
Proceedings of the Seminar in Computer
Science (CS-E4000), Spring 2024, ver. 2

Antti Ylä-Jääski and Sara Ranjbaran

Tutors for seminar topics

Antti Ylä-Jääski, Arsi Ikäheimonen, Blerta Lindqvist, Jaakko Harjuhahto,

Jose Luis Martin Navarro, Juho Vepsäläinen, Lachlan Gunn, Matti Huo-

tari, Matti Siekkinen, Mikko Kiviharju, Nam Hee Kim, Parinya Chalermsook,

Russell W.F. Lai, Samuel Marchal, Sanna Suoranta, Sara Ranjbaran,

Shuzhe Wang, Simo Aaltonen, Tuomas Aura, Vesa Hirvisalo, Yogesh Verma,

and Yunhao Yuan

Preface

The Seminar on Network Security, Seminar on Internetworking and Sem-

inar on Software Technology and Systems Research were previously sepa-

rate Master’s level courses in computer science at Aalto University. These

seminar courses have now merged into one seminar course. These sem-

inar series have been running continuously since 1995. From the be-

ginning, the principle has been that the students take one semester to

perform individual research on an advanced technical or scientific topic,

write an article on it, and present it on the seminar day at the end of

the semester. The articles are printed as a technical report. The topics

are provided by researchers, doctoral students, and experienced IT pro-

fessionals, usually alumni of the university. The tutors take the main

responsibility of guiding each student individually through the research

and writing process.

The seminar course gives the students an opportunity to learn deeply

about one specific topic. Most of the articles are overviews of the latest

research or technology. The students can make their own contributions in

the form of a synthesis, analysis, experiments, implementation, or even

novel research results. The course gives the participants personal con-

tacts in the research groups at the university. Another goal is that the

students will form a habit of looking up the latest literature in any area

of technology that they may be working on. Every year, some of the semi-

nar articles lead to Master’s thesis projects or joint research publications

with the tutors.

Starting from the Fall 2015 semester, we have merged the three courses

into one seminar that runs on both semesters. Therefore, the theme of the

seminar is broader than before. All the articles address timely issues in

security and privacy, networking technologies and software technology.

These seminar courses have been a key part of the Master’s studies in

several computer-science major subjects at Aalto, and a formative expe-

rience for many students. We will try to do our best for this to continue.

Above all, we hope that you enjoy this semester’s seminar and find the

proceedings interesting.

Seminar papers

Akram Aziz, Doubly Efficient Private Information Retrieval Protocol:

Construction & Optimization .9

Tutor: Russell W.F. Lai.

Amirhosein Rajabi, Doubly-Efficient Private Information Retrieval 19

Tutor: Russell W.F. Lai.

Antti Kokkonen, Predicting Depression through Digital Phenotyp-

ing .37

Tutor: Arsi Ikäheimonen.

Artem Perevedentsev, Technical survey of ad blockers 47

Tutor: Tuomas Aura.

Atte Haarakangas, How online games protect and violate player pri-

vacy . 59

Tutor: Tuomas Aura.

Duc Vu Trong, Understanding Unique Aspects of Tailwind CSS in

Comparison with Existing CSS Frameworks .79

Tutor: Vepsäläinen Juho.

Emnet Mehari Tekeste, Encrypted DNS and Privacy 99

Tutor: Tuomas Aura.

Fikri Koktas, Physics-Inspired Deep Learning for Climate Forecast-

ing . 109

Tutor: Yogesh Verma.

Furkan Ün, State Management Solutions in React Web Development

Library .119

Tutor: Juho Vepsäläinen.

Ghazal Shenavar, Mental Health Disclosures on Social Media Plat-

forms . 131

Tutor: Yunhao Yuan.

Gianni Canavero, Modelling cloud applications to achieve energy effi-

cient scheduling . 143

Tutor: Jaakko Harjuhahto.

Guting Huang, Signals - new standard for state management in the

web? .153

Tutor: Juho Vepsäläinen.

Gyeha Lim, Exploring contemporary user tracking methods in web ser-

vices .163

Tutor: Tuomas Aura.

