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Outline

» Two related threads:

» Structural modeling of data generating processes
» Econometric techniques that go beyond OLS

P Logits and probits as basic models of utility maximization and
examples of maximum likelihood estimation

» Broadening the perspective on maximum likelihood estimation and
other strategies and application in the Duflo, Hanna and Ryan paper
“Getting teachers to come to school”
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DGP for chlorine dioxine effects on bacteria
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Ylenia Brilli, " Mother's time allocation, childcare and child cognitive de-
velopment”, Journal of Human Capital, volume 16, number 2, summer 2022.

FiGure D.3
Elasticity of child’s ability with respect to mother’s time with the child and non-
parental child care if maternal time includes also time when the father is around.
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NOTE. This graph represents the productivity parameters for maternal time (7¢) and non-parental child care (i)
as a function of child’s age t = 1,2,...13. 7 includes all time spells when the mother is with the child and also
those when the mother is present and the father is around but not involved in child’s activities.
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Structural estimation

>

| 2

v

Estimate parameters of a data generating process (DGP) which are
assumed to be invariant to policy changes or other counterfactuals.

a structure: "a set of functional or probabilistic relationships between
observable and latent variables which implies a joint distribution of the
observables”

The goal of structural estimation is to estimate the parameters of the
DGP

Often nonlinear problems (nonlinearity in coefficients) arise as solutions
of differential equations or growth or decay problems. Example:

Xi
Y, =C-277% +¢; ory:91—|—92exe3—|—e
In setting where experiments (or past policies) are infeasible

Example: child skill formation model. Cunha, Heckman, and
Schennach, 2010. Use model to simulate counterfactual policies (e.g.
where reading is reduced)
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Cunha, Heckman, and Schennach, 2010

Skills evolve in the following way. Each agent is born with initial condi-
tions 6, = (8¢,1, Oy,1). Family environments and genetic factors may influence
these initial conditions (see Olds (2002) and Levitt (2003)). We denote by
0p = (Bc.p, On.p) parental cognitive and noncognitive skills, respectively. 6, =
(6¢,, Oy,.) denotes the vector of skill stocks in period ¢. Let n, = (¢, Ov..)
denote shocks and/or unobserved inputs that affect the accumulation of cogni-
tive and noncognitive skills, respectively. The technology of production of skill
k in period ¢ and developmental stage s depends on the stock of skills in pe-
riod ¢, investment at ¢, I, ,, parental skills, 8, shocks in period ¢, 14, and the
production function at stage s,

(21) 6k.r+l =f!c,s(3r> Ik,r; ﬂPs nk,r)

for k € {C,N},t€{1,2,...,T}, and s € {1,...,S5}. We assume that f;, is
monotone increasing in its arguments, twice continuously differentiable, and
concave in I, ,. In this model, stocks of current period skills produce next pe-
riod skills and affect the current period productivity of investments. Stocks of
cognitive skills can promote the formation of noncognitive skills and vice versa
because 8, is an argument of (2.1).

» How do we know we have the right DGP?

P Identification: would other parameters produce the same data?
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Maximum Likelihood Estimation: Introduction
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Maximum likelihood example

Suppose you want to model the wage distribution - which is right skewed
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Maximum likelihood example

> Maximum likelihood estimation works by choosing parameters to
maximize the “likelihood” of the observed data, given a fully specified
model for the data generating process.

P The likelihood is essentially the probability that you would observe the
sample, based on particular parameter values.

» L(parameters | data) “the likelihood that the parameters take certain
values given that we've observed some data.”

» You are planning to model the wage distribution using a two-parameter
gamma distribution with shape parameter « and rate parameter
(sometimes parametrized 1/ and called a scale parameter).

