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Outline

I Two related threads:
I Structural modeling of data generating processes
I Econometric techniques that go beyond OLS

I Logits and probits as basic models of utility maximization and
examples of maximum likelihood estimation

I Broadening the perspective on maximum likelihood estimation and
other strategies and application in the Duflo, Hanna and Ryan paper
“Getting teachers to come to school”
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DGP for chlorine dioxine effects on bacteria
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Ylenia Brilli, ”Mother’s time allocation, childcare and child cognitive de-
velopment”, Journal of Human Capital, volume 16, number 2, summer 2022.
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Structural estimation

I Estimate parameters of a data generating process (DGP) which are
assumed to be invariant to policy changes or other counterfactuals.

I a structure: ”a set of functional or probabilistic relationships between
observable and latent variables which implies a joint distribution of the
observables”

I The goal of structural estimation is to estimate the parameters of the
DGP

I Often nonlinear problems (nonlinearity in coefficients) arise as solutions
of differential equations or growth or decay problems. Example:

Yi = C · 2−
Xi
θ + εi or y = θ1 + θ2e

xθ3 + ε

I In setting where experiments (or past policies) are infeasible

I Example: child skill formation model. Cunha, Heckman, and
Schennach, 2010. Use model to simulate counterfactual policies (e.g.
where reading is reduced)
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Cunha, Heckman, and Schennach, 2010

I How do we know we have the right DGP?

I Identification: would other parameters produce the same data?

5 / 55



Maximum Likelihood Estimation: Introduction
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Maximum likelihood example
Suppose you want to model the wage distribution - which is right skewed...
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Maximum likelihood example
I Maximum likelihood estimation works by choosing parameters to

maximize the “likelihood” of the observed data, given a fully specified
model for the data generating process.

I The likelihood is essentially the probability that you would observe the
sample, based on particular parameter values.

I L(parameters | data) “the likelihood that the parameters take certain
values given that we’ve observed some data.”

I You are planning to model the wage distribution using a two-parameter
gamma distribution with shape parameter α and rate parameter β
(sometimes parametrized 1/β and called a scale parameter).

I The density function is:

f (y) =
βα

Γ(α)
y α−1exp(−βy)

The log likelihood for an observation is:
ln(li ) = αln(β)− lnΓ(α) + (α− 1)ln(yi )− βyi
, where Γ(α)=

∫ ∞
0 xα−1e−x
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mlexp function in Stata
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Distribution fit
gen predwage=rgamma(1.0972,1/.2406719)
twoway (kdensity wage if wage <50 || kdensity predwage if wage<50)
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Random Utility Models: Logit and Probit
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Fully specified data generating processes

I Utility when choice=bus. U0 = β0X + u0

I Utility when choice=car. U1 = β1X + u1

I Systematic taste variation, not random taste variation

I Choose car when U1 > U0

I Let y ∗i (the ”latent variable”) represent the difference in utility y ∗i
=U1 − U0 = X (β1 − β0) + (u1i − u0i )=Xi β + ui

I We observe a binary decision yi , which takes the value 1 if y ∗i > 0 and
0 if y ∗i <= 0

I In the dataset, we only observe Xi and yi , but not y ∗i
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LPM estimation

With OLS, you could estimate: y = X β + u

I What are the OLS predicted values?

I What is the marginal effect of a change in X?
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Choices of G

I P(yi = 1|Xi ) = P(y ∗i > 0) = P(Xi β + ui ) = P(ui > −Xi β) =
1− G (−Xi β)

I G is the cumulative density function of u (second graph below)

14 / 55



Choices of G
I If we assume ui follows the standard normal distribution, because of its

symmetry, 1−Φ(−Xi β) = Φ(Xi β)
I Then, P(yi |Xi ) = Φ(Xi β), which we call a probit model
I We can also assume ui follows a Type I extreme value distribution.
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Choices of G

I Given the type 1 extreme value distribution, we have

I The cdf of the error term is the logistic function: Λ(z) = exp(z)
1+exp(z)

I 1-Λ(-Xi β)=1-
exp(−Xi β)

1+exp(−Xi β)
= exp(Xi β)

1+exp(Xi β)

I We observe Xi in the dataset, and the probability that we observe
yi=1 is Φ(Xi β) for the probit model, and Λ(Xi β) for the logit model.