Han Le, Neural video coding . 173

Tutor: Matti Siekkinen.

Hang Le, User engagement in wearable technology 181

Tutor: Sanna Suoranta.

Ionut Groza, Perfecting the Orchestration of Workflows in the context

of Microservices Architectures .191

Tutor: Ylä-Jääski Antti.

Isroilkhon Salikhodjaev, Comparative study of the modern cross-

platform tools for mobile application development 203

Tutor: Simo Aaltonen.

Jiaqi Chen, A Survey of Clustering: Algorithms and Optimization 215

Tutor: Parinya Chalermsook.

Jimena Bermudez Bautista, Energy Prediction in Cloud Computing:

Contrasting Approaches in Virtual machines and Containers 223

Tutor: Jaakko Harjuhahto.

Jinglin Yang, Learning Hurdling Skills with Adversarial Motion Pri-

ors .235

Tutor: Nam Hee Kim.

Joona Munukka, Overview of different migration strategies from

monolithic architecture to microservices architecture 247

Tutor: Antti Ylä-Jääski.

Joona Sauramäki, How to browse the web without leaving evi-

dence . 261

Tutor: Tuomas Aura.

Julius Mikala, Optimisation of heating, ventilation, air-conditioning,

and cooling (HVAC) with machine learning (ML) methods 271

Tutor: Matti Huotari.

Junyuan Fang, 3D Gaussian Splatting . 283

Tutor: Shuzhe Wang.

Kalle Korhonen, Scalability challenges of microservices 295

Tutor: Antti Ylä-Jääski.

Kalle Saarinen, Weaknesses in the Tor network 307

Tutor: Tuomas Aura.

Kiira Karonen, Analysis of mental health discourse on social me-

dia . 317

Tutor: YunhaoYuan.

Kimi Kuru, Games for cognitive abilities of elderly people 329

Tutor: Sanna Suoranta.

Leevi Pulkkinen, Evaluation of React Hooks Against Signal-Based

Approaches .339

Tutor: Juho Vepsäläinen.

Lija Bista, Measuring cybersecurity risk of industrial control / OT sys-

tems . 351

Tutor: Mikko Kiviharju.

Linh Ngo, Microservices - Navigating Benefits and Challenges in Mod-

ern Software Architecture . 363

Tutor: Antti Ylä-Jääski.

Lola Lerche, Survey of Prompt Injection Attacks and used Evaluation

Metrics . 375

Tutor: Mikko Kiviharju.

Long Huynh, Stable matching algorithms .393

Tutor: Sara Ranjbaran.

Marko Pekkola, Comparison of Implementations of Signals 401

Tutor: Juho Vepsäläinen.

Markus Regårdh, CDN Cache poisoning threaths 409

Tutor: Jose Luis Martin Navarro.

Mostafa Ghozal, Beyond cookies: how web services track their users

today . 421

Tutor: Tuomas Aura.

Muskaan Khattak, Robustness Assessment for ML systems431

Tutor: Samuel Marchal.

Nhut Cao, Power and energy aspects of sustainable large-scale comput-

ing . 445

Tutor: Vesa Hirvisalo.

Nicholas Jovianto, Assessing the Efficacy of Slow HTTP Attacks

Against CDN Providers: Mechanisms and Strategies 457

Tutor: Jose Luis Martin Navarro.

Niilo Heinonen, Review of current k-means and k-median clustering

research . 471

Tutor: Parinya Chalermsook.

Olaus Lintinen, Empowering the Edge: Innovations and Challenges

in User-Provided Infrastructure .479

Tutor: Sara Ranjbaran.

Perttu Niskanen, Fighting the Art Theft Machine: Poisons and Pertur-

bations . 489

Tutor: Blerta Lindqvist.

Petteri Pulkkinen, Industrial Control Systems and IEC 62443 from a

perspective of Zero Trust . 503

Tutor: Mikko Kiviharju.

Prateek Agrawal, Microservices - when and how to use them 515

Tutor: Antti Ylä-Jääski.