» The density function is:

‘[.306
fly) = @) v texp(—By)

The log likelihood for an observation is:
In(l;) = Mn(ﬁ) /"F( ) +(a=1)in(yi) = Byi
, where I'(« fo
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mlexp function in Stata

mlexp ({a=1}x1n({b=.1}) - lngamma({a}) + ({a}-1)*ln(wage) - {b}xwage)

log likelihood -178608.12
log likelihood -178608.12
log likelihood -173389.94
[teration O: log likelihood -173389.94
[teration 1: log likelihood -163081.69
[teration 2: log likelihood -162813.54
[teration 3: log likelihood -162808.55
[teration 4: log likelihood = -162808.55

aximum likelihood estimation

og likelihood = -162808.55 Number of obs

Coef. Std. Err. P>|z| [95% Conf. Interval

1.097287 .0054134 202.70 0.000 1.086677 1.107897
.2406719 .0014917 161.34 0.000 .2377483 .2435955




Distribution fit

gen predwage=rgamma(1.0972,1/.2406719)
twoway (kdensity wage if wage <50 || kdensity predwage if wage<50)
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Random Utility Models: Logit and Probit
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Fully specified data generating processes

» Utility when choice=bus. Uy = BoX + up

» Utility when choice=car. U; = 1 X + u;

P Systematic taste variation, not random taste variation

» Choose car when U; > Uy

> Let y/ (the "latent variable”) represent the difference in utility y;
=U1 — X(B1 — o) + (u1j — uo))=Xip + uj

> We observe a binary decision y;, which takes the value 1 if y* > 0 and

» In the dataset, we only observe X; and y;, but not y;*
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LPM estimation

With OLS, you could estimate: y = XB + u

Y
E(Y]X) = Pr(Y=1]X)

] ..................................
1 _pﬂ_B1XI {
Bo+BiX;

Bo

» What are the OLS predicted values?
» What is the marginal effect of a change in X?
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Choices of G

> P(y;i =1|X;) = P(y; >0) = P(Xip+ uj) = P(uj > = X;p) =
1-G(—Xip)
» G is the cumulative density function of u (second graph below)

fx)

Randem Variable X

(x)

Fla) = P(X<a)
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Choices of G
P If we assume u; follows the standard normal distribution, because of its
symmetry, 1 — ®(—X;B) = ®(X;B)
» Then, P(y;|X;) = ®(X;B), which we call a probit model
» We can also assume u; follows a Type | extreme value distribution.

Extrame Value Type | (Winimur) POF

H

Procabiiy Densny
2 s
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Choices of G

vy VYy

v

Given the type 1 extreme value distribution, we have

The cdf of the error term is the logistic function: A(z) = 1?;’1&)2()2)

. exp(=Xip) __ _exp(Xip)
LA(XB) =1 L2875k = Trepp

We observe X; in the dataset, and the probability that we observe
yi=1is ®(X;B) for the probit model, and A(X;p) for the logit model.

The probability that we observe y; = 0 is 1 — ®(X;p) for the probit
model and 1 — A(X;B) for the logit model.
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Maximum likelihood function

» We want to find the parameters that determine
P(y; = 1|X;) =1 — G(—X;B) and we observe Y; and X;, but we can't
run OLS. Our parameters concern the latent variable y*.

> Maximum likelihood estimation works by choosing parameters to
maximize the “likelihood” of the observed data, given a fully specified
model for the data generating process.

» The likelihood is essentially the probability that you would observe the
sample, based on particular parameter values.

» L(parameters | data) “the likelihood that the parameters take certain
values given that we've observed some data.”

» P(data | parameters) "the probability density of observing the data
with certain parameters”

17/55



Maximum likelihood function

> Note that since the outcome is binary, the calculation of the likelihood
function is based on the Bernoulli distribution, which has pdf
pY(1—p)t>

» We can then construct the likelihood function- for the probit:

[T ((XiB))" (1 — (X))~

» Log likelihood function for the probit
L yilog(@(Xip)) + (1 — yi)(log(1 — (X))

P Log likelihood function for the logit
L yilog (A(XiB)) + (1 — y;)(log(1 — A(XiB)))

P> The estimator is typically found using numerical optimization methods
to find the parameter vector that max/minimizes the objective
function. These are iterative methods that try various parameters until
they reach a point that they can't improve on. Some simple closed
form solutions: the MLE for a linear model with a normally distributed
error is OLS.
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Logit example: McFadden(1974): transit choice

‘Table 2

Binary logit response curves; dependent variable: Auto-bus mode choice (zero if bus is usual
or frequent mode, one otherwise); estimation method: Maximum likelihood on individual
observations; sample size: 160; T-statistics in parentheses.

