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Summary of previous lecture

Last week, we expressed the minimum 2-cut problem as the integer
optimization problem

min vTLv : v ∈ {−1, 1}n, v 6= ±e.

What makes this problem difficult is the constraint.

The relaxed problem when 0 6= v ∈ Rn is instead easy: its minimum is 0
(the least eigenvalue of L) and its minimizer is (any nonzero multiple) of e
(the eigenvector).
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Fiedler’s idea

Then the Czech mathematician M. Fiedler had the idea to harden the
relaxed constraint a bit, so to minimise over all real vectors v that are
orthogonal to e.

This exploits the

Theorem (Courant-Fischer)
Suppose that M is a real symmetric matrix having least eigenvalue λn with
eigenvector w . Then,

min
vT v=1
wT v=0

vTMv = λn−1

argminvT v=1
wT v=0

vTMv = u

where λn−1 is the second least eigenvalue and u is a normalized eigenvector
of its.
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Fiedler’s idea - 2

When applied to the case M = L, the Courant-Fischer theorem implies that

min
vT v=1
eT v=0

vTLv = λn−1

where λn−1 is the spectral gap. Morever, the minimiser is the Fiedler
vector f . Some remarks:

1 f T e = 0 implies that f must have both negative and positive entries.
2 This suggests to assign i ∈ V1 if fi > 0 and i ∈ V2 if fi < 0.
3 The method is coherent even if one multiplies f by a negative number

(up to swtiching V1,V2).
4 What if fi = 0? We could assign them randomly or, if there are not

many, try manually all the possibilities and pick the best.
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Back to the example of last time

Last week, we solved by hand the 2-cut problem for V (G ) = [4] and
E (G ) = {12, 21, 23, 32, 24, 42, 34, 43}. The actual optimum was for
V1 = {1}.

Let us try Fiedler’s clustering method using MATLAB.
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Another example

Again on MATLAB
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Comments on the previous example

Fiedler’s method got close to, but was not quite able to, identify the
two cycles (which is the minimum cut: cut function is 1 and cannot be
0 as G is connected). The first entry of f was negative, but quite
small.

This can be understood by thinking of the constraint vT e = 0. If v
had entries in {−1, 1} and G had an even number of vertices, this
would imply #V1 = #V2.
In Fiedler’s method, there is somehow a balance between minimum cut
and equal distribution of vertices. This side effect is unwanted, and is
the price we pay to make the problem computationally more tractable!
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Induced subgraphs

If G = (V ,E ) is a simple graph and V1 ⊆ V , then the subgraph induced by
V1 is G1 = (V1,E1) where E1 is the subset of E containing all edges in E
whose endvertices are both in V1.
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A theorem by Fiedler

Theorem (Fiedler)
Let G = (V ,E ) be a simple connected graph and suppose that

1 the Fiedler vector f does not have any zero entry;
2 in the partition V = V1 ∪ V2 prescribed by Fiedler’s clustering

algorithm both V1 and V2 contain at least two nodes
Denote by G1 and G2 the subgraphs induced by V1 and V2 respectively.
Then, both G1 and G2 are connected.

We will give a proof due to J. Demmel.
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Demmel’s proof of Fiedler’s theorem - I

Suppose for a contradiction that G1 is not connected (the proof for G2 is
the same). Then, up to graph isomorphism, the graph Laplacian of G has
the form

L =

 L11 0 −A13
0 L22 −A23
−AT

13 −AT
23 L33

 ;

here, the three blocks correspond to: one connected component (or
isolated node) in G1, the rest of G1, and G3.

Let us partition the Fiedler vector coherently as

f =

 x
y
−z


with x , y , z > 0 componentwise.
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Demmel’s proof of Fiedler’s theorem - II
Moreover, denoting by φ the spectral gap, we have the equations:

Lf = φf ⇔


L11x + A13z = φx ,

L22y + A23z = φy ,

−AT
13x − AT

23y − L33z = −φz .

Cauchy interlacing theorem: if M is a symmetric matrix with eigenvalues
λ1 ≥ · · · ≥ λn and S is any m ×m principal (i.e. obtained by selecting the
same subset of rows and columns) submatrix of M, with eigenvalues
µ1 ≥ · · · ≥ µm, then, for all j = 1, . . . ,m, it holds that

λn−m+j ≤ µj ≤ λj .

