
We now work towards Theorem 3.10, which characterizes the graphs
whose deformed graph Laplacian has an eigenvalue of modulus < 1. Let
us observe that, by Proposition 3.7, it is no loss of generality to consider
each connected component separetely, i.e., assume that the graph is con-
nected. Moreover, let d be the sum of all the degrees of the vertices in the
graph, and let d/n be the average degree. Recall that a cycle is a closed path
of length � 3. It can be proved that:

1. The graph contains no cycles (i.e. it is a tree) if and only if d/n < 2;

2. The graph contains precisely one cycle if and only if d/n = 2;

3. The graph contains more than one cycle if and only if d/n > 2.

With this in mind, Theorem 3.10 means that there are eigenvalues of
M(t) strictly within the unit circle if and only if some connected components
of the underlying graph has two or more cycles. For networks coming from
real-life applications, this is in a sense a generic condition, in that in almost
all cases of practical interest to network scientists it happens to be true.

Theorem 3.10. Let A 2 Rn⇥n
be the adjacency matrix of a simple undirected

graph, and let M(t) be the associated deformed graph Laplacian. Then, there

exists a finite eigenvalue �, with |�| < 1, of M(t) if and only if the graph of

A has at least one connected component whose average degree is > 2.

Proof. By Proposition 3.7, we can assume without loss of generality that the
graph of A is connected.

Suppose first that the average degree is < 2. Then, the graph of A

is a tree, and the statement follows from Theorem 3.8 or, more directly,
from Corollary 3.11. Similarly, if the average degree is precisely 2, then the
statement follows by Lemma 3.8 and by computing the eigenvalues of the
deformed graph Laplacian of a cycle graph (this task is left as a homework
exercise).

To conclude the proof, suppose that the average degree of the graph of A
is > 2. Let f(t) denote detM(t) for 0  t  1. We will argue that f(0) = 1,
f(1) = 0, and f

0(1) > 0, implying by elementary analysis the existence of
� 2 (0, 1) such that f(�) = 0.

That f(0) = 1 and f(1) = 0 is an immediate consequence of M(0) = I

and M(1) = �� A =: L. We have d =
P

i degi > 2n. Moreover,

f
0(t) =

@ detM(t)

@t
= tr(adjM(t) ·M 0(t)),

39

where adjX denotes the matrix adjugate of X. Evaluating at t = 1,

f
0(1) = tr(adjL · (2�� A� 2I)) = �2tr(adjL) + tr(adjL · A),

where for the last equality we exploited the relation adjL · L = 0. Let
�1 � · · · � �n�1 � �n = 0 be the eigenvalues of L and set p =

Qn�1
i=1 �i. It is

known [?] that p > 0 if the graph of A is connected. It is straightforward to
show that

adjL =
p

n
11T

implying tr(adjL) = p and tr(adjL · A) = pd/n. Hence, f 0(1) = p(dn � 2) >
0.

3.4.5 The Radius of Convergence of the Nonbacktracking Gener-
ating Function

The power series
P1

r=0 pr(A)t
r makes sense mathematically for any t 2 C;

although, as mentioned in section 3.4.1, for network analysis it is natural to
focus on t 2 (0, 1) ⇢ R. In this subsection we study the radius of convergence
of this power series to its generating function (1� t

2)M(t)�1. We note that
it may happen that 1 or �1 are within the radius of convergence but are also
eigenvalues of M(t), so that the latter is not invertible at t = 1 or t = �1. In
this case, and with slight abuse of notation, when talking of (1� t

2)M(t)�1

for t = 1 or t = �1 we tacitly mean the appropriate limit of this expression
for t ! 1 or t ! �1. (The existence of the limit in this scenario follows from
the analysis below and standard results on rational functions).

First, we note that, by construction, elementwise it holds that

pk(A) = |pk(A)|  |Ak| = A
k
.

Hence, |t| < ⇢(A)�1, where ⇢(A) is the spectral radius of A, surely su�ces
for convergence, since

P1
k=0 A

k
t
k has radius of convergence ⇢(A)�1.

