Lecture 9: The conditional choice probability (CCP) method:
Finite Dependence and Examples
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Back to the dynamic discrete choice problem

T J
> max E (Z Zﬁtcbt[uj(st\e)‘f‘gjtﬂsl)

t=1j=1
> expectations are taken with respect to the joint distribution of future states and
the &t
» Future states are not affected by € except through current and past choices
E(SH_l‘dt, dl g 81) = E(SH_1|d1_»7 ceny dl)
> Let dﬁ(st,et) represent the optimal decision rule in period t conditional on s; and
&t

» Define V(s;), the integrated value function, as the expected payoff associated with
being in state s;, assuming optimal choices from period t onward.

= E| Z ZBT “djy (e, €0) w56 0) + e sel]

T=t+1,=
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Emax and conditional value functions

= E| Z Zﬁf ‘(e &) [uj(s:[6) + e stl]

T=t+1j=

» The discounted sum of expected payoffs just before €, is revealed conditional on
behaving according to the optimal decision rule.

» According to Bellman'’s principle of optimality, we can write the Emax (expectation
of the solution of an optimization problem) expression, which involves two
multiple- dimensional integrals.

Y o (1tsl6) 5 8 [ Vo)) ) s

/ ( (s:10) +£Jf+ﬁ/vt+1 se+1)f(se+1)lst, Jr)> dFe(€:)

» Define the ch0|ce specific conditional value functions:
vk(se) = uk(se) + BE[V (se41]st)]
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Choice specific value functions

vie(st) = uk(se) + ﬁE[‘_/(StH)’St]

s+ E( Y z/s“ (5e:80)[u5(5¢10) + &3] Ise])

T= t+lJ

= uk(se) + Z Zﬁ” so)[uj(s:10) + Elgje|dje = 1,5¢]]
T= t+1J

» pj(s:) represents the conditional choice probability for choice j in period 7 when
the state is s;

» Express the multidimensional integral over the error terms in terms of the choice
probabilities

> pje(st) = E[d}(st,€)lst] = [ d}(st,€)gr(else)de
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The Hotz-Miller conditional choice probability representation

» Assume we have J choices, with u; = v; + €, with v; a set of functions whose form
is known (up to a vector of unknown parameters) and
€1,€2,€3,....6) ~ F(€1,&2,€3,....€5) . Choice 1 is selected when v; + & > v + &,
or & < vi — v+ & for all k=2...J

o vi—Vo+E€ vi—V +E€

p1 = fiw fiio 2T fiio JTH f(81,82,£3,....8J)d82 ..... de,des,
=¢1(vi —vo,vi —v3,..,vi — vy F)

» We can write similar expressions for any p; and create a system of J-1 equations.

» Hotz and Miller (1993) apply the inverse function theorem to this system and
obtain J-1 solution functions vi — vk = yix(p2,...pJ)

» Once you have J-1 solution functions for any base choice (e.g., the first), you can
easily translate to another: v; — vi = Wi« (p), where p = (p1,...ps)

» This shows that in general the choice probabilities can be mapped into differences
in the conditional valuations, relative to an arbitrary base.
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The inversion mapping for the basic MNL

» Consider a RUM with payoffs u; = v; +¢;

. _exp(v))
> Pi = Yk EXP(JVk)

» Implies logp; — logpx = vj — vi

» Thus, for the MNL, we can specialize v; — vix = Wjc(p) to
Vik(p) = logp; — logpk = log(p;/ p«)
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Choice specific value functions

>

>

Consider the “selection bias" /correction term E[gj;|dj; = 1,s;]. Note that

Vk(St) + €kt is the value of choosing alternative k in period t when the state is s;
Write the “selection bias" term as a functions of the choice probabilities
Elekt| ke, st] = wi(w(p(st)))

This allows us to rewrite:

vie(st) = uk(se +E<Z Z[sf (se)[uj(5:10) + wi(w (p(sr))\stzs,dkt:1>

t=1j=

If we can estimate the functions p(s;), and we know the w;(y(p(s:)) functions(as
is true under Type | extreme value errors for MNL and GEV models) then we can
express vi(st) in terms of current and future flow utility functions and choice
probabilities.
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The inversion mapping for the basic MNL

> Arcidiacono and Miller (2007) show that the w;(y(p(s:)) function can be
simplified if errors have a Type | extreme value distribution:

» For the basic multinomial logit: E[g; | d; = 1]= y— logp; .
» where y=0.577 is Euler's constant
> In our problem, ¥ p;(v; + E(g|d; = 1])=

expv;

Y pi(vj+v—logp;) =v+X;pi(vi — I°g<2kexf’vk>) -

Y, pjlog(Lx expvk) = v+ log (¥« expvi)
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Example: Dynamic structural model of occupational choice

Beginning at age 16, individuals choose among a set of mutually exclusive and exhaustive
options, with the goal of maximizing lifetime utility:

65
mC?x E[ ;6ﬁ3716(u[5a, ca] +€[ca])]

Their decision updates the state space (s, includes includes schooling, work experience,
previous period choices), and the process is repeated at age 17 and thereafter. The choices are:
- continuing K-12 education

enrollment in 2-year college

- enrollment in 4-year college in a STEM, Healthcare or Education major

enrollment in 4-year college in a Liberal Arts, Social Sciences or Business major
enrollment in 4-year college, undeclared major

enrollment in graduate school

employment in the college sector

- employment in the non-college sector

home production

9/22



Choice-specific utility functions

Choice- specific utility functions:

Uca =0+ YCXC + Ecas

Xc- alternative-specific vector of covariates.