Radu Pogonariu, User-Provided-Infrastructure at the Edge 525

Tutor: Sara Ranjbaran.

Ranjit Nepal, How Reliable is TOR . 535

Tutor: Tuomas Aura.

Salahuddin Salahuddin, Taxonomy of Supply Chain Attacks Against

Machine Learning Systems. 545

Tutor: Samuel Marchal.

Sami Laine, Version control and reproducibility of Jupyter Note-

books . 567

Tutor: Sanna Suoranta.

Sarma Rampalli, The Emerging Role of Neural Networks in Video Cod-

ing: A Review . 575

Tutor: Matti Siekkinen.

Selin Taskin, Predicting Depression through Digital Phenotyping 585

Tutor: Arsi Ikäheimonen.

Shahd Izzeldin Karar Omer, Traces: How and Where Web Browsing

Leaves Them . 597

Tutor: Tuomas Aura.

Sudharsun Lakshmi Narasimhan, Side Channel and Fault Injection

Analysis of Trusted Execution Environments . 613

Tutor: Dr. Lachlan Gunn.

Tino Korpelainen, Different approaches of inspecting encrypted pack-

ages in a content delivery network . 625

Tutor: Jose Luis Martin Navarro.

Tommi Pakarinen, Overview of Utility-First CSS633

Tutor: Juho Vepsäläinen.

Tuomas Salminen, State orchestration in web with finite-state ma-

chines . 645

Tutor: Juho Vepsäläinen.

Tyler Eck, Power and energy monitoring for sustainable large-scale

computing .655

Tutor: Vesa Hirvisalo.

Ulas Sedat Aydın, Exploring the Effectiveness and Challenges of Self-

Help Applications for Mental Health Issues Raised by COVID-19 . . 669

Tutor: Sanna Suoranta.

Viktoriia Kovalenko, Robustness Assessment in ML Systems 679

Tutor: Samuel Marchal.

Yahya Al-Eryani, Trade-offs for Securing ML Systems 693

Tutor: Samuel Marchal.

Huang Yaojun, Ad-hoc Cloud: A User-Provided Cloud Infrastructure

at Network Edge . 707

Tutor: Sara Ranjbaran.

Yinan Hu, User-Provided-Infrastructure at the Edge 719

Tutor: Sara Ranjbaran.

Yinda Xu, Exploring data-driven optimal ventilation control using CO2

concentration monitoring and control .727

Tutor: Matti Huotari.

Doubly Efficient Private Information
Retrieval Protocol: Construction &

Optimization

Akram Aziz
akram.aziz@aalto.fi

Tutor: Russell W. F. Lai
russell.lai@aalto.fi

Abstract

Doubly Efficient Private Information Retrieval (DEPIR) protocol, proposed

by [LMW22], satisfies the need for secure and private data retrieval. This

paper provides a comprehensive overview of the DEPIR protocol, its con-

struction, and optimization efforts. In order to successfully construct the

protocol, we need to express the database as an m-variant polynomial,

construct a single-server Private Information Retrieval (PIR) scheme, and

preprocess the polynomial to enable efficient evaluation over ciphertexts.

Optimization efforts proposed by the work of [OPPW23] focus on reducing

preprocessing time and query runtime, with enhancements to the Algebraic

Somewhat Homomorphic Encryption (ASHE) scheme identified as a pri-

mary focus for improvement.

Contents

1 Introduction . 3

2 Preliminaries . 3

3 PIR and FHE . 4

4 Basic Blocks & Related Works 4

4.1 Ring Learning With Errors (RingLWE) 4

4.2 Algebraic Somewhat Homomorphic Encryption (ASHE) 4

4.3 ASHE from RingLWE 5

4.4 Preprocessing Polynomials 5

4.5 Keyed DEPIR . 6

5 DEPIR . 6

6 Optimizing DEPIR . 7

6.1 Limitations & Tradeoffs 7

7 Conclusion . 8

1 Introduction

Currently, most of the knowledge exists on the internet. Over 65% of the

earth’s population has constant access to the internet [n.d24]. 5.3 billion

people are one click away from learning something new, just like what I

did to retrieve that information. Due to the increased accessibility of the

internet, the importance of security and privacy has become more signifi-

cant. This reason ignited security experts to find a secure way to retrieve

information from the public internet. According to [LMW22], private in-

formation retrieval (PIR) allows internet users to read data from a public

database held on a remote server, without revealing to the server the lo-

cation the client accessed.

