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Back to the dynamic discrete choice problem

I max E (
T

∑
t=1

J

∑
j=1

β
tdjt [uj(st |θ) + εjt ]|s1)

I expectations are taken with respect to the joint distribution of future states and
the εjt

I Future states are not affected by ε except through current and past choices
E (st+1|dt , ...d1,εt , ...,ε1) = E (st+1|dt , ...,d1)

I Let d0
jt(st ,εt) represent the optimal decision rule in period t conditional on st and

εt

I Define V̄ (st), the integrated value function, as the expected payoff associated with
being in state st , assuming optimal choices from period t onward.

V̄ (st) = E [
T

∑
τ=t+1

J

∑
j=1

β
τ−td0

jτ (sτ ,ετ )[uj(sτ |θ) + εjτ |st ]]
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Emax and conditional value functions

V̄ (st) = E [
T

∑
τ=t+1

J

∑
j=1

β
τ−td0

jτ (sτ ,ετ )[uj(sτ |θ) + εjτ |st ]]

I The discounted sum of expected payoffs just before εt is revealed conditional on
behaving according to the optimal decision rule.

I According to Bellman’s principle of optimality, we can write the Emax (expectation
of the solution of an optimization problem) expression, which involves two
multiple-dimensional integrals.

V̄ (st) = E [
J

∑
j=1

d0
jτ

(
uj(sτ |θ) + εjτ + β

∫
Vt+1(st+1)f (st+1)|st ,d0

jτ )

)
|st ]

V̄ (st) =
J

∑
j=1

∫
d0
jτ

(
uj(sτ |θ) + εjτ + β

∫
Vt+1(st+1)f (st+1)|st ,d0

jτ )

)
dFε (ετ )

I Define the choice specific conditional value functions:
vk(st) = uk(st) + βE [V̄ (st+1|st)]
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Choice specific value functions

vk(st)≡ uk(st) + βE [V̄ (st+1)|st ]

= uk(st) +E
( T

∑
τ=t+1

J

∑
j=1

β
τ−td0

jτ (sτ ,ετ )[uj(sτ |θ) + εjτ ] |st ]
)

= uk(st) +
T

∑
τ=t+1

J

∑
j=1

β
τ−tpj(sτ )[uj(sτ |θ) +E [εjτ |djτ = 1,sτ ]]

I pj(sτ ) represents the conditional choice probability for choice j in period τ when
the state is sτ

I Express the multidimensional integral over the error terms in terms of the choice
probabilities

I pjt(st) = E [d0
jt(st ,ε)|st ] =

∫
d0
jt(st ,ε)gt(ε|st)dε
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The Hotz-Miller conditional choice probability representation
I Assume we have J choices, with uj = vj + εj , with vj a set of functions whose form

is known (up to a vector of unknown parameters) and
ε1,ε2,ε3, ....εJ ∼ F (ε1,ε2,ε3, ....εJ) . Choice 1 is selected when v1 + ε1 > vk + εk ,
or εk < v1−vk + ε1 for all k=2...J{

p1 =
∫

∞

−∞

∫ v1−v2+ε1
−∞

.......
∫ v1−vJ+ε1
−∞

f (ε1,ε2,ε3, ....εJ)dε2.....dεJdε1,

= φ1(v1−v2,v1−v3, ...,v1−vJ ;F )

I We can write similar expressions for any pj and create a system of J-1 equations.
I Hotz and Miller (1993) apply the inverse function theorem to this system and

obtain J-1 solution functions v1−vk = ψ1k(p2, ...pJ)

I Once you have J-1 solution functions for any base choice (e.g., the first), you can
easily translate to another: vj −vk = ψjk(p), where p = (p1, ...pJ)

I This shows that in general the choice probabilities can be mapped into differences
in the conditional valuations, relative to an arbitrary base.
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The inversion mapping for the basic MNL

I Consider a RUM with payoffs uj = vj + εj

I pj =
exp(vj )

∑k exp(vk )

I Implies logpj − logpk = vj −vk

I Thus, for the MNL, we can specialize vj −vk = ψjk(p) to
ψjk(p) = logpj − logpk = log(pj/pk)
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Choice specific value functions

I Consider the “selection bias"/correction term E [εjτ |djτ = 1,sτ ]. Note that
vk(st) + εkt is the value of choosing alternative k in period t when the state is st

I Write the “selection bias" term as a functions of the choice probabilities
E [εkt |dkt ,st ] = wk(ψ(p(st)))

I This allows us to rewrite:

vk(st) = uk(st) +E
( T

∑
t=1

J

∑
j=1

β
τ−tpj(sτ )[uj(sτ |θ) +wj(ψ(p(sτ ))|st = s,dkt = 1

)
I If we can estimate the functions p(sτ ), and we know the wj(ψ(p(sτ )) functions(as

is true under Type I extreme value errors for MNL and GEV models) then we can
express vk(st) in terms of current and future flow utility functions and choice
probabilities.
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The inversion mapping for the basic MNL