Independent variable Model 1 Model 2 Model 3 Model 4
.Famuly income with eedmg of 0.000065 0.000064 0.000095 0.000074
0,000, in . .774) 0.601
Car bus cost, in eenu per round . ~0.00915 X X
(3.085) (3.184) (3.726) (4.506)
Clr b'\u on-vehicle time times —0.00858 —0.00852 —0.01479 —
post-tax wage, in min. per (1.263) (1.273) (2.460)
1-way x § per hr.
fime times wage, in —0000092 0000080  — =
min. per 1-way x § per hr. (0.021) (0.018)
Bus first wait time times wage, -0.01713 — _ -—
same units (0.771)
Bus transfer wait time times wage, ~ —0.01902 - - —
same units (1.365)
Bus total wait time times wage, - —0.01838 — -
same units (1.947)
Bus total access time times wage, - - —0.00314 —_
same units (0.818)
Bus total travel time times wage, - - - ~0.00728
same units (2.480)
Pure auto mode preference cffect 0.1499 0.1483 0.3832 0.5516
(constant) (0.165) (0.163) (0.428) (0.561)
Likelihood ratio index 0.30626 0.30623 0.2794 0.2633
R?*index 092 0.93 0.66 0.61

" A positive coefficient indicates that when the remaining variables are zero,

more than half the population will choose auto.”
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Reporting results from discrete outcome models

The coefficients themselves don't have a direct quantitative interpretation.
Instead, we are interested in the partial effect or marginal effect of each Xj

: _1). 9Py=1|x) _ /
variable on P(y=1): X = g(X'B)B«
As you can see, the partial effects depend on the value of x'B. There are
two common ways to calculate them:

g(x'B)Bi or s La(x/B)Br
For a dummy variable (xx = 0 or 1), the partial effect is
G(Bo+pBixi+..+Bx+..)—G(Bo+Pixi+...+0+..)

This can also be calculated once at the means of the other variables or this
difference can be averaged over all observations.
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Odds ratios

Logit

Another feature of the logit model is that the results can be easily reported
as effects on the odds,

_ Ply=1x)
Odds = B6=0)

This is because the odds has a simple expression:

exp(x'B)/[1+exp(x'B)]
st = exp(x'p)

Consider the partial effect of a dummy variable x:

Odds(x,=1) __ exp(Xizk Bjx;) exp(Bk) _
0ads(xk=0) = op(Lms )o@ — P(PK)

The proportional change in the odds (which is a ratio of the odds) for a
one-unit change in xx is simply exp(Bx). This is reported as " Odds ratio”
in Stata.
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Multiple outcome models

(a) Labor Force Outcomes - Let the utility of the different labor force
outcomes for individual i be formulated as:

Ui work = X/Bw + €iw
Ui,School - X,{,BS +€js
Ui,Unemp = X,{,BU + €iu
Individual i chooses work iff U; w = max{U;w, Ui s, Ui u}.

(b) Consumer Product Choice - Let the utility of the different products for
individual i be formulated as:

/
Ui Honda = Xy + €in
—
Ui chevy = xcB + €ic
/
Ui Ford = xgP + €iF

Individual i chooses a Ford iff U; g = max{U; y, Ui c, U; F}.
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Multiple outcome models

Multinemial logits for employed, disabled, or retired, ages 57-61.
Males Females

Variable Disabled Retired Disabled Retired

--- RELATIVE RISK RATIOS - - -
100-point health scale ( / 10):