Lin, Mook, and Wichs, in [LMW22], successfully constructed a general

doubly efficient private information retrieval DEPIR protocol and man-

aged to prove its security and correctness. Moreover, authors of [OPPW23]

tried to implement the proposed theoretical protocol trying to answer how

far DEPIR is from being practical.

The goal of this paper is to provide an overview of the construction

of doubly efficient private information retrieval (DEPIR) and some of the

optimization efforts.

2 Preliminaries

This section provides some useful mathematical and background knowl-

edge that would be needed to fully understand some of the following sec-

tions.

Define N to be the set of natural number, Z to be the set of integers and

R to be the set of real numbers. For any integer n ≥ 1, define [n] = {1, ..., n}.
Unless mentioned otherwise, d and q are two large prime numbers that

will be used to define groups. For any integer q ∈ N, then Zq is a the

quotient ring Z/qZ.

A low-degree multivariate polynomial is a polynomial of more than

one variable, where the highest power of any of variables is of a relatively

low degree.

3 PIR and FHE

Fully Homomorphic Encryption (FHE) is an encryption scheme that al-

lows to evaluate a new input over an encrypted system without the need of

decryption. The main limitation of Fully Homomorphic Encryption (FHE)

lies in its runtime complexity, which scales linearly with the system size.

Additionally, encryption time is directly related to the size of the input,

and decryption time is directly related to the size of the output.

If we consider the entire internet to be our database (C), the client

query to be the input (x), and the domain is of polynomial-size, then Pri-

vate Information Retrieval (PIR) can be viewed as a FHE problem. How-

ever, given the runtime complexity mentioned above, the runtime of each

query would grow proportional to O(|C|), which is proportional to the

size of the entire internet [LMW22].

The authors of [LMW22] decided to approach this problem by propos-

ing their construction of DEPIR Protocol.

4 Basic Blocks & Related Works

In order to successfully construct their DEPIR protocol, [LMW22] intro-

duces multiple basic blocks that will be carefully put together in order to

achieve their goal.

4.1 Ring Learning With Errors (RingLWE)

The first of these blocks is RingLWE. Ring learning with errors is a well-

known NP-hard problem that is constructed over the hardness of find-

ing short vectors in ideal lattices in the worst case [LPR10]. Moreover,

RingLWE is considered the basic building block of the new NIST stan-

dard for the public-key encryption scheme [NIS22]

4.2 Algebraic Somewhat Homomorphic Encryption (ASHE)

In the work of [BV11], Brakerski and Vaikuntanathan introduce their

Somewhat Homomorphic Scheme SHE, which is based on RingLWE as-

sumption. The authors of [LMW22] use the above mentioned SHE con-

struction to build their own ASHE scheme.

ASHE is a symmetric key CPA-secure encryption scheme. This scheme

enables us to evaluate a low-degree multivariant polynomial f over an

encrypted ciphertext, ct ∈ R, instead of evaluating f over the plaintext

input. This result becomes feasible by lifting the plaintext space Zd to be

a subset of the ciphertext space R. The term lifting maps to an algorithm

of interpreting each element of a certain domain to an equivalent element

of another domain.

To successfully interpret elements from the plaintext space (Zd) to the

ciphertext space (R), we need to complete two steps. The first step involves

interpreting from Zd to Zq. This step is achieved by reducing each in-

put modulo q. This intermediate step is necessary because the ciphertext

space R is defined in terms of Zq. The second step is relatively straight-

forward, as it entails finding a constant representation of each element of

the group Zq to an element in the ring R.

The reason behind lifting the elements to the ring R, is to prepare

the elements of the ASHE scheme to be fit for the preprocessing function

of [KU11] in order to yield the expected output of preprocessing polyno-

mials.