I Arcidiacono and Miller (2007) show that the wj(ψ(p̂(sτ )) function can be
simplified if errors have a Type I extreme value distribution:

I For the basic multinomial logit: E[εj | dj = 1]= γ− logpj ,

I where γ=0.577 is Euler’s constant

I In our problem, ∑j pj(vj +E (εj |dj = 1])=

∑j pj(vj + γ− logpj) = γ + ∑j pj(vj − log
(

expvj
∑k expvk

)
) = γ+

∑j pj log(∑k expvk) = γ + log(∑k expvk)
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Example: Dynamic structural model of occupational choice
Beginning at age 16, individuals choose among a set of mutually exclusive and exhaustive
options, with the goal of maximizing lifetime utility:

max
ca

E [
65

∑
a=16

β
a−16(u[sa,ca] + ε[ca])]

Their decision updates the state space (sa includes includes schooling, work experience,
previous period choices), and the process is repeated at age 17 and thereafter. The choices are:
- continuing K-12 education

- enrollment in 2-year college
- enrollment in 4-year college in a STEM, Healthcare or Education major
- enrollment in 4-year college in a Liberal Arts, Social Sciences or Business major
- enrollment in 4-year college, undeclared major
- enrollment in graduate school
- employment in the college sector
- employment in the non-college sector
- home production
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Choice-specific utility functions
Choice- specific utility functions:

Uca = αc + γcXc + εca,

Xc - alternative-specific vector of covariates.

I Employment choices: expected log compensation (net of predicted student loan
repayments), experience, years in college in different majors, degrees attained, college
selectivity

I Education choices: expected log tuition .

I All choices: previous period choices, unemployment rate, cumulative GPA, AFQT
percentile, Black, Hispanic

εca- idiosyncratic shocks, distributed Type I extreme value
αc - choice specific constant (preference, endowment)- allowed to differ among two types in
model with heterogeneity.
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Bellman representation

max
ca

E [
65

∑
a=16

β
a−16(u[sa,ca] + ε[ca])] can be represented as:

Va(sa,ε(ca)) = max
ca

[ua(sa,ca) + ε(ca) +β
∫
Va+1f (sa+1 | sa,ca)dG (ε(ca+1))]

Hotz and Miller (1993) representation: The conditional value function:

va(sa,ca) = ua(sa,ca) + β
∫
Va+1(sa+1,ε(ca+1))f (sa+1 | sa,ca)dG (ε(ca+1))

can be replaced by:

va(sa,ca) = ua(sa,ca) + β [ln[
J

∑
j=1

exp(va+1(sa+1,ca+1 = j))] + γ]f (sa+1 | sa,ca)
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Proof

Goal: find a closed form solution for
∫

∑
sa+1

Va+1(sa+1,ε(ca+1))f (sa+1 | sa,ca)dG (ε(ca+1))

Va(sa,ε(ca)) = max
ca

[va(sa,ca) + ε(ca)]

If Y1,Y2... YC are independent, non-identically distributed extreme value random
variables with location parameters α1, α2,....,αC and common scale parameter σ , the
distribution of Yc is given by:

F (x | αc ,σ) = P(Yc ≤ x | αc ,σ) = exp[−exp(−(x−αc )
σ

)]

ε(ca) is a Type I extreme value random variable. va(sa,ca) + ε(ca) is also an extreme
value random variable, with location parameter va .
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Proof

P(max
c

Yc ≤ x) = ΠC
c=1P(Yc ≤ x)= ΠC

c=1exp[−exp[−(x−αc )
σ

]] =

= exp{∑c−exp{
−(x−αc )

σ
}}= exp{−exp(−x

σ
)∑c exp( αc

σ
)}

= exp[−exp[
−(x−σ ln∑exp αc

σ
)

σ
]]

Mean of the Type I distribution E (ε) = α + σγ , location parameter
α = ln[∑C

c=1 exp(vc/σ)]

Hence
∫

∑
sa+1

Va+1(sa+1,ε(ca+1))f (sa+1 | sa,ca)dG (ε(ca+1))=

= ∑
sa+1

[ln[
J

∑
j=1

exp(va+1(sa+1,ca+1 = j)] + γ]f (sa+1 | sa,ca)
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Model representation-CCP

Given the Type I extreme value assumption, the probability of choosing any option c̃a at
age a is:

Pr(ca = c̃a | sa) = exp(va(sa,ca=c̃))
J

∑
j=1

exp(va(sa,ca=j))
= 1

J

∑
j=1

exp(va(sa,ca=j)−(va(sa,ca=c̃))
.

