Proposition 3.7 and Theorem 3.8, we may assume with no loss of
generality that the graph of A is connected and that it does not have any
leaves.
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If � 2 C is a finite eigenvalue of M(t), then there exists a nonzero v 2 Cn

such that M(�)v = 0 holds. Without loss of generality we take kvk2 = 1.
Premultiplying the eigenvalue eigenvector equation M(�)v = 0 by v⇤, we
obtain

↵�
2 � ��+ 1 = 0, (16)

where ↵ = v⇤�v� 1 and � = v⇤
Av. Denoting the degree of the ith node by

degi, we have degi � 2 for all i, and hence ↵ =
Pn

i=1 degi |vi|2�1 � 2�1 = 1.
There are two cases. If � 62 R, then �

⇤ is also an eigenvalue of M(t)
and a root of (16). It follows that 1  ↵ = |�|�2 , |�|  1. Suppose
now � 2 R. Using also the fact that � ± A are both positive semidefinite
matrices, which implies |�|  ↵ + 1, we have 0  �

2 � 4↵  (↵ � 1)2, and
hence, |�|  (|�|+

p
�2 � 4↵)/(2↵)  (↵ + 1 + ↵� 1)/(2↵) = 1.
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