4.3 ASHE from RingLWE

After successfully constructing ASHE from the RingLWE assumption, [LMW22]

introduce a full scheme, where we get a single server PIR. the client starts

preparing for the query by encrypting every digit of the input I(i1, ..., im) ∈
Zd and sends the resulted ciphertext ct(ct1, ..., ctm) ∈ R to the server. The

server homomorphically evaluates the low-degree multivariant polyno-

mial f over the ciphertext, and sends the response α(α1, ..., αm) back to

the client. The client will be able to decrypt the server’s response α to get

the answer of the query.

What separates the ASHE scheme from the DEPIR protocol is the pre-

proccessing of the polynomial f , which will yield in extreme efficient eval-

uation of the client’s future queries.

4.4 Preprocessing Polynomials

The results of Kedlaya and Umans [KU11] lays the foundation of process-

ing polynomials f(X1, ..., Xm) over a ring R in order to get a data struc-

ture. This data structure will enable us to efficiently evaluate the polyno-

mial over any input. [KU11] proves that for any ϵ > 0, the polynomial pro-

cessing has a runtime complexity O(N1+ϵ)poly(λ) and query evaluation

time poly(λ, logN). However, one of [KU11] limitations, which [LMW22]

took in consideration, is that their results are strictly conditioned by the

chosen parameters.

4.5 Keyed DEPIR

In [LMW22], the constructed DEPIR is inspired by the results of [BIPW17]

and [CHR17]. These two papers managed to set the foundation for the un-

keyed DEPIR, by proposing keyed DEPIR protocols. In the work of [CHR17],

the authors proposed secret-key DEPIR protocol. Moreover, the work

of [BIPW17] uses the secret-key DEPIR protocol in order to propose a

public-key DEPIR. Despite that keyed and unkeyed DEPIR might seem

to be closely related, the hardness assumption that each of these protocols

rely on varies. Another problem that arouses with keyed DEPIR protocols

is the need for a third trusted party to create and distribute the keys. The

authors of [LMW22] make a claim that the Prep algorithm, which is re-

sponsible for preprosessing the server’s database, is solely for correctness

and efficiency purposes, and not for proving the security. They argue re-

gardless the server being honesty or not, the security of the client’s query

remains.

5 DEPIR

[LMW22] specifies two phases that their Doubly Efficient Private Infor-

mation Retrieval (DEPIR) have, preprocessing and querying. The full con-

struction of DEPIR protocol is divided into three main steps: expressing

the database into an m-variant polynomial, constructing a single server

PIR, preprocessing the m-variant polynomial. However, before we dive

into the details of the three essential steps, we start by defining a set of

parameters needed to ensure the successful construction of the proposed

DEPIR. Let N be the size of the considered database, d ∈ N be a prime

number, and the size of the input m. Such that, dm > N .

Expressing the database as a polynomial: [LMW22] aims to ex-

press the database DB into an m-variant polynomial over the field Fd,

and translate the input i = (i1, ..., im) into a base-d representation of the

input i = based,m(i). Such that, fDB(i = based,m) = DB[i]

Constructing PIR from ASHE: The second main step in the con-

struction of DEPIR, is constructing a single-server PIR from the pro-

posed ASHE scheme. Through PIR, the client will start by translating

its plainspace input i ∈ Fd, of the size m, to get a base-d representation

of the i = based,m(i) ∈ Zd, then the client will encrypt the based,m(i) to

get a ciphertext ct = (ct1, ..., ctm) ∈ R using a generated secret key s. On

the server side, the server will have to lift the encoded polynomial fDB

into f̃DB ∈ R. The server will evaluate f̃DB over the ciphertext ct to get

the answer ct∗ = (ct∗1, ..., ct
∗
m) for the client’s query. Upon receiving ct∗,

the client will be able to decrypt it using the same secret key s to recover

DB[i] = fDB(i1, ..., im).