However, this condition is su�cient but not necessary, as shown by the
star graph example of section 3.4.1, where ⇢(A) =

p
n� 1 yet we have con-

vergence for all t. (Indeed, although this is beyond the scope of these notes,
it can be proved that if the graph is not the empty graph then the radius
of convergence of the power series

P1
r=0 pr(A)t

r is always stricly larger than
⇢(A)�1, i.e., the range of the NBTW parameter t is always a proper superset
of the range of the Katz parameter ↵.) More generally, if the graph A is a

40

tree (or a forest) so that there are no cycles, then pk(A) = 0 for large enough
values of k. It follows that �(A, t) is a polynomial in t, and the series con-
verges for all t. This implies that M(t) cannot have any finite eigenvalues
other than ±1; and both 1 and �1 must be eigenvalues by Proposition 3.6
(and noting that any tree is bipartite). his observation yields the following
corollary on the spectral properties of M(t) in the case of a forest.

Corollary 3.11. Suppose that A is the adjacency matrix of a forest, and

let M(t) be the associated deformed graph Laplacian. Then, M(t) has the

only finite eigenvalues 1 and �1. Moreover, 1 and �1 are both semisimple

eigenvalues.

For a general A, our analysis is based on the properties of the deformed
graph LaplacianM(t) as a matrix polynomial. The following technical lemma
will be useful. It follows from the conditional converse to Abel’s Theorem on
power series.

Lemma 3.12. For any z 2 C let
P1

k=0 akz
k
be a power series with nonneg-

ative real coe�cients, i.e., ak � 0 8 k 2 N. Suppose that the power series

converges to the rational function p(z)/q(z), with p(z), q(z) 2 R[z] coprime

polynomials, with radius of convergence r > 0. Then, q(r) = 0.

We are now ready to conclude our analysis and state (without a full proof)
the result on the convergence of the matrix power series

P
r pr(A)t

r. It turns
out that it is determined by a particular eigenvalue of M(t).

Theorem 3.13. Let A be the adjacency matrix of a simple, undirected, graph.

Let M(t) = I�tA+t
2(��I) be the associated deformed graph Laplacian, and

let `n(t) be the nth invariant polynomial of M(t), as defined in Theorem ??.
The radius of convergence of the power series in Theorem 3.5 is equal to

|�| where � is the smallest (in modulus) zero of

r(t) :=
`n(t)

1� t2
, (17)

while � := 1 if such a function does not vanish.

Moreover, let � be the smallest (in modulus) eigenvalue of the matrix

polynomial M(t).

1. There exists µ 2 (0, 1] ⇢ R such that (i) µ = |�| and (ii) µ is an

eigenvalue of M(t).

41

2. If µ < 1, then |�| = µ.

3. If µ = 1 is a semisimple eigenvalue of M(t), then the underlying graph

is a forest and � = 1.

4. If µ = 1 is a defective eigenvalue of M(t), then |�| = µ = 1.

We note that, as a consequence of Theorem 3.13 and the fact that |t| <
⇢(A)�1 is a su�cient condition for convergence of the power series

P
k pk(A)t

k,
the following corollary gives a lower bound for µ which is tighter than zero.

Corollary 3.14. Let M(t) be the deformed graph Laplacian associated with

a graph with adjacency matrix A whose spectral radius is ⇢(A). Then, every

eigenvalue � of M(t) satisfies |�| � ⇢(A)�1
.

Theorem 3.13 reduces to the following simpler form assuming that µ <

1, which by Theorem 3.10 is equivalent to assuming that the underlying
graph has at least one connected component with average degree > 2 (or
equivalently, at least one connected components that contains two or more
cycles). We note that this result therefore covers a general case that is likely
to be encountered frequently in practice.

Proposition 3.15. Suppose that the matrix polynomial M(t) = I � tA +
t
2(� � I) has an eigenvalue � with |�| < 1. Then there exists a positive

real number µ such that µ is the smallest (in modulus) eigenvalue of M(t).
Moreover, the radius of convergence of the power series

P1
k=0 t

k
pk(A) is equal

to µ.

Furthermore, if the graph of A is connected, µ is a simple eigenvalue of

M(t) and every other finite eigenvalue � satisfies µ < |�|  1.

