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... previous take home...

QA:

“I chose the article https://www.nature.com/articles/s41598-019-49172-3 due to the interesting
applications in combinatorial problems. It is also related to scheduling which is interesting. In
the article the scheduling problem was presented with an ising spin hamiltonian. The problem
was solved with quantum annealing. The results were promising with a fixed sample size and
fixed annealing duration.

The probability of success can be improved with reverse annealing although not uniformly. The
quantum annealing approach may not work for larger problems but it is possible to decompose
the problem into smaller parts where the method described could work. Additionally, there
have not been performance comparisons to conventional methods used to solve the same
problem. In the article a specific schedule was studied while different schedule parameters can
impact the obtained results. In further research, the effect of quantum tunneling on the hard
constraints and the noise of the processor impacting the results require more analysis.



... summaries...

"I picked the article about QKZM because | felt like the concept was interesting and relevant for many
applications, but | didn't yet get a great handle on it during the last lecture or the presentations before that.
The defect density and varying the annealing rate were clear, but what | was missing is the interpretation
and the context in which this relates to the nature of the phase transition more generally.

The article describes both an experimental and numerical study of several quantum phase transitions in a 1D
chain of atoms. The system is composed of Rb atoms, that can either be in the electronic ground state, or the
excited Rydberg state. By varying the terms of the many body hamiltonian, different quantum phases can be
studied. Specifically, the QKZM is realised by sweeping the detuning frequency in the hamiltonian with
varying rates. First, an Ising universality class system is examined numerically and with the experimental
setup, and agreement between the behavior is found for the critical exponents. The phase transitions here
are between an unordered phase, where most atoms up to quantum fluctuations are in the ground state, and
one of several ordered states with periodicity of 2, 3 or 4, where a pattern of excited and ground state atoms
alternates, the symmetry broken by occasional defects that are used to study the properties of the phase
transition.In the period 2 (Ising class) case, the shape of the universally scaling distance correlation function
is also discussed, and corrections to the QKZM predicted simple correlation are observed. The more complex
period 3 and 4 phase transitions experimentally agree with the universality classes of the 3- and 4-state
chiral clock systems respectively. The experimental method presented could be useful further in exploration
of qguantum optimization problems and lattice gauge theories, both of which do sound useful and | would like
to know something about if | find the time :) “.



Fluctuation relations

What happens in small
systems so that large
numbers do not rule?
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Statistical T

Mechanics

Systems, where fluctuations
and the thermodynamics of
information are important.

[thanks to Luca Peliti, Napoli]
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Prerequisite: relative entropy

The relative entropy (or Kullback-Leibler divergence) of two pdf’s p
and g i1s a measure of their difference

P:
DxL(pllg) = > palog q—”r
T

T

Properties:

+ Dxr(pllg) =0

+ Dk1(pllg) # Dxw(q||p)
* Dkr(pllg) = 0S pp = g, YV



probability

0.25-

0.20-

0.15-

o
—-
o

0.05-

unmml

0.00-

KL explained

Distribution of Teeth (all three)

0 1 2 3 7 8 9 10
teeth cou nt

variable

[l observed_probability
. uniform

binom
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Binomial or uniform?
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0.388.
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[Thanks to Will Kurt]



Recall that the fluctuation theorem, Eq. (), compares the
entropy production probability distribution of a process with
the entropy production distribution of the corresponding
time-reversed process. For example, with the confined gas
we compare the entropy production when the gas is com-
pressed to the entropy production when the gas is expanded.
To allow this comparison of forward and reverse processes,
we will require that the entropy production is odd under a
time reversal, i.e., wy= —wy. for the process under consid-
eration. This condition is equivalent to requiring that the fi-
nal distribution of the forward process, pe(x . ;). is the same
(after a time reversal) as the initial phase-space distribution
of the reverse process, pylx. ), and vice versa ie,
prlxs ) =palx.;) and pg(x_ ;)= pplx_;). In the next sec-
tiom, we will discuss two broad types of work process that
fulfill this condition. Either the system begins and ends in
equilibrium or the system begins and ends in the same time
symmetric nonequilibrium steady state.

This time-reversal symmetry of the entropy production
allows the comparison of the probability of a particular path,
x(t), starting from some specific point in the mitial distribu-
tion, with the corresponding time-reversed path,

prix_JFxi+0lM+0] 7
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This follows from the the conditions that the system is mi-
croscopically reversible, Eq. (5), and that the entropy pro-
duction is odd under a time reversal.

Now consider the probability, Pg{w), of observing a par-
ticular value of this entropy production. It can be written as a
& function averaged over the ensemble of forward paths,

Pelw)=1{8 w—wp) )
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Here [ [T - Dlx(¢)]dx_  dx_  indicates a sum or suit-

able normalized integral over all paths through phase-space,
and all initial and final phase-space points, over the appro-
priate time interval. We can now use Eq. (7) to convert this
average over forward paths into an average over reverse

paths,
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The & function allows the «** term to be moved outside the
integral in the second line above. The remaining average is

over reverse paths as the system is driven in reverse. The
final result is the entropy production fluctuation theorem,
Eqg. (2).

