Advanced Microeconomics 2
Helsinki GSE
Juuso Välimäki

Problem Set 3, Due December 5, 2023

1. Consider the following exchange economy with two agents and three goods (real Edgeworth Box). Agent 1 has linear preferences represented by the utility function

$$
u_{1}\left(x_{11}, x_{12}, x_{13}\right)=x_{11}+2 x_{12}+5 x_{13}
$$

and agent 2 has utility function

$$
u_{2}\left(x_{21}, x_{22}, x_{23}\right)=3 x_{21}+3 x_{22}+7 x_{23}
$$

(a) Let the total resources of the three goods be given by: $\bar{x}_{1}=\bar{x}_{2}=$ $\bar{x}_{3}=3$. What are the Pareto-efficient allocations?
(b) Suppose that the initial endowments of the two agents are: $\omega_{11}=$ $2, \omega_{12}=2, \omega_{13}=1$ and $\omega_{21}=1, \omega_{22}=1, \omega_{23}=2$. Compute the equilibrium prices and the equilibrium allocation for this economy.
2. Two consumers have identical Cobb-Douglas preferences for L goods $\left(x_{i 1}, \ldots, x_{i L}\right)$ given by:

$$
u_{i}\left(\boldsymbol{x}_{i}\right)=\prod_{l=1}^{L} x_{i l}^{\alpha_{l}}, 0<\alpha_{l}<1 \text { for all } l .
$$

(a) Let $\boldsymbol{\omega}$ denote the vector of total resources for the economy and find the Pareto-efficient allocations.
(b) For Pareto-efficient allocations, compute the shares $\left(s_{21}=\frac{x_{2 l}}{\omega_{l}}\right.$ across the different goods l)
3. Consider the following exchange economy.
(a) In an economy, two consumers have utility functions:

$$
u_{1}\left(x_{11}, x_{12}\right)=\ln \left(x_{11}\right)+x_{12}
$$

$$
u_{2}\left(x_{21}, x_{22}\right)=\ln \left(x_{21}\right)+x_{22}
$$

Find the Pareto-efficient allocations for total resources of 2 units of good 1 and 4 units of good 2 .
(b) Find a competitive equilibrium allocation and price for the economy where the agents have utility functions as above and the initial endowments are: $\omega_{1}=(0,3), \omega_{2}=(2,1)$.
(c) Add a third consumer with utility function $u_{3}\left(x_{31}, x_{32}\right)=\ln \left(2 x_{31}+\right.$ $\left.x_{32}\right)$ and $\left.\omega_{3}=(2,2)\right)$. Find the Pareto-efficient allocations and the competitive equilibrium.
4. Consider an economy where all three consumers $i \in\{1,2,3\}$ have the same utility functions $u_{i}\left(x_{i 1}, x_{i 2}\right)=x_{i 1} x_{i 2}$, and the initial endowments of the three consumers are $\left.\omega_{1}=(1,14), \omega_{2}=(1,14), \omega_{3}=(27,1)\right)$.
(a) Show that the allocation $\boldsymbol{x}=((6,6),(7,7),(16,16))$ is Paretoefficient.
(b) Show that this allocation is in the core of the economy.
(c) Consider a replica economy where you have identical copies to the original three consumers added to the economy. Denote an allocation for this economy by $\boldsymbol{x}^{(2)}=\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, where \boldsymbol{x}^{\prime} is the allocation for the copied consumers. Is the allocation

$$
(((6,6),(7,7),(16,16)),((6,6),(7,7),(16,16)))
$$

in the core for this replica economy?
5. M intermediate goods $j \in\{1, \ldots, M\}$ are produced using input vectors \boldsymbol{z}_{j} with $\boldsymbol{z}_{j} \in \mathbb{R}_{+}^{L}$ and the production function is given by $q_{j}\left(\boldsymbol{z}_{j}\right)=$ $f_{j}\left(\boldsymbol{z}_{j}\right)$ for some strictly increasing and concave function f_{j}. The final product q is produced from the intermediate goods according to the production function $q=\min \left\{q_{1}, \ldots, q_{M}\right\}$. Find the cost function for q in terms of the individual cost functions c_{j}.
6. Consider a production economy with a fixed size of available land L. All agents in the economy either work or enjoy leisure. Total amount of time available is $T \leq 2 L$. Working hours are divided between cultivating barley b, denoted by t_{b} or cultivating rye r denoted by t_{r} so that leisure amounts to $T-t_{b}-t_{r}$. Land is also divided amongst barley and rye into l_{b} and l_{r}.
(a) Suppose that all agents have the same preferences given by

$$
u^{i}\left(b^{i}, r^{i}, t_{b}^{i}, t_{r}^{i}\right)=b^{i} r^{i}\left(T-t_{b}^{i}+t_{r}^{i}\right)
$$

and the production functions for firms producing b and r are Leontieff:

$$
b=\min \left\{\frac{1}{2} t_{b}, l_{b}\right\}, \quad r=\min \left\{t_{r}, l_{r}\right\},
$$

where t_{j} denotes the aggregate time spent cultivating j. Show that if a competitive solution to the firms' problems exists, the firms make zero profit.
(b) Define a competitive equilibrium for this economy.
(c) Show that in any competitive equilibrium, all agents work the same total hours.
(d) Solve for the competitive equilibrium prices and allocation.