Proof. Except for the last sentence, the statement is an immediate corollary
of Theorem 3.13. The proof of the last sentence is omitted from these notes
(but can be studied by students interested, as a project, in studying the
deformed graph Laplacian further).

3.5 Exercises

1. Prove that, in a simple graph, the degree of a vertex is equal to the
number of closed paths of length 2 starting from and ending on that
vertex.

42

2. Prove that the “signless graph Laplacian”, defined as�+A, is a positive
semidefinite matrix.

3. Improve Corollary 3.14 by showing that, in fact, every eigenvalue � of
M(t) satisfies � > ⇢(A)�1. Hint: Use an argument similar to the proof
of Theorem 3.9.

4. Prove Proposition 3.7.

43

4 Clustering

The problem of clustering is, given a graph G = (V,E) that of partitioning
V (G) into k subsets (in the most common and basic case, k = 2) in a “good”
way. What “good” means is, as in many other instances in this course,
application dependent, and indeed one may think of situations where the
requirements are opposite to each other.

4.1 The minimum k-cut problem

One possibility is to aim, in some sense, at the opposite of the natural parti-
tion of a bipartite graph. In a bipartite graph, the partition is such that all
the edges connect one community with the other, and no edge is internal to
one of the communities. If we want, instead, to identify a community within
a network, it makes more sense to require that as many edges as possible are
internal within each community, and as few as possible connect one commu-
nity with a di↵erent one. If the number of communities to be identified is
k, this is what in graph theory is known as the minimum k-cut problem (a
cut is a partition of the vertices). For a simple graph, this is to minimize
over all partitions of V into k disjoint non-empty subsets Vi, the so called
cut function

f(V1, . . . , Vk) =
X

1i 6=jk

X

v2Vi,w2Vj

1.

(This kind of problem is easily extendable to the case of weighted graph:
rather than minimizing the count of edges that connect distinct partitions,
in that scenario we could simply minimize the summation of the weights
of such edges. However, for simplicity, in this course we will focus on the
unweighted case.)

The minimum k-cut problem is an instance of a discrete optmization
problem. It is known that its complexity is O(nk2), where n = #V is the
number of vertices in the graph. Even for k = 2, this means O(n4) which
for many real-life applications is impractical. For this reason, we will look
for a relaxation, and we will see that once again we will be led towards a
technique based on spectral tools, i.e., eigenvalues and eigenvectors. We will
do this for k = 2.

Example 4.1. Let us consider for instance the minimum 2-cut problem for

G = (V,E) where V = [4] and E = {12, 21, 23, 32, 24, 42, 34, 43}. Since

44

exchanging the roles of V1 and V2 leaves the cut function unchanged, let us

assume with no loss of generality that #V1  #V2, which is equivalent to

1  #V1  2. There are therefore precisely

✓
4
1

◆
+

✓
4
2

◆
= 10 such choices

for V1. Note that, when #V1 = 1, the value of the cut function is precisely

equal to the degree of the element of V1. For the cases where #V1 = 2, we
can manually count the value of the cut function; note that, again by the

symmetry after swtiching roles of V1 and V2, we only need to check half of

the cases with #V1 = #V2 = 2. For example, we may assume that 1 2 V1.

We summarize the resulting values below.

V1 f(V1, V2)
{1} 2
{2} 6
{3} 4
{4} 4
{1, 2} 4
{1, 3} 6
{1, 4} 6

We conclude that, up to switching V1 and V2, there is a unique solution to the

minimum 2-cut problem on this example, and it is V1 = {1}, V2 = {2, 3, 4}.

Note that, if the graph has k connected components (or more), the min-
imum k-cut problems has at least one trivial optimum where the function
value is 0; indeed, this is also true only if the graph has k or more con-
nected components. For this reason, this problem is more interesting when
the underlying graph is connected, and we will make this assumption below.

As a first step towards the sought method is to re-express the minimum 2-
cut problem as an optimization problem over a certain set of vectors. Indeed,
we can represent a partition V = V1 [V2, V1 \ V2 = ; with a vector v 2
{�1, 1}n by defining the vector v componentwise as follows:

vi =

(
1 if i 2 V1;

�1 if i 2 V2.