The theorem readily generalizes to other ensembles. As
an example, consider an isothermal-isobaric system. In addi-
tion to the heat bath, the system is coupled to a volume bath,
characterized by Sp. where p is the pressure. Then the mi-
croscopically reversible condition, Eq. (5), becomes
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Both baths are considered to be large, equilibrium, thermo-
dynamic systems. Therefore, the change in entropy of the
heat bath is — 8¢ and the change in entropy of the volume
bath is — BpA¥, where AV is the change in volume of the
system. The entropy production should then be defined as

w=Inp(x_)-Inpx, )—B0—FpAV. (%)

The fluctuation theorem, Eq. (2), follows as before. It is pos-
sible to extend the fluctuation theorem to any standard set of
baths, so long as the definitions of microscopic reversibility
and the entropy production are consistent. In the rest of this
paper we shall only explicitly deal with systems coupled to a
single heat bath, but the results generalize directly.

IL TWO GROUPS OF AFPLICABLE SYSTEMS

In this section we will discuss two groups of systems for
which the entropy fluctuation theorem, Eq. (2), is valid.
These systems must satisfy the condition that the entropy
production, Eq. (6), is odd under a time reversal. and there-
fore that pe{x. ;)= ppix. ).

First consider a system that is in equilibrium from time
t=—% to r=—r. It is then driven from equilibrium by a
change in the controlled parameter, . The system is actively
perturbed up to a time += + 7, and is then allowed to relax,
so that it once again reaches equilibrium at r= +=. For the
forward process the system starts in the equilibrium en-
semble specified by h(—=), and ends in the ensemble speci-
fied by A(+2c). In the reverse process, the initial and final
ensembles are exchanged. and the entropy preduction is odd
under this time reversal. The gas confined in the diathermal
cylinder satisfies these conditions if the piston moves only
for a finite amount of time.

At first it may appear disadvantageous that the entropy
production has been defined between equilibrium ensembles
separated by an infinite amount of time. However, for these
systems the entropy production has a simple and direct inter-
pretation. The probability distributions of the initial and final
ensembles are known from equilibrium statistical mechanics:
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Jarzynski’ equality  E = E.(), A=) (‘protocol’)

|dea: measure free
energy difference
by a loop, and using
probabilities for a
path given a
particular control A.

Assumes detailed
balance along the
trajectory/path

(loop).

- Start from equilibrium: pz(to) = p§i(Ao), pz(to) = PEI(Ar):

'P).(iff,\l _ o~ (Q@)+Ft—Exp —(Fo—Ex,))/ksT
Ps(x)
_ o (Q(@)~AE)/ksT ,~AF/ksT _ W(z)/ksT ,~AF/kpT

- JarzynsRi’s equality:
<C—W/}.=.BT> _ o—AF/ksT
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non-eq. eq

- Examples:
- Quasi-static transformation: p.(t) = pa(A(t)):

—W/kBT\ . 1 143 o T _ _—AF/kpT
<c ; > - [_ffB—T_ dt A(t) (OrEdpeaiaqey) | =€ o

- Sudden transformation E,(\;) — EL(Xf):

<0—W.”<-’BT> = /(:1;1* o (Exap (2)—Ex;(2))/kpT [(Fx; —Ex;(2))/ksT

— o~ (Fag=Fx;)/kBT



Relation to 2" |law of
thermodynamics

Take a reversible process, so that the free energy change is zero.
Thus, the expectation value of the exponential is zero.

But, this implies there are paths with W smaller than zero!



Dissipated work and KL entropy

+ Probability distribution of W
PA(W) = / Dz Pa(x) 6(W(x) — W)

- Relative entropy of Px(x) and Pj ( )
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- Let P5(W) be close to a Gaussian:
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then ,
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Other similar relations

* Crooks, Seifert...

* Non-Equilibrium Steady-States (“NES”), large deviation theories

Callavotti-Cohen Paaleo) 1 ZQ+ A5 (@) /ks
'Pj\ (_;I?|.r0:tf’f) kgl Fc:l

Applications to “small-N" systems
and thermodynamics: biology!
Fluctuations of stochastic reaction processes, entropy, information.



RNA hairpin

COLLIN ET AL. 2005
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First real application “experimentally”.
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Next take home

This time we study some basics of non-equilibrium thermodynamics. This field is effectively 15 years old (in
terms of getting serious attention and applications). One very important issue is what to do in the quantum
realm (how to define work is key question) but here we keep it simple. The Sethna book is even though the
most modern not on par with current understanding. There is a bunch of lecture notes of varying sophistication
(you may find those by Udo Seifert for instance) but we instead refer to the seminar notes of Jarzynski found at
https://math.ucr.edu/home/baez/thermo/Jarzynski_SFI_Tutorial_Nonequilibrium_Statistical_Mechanics.pdf. .

The key points are: what does the Jarzynski equality mean, why is it important?
We have again then a pick of two recent with lo and behold, both having Chris Jarzynski as one of the authors.

You may have a look at his own review of the state of this field
https://www.sciencedirect.com/science/article/pii/S0378437119312075

or check an application to biological systems
https://journals.aps.org/prl/abstract/10.1103/PhysRevlett.124.228101

And your task is like the previous time "2+8" sentences on the selection and main points.


https://www.sciencedirect.com/science/article/pii/S0378437119312075
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.124.228101