» Employment choices: expected log compensation (net of predicted student loan
repayments), experience, years in college in different majors, degrees attained, college

selectivity

» Education choices: expected log tuition .

» All choices: previous period choices, unemployment rate, cumulative GPA, AFQT
percentile, Black, Hispanic

€ca- idiosyncratic shocks, distributed Type | extreme value
o - choice specific constant (preference, endowment)- allowed to differ among two types in

model with heterogeneity.
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Bellman representation
65
maxE[ ) B2 (uls,, cs] + €[ca])] can be represented as:
@ a=16

Va(sa,€(ca)) = mcax[ua(sa, Ca) +€(Ca) +PB [ Vatr1f(Sas1 | 52, €a)dG(€(Cav1))]
Hotz and Miller (1993) representation: The conditional value function:
Va(587 Ca) = Ua(saa Ca) + B f va+1(sa+1a 8(C3+1))f(53+1 | Sa, Ca)dG(g(CaJrl))
can be replaced by:

J
Va(Sa, Ca) = ua(Sa, Ca) Jrﬁ[/”[_zl exp(Va+1(Sa+1, Car1 = J))] + Vf (Sat1 | 52, Ca)
J:
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Proof

Goal: find a closed form solution for [ ¥ Vai1(Sa+1,€(cat1))f(Sav1 | Sa,ca)dG(€(cas1))
Sa+1

Va(sa, €(ca)) = mC?x[va(sa, c,) +€(cl)]

If Y1,Y5... Yc are independent, non-identically distributed extreme value random
variables with location parameters o, 0p,....,0tc and common scale parameter o, the
distribution of Y, is given by:

F(x| &, 0) = P(Ye < x | 0, &) = exp[—exp(—0=9%))]

€(c,) is a Type | extreme value random variable. v,(ss,¢,) +€(c,) is also an extreme
value random variable, with location parameter v, .
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Proof

P(max Y, < x) =N, P(Ye < x)= NE_, exp|[—exp[ ~X=%) ac 1=

= exp{Lc —exp{ %)} }= exp{—exp( ) Leexp( %))

_ exp[_exp[%]]

Mean of the Type | distribution E(€) = a+ oY, location parameter
o= In[y &y exp(ve /o)

Hence [ ¥ Vii1(Sar1,€(cat1))f(sa41 | 52, €a)dG(e(Cat1))=

Sa+1

J
=Y [In[¥ exp(Vay1(Sas1,Car1 =J)]+VIf(Say1 | 5a;Ca)

Sa+1 j:1
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Model representation-CCP

Given the Type | extreme value assumption, the probability of choosing any option &, at
age a is:
Pr(c,=&,|s,) = 2Plale6=0) _ 1

¥ .
121 exp(va(sa,ca=J)) '21 exp(Va(Sa,ca=j)—(va(sa,ca=¢))
j= j=

The value function can be expressed as:

Va(saaca = E) = Ua(sayca = E) +

J
ﬁ[/n[Zl eXp((Va+1(sa+17 Cat+1l :J) - (Va+1(sa+1-, Catl = q))]f(sa+1 | Sa,Ca = E) +
Blva+1(sat1,car1 = q)If (Sa+1 | 5a,¢a = €)

We can use a telescoping argument, and similarly express v,41 and v,1» as functions of conditional
choice probabilities. However, we would still need to evaluate v,;3. For “terminal" and “renewal"
problems the choice of base can lead us to a situation where v,,1 = 0. For other problems, we will
employ the finite dependence method.
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Finite dependence: Arcidiacono and Miller (2011)

Period t |

[ Period t+1 |

| Period t+2 |
Overeducated Home Home
] » ° :
production production
Same state
inperiod t
Home
Home
Overeducated > s
production " production

Same state
in period
t+3

» In period t+3, the conditional value functions v,,3 and probabilities

» Pr=1(cay3) will be the same, and will drop out when we take the difference in

value functions at period t.
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Estimation

Va(sa7da = E) - Va(sa-,da = H) = ua(saada = E)+

Bin[Pr~(car1 = H | sa1)lf (Sat1 | 5a,ca = €)—

Bin[Pr*(cas1 = €| say1)lf(sat1 | sasca = H)~

B[Ua+1(sa+lsca+1 = E)]f(sa+1 ‘ S3,Ca = H)+

ﬁzln[Pril(Ca-%—Z =H| 52+2)]f(53+2 | Sat1,Cayr1 = H)F(Say1 | 5a,ca=E)—
B2In[Pr=(car2 = H | sa2)f (sa42 | Sat1,Car1 = E)F(Sat1 | Sa,ca = H)

1. Estimate conditional choice probabilities using a flexible multinomial logit.

2. Calculate the scalar terms along the finite dependence path.

3. Estimate the flow utility parameters using a multinomial logit with offset terms
equal to the scalars calculated in 2).