45

With the exception of the vector of all ones e and of �e (which do not
correspond to a partition as V1 and V2 must be non-empty) each such vector
uniquely represents a partition. There are 2n � 2 such vectors: a total of
2n vectors with entries in {�1, 1}, minus the two invalid ones. Moreover,
observe that changing the sign of such a vector corresponds to switching V1

with V2, which e↵ectively represents the same partition because it certainly
cannot be distinguished by the original partition in terms of the number of
edges that connect the two communities. Hence, in practice that are 2n�1�1
possible minimisers to check. (Compare with the Example above: for that
graph, n = 4 and hence 2n�1 � 1 = 7.)

Lemma 4.2. The cut function to be minimized in the minimum 2-cut prob-
lem can be expressed as a function of the vector v that represents, as above,

a partition of V into 2 disjoint subsets in the following way:

f(v) =
1

2
v
T
Lv,

where L is the graph Laplacian of the underlying simple graph.

Proof. Let us first observe that for k = 2 the cut function simplifies to
f(V1, V2) = 2

P
i2V1,j2V2,ij,ji2E 1. Observe that vi � vj is equal to 2 if i 2

V1, j 2 V2, to �2 if i 2 V2, j 2 V1, and to 0 if i, j belong to the same subset
Vi (i = 1, 2).

Now, recall that vTLv =
P

ij,ji2E(vi � vj)2 (see the observations on page
13). By the above comments, this is in turn equal to

v
T
Lv = 4

X

ij,ji2E,vi,vj not in the same subset ofV

1 = 2f(V1, V2).

Therefore, the minimum 2-cut problem is equivalent to the problem of
minimizing v

T
Lv over all vectors v with all entries equal to ±1, excluding

±e.

46

4.2 The Fiedler vector

In the previous section, we have reformulated the minimum 2-cut problem
into an integer optimization problem. What makes the problem di�cult,
intuitively, is the constraint that all entries of the vector v must be either �1
or +1. A common trick in optimization, when a constraint makes it di�cult
to solve the problem, is to relax it. We could do this by asking that v is
any real vector, maybe normalized so that its norm is fixed, say, vTv = 1.
However, we already know what happens by the Rayleigh theorem: indeed,
this theorem implies that, since the least eigenvalue of L is �n = 0,

min
vT v=1

v
T
Lv = 0;

moreover, the argument minimum is the corresponding eigenvector, which we
know being (forgetting for a moment the normalization) to be proportional to
e. Since all the entries of e are equal to 1, this is not very useful for clustering.
We will go round this issue by looking at the next eigenpair, that indeed has
a name that honours the mathematician M. Fiedler who first observed that
this could be done.

Definition 4.1. Let G be a simple, connected graph, and denote by L the

corresponding graph Laplacian. The second smallest eigenvalue of L is called

the spectral gap of the graph, and a corresponding eigenvector is called a

Fiedler vector of the graph.

The connection with our clustering problem can be explained as follows:
the original problem was too di�cult to be solved e�ciently, but the relaxed
problem has a completely uninformative solution. As we had totally relaxed
the original constraint, and since the issue is that the new solution is a vector
with all equal component, let us introduce a new (but milder) constraint, by
optimizing over all real vectors v that are orthogonal to e. This guarantees
that v must have some positive and some negative entries (because their
sum must be 0). Another theorem in classical matrix analysis, the Courant-
Fischer theorem, tells us that

min
vT v=1,eT v=0

v
T
Lv = �n�1,

where �n�1 is the spectral gap, and that moreover the argument minimum
is the Fiedler vector f (normalized to have norm 1). Of course, f will not

47

have all components equal to ±1, but assuming that they are all nonzero,
we can for example assign node i to V1 if fi > 0 and to V2 if fi < 0. Note
that, although the Fiedler vector (being an eigenvector) is only defined up to
a nonzero constant, the method is coherent: indeed, multiplying the Fiedler
vector by a positive constant does not change the signs, and hence it leaves
the assignments unchanged; whereas multiplying the Fiedler vector by a neg-
ative constants changes all the signs, and hence itreverts all the assingments,
i.e., it switches the roles of V1 and V2. If there are zero components in f , one
could assign them at random, or (if they are not too many) one could try all
the possibilities, and choose the one that minimizes the cut function (having
already assigned all the nodes corresponding to nonzero component, one can
hope that this brute force approach is not very expensive).