The value function can be expressed as:

va(sa,ca = c̃) = ua(sa,ca = c̃)+

β [ln[
J

∑
j=1

exp((va+1(sa+1,ca+1 = j)− (va+1(sa+1,ca+1 = q))]f (sa+1 | sa,ca = c̃)+

β [va+1(sa+1,ca+1 = q)]f (sa+1 | sa,ca = c̃)

We can use a telescoping argument, and similarly express va+1 and va+2 as functions of conditional
choice probabilities. However, we would still need to evaluate va+3. For “terminal" and “renewal"
problems the choice of base can lead us to a situation where va+1 = 0. For other problems, we will
employ the finite dependence method.
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Finite dependence: Arcidiacono and Miller (2011)

I In period t+3, the conditional value functions va+3 and probabilities
I Pr−1(ca+3) will be the same, and will drop out when we take the difference in

value functions at period t.
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Estimation
va(sa,da = c̃)−va(sa,da =H) = ua(sa,da = c̃)+
β ln[Pr−1(ca+1 =H | sa+1)]f (sa+1 | sa,ca = c̃)−
β ln[Pr−1(ca+1 = c̃ | sa+1)]f (sa+1 | sa,ca =H)−
β [ua+1(sa+1,ca+1 = c̃)]f (sa+1 | sa,ca =H)+
β2ln[Pr−1(ca+2 =H | sa+2)]f (sa+2 | sa+1,ca+1 =H)f (sa+1 | sa,ca = c̃)−
β2ln[Pr−1(ca+2 =H | sa+2)]f (sa+2 | sa+1,ca+1 = c̃)f (sa+1 | sa,ca =H)

1. Estimate conditional choice probabilities using a flexible multinomial logit.
2. Calculate the scalar terms along the finite dependence path.
3. Estimate the flow utility parameters using a multinomial logit with offset terms

equal to the scalars calculated in 2).
4. Heterogeneity introduced through a finite mixture model (Heckman and Singer,

1984) with two types, through an adaptation of the EM algorithm (Arcidiacono
and Miller, 2011).

Identification assumptions: Assumptions imposed on the idiosyncratic shocks; Normalization of
the utility of the home production option; Discount factor set to 0.9
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Heterogeneity analysis

I Population composed of a finite mixture of K types, whose type K probabilities are
fixed.

I Sample log likelihood is then given by:

lnL (Θ)=
N

∑
i=1

ln(
K

∑
k=1

A

∏
a=1

πkLi )

I Maximizing the above logarithm would require integrating out over the unobserved
states. Instead, Arcidiacono and Miller (2011) adaptation of the EM algorithm
reinstates additive separability by treating the unobserved states as observed in the
maximization step, and maximizing the expected log likelihood function instead:

lnL (Θ) =
N

∑
i=1

K

∑
k=1

A

∑
a=1

qjikLi (ca | sa,k,π(j), p̂(j),θ (j−1))

Back
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Estimation: EM algorithm

Step 1. After using an initial guess, update q
(j+1)
ik conditional on the data and

parameter values, using Bayes’ rule:

q
(j+1)
ik =

A

∏
a=1

π
(j)
k Lika(ca|sa,k,π(j),p̂(j),θ (j))

K

∑
k=1

A

∏
a=1

π
(j)
k Lika(ca|sa,k,π(j),p̂(j),θ (j))

Step 2. Given q
(j+1)
ik , update π

(j+1)
ik = 1

N

N

∑
i=1

q
(j+1)
ik .

Step 3. Maximize the expected likelihood function to obtain new estimates θ (j+1),
given q

(j+1)
ik , π

(j+1)
ik , p̂(j) , and ca and sa. At the maximization step, q(j+1)

ik are treated
as given, acting as population weights.

Step 4. Update the conditional choice probability parameters to p(j+1) using the
conditional likelihood of observing choices c̃ when the parameters are θ j+1 , p̂j :
p
(j+1)
c̃ = P(c = c̃ | s,k ,θ (j+1),π j)) = Lc̃(s,k ,θ (j+1),π j)
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Kang, Lowery and Wardlaw (2014)

I Dynamic model of the decision to close a troubled bank: immediate costs versus
delayed (contagion) risk.

I FDIC as a utility-maximizing agent who faces a variety of costs when closing an
insolvent bank. In each period, an FDIC regulator chooses whether to close a
bank. If the bank is closed, the regulator must pay a monetary cost. This cost is
the direct payout from the insurance fund required to make depositors whole.

I “Among other things, we find some evidence of political influence on the FDIC,
and we find that the FDIC tended to prefer to allow the largest and smallest banks
to continue to operate even at an expected cost to taxpayers."
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Kang, Lowery and Wardlaw paper
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Kang, Lowery and Wardlaw paper
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Kang, Lowery and Wardlaw paper

21 / 22



Kang, Lowery and Wardlaw paper: terminal actions
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