I The probability that we observe yi = 0 is 1−Φ(Xi β) for the probit
model and 1−Λ(Xi β) for the logit model.
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Maximum likelihood function

I We want to find the parameters that determine
P(yi = 1|Xi ) = 1− G (−Xi β) and we observe Yi and Xi , but we can’t
run OLS. Our parameters concern the latent variable y*.

I Maximum likelihood estimation works by choosing parameters to
maximize the “likelihood” of the observed data, given a fully specified
model for the data generating process.

I The likelihood is essentially the probability that you would observe the
sample, based on particular parameter values.

I L(parameters | data) “the likelihood that the parameters take certain
values given that we’ve observed some data.”

I P(data | parameters) ”the probability density of observing the data
with certain parameters”
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Maximum likelihood function

I Note that since the outcome is binary, the calculation of the likelihood
function is based on the Bernoulli distribution, which has pdf
py (1− p)1−y

I We can then construct the likelihood function- for the probit:

∏ (Φ(Xi β))yi (1−Φ(Xi β))1−yi

I Log likelihood function for the probit

∑ yi log(Φ(Xi β)) + (1− yi )(log(1−Φ(Xi β)))

I Log likelihood function for the logit

∑ yi log(Λ(Xi β)) + (1− yi )(log(1−Λ(Xi β)))

I The estimator is typically found using numerical optimization methods
to find the parameter vector that max/minimizes the objective
function. These are iterative methods that try various parameters until
they reach a point that they can’t improve on. Some simple closed
form solutions: the MLE for a linear model with a normally distributed
error is OLS.
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Logit example: McFadden(1974): transit choice

”A positive coefficient indicates that when the remaining variables are zero,
more than half the population will choose auto.”
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Reporting results from discrete outcome models

The coefficients themselves don’t have a direct quantitative interpretation.
Instead, we are interested in the partial effect or marginal effect of each Xk

variable on P(y=1): ∂P(y=1|x)
∂Xk

= g(X ′β)βk

As you can see, the partial effects depend on the value of x ′β. There are
two common ways to calculate them:

g(x̄ ′β)βk or 1
N ∑ g(x ′i β)βk

For a dummy variable (xk = 0 or 1), the partial effect is

G (β0 + β1x1 + ... + βk + ...)− G (β0 + β1x1 + ... + 0 + ...)

This can also be calculated once at the means of the other variables or this
difference can be averaged over all observations.
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Odds ratios

Logit
Another feature of the logit model is that the results can be easily reported
as effects on the odds,

Odds = P(y=1|x)
P(y=0|x)

This is because the odds has a simple expression:

exp(x ′β)/[1+exp(x ′β)]
1/[1+exp(x ′β)] = exp(x ′β)

Consider the partial effect of a dummy variable xk :

Odds(xk=1)
Odds(xk=0)

=
exp(∑j 6=k βjxj ) exp(βk )

exp(∑j 6=k βjxj ) exp(0)
= exp(βk)

The proportional change in the odds (which is a ratio of the odds) for a
one-unit change in xk is simply exp(βk). This is reported as ”Odds ratio”
in Stata.
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Multiple outcome models

(a) Labor Force Outcomes - Let the utility of the different labor force
outcomes for individual i be formulated as:

Ui ,Work = x ′i βW + εiW
Ui ,School = x ′i βS + εiS
Ui ,Unemp = x ′i βU + εiU

Individual i chooses work iff Ui ,W = max{Ui ,W ,Ui ,S ,Ui ,U}.