Example 4.3. Let us go back to the graph G = (V,E) where V = [4] and
E = {12, 21, 23, 32, 24, 42, 34, 43}. The graph Laplacian of G is

L =

2

664

1 �1 0 0
�1 3 �1 �1
0 �1 2 �1
0 �1 �1 2

3

775 .

We can compute its eigenvalues, which turn out to be 1, 2, 3, 4. Therefore,

the spectral gap is 1. Solving Lf = f yields, for any nonzero constant ↵,

f = ↵
⇥
2 0 �1 �1

⇤T
. Thus, we assing 1 to V1 and 3, 4 to V2. With the

proposed algorithm, 2 can be either assigned to V1 or V2: note that the actual

optimum corresponds to 2 2 V2 and the rest as prescriebd by the Fiedler

eigenvector.

Example 4.4. Let now G obtained as follows: take the cycle graph with

7 nodes (labelled 1 through 7) and the cycle graph with 3 nodes (labelled 8
through 10) and connect them with a single edge joining, say, vertices 1 and

48

8. Then,

L =

2

666666666666664

3 �1 0 0 0 0 �1 �1 0 0
�1 2 �1 0 0 0 0 0 0 0
0 �1 2 �1 0 0 0 0 0 0
0 0 �1 2 �1 0 0 0 0 0
0 0 0 �1 2 �1 0 0 0 0
0 0 0 0 �1 2 �1 0 0 0
�1 0 0 0 0 �1 2 0 0 0
�1 0 0 0 0 0 0 3 �1 �1
0 0 0 0 0 0 0 �1 2 �1
0 0 0 0 0 0 0 �1 �1 2

3

777777777777775

;

it is in this case convenient to rely on approximated computation. Invoking

for example MATLAB, we can compute that the spectral gap is approximately

�n�1 ' 0.2375. Here is the approximate computation of the Fiedler vector:

f '

2

666666666666664

�0.0521
0.1147
0.2543
0.3335
0.3335
0.2543
0.1147
�0.3734
�0.4897
�0.4897

3

777777777777775

:

thus, the Fiedler spectral clustering gets very close to (but is not quite abel

to) distinguish the two cycles within this graph. Note that f1 is negative, but

quite small.

The example above is illustrative of one feature of Fiedler clustering: we
have added the constraint vT e = 0: if v still had all entires in {�1, 1}, and
G had an even number of vertice, this would imply that V1 and V2 have the
same number of vertices. This can intuitevely explain why Fiedler clustering
failed to identify the two cycles (which is the minimum cut: indeed the cut
function is 1 for that partition, and since the graph is connected, it can
never assume the value 0): due to the new constraint, it somehow seeks a

49

balance between minimum cut and equal distribution of vertices. This is
maybe unwanted, but it is the price to pay to make the problem much more
tractable computationally.

We conclude this subsection by giving a result from the original paper
by M. Fiedler; the proof that we give is not Fiedler’s original one, but a
simplification of an argument first proposed by J. Demmel.

Theorem 4.5 (Fiedler 1975). Let G = (V,E) be a simple connected graph

and assume the Fiedler vector f does not have any zero entry. Denote by

G1, G2 the two subgraphs of G induced by V1, V2 where V = V1 [V2 is the

partition obtained by the method above described. Then G1 and G2 are con-

nected.

Proof. Suppose for a contradiction that G1 is not connected. Then the graph
Laplacian L of G, up to a permutation of the nodes so that the indices of the
first connected component of G1 come first and those of G2 come last, must
have the form

L =

2

4
L11 0 �A13

0 L22 �A23

�A
T
13 �A

T
23 L33

3

5 ;

let us also partition the Fiedler vector accordingly as

f =

2

4
x

y

�z

3

5

with x, y, z > 0 componentwise. Moreover, denoting by � > 0 the spectral
gap of G, we have the equations

8
><

>:

L11x+ A13z = �x,

L22y + A23z = �y,

�A
T
13x� A

T
23y � L33z = ��z.