Preprocessing: The last step remaining is to take the constructed

PIR protocol, in the previous step, and construct DEPIR from it. [LMW22]

simply start by preprocessing the polynomial fDB. Lin, Mook, and Wichs

confess that the difference between PIR and DEPIR is relatively small;

from the client point of view, DEPIR is the same as PIR. Therefore, the

security of DEPIR inherently comes from the security of PIR, which comes

from the security of the ASHE scheme under the RingLWE assumption.

the motive behind the preprocessing of polynomials is to enable the server

to evaluate the polynomial fDB over the ciphertext ct = (ct1, ..., ctm). The

preprocessing algorithm used here is the same algorithm proposed by the

work of [KU11], which also has been proven its efficiency.

6 Optimizing DEPIR

Okada, Player, Pohmann, and Weinert in their work [OPPW23] clarify

that the above mentioned DEPIR protocol is purely theoretical. Therefore,

they aimed to implement an approximation of the protocol of [LMW22].

Moreover, the authors of [OPPW23] propose some optimization regarding

the preprocessing time and the runtime of each query.

The authors of [OPPW23] propose an interesting approach regard-

ing the future works in order to optimize the implementation of DEPIR.

They suggest the way to improve the protocol is through improving ASHE

scheme. If it became possible to construct an ASHE scheme with a better

noise growth and ring size R, then the improvement of a practical DEPIR

would follow.

6.1 Limitations & Tradeoffs

One of the problems of [LMW22] DEPIR is the lift algorithms. Therefore,

In [OPPW23], the authors aim to find precise formulas to asymptotically

understand the number of primes, storage size, and runtime of these al-

gorithms. Moreover, the authors of [OPPW23] mention that the larger

the ring size R the lifting algorithm maps into, the worse the efficiency

yields. In return, they proposed that by changing the ciphertext space,

we will be able to implement a known and faster arithmetic ciphertexts.

Additionally, [OPPW23] proposes that the isomorphism can be computed

using a fast Fourier Transform (FFT).

7 Conclusion

In conclusion, this paper manages to present an overview of the work

of [LMW22] and their construction of the DEPIR protocol. It also presents

all of the basic schemes needed to successfully construct the DEPIR pro-

tocol. Such as, RingLWE, ASHE scheme, and PIR scheme. Moreover, this

paper also integrates the optimization of the DEPIR protocol. While the

answer to the practicality of DEPIR investigation of yields to an unsat-

isfactory no, the authors of [OPPW23] suggest possible routes for future

exploration and practical implementation of DEPIR

References

[BIPW17] E. Boyle, Y. Ishai, R. Pass, and M. Wootters. Can we access
a database both locally and privately? In Yael Kalai and Leonid
Reyzin. Technical report, Theory of Cryptography Conference, Part
II, volume 10678 of Lecture Notes in Computer, 2017.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic
encryption from ring-LWE and security for key dependent messages.
In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO, 2011.

[CHR17] R. Canetti, J. Holmgren, and S. Richelson. Towards doubly efficient
private information retrieval. Technical report, Theory of Cryptogra-
phy Conference, Part II, volume 10678 of Lecture Notes in Computer
Science, 2017.

[KU11] K. Kedlaya and C. Umans. Fast polynomial factorization and mod-
ular composition. Technical report, SIAM Journal on Computing,
2011.

[LMW22] W-K. Lin, E. Mook, and D. Wichs. Doubly Efficient Private Infor-
mation Retrieval and Fully Homomorphic RAM Computation from
Ring LWE. REP 1703, Cryptology ePrint Archive, December 2022.
https://eprint.iacr.org/2022/1703.pdf.

[LPR10] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and
learning with errors over rings. Technical report, Henri Gilbert,
editor, Advances in Cryptology – EUROCRYPT, 2010.

[n.d24] Internet User Statistics n.d. How many use the internet in 2024.
demandSage, 2024.

[NIS22] Post-quantum cryptography: Selected algorithms. Technical report,
NIS, 2022.

[OPPW23] H. Okada, R. Player, S. Pohmann, and C. Weinert. To-
wards Practical Doubly-Efficient Private Information Re-
trieval. REP 1510, Cryptology ePrint Archive, October 2023.
https://eprint.iacr.org/2023/1510.pdf.