(b) Consumer Product Choice - Let the utility of the different products for
individual i be formulated as:

Ui ,Honda = x ′Hβ + εiH
Ui ,Chevy = x ′C β + εiC
Ui ,Ford = x ′F β + εiF

Individual i chooses a Ford iff Ui ,F = max{Ui ,H ,Ui ,C ,Ui ,F}.
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Multiple outcome models
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IIA assumption

I These logit models have an assumption called “independence from
irrelevant alternatives,” which results from the assumption that the
unobservables εij are independent across options

I The assumption is that the ratio of probabilities between two options is

independent of any other option. To see this, note that P(y=j |x)
P(y=h|x)=

exp[(xj − xh)β]

I restaurant options: Mexican, Japanese, Sushi. If you’re in the mood
for sushi (a mood which is unobserved by the econometrician), there
would be no change in the ratio of P(Japanese) / P(Mexican).

I You can simplify the problem by aggregating, or use a nested logit, in
which the choices are grouped into nests (clusters) such that IIA holds
within a nest but not necessarily between nests. e.g. A nest containing
buses.
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Stata implementation- more in review session

I logit votedyes age education gender

I To report effects on the odds, logit votedyes age education gender,
or

I margins sex Margins for a categorical variable

I Margins for a continous variable: margins, at(age=(10(10)80))

I Marginal effects of all independent variables at the mean of other
covariates margins, dydx( all) atmeans

I Mean marginal effects of all covariates margins, dydx( all)

I mlogit brand age sex class, baseoutcome (2)

I To report effects on the odds (”relative risk ratios”) mlogit brand age
sex class, baseoutcome (2) rrr

I margins sex, predict(outcome(3))
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Dynamic problems. Application: Duflo, Hanna, Ryan:
Getting Teachers to Come to School
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Duflo, Hanna, Ryan paper: Getting Teachers to Come to
School
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Duflo, Hanna, Ryan: Incentives Work: Getting Teachers to
Come to School

I Seva Mandir, an NGO in rural Rajasthan, who runs 150 “non-formal
education center” (NFE): single teacher school for students who do
not attend regular school.

I Students are 7-14 year old, illiterate when they join.

I Teacher absence rate 35%

I Schools teach basic hindi and math skills and prepare students to
“graduate” to primary school.

I In 1997, 20 million children were served by such NFEs
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Duflo, Hanna, Ryan: Incentives Work: Getting Teachers to
Come to School

I Teachers in intervention schools received a camera with
non-temperable time and date stamp.

I Instructed to take two pictures of themselves and the children every day
(pictures separated by at least 5 hours, at least 8 children per picture).

I Payment is calculated each month and is a non-linear function of
attendance: • Up to 10 days: Rs 500. • Each day above 10 days: Rs
50. • In non-intervention schools, teachers receive Rs 1000, and are
reminded that attending at least 20 days is compulsory.
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Incentives Work: Getting Teachers to Come to School

I ”While the reduced form results inform us that this program was
effective in reducing absenteeism, they do not tell us what the effect
of another scheme with a different payment structure would be.”

I ”Thus, these findings suggest that teachers respond to the incentives.
Without more structure, however, it is not possible to conclude
what part of the effect of the program was due to financial
incentives per se. To analyze this problem, we set up a dynamic
labor supply model and we use the additional restrictions that the
model provides to estimate its parameters.”
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Incentives Work: Getting Teachers to Come to School
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Teachers’ decision problem

I Each day, a teacher chooses whether or not to attend school, by
comparing the value of attending school to that of staying home or
doing something else.

I State space s = (t, d), where t is the current time and d is the days
worked previously in the current month.

I Payoffs: if the teacher does not attend school: µ + εt
I Payoff of attending school is calculated at the end of the month

according to:

π(d) = 500 + 50 ∗max{0, d − 10}
I T takes value between 1 and T = 25.

I Transitions: Each day, t increases by one, unless t = T, in which case
it resets to t = 1. If a teacher has worked in that period d increases by
one, otherwise it remains constant.
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Value functions

I A sum of objective functions can be re-expressed recursively using a
value function. S=state space (e.g. wealth). X=control variables (e.g.
consumption).