In the special case j = m − 1 and M = L, this implies

φ ≤ µm−1.

In other words, any principal submatrix of L cannot have more than one
eigenvalue strictly less than the spectral gap.

Vanni Noferini Lecture I 11 / 15



Demmel’s proof of Fiedler’s theorem - II
Moreover, denoting by φ the spectral gap, we have the equations:

Lf = φf ⇔


L11x + A13z = φx ,

L22y + A23z = φy ,

−AT
13x − AT

23y − L33z = −φz .

Cauchy interlacing theorem: if M is a symmetric matrix with eigenvalues
λ1 ≥ · · · ≥ λn and S is any m ×m principal (i.e. obtained by selecting the
same subset of rows and columns) submatrix of M, with eigenvalues
µ1 ≥ · · · ≥ µm, then, for all j = 1, . . . ,m, it holds that

λn−m+j ≤ µj ≤ λj .

In the special case j = m − 1 and M = L, this implies

φ ≤ µm−1.

In other words, any principal submatrix of L cannot have more than one
eigenvalue strictly less than the spectral gap.

Vanni Noferini Lecture I 11 / 15



Demmel’s proof of Fiedler’s theorem - II
Moreover, denoting by φ the spectral gap, we have the equations:

Lf = φf ⇔


L11x + A13z = φx ,

L22y + A23z = φy ,

−AT
13x − AT

23y − L33z = −φz .

Cauchy interlacing theorem: if M is a symmetric matrix with eigenvalues
λ1 ≥ · · · ≥ λn and S is any m ×m principal (i.e. obtained by selecting the
same subset of rows and columns) submatrix of M, with eigenvalues
µ1 ≥ · · · ≥ µm, then, for all j = 1, . . . ,m, it holds that

λn−m+j ≤ µj ≤ λj .

In the special case j = m − 1 and M = L, this implies

φ ≤ µm−1.

In other words, any principal submatrix of L cannot have more than one
eigenvalue strictly less than the spectral gap.

Vanni Noferini Lecture I 11 / 15



Demmel’s proof of Fiedler’s theorem - III

Rayleigh’s theorem: denoting by µmin(L11) the smallest eigenvalue of L11,

µmin(L11) = min
v 6=0

vTL11v

vT v
≤ xTL11x

xT x

which implies that

xT xµmin(L11) ≤ xTL11x = φxT x − xTA13z < φxT x .

Why the last step? Because A13 ≥ 0, and 6= 0 (else, G is disconnected!).
Since z > 0, then −A13z ≤ 0 and 6= 0. On the other hand, x > 0, and
hence, −xTA13z < 0. Thus, µmin(L11) < φ.
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Demmel’s proof of Fiedler’s theorem - IV

In the very same way we can prove

yT yµmin(L22) ≤ yTL22x = φyT y − yTA23z < φyT y

implying µmin(L22) < φ.

Hence,[
L11 0
0 L22

]
is a principal submatrix of L having at least two eigenvalues strictly smaller
than φ: this contradicts Cauchy’s interlacing theorem.
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Clustering via the adjacency matrix

Here is a variant of Fiedler’s method: since for a simple graph A is also
symmetric, we could try to maximize vTAv with the costraint that v is
orthogonal to the Perron-Frobenius eigenvector. This would lead us to
consider the eigenvector s associated with the second largest eigenvalue of
A, and again (since, like before, s must have both negative and positive
entries) we can use the signs of s to construct a partition.

Let us go back to MATLAB and test this algorithm on the second of our
prior examples.
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Directed graphs

Clustering using A was able to identify the minimum cut in our example,
but not always it is better than Fiedler’s original method.

However, it has the advantage of being generalisable to directed graphs: in
that case, one starts from a singular value decomposition
A = UΣV T =

∑n
i=1 σiuiv

T
i .

The leading singular vectors u1, v1 are the Perron-Frobenius eigenvectors of
AAT and ATA, resp., and hence can be taken to be positive. Therefore,
the next singular vectors u2, v2 (being orthogonal to u1, v1 resp.) must
contain both negative and positive entries!

If A 6= AT , we then have two distinct partitions. That given by u2
corresponds to clustering authorities (sources followed by many nodes),
that given by v2 corresponds to clustering hubs (targets that follow many
nodes).
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