Doubly-Efficient Private Information
Retrieval

Amirhosein Rajabi
amirhosein.rajabi@aalto.fi

Tutor: Russell W. F. Lai

Abstract

DEPIR schemes aim to build efficient PIR schemes in terms of communi-

cation and computation complexity. Emphasizing on the key ideas, this

paper summarizes the breakthrough result of Lin, Mook, and Wichs and

the main tools they used. Lin et al. constructed the first unkeyed DE-

PIR scheme to achieve polylogarithmic communication complexity using

slightly superlinear offline preprocessing, which the server can run inde-

pendently once for all clients.

KEYWORDS: Private Information Retrieval, PIR, Algebraic Somewhat

Homomorphic Encryption, SHE, fast multivariate polynomial online eval-

uation, Ring Learning with Errors, RingLWE

1 Introduction

Private Information Retrieval (PIR) protocols allow users of a database

service to query database entries without disclosing any information about

their query to the service. These protocols have numerous applications,

such as querying patent databases [1], compromised credential checking

[8], and location privacy [6, 10].

The communication and computation complexity of the client queries

to the database has been extensively studied since the notion was intro-

duced by Chor et al. [5]. For each query, communication complexity is

the amount of information communicated between the database and the

client. Computation complexity addresses the running time of server com-

putation in terms of the database size N . Doubly-Efficient Private Infor-

mation Retrieval (DEPIR), coined by Beimel et al. [2], seeks to make

both the computation and communication complexities (online complexi-

ties) efficient or precisely polylogarithmic in N . Nevertheless, Beimel et

al. [2] proved the computation complexity of such a scheme has to be

linear unless the database is preprocessed. Therefore, a DEPIR scheme

needs to preprocess the database and store the resulting data structure

on the server for efficient query complexity.

This paper summarizes the breakthrough result of Lin et al. [11] who

constructed the first unkeyed DEPIR scheme based on the standard Ring

Learning with Errors assumption (Ring-LWE). Strictly speaking, it dis-

cusses the main tools they used for their construction. Amongst these

tools, it focuses on a data structure for polynomial evaluations with poly-

logarithmic complexity by Kedlaya and Umans [9] and an algebraic some-

what homomorphic encryption (ASHE) scheme by Lin et al. [11].

The rest of the paper is structured as follows. Section 2 overviews defi-

nitions, tools, and main construction. Section 3 introduces how a database

can be encoded as a multivariate polynomial interpolation problem. Sec-

tion 4 first discusses Brakerski and Vaikuntanathan’s SHE scheme and

then proceeds to the ASHE scheme. Section 5 presents fast multivariate

polynomial evaluations with preprocessing. Section 6 first defines DE-

PIR security and efficiency and then explains the construction. Section 7

concludes the paper by indicating future work.

2 Overview

2.1 PIR and DEPIR

A single-server private information retrieval (PIR) scheme is a protocol

that allows users to learn the i-th location DB[i] of the database DB ∈
{0, 1}N available to the server without revealing index i to the server [11].

An example could be a privacy-preserving search engine where clients can

query their keywords and get results back without letting the server learn

anything about their search queries.

It is worth mentioning that the security requirement does not prevent

the user from learning other entries than the ones they queried. Hence, a

trivial scheme may send the entire server’s database to the client so that

it can read the entry they are looking for, but it is simply impractical for

large databases and a major issue for communication bandwidth. As a

result, only those schemes with o(N) (sublinear in N) or just O(logcN)

(polylogarithmic in N) communication complexity are desired.

A major limitation of PIR schemes, as mentioned in Section 1 and

shown in [2], is that each query processing needs to involve all entries

of the database, lest the server learns some entries are untouched, which

breaks the security requirement [11]. DEPIR schemes avoid this limi-

tation by preprocessing the database DB into a data structure D̃B and

responding to user query with D̃B. Informally speaking, D̃B mix all en-

tries in DB once for all queries to overcome the limitation. Furthermore,

DEPIR schemes make polylogarithmic communication and computation

complexity possible.