V=∑T
t=1βt E[U(Xt |St)]

I Bellman Equation: breaking the sequence into a simpler problem:

V (S) = maxX [U(X |S) + βE [V (S ′)]
S ′ = f (X ,S)

I This allows us to solve complicated problems of forward looking agents
maximizing discounted stream of utility.

I ”An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision”.
Bellman, 1957 Dynamic Programming

I Usually solved iteratively, given an initial guess of the value function.
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Teachers’ value function

I Given the salary payoff structure, for t ≤ T, we can write the value
function for each teacher as follows:

I V (t, d) = max{µ + εt + EV (t + 1, d),EV (t + 1, d + 1)}
I At time T:

V (T , d) = max{µ + εT + βπ(d) + EV (1, 0), βπ(d + 1) + EV (1, 0)}
I β is marginal utility of income

I EV(1, 0) enters both side and can thus be ignored: we can solve each
month independently, backwards from time T
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Log-likelihood
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I At time T, the agent faces a static decision, namely work if:
µ + εT + βπ(d) > βπ(d + 1)

I The probability of this event is:

Pr(work |d , θ) = Pr(εT > β(π(d + 1)− π(d))− µ) =
1−Φ(β(π(d + 1)− π(d))− µ)

I When d<10, the difference between π(d + 1) and π(d) is zero, and β
does not enter the equation Pr(work |d , θ) = 1−Φ(µ)

I ”If all teachers share same µ, µ is identified by teachers who are out of
the money, and then β from teachers in the money.”

I var(ε) normalized to be equal to 1.

I If teachers have different µ model still identified by comparing different
teachers with themselves over time (teacher fixed effect).
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Results from simple model

I Common β and µ for all teachers
in Model I

I Teachers respond to financial
incentives

I Predicted number of days worked
in the treatment group, 17.23 very
close to actual 17.16

I Estimated opportunity cost of
working, µ = 1.564 is positive-
model underpredicts the number
of days that teachers work in the
control group. Model 1.31 days,
data 12.9 days

I Model II accounts for

heterogeneity in µ but still

underpredicts control group.
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Results from complex model

I Model correlation in error terms :

I εmt = ρεm,t−1 + νmt

I Autocorrelation could be either
positive (illness) or negative
(teacher has a task to
accomplish).

I Use method of simulated
moments: simulate work history
for different parameters, and try
to match a distribution of days
worked at the beginning of the
month.

I Heterogeneity introduced by

drawing p teachers from a

distribution with high outside

option, and 1 − p from

distribution with low outside
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Common (structural) estimation methods

I Maximum likelihood: maximize the likelihood of drawing that data x
from a model, given parameters θ.

maxθ lnL = ∑N
i ln(f (xi |θ))

I In cases where the data distribution function is unknown or difficult to
derive analytically, Generalized method of moments. Minimize the
distance between model moments m(x |θ) and data moments m(x)

minθ ||m(x |θ)−m(x)||
I Moment conditions: functions of the model parameters and data,

such that their expectation is zero at the true value of the parameters.

I Moments for OLS estimation. y=β0+β1X + ε
Taking first order conditions of minβ̂0,β̂1

W = ∑N
i=1(yi − β̂0 − β̂1xi )2 is

equivalent to a sample moment condition 1
N ∑N

i=1(yi − x ′i β̂)xi = 0,
which results from the orthogonality condition
E [εixi ] = E [(yi − x ′i β)xi ] = 0.
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Common (structural) estimation methods

I If m(x |θ) is not known analytically- method of simulated moments.
Simulate the model data S times, and take the average of the
moments of the simulated data as estimators of the model moments.

m̂ = 1
S ∑S

1 m(x̃s |θ)
Then run minθ ||m̂(x̃ |θ)−m(x)||

I Common norm: sum of squared errors. Minimize
√
( m̂(x̃ |θ)−m(x)

m(x)
)2
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Out of sample prediction

I Seva Mandir changed rule after experiment was over (and model was
estimated!)