We recall a (consequence of) the Cauchy interlacing theorem: if M is a
symmetric matrix with eigenvalues �1 � · · · � �n and let S be any m ⇥m

principal (i.e. obtained by selecting the same subset of rows and columns)
submatrix of M , with eigenvalues µ1 � . . . µm. Then, for all j = 1, . . . ,m, it
holds that

�n�m+j  µj  �j.

50

Note, in particular, that (specializing to j = m� 1) it must be �n�1  µm�1.
Specializing to graph Laplacians, this can be interpreted that the any prin-
cipal submatrix of a graph Laplacian cannot have more than one eigenvalue
less than the spectral gap of the graph Laplacian under consideration.

Now, observe that, by the Rayleigh theorem, denoting by µmin(L11) the
smallest eigenvalue of L11,

µmin(L11) = min
v 6=0

v
T
L11v

vTv
 x

T
L11x

xTx

which implies that

x
T
xµmin(L11)  x

T
L11x = �x

T
x� x

T
A13z < �x

T
x.

To explain the last step, observe that A13 � 0, and 6= 0 (else, G is discon-
nected!). Since z > 0, it follows that �A13z  0 and 6= 0. On the other
hand, x > 0, and hence, �x

T
A13z < 0. We conclude that µmin(L11) < �.

Analogously, we can show that

y
T
yµmin(L22)  y

T
L22y = �y

T
y � y

T
A23z < �y

T
y) µmin(L22) < �.

Hence, the matrix 
L11 0
0 L22

�

is a principal submatrix of L, of size at most n � 1, having at least two
eigenvalues strictly smaller than �: this contradicts the Cauchy interlacing
theorem that implies that the 2 smallest eigenvalues of L (among which is �)
are bounded above by the second smallest eigenvalue of any submatrix.

4.3 Clustering via adjacency matrix eigenvectors

In this subsection, we describe a modification of the Fiedler algorithm which
is based on a similar idea, but employs the adjacency matrix A. This time,
we impose orthogonality with the Perron-Frobenius eigenvector A, and look
at the eigenvector associated with the second largest eigenvalue, say, s. Then,
once again, we can look at the sign pattern in s to cluster the nodes.

51

Example 4.6. Let us consider the same graph G as in Example 4.4. Its

adjacency matrix is

A =

2

666666666666664

0 1 0 0 0 0 1 1 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1 0

3

777777777777775

;

The second largest eigenvalue of A is �2 ' 1.8692. Here is the approximate

computation of the corresponding eigenvector:

s '

2

666666666666664

0.1206
0.2524
0.3512
0.4041
0.4041
0.3512
0.2524
�0.2794
�0.3214
�0.3214

3

777777777777775

:

interestingly, on this example this method does identify the minimum 2-cut.

Having to be orthogonal to a positive (or nonnegative) eigenvector, the
second largest eigenvector must always have positive and negative entries. An
advantage of this method is that it can be generalized to directed graphs. In
that scenario, rather than an eigendecomposition, it is convenient to consider
a singular value decomposition A = U⌃V T =

Pn
i=1 �iuiv

T
i . The leading sin-

gular vectors u1, v1 are the Perron-Frobenius eigenvectors of AAT and A
T
A,

respectively: as a consequence, they are nonnegative. The next singular vec-
tors u2, v2 must be orthogonal to u1, v1 respectively, and thus have entries of
both positive and negative signs. The resulting SVD clustering are generally

52

distinct: seeing A as a matrix whose columns represent nodes as authorities
(sources that are followed by many other nodes) whose rows represent nodes
as hubs (sources that follow many other nodes), then the sign pattern in u2

clusters hubs while the sign patter in v2 clusters authorities. (If A = A
T ,

the hubs and authorities SVD clustering coincide, and are the same as the
eigenvector clustering described above.)

53