- linear term 0.51%** 0.90* 0.56** 0.93
- squared term 0.98 0.98 1.03 1.06**
- cubic term 1.00 0.09 1.01 1.00
ADLs/ IADLs 6.244* 3.43" 1.64 1.95*
Vision impairment 1.68 1.33 1.63* 0.99
Hearing impalirment 0.81 1.21 1.50 1.50*
Physical lim. 253 1.37 4.83** 1.42%
Coghnitive lim. 1.69 0.85 2.05* 1.48
Social lim. 2.69" 2,79 2147 1.64
Diabetes 1.02 0.61* 1.87* 1.63*
Asthma 1.63 1.29 0.93 1.01
High BP 0.92 0.98 1.44 1.09
Heart condition 217 1.45* 1.23 0.79
Stroke 3.04** 1.07 2,02 1.31
Age 60 or above N/A NA N/A N/A
Some college 0.42*** 1.10 0.47** 0.76**
Black 1.53 1.26 0.86 0.84
Hispanic 0.92 0.87 0.96 1.43*
Divorced, sep. or widowed 2,394 1.02 1.03 0.30%**
Never married 547" 1.69 497 0.59
Metropolitan area 2.24% 1.06 0.82 1.00

Models include dummies for region.
P-values: * p<.1; ** p<.05; *** p<.01.
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[1A assumption

>

These logit models have an assumption called “independence from
irrelevant alternatives,” which results from the assumption that the
unobservables €;; are independent across options

The assumption is that the ratio of probabilities between two options is

independent of any other option. To see this, note that %:

exp[() — ) B]

restaurant options: Mexican, Japanese, Sushi. If you're in the mood
for sushi (a mood which is unobserved by the econometrician), there
would be no change in the ratio of P(Japanese) / P(Mexican).

You can simplify the problem by aggregating, or use a nested logit, in
which the choices are grouped into nests (clusters) such that IIA holds
within a nest but not necessarily between nests. e.g. A nest containing
buses.
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Stata implementation- more in review session

v

v

vy

logit votedyes age education gender

To report effects on the odds, logit votedyes age education gender,
or

margins sex Margins for a categorical variable
Margins for a continous variable: margins, at(age=(10(10)80))

Marginal effects of all independent variables at the mean of other
covariates margins, dydx(_all) atmeans

Mean marginal effects of all covariates margins, dydx(-all)
mlogit brand age sex class, baseoutcome (2)

To report effects on the odds (" relative risk ratios” ) mlogit brand age
sex class, baseoutcome (2) rrr

margins sex, predict(outcome(3))

25 /55



Dynamic problems. Application: Duflo, Hanna, Ryan:
Getting Teachers to Come to School
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Duflo, Hanna, Ryan paper: Getting Teachers to Come to
School
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Duflo, Hanna, Ryan: Incentives Work: Getting Teachers to
Come to School

» Seva Mandir, an NGO in rural Rajasthan, who runs 150 “non-formal
education center” (NFE): single teacher school for students who do
not attend regular school.

v

Students are 7-14 year old, illiterate when they join.

v

Teacher absence rate 35%

» Schools teach basic hindi and math skills and prepare students to
“graduate” to primary school.

P In 1997, 20 million children were served by such NFEs
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Duflo, Hanna, Ryan: Incentives Work: Getting Teachers to
Come to School

» Teachers in intervention schools received a camera with
non-temperable time and date stamp.

P Instructed to take two pictures of themselves and the children every day
(pictures separated by at least 5 hours, at least 8 children per picture).

» Payment is calculated each month and is a non-linear function of
attendance: e Up to 10 days: Rs 500. e Each day above 10 days: Rs
50. e In non-intervention schools, teachers receive Rs 1000, and are
reminded that attending at least 20 days is compulsory.
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Incentives Work: Getting Teachers to Come to School

> "While the reduced form results inform us that this program was
effective in reducing absenteeism, they do not tell us what the effect
of another scheme with a different payment structure would be.”

> "Thus, these findings suggest that teachers respond to the incentives.
Without more structure, however, it is not possible to conclude
what part of the effect of the program was due to financial
incentives per se. To analyze this problem, we set up a dynamic
labor supply model and we use the additional restrictions that the
model provides to estimate its parameters.”
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Incentives Work: Getting Teachers to Come to School

Let m signify the month and 7 the day within the month, where 1= {1,...,T,}."*

The teacher’s utility function over consumption, C,,, and leisure, L,,, each day in
the month is as follows:

(2 U,y = U(Cy, L) = BCo(mn) + (B — P)Lns

where P is the nonpecuniary cost of missing work."> We have assumed that utility
is linear in consumption and that consumption and leisure are additively separable.
This formulation implies that there will not be a dependency in behavior between
months. Forexample, a teacher would not decide to work more in one month because
she worked little in previous months.'®

Consumption is a function of earned income, 7,,. Since we assume that there is no
discounting within months and utility is linear in consumption, we can assume that
the teacher consumes all her income on the last day of the month, when she is paid.'”
The parameter /3 converts consumption, measured in rupees, into utility terms. We
let L,, equal one if the teacher does not attend work on that day and zero otherwise.