4. Heterogeneity introduced through a finite mixture model (Heckman and Singer,
1984) with two types, through an adaptation of the EM algorithm (Arcidiacono
and Miller, 2011).
Identification assumptions: Assumptions imposed on the idiosyncratic shocks; Normalization of
the utility of the home production option; Discount factor set to 0.9
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Heterogeneity analysis

>

>

Population composed of a finite mixture of K types, whose type K probabilities are
fixed.

Sample log Iikelihood is then given by:

N
InZ(©)= Y In( Z H ;)

i=1 k=1la=1
Maximizing the above logarithm would require integrating out over the unobserved
states. Instead, Arcidiacono and Miller (2011) adaptation of the EM algorithm
reinstates additive separability by treating the unobserved states as observed in the
maximization step, and maximizing the expected log likelihood function instead:

InZ(©) = Z Z Z q’k 1(Ca | S0y k, ), pU), U—1))

i=1lk=1a=1
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Estimation: EM algorithm
Step 1. After using an initial guess, update qi(/('”Ll) conditional on the data and
parameter values using Bayes’ rule:

ﬁ 775k :ka(ca‘smkv”m PU 90))

(—l+1) — a 1
Ak "= & TP
kzl Hl 4ka(ca‘savk 7U) P(J 9(1))
“1a=

(+1)

, update ;.

Step 2. Given g;, U+1) N Z q(”+1 :

Step 3. Maximize the expected Iikellhood functlon to obtain new estimates UT1),
U+1) are treated

as given, actmg as populatlon weights.

given q(fr ) UH) , pY) | and ¢, and s,. At the maximization step, 9

Step 4. Update the conditional choice probability parameters to pUt1) using the
conditional likelihood of observing choices & when the parameters are e/t | pi
pU™ = P(c =& s,k 00D, 1)) = Li(s, k, 00+, 1)
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Kang, Lowery and Wardlaw (2014)

» Dynamic model of the decision to close a troubled bank: immediate costs versus
delayed (contagion) risk.

» FDIC as a utility-maximizing agent who faces a variety of costs when closing an
insolvent bank. In each period, an FDIC regulator chooses whether to close a
bank. If the bank is closed, the regulator must pay a monetary cost. This cost is
the direct payout from the insurance fund required to make depositors whole.

» “Among other things, we find some evidence of political influence on the FDIC,
and we find that the FDIC tended to prefer to allow the largest and smallest banks
to continue to operate even at an expected cost to taxpayers."
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Kang, Lowery and Wardlaw paper

We estimate the model using the [Hotz and Milled (1993) technique,
which permits identification of structural parameters of dynamic models
without solving the dynamic programming problem as is required in methods
following ). Instead of solving for the potentially highly intractable
value function, the researcher acknowledges that the agent has solved the
problem in order to choose his optimal behavior, and, therefore, there is
an invertible mapping between value functions and empirically observed
choice probabilities. This approach leads to an estimator with a much lower
computational burden compared to traditional methods, allowing us to consider
a richer set of explanatory variables and several different variations of the

1 e~~~ e~ . ~ s
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Kang, Lowery and Wardlaw paper

This assumption allows identification of the monetary and nonmonetary
costs of an orderly bank closure even though we never observe disorderly
failures. This identification is perhaps surprising because the fear of a disorderly
closure is the primary reason that banks are closed in an orderly fashion at all.
Our partial identification from limited data demonstrates a powerful aspect of
the estimation technique applied here. As long as we can obtain estimates of
the expected closure cost one period ahead, the probability of closure given
each state, and the state transition process, we can identify nonmonetary cost
parameters and the discount factor without needing either data or assumptions
about the costs along choice paths farther into the future. This feature arises
because we apply the inversion theorem from Hotz and Milled (1993) to
represent value-function differences as ratios of logs of choice probabilities,
allowing us to account for the dynamics in the decision process of the FDIC
without actually calculating the value function directly.
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Kang, Lowery and Wardlaw paper

The insight that permits identification of the dynamic model is that it is
possible to substitute out the terms that cannot be expressed in closed form by
replacing them with estimated closure probabilities that can be estimated from
the data. This is possible because these closure probabilities are the outcome of
the agent solving the dynamic programming problem. As a result, we can obtain
an expression that should hold (Equation|6), and that contains only observable
data, preestimated quantities, and structural parameters.
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Kang, Lowery and Wardlaw paper: terminal actions

Note that once d;; =1 is chosen, this action cannot be undone and there are no
more actions to follow in future periods. Hence, our model features a “terminal
action” or “absorbing state” from the dynamic discrete choice literature. We
see this by observing that V;(x;,) does not include any future payoffs.
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