I New rule: Rs 700 for 12 days of work. Increment of Rs 70 after the
13th day

I Model does well too.
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Counterfactual analysis

”A primary benefit of estimating a structural model of behavior is the ability to calculate outcomes under economic environments

not observed in the data. We are interested in finding the cost-minimizing combination of the two policy instruments, the size of

the bonus and the threshold to get into the bonus, that lead to a minimum number of days worked in a month. ”

The NGO could have induced higher work effort with approximately the same expenditure by doubling the bonus threshold and

nearly tripling the per-day bonus... teachers in our sample appear to be more likely than not to attend school even without

incentives and be forward-looking. A higher threshold avoids rewarding inframarginal days.
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A word on calibration
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Anderson
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I “We set the value of time vi at a fraction of the hourly wage and
calibrate the model by varying the distribution of rail access times until
the probability of taking rail equals the observed rail market share in
Los Angeles.”

I “In cases with any ambiguity we tried to choose parameter values
consistent with the previous literature (e.g., Parry and Small
2009). We assume a trip length of seven miles for commuters in rail
catchment areas and five miles for commuters in bus catchment areas.
Transit headways and fares come from historical MTA documents, and
driving costs come from the American Automobile Association
(LACMTA 2003; AAA 2004). ”

I “We could not find authoritative data on parking costs or the share of
commuters with free parking, so we assumed that 85 percent of com-
muters have free parking and that parking costs $5.00 per day for
those with paid”
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Calibration results

I ”We predict that ceasing transit service would increase average delays
by 0.189 minutes per mile (38 percent).”

I ”This effect is 5.9 times larger than the predicted effect in the
homogeneous driving time model.”

I ”The implied fare elasticity in the heterogeneous model is −1.1, which
is slightly larger than estimates from the literature.”

I ”Our preferred RD estimate ... finds that average delay increases 0.194
minutes per mile (47 percent).”
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Summary of the ”structural toolkit”

I Need to find the deep parameters (policy invariant parameters) in
order to conduct counterfactual simulations. These parameters feature
in a model of the data generating process.

I In the process of setting up the data generating process, fix some
parameters (discount factor), likely make functional form assumptions
on the error term that will simplify estimation

I Most choice problems rely on Type I extreme value error term
distribution or some other convenient assumption on the error terms.

I Dynamic problems simplified through the use of value functions and the
Bellman (functional) equation. V (S) = maxX [U(X |S) + βE [V (S ′)]
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Summary of the ”structural toolkit”

I Try to form a likelihood function- analytical solutions hard to find,
some integrals very difficult to evaluate.

I Method of moments : no clear guidance of what the ”optimal”
moments are, but they should be informative of the parameters you are
trying to estimate- variations of parameters should induce variation in
moments

I Moments are not known analytically/difficult to derive: simulated
method of moments.

I Often as a first step, estimate/calibrate some parameters that don’t
require structural estimation (e.g. OLS). In the second step, estimate
remaining parameters.
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Summary of the ”structural toolkit”

I Common to test the robustness of models by increasing complexity,
and comparing to predictions from static (or naive) models

I Model fit (usually unsurprising for moments you target) - use moments
that are not targeted.

I Out-of-sample checks

I Compare parameters to literature; discuss magnitude of results,
compare to reduce form estimates.

I Can calculate counterfactual analyses under different models and
compare implications.
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Structural estimation: what’s the downside

I Estimation will be more challenging

I Sometimes need to interpret marginal effects rather than coefficients
I Relatively more conditions needed for identification :

I structural form assumptions
I normalizations
I assuming separable preferences (over time and states) to simplify

estimation
I setting the discount factor to a constant.
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Structural models: upside

I There is only so much we can learn from historical quasi-experimental
variation

I Perform counterfactual experiments

I Test specific mechanisms

I Used to compare predictive power of competing theories

I Sometimes parameters have direct interpretation as economic concepts
(elasticities, risk aversion parameters, discount factors, etc.)

53 / 55



54 / 55



55 / 55


	Maximum Likelihood Estimation: Introduction
	Random Utility Models: Logit and Probit
	Dynamic problems. Application: Duflo, Hanna, Ryan: Getting Teachers to Come to School
	A word on calibration