The coefficient on the value of leisure, f,,, has a deterministic and stochastic
component:

(3 Pom = 1+ €

The deterministic component, f, is the difference between the value of leisure and
the intrinsic value of being in school, including any innate motivation. To the extent
that teachers value teaching, or do not want to disappoint students and parents,
will be less positive. The stochastic shock, €,,, captures variation in the opportunity
cost of attending work on a given day: we assume that it has a normal distribution.
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Teachers’ decision problem

» Each day, a teacher chooses whether or not to attend school, by
comparing the value of attending school to that of staying home or
doing something else.

» State space s = (t, d), where t is the current time and d is the days
worked previously in the current month.

» Payoffs: if the teacher does not attend school: u + €

P> Payoff of attending school is calculated at the end of the month
according to:

7t(d) = 500 + 50 * max{0, d — 10}
» T takes value between 1 and T = 25.

P> Transitions: Each day, t increases by one, unless t = T, in which case
it resets to t = 1. If a teacher has worked in that period d increases by
one, otherwise it remains constant.
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Value functions

P> A sum of objective functions can be re-expressed recursively using a
value function. S=state space (e.g. wealth). X=control variables (e.g.
consumption).

V=YL 18" E[U(X:|S:)]
P> Bellman Equation: breaking the sequence into a simpler problem:
V(S) = maxx [U(X|S) + BE[V(S")]
S'=1(X,S)
P This allows us to solve complicated problems of forward looking agents
maximizing discounted stream of utility.

> "An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision”.
Bellman, 1957 Dynamic Programming

P Usually solved iteratively, given an initial guess of the value function.
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Teachers' value function

» Given the salary payoff structure, for t < T, we can write the value
function for each teacher as follows:

> V(t,d)=max{p+e+EV(t+1,d),EV(t+1,d+1)}

> At time T:

V(T,d) =max{y+er+pr(d)+ EV(1,0),pr(d+1)+ EV(1,0)}
B is marginal utility of income

v

» EV(1, 0) enters both side and can thus be ignored: we can solve each
month independently, backwards from time T
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Log-likelihood

The log likelihood is:

LLH(#) =

N i T
i=1

M,
z [1(work)Pr(work|t.d, )
m=1 t=1

+1(not work)(1 — Pr(work|t, d,6)],
where:
Pr(work|t,d,8) = Pr(p+ e+ EV(t +1.d) < EV(t +1,d + 1))

= Pr(ee < EV(t+1,d+1)— EV(t+1,d)—p)
=®(EV(t+1.d+1)— EV(t+1.d)—pu), (10)
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v

At time T, the agent faces a static decision, namely work if:
u+er+pr(d) > pr(d+1)
The probability of this event is:
Pr(work|d,0) = Pr(er > B(mt(d+1) — nt(d)) — pu) =
1= @(B(re(d +1) = (d)) — )
When d<10, the difference between 7(d + 1) and 7(d) is zero, and B
does not enter the equation Pr(work|d,0) =1 — ®(u)

"If all teachers share same i, u is identified by teachers who are out of
the money, and then B from teachers in the money.”

var(€) normalized to be equal to 1.

If teachers have different 1 model still identified by comparing different
teachers with themselves over time (teacher fixed effect).
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Results from simple model

» Common ,B and ‘u for all teachers Model I ModelII M
. Parameter (1) (2)
n Model | 3 0.049 0.027
. ) (0.001) (0.000)
» Teachers respond to financial z Lot
incentives ’

» Predicted number of days worked
in the treatment group, 17.23 very
close to actual 17.16

» Estimated opportunity cost of
working, y = 1.564 is positive-

Yesterday shifter

Attendance
model underpredicts the number _—
of days that teachers work in the
Heterogeneity None FE
control group. Model 1.31 days, Three-day window ~ No N
LLH 10.269.13 9,932.71
data 12.9 days o o
(0.147) (0.062)
» Model Il accounts for 1826 -0
heterogeneity in p but still Troed " 3y 0159
. Days worked 1.31 6.96
underpredicts control group. BONUS—0  (0041) (0101)
Out-of-sample 21.47 19.975
prediction (0.046)  (0.164)
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Results from complex model

>
>

Model correlation in error terms :
Emt = P€m,t—1 + Vmt
Autocorrelation could be either
positive (illness) or negative
(teacher has a task to
accomplish).

Use method of simulated
moments: simulate work history
for different parameters, and try
to match a distribution of days
worked at the beginning of the
month.

Heterogeneity introduced by
drawing p teachers from a
distribution with high outside
option, and 1 — p from
distribution with low outside
option.

Parameter

Yesterday shifter
Attendance

Test score

Heterogeneity
Three-day window
LLH

€Bonu
€ .
bonus_cutof

Predicted days
worked

Days worked
BONUS =0

Out-of-sample
prediction

" Model V

5)

0.013
0.001)
0.428
0.045)
0.449
0.043)
0.007
0.019)
1.781
0.345)
0.050
0.545)
0.024
0.007)

RC
No

0.196
0.053)
0.14
0.144)
16.75
0.391)
1290
0.281)
17.717
0.479)
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Common (structural) estimation methods

» Maximum likelihood: maximize the likelihood of drawing that data x

from a model, given parameters 6.
maxg InL = YN In(f(x;|0))

P In cases where the data distribution function is unknown or difficult to
derive analytically, Generalized method of moments. Minimize the
distance between model moments m(x|6) and data moments m(x)

ming||m(x|6) — m(x)]|

» Moment conditions: functions of the model parameters and data,
such that their expectation is zero at the true value of the parameters.

» Moments for OLS estimation. y=Bo+p1X + €
Taking first order conditions of ming 5 W = Y1 (yi — fo — P1xi)? is
equivalent to a sample moment condition & Y-, (y; — x/B)x; = 0,
which results from the orthogonality condition
Eleixi] = E[(yi — x{B)xi] = 0.
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Common (structural) estimation methods

» If m(x |@) is not known analytically- method of simulated moments.
Simulate the model data S times, and take the average of the
moments of the simulated data as estimators of the model moments.

m= % EZf n7(25|9)
Then run ming||m(x|0) — m(x)]|

» Common norm: sum of squared errors. Minimize
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Out of sample prediction

» Seva Mandir changed rule after experiment was over (and model was
estimated!)

> New rule: Rs 700 for 12 days of work. Increment of Rs 70 after the
13th day

» Model does well too.
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Counterfactual analysis

" A primary benefit of estimating a structural model of behavior is the ability to calculate outcomes under economic environments
not observed in the data. We are interested in finding the cost-minimizing combination of the two policy instruments, the size of

the bonus and the threshold to get into the bonus, that lead to a minimum number of days worked in a month. "

TABLE 5—COUNTERFACTUAL COST-MINIMIZING POLICIES

Test score gain over

Expected days control group
worked Bonus cutoff Bonus Expected cost (13 days)
(m @ (3) 4) ©)

14 0 0 500 0.04
15 21 25 521 0.07
16 22 75 664 0.11
17 21 75 672 0.15
18 20 75 755 0.18
19 20 100 921 0.22
20 20 125 1,112 0.26
21 16 225 2,642 0.29
22 11 275 4,604 0.33

The NGO could have induced higher work effort with approximately the same expenditure by doubling the bonus threshold and
nearly tripling the per-day bonus... teachers in our sample appear to be more likely than not to attend school even without
incentives and be forward-looking. A higher threshold avoids rewarding inframarginal days.
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A word on calibration
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Anderson

Let the commuter value time at v; dollars per hour. An extensive literature (Small
and Verhoef 2007; Abrantes and Wardman 2011) concludes that commuters place a
higher value on time spent waiting for transit, stuck in traffic, or walking than they
do on the same amount of time in other circumstances. Defining a “delay multiplier”
¢ > 1, we can write the commuter’s problem as maximizing

3) U =X - v,[R,(% +clay+ w,.)) +(1— R,)(sﬂd +c(ag+ w‘,,))]

s.t. Y, = X, + m-(p,Ri+ ps(1 —R)),

where s, is rail speed, a,; is rail access and egress time, w, is average waiting time
for the train, s, is free-flow driving speed, a, is car access and egress time, and w,;
is driving delay time (i.e., the difference between driving time in free-flow traffic
and actual driving time). For simplicity we do not include a mode-specific utility
shock, although our conclusions are qualitatively robust to doing so (see online
Appendix A2). Solving the commuter’s problem leads to a decision rule under
which the commuter takes rail if and only if

) [elag+w) + 5] = [elas+wa) + T] < 5 (=)

Rail is the more appealing choice if the difference between delay-penalized
rail travel time c(a,; +w,) +m/s, and delay-penalized driving travel time
c(ay+wy) + m/s, is less than the difference between the cost of driving and
the cost of taking rail, converted from dollars to hours ((pd - p,.)m/v,-). The share
of commuters taking rail is thus determined by the probability that the inequal-
ity above holds. We calibrate the model under two scenarios. The first scenario
assumes that, consistent with the existing literature, all peak-period drivers face
the same average congestion delay, w,. We set the value of time v; at a fraction
~f the hanrly waoe and calikrate the model hy varvine the dictribition of rail
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> “We set the value of time v; at a fraction of the hourly wage and
calibrate the model by varying the distribution of rail access times until
the probability of taking rail equals the observed rail market share in
Los Angeles.”

P> “In cases with any ambiguity we tried to choose parameter values
consistent with the previous literature (e.g., Parry and Small
2009). We assume a trip length of seven miles for commuters in rail
catchment areas and five miles for commuters in bus catchment areas.
Transit headways and fares come from historical MTA documents, and
driving costs come from the American Automobile Association
(LACMTA 2003; AAA 2004). "

> “We could not find authoritative data on parking costs or the share of
commuters with free parking, so we assumed that 85 percent of com-
muters have free parking and that parking costs $5.00 per day for
those with paid”
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TABLE |—PARAMETER VALUES FOR MODEL CALIBRATION

Related Source

Parameter variable Rail Bus (where applicable)
General parameters

Trip length m 7 miles 5 miles Parry and Small (2009)

Hourly wage (average) Vi $21.60 BLS (2004)

Hourly wage (95 percent interval) v; $8.00-$65.50 BLS (2004)

‘Wage multiplier for value of time v 0.5 Parry and Small (2009)

Delay multiplier ¢ 1.8 Parry and Small (2009)
Transit travel time and costs

Transit vehicle speed (average) Spo Sh 23 mph 11 mph Parry and Small (2009)

Transit vehicle speed (95 percent interval) 5., 5 23mph  8.8-11.6 mph

Avg. time between trains/buses Wy, Wp 7 mins 8 mins Los Angeles County MTA

Walking speed a,, a 2.5 mph

Adult fare (per mile) PrDPh $0.12 $0.17 Los Angeles County MTA
Driving travel time and costs

Free-flow driving speed 54 40 mph 35 mph Parry and Small (2009)

Actual driving speed (average) Wy 30 mph 27.1 mph Parry and Small (2009)

Actual driving speed (95 percent interval) Wy 1440 mph 13.3-35mph  PeMS data, Bing maps

Access, parking, and egress time ay 3 mins

Operating costs (per mile) Pd $0.15 AAA (2004)

Share commuters with free parking Pa 85 percent

Parking costs (per day) Pd $5.00

Notes: The delay multiplier applies to time spent waiting for transit, walking, or delayed in traffic. For time spent
delayed in traffic, we calculate delay time as the difference between actual driving time and driving time under
free-flow conditions.
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Calibration results

| 2

"We predict that ceasing transit service would increase average delays
by 0.189 minutes per mile (38 percent).”

"This effect is 5.9 times larger than the predicted effect in the
homogeneous driving time model.”

"The implied fare elasticity in the heterogeneous model is —1.1, which
is slightly larger than estimates from the literature.”

"Our preferred RD estimate ... finds that average delay increases 0.194
minutes per mile (47 percent).”
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TABLE 2—MOoDEL CALIBRATION RESULTS

Homogeneous Heterogeneous
driving speed driving speed
OHfL'OmES
Average delay for drivers 0.50 mins/mile  0.50 mins /mile
Average delay for rail passengers 0.50 mins/mile  3.19 mins/mile
(if they chose to drive)
Average delay for bus passengers 0.50 mins/mile  2.47 mins/mile
(if they chose to drive)
Effect of ceasing transit on average delay 0.032 mins/mile  0.189 mins/mile
Average consumer surplus for rail passengers $0.08 /mile $0.24 /mile
Average consumer surplus for bus passengers $0.04 /mile $0.11/mile
Calibration parameters
Share of population within two miles of rail line 51 percent 30 percent
Average bus line spacing in residential areas 0.4 miles 0.5 miles

Notes: Average delay is chosen to match Parry and Small (2009). Calibration parameter values
are the values necessary to equate predicted ridership with observed ridership.
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Summary of the "structural toolkit”

» Need to find the deep parameters (policy invariant parameters) in
order to conduct counterfactual simulations. These parameters feature
in a model of the data generating process.

» In the process of setting up the data generating process, fix some
parameters (discount factor), likely make functional form assumptions
on the error term that will simplify estimation

> Most choice problems rely on Type | extreme value error term
distribution or some other convenient assumption on the error terms.

» Dynamic problems simplified through the use of value functions and the
Bellman (functional) equation. V(S) = maxx [U(X|S) + BE[V(S")]

49 /55



Summary of the "structural toolkit”

> Try to form a likelihood function- analytical solutions hard to find,
some integrals very difficult to evaluate.

> Method of moments : no clear guidance of what the "optimal”
moments are, but they should be informative of the parameters you are
trying to estimate- variations of parameters should induce variation in
moments

» Moments are not known analytically/difficult to derive: simulated
method of moments.

» Often as a first step, estimate/calibrate some parameters that don't
require structural estimation (e.g. OLS). In the second step, estimate
remaining parameters.
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Summary of the "structural toolkit”

v

Common to test the robustness of models by increasing complexity,
and comparing to predictions from static (or naive) models

Model fit (usually unsurprising for moments you target) - use moments
that are not targeted.

Out-of-sample checks

Compare parameters to literature; discuss magnitude of results,
compare to reduce form estimates.

Can calculate counterfactual analyses under different models and
compare implications.
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Structural estimation: what's the downside

» Estimation will be more challenging

P> Sometimes need to interpret marginal effects rather than coefficients
» Relatively more conditions needed for identification :

>
>
>

>

structural form assumptions

normalizations

assuming separable preferences (over time and states) to simplify
estimation

setting the discount factor to a constant.
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Structural models: upside

v

vVvyyvyy

There is only so much we can learn from historical quasi-experimental
variation

Perform counterfactual experiments
Test specific mechanisms
Used to compare predictive power of competing theories

Sometimes parameters have direct interpretation as economic concepts
(elasticities, risk aversion parameters, discount factors, etc.)
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Fig.2 Example of a light curve.
As the exoplanet orbits the star,
different brightness values are
obtained. Some parameters that
can be extracted from a light

curve are: Beginning of ingress __‘.____.'__'.__‘ ___.__D
(t1); end of ingress (£2);

beginning of egress (¢3); end of broplonet
egress (t4); transit length; and

transit depth Star

Transit Length

Brightness
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HIP 41378 Light Curve
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Fig.4 Real light curve extracted from the planetary system around the
star HIP 41378 in the MAST archive. The x-axis represents a mea-
sure of time called Barycentric Julian Day (BJD); the value 2454833
that accompanies the x-axis title, is to be summed to the x-axis value

2355

23555

in order to calculate the BJD for each measurement. The y-axis repre-
sents the brightness of the star. This figure was created by following

the Transit Light Curve Tutorial
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