There are three types of DEPIR schemes: unkeyed, public-key, and

secret-key. Unkeyed schemes refer to those where the database is pre-

processed independently and deterministically by the server, unlike the

secret-key and public-key variants where a trusted party needs to provide

proper keys to all parties and the preprocessed database to the server [11].

The scheme constructed by Lin et al. [11] falls into the unkeyed cate-

gory, which avoids needing a trusted party to provide keys and the server

having a key to process the query. Only the client must generate a key

for themselves and send encrypted queries to the server. Therefore, the

server needs to compute over the encrypted query. To achieve this, Lin

et al. [11] utilized Homomorphic Encryption (HE) schemes (specifically

Somewhat Homomorphic Encryption (SHE) schemes). These schemes en-

able computing allowed polynomials over the ciphertexts as if the polyno-

mial is computed over the corresponding plaintexts [13] .

They based their scheme on an Algebraic SHE scheme derived from

the SHE scheme of Brakerski and Vaikuntanathan [4]. Additionally, they

avoided the separate polynomial evaluation function Eval(c, f(·)) found in

[4] by endowing ring structure to the ciphertext space so that the polyno-

mial f(·) could be directly applied to the ciphertexts.

DEPIR schemes are essentially PIR schemes that are just more ef-

ficient. Lin et al. [11] approach the construction using ideas from PIR

schemes by first encoding the database DB as a polynomial fDB such that

fDB(i) = DB[i] for all indices i. Then, f is preprocessed in time superlinear

in N into a data structure D̃B that enables evaluating f over any point of

its domain in time polylogarithmic in N . The preprocessing step is where

DEPIR schemes are different from PIR schemes and more efficient. When

a client is interested in value DB[i], it encrypts i with the ASHE scheme,

obtaining the cipher text c. This ciphertext is sent to the server for ho-

momorphic evaluation of fDB over c, using the data structure D̃B. After

server evaluation, based on the properties of the ASHE scheme, an en-

cryption of fDB(i) is sent back to the client that can only be decrypted

with the secret key held by them. The following sections go through these

steps in detail.

2.2 Preliminaries

In the following sections, concepts and notations, such as rings, quotient

rings, polynomial rings, and (prime and cyclotomic) fields are used; there-

fore, the reader is referred to standard textbooks on abstract algebra

[7, 3], algebraic number theory [14], and cyclotomic fields [16] for def-

initions and discussions. Finite fields of prime order p are denoted by

Fp. Polynomials f and fDB (with or without subscript DB) are used inter-

changeably based on context. The individual degree for each variable of

a multivariate polynomial is the maximum degree a variable attains in

any of the monomials. On the other hand, the total degree of multivariate

polynomial is the maximum degree of monomials. The degree of a mono-

mial is the summation of degrees of its variables. For example, the total

degree of f(x, y) = x2y3 + xy5 is 6, while the individual degree of y and x

are 5 and 2, respectively. Let Z∗
n be the multiplicative group of integers

modulo n. Define the norm of a polynomial p as the maximum absolute

value of its coefficients and denote it by ||p||∞. The security parameter is

referred to by λ in the text. In all of the sections, log2 n is denoted by log n

for simplicity. Finally, denote finite set {0, 1, . . . , n− 1} by [n].

3 Encoding database as a polynomial

As mentioned in Section 2, Lin et al. [11] modeled the database DB ∈
{0, 1}N as a polynomial fDB such that fDB(i) = DB[i]. Towards this end,

an index i ∈ {1, 2, . . . , N} is represented as an m-digit number in base d,

i.e., (i1, i2, . . . , im) where i = Σm
j=1ij · dj−1 and ij ∈ [d]. For proper mul-

tiplication properties (such as existence of multiplicative inverse), Lin et

al. require d to be prime so that ij ∈ Fd. Then, polynomial fDB is consid-

ered a multivariate polynomial over Fd, and the problem of encoding the

database is reduced to interpolating a multivariate polynomial fDB from

N points of the form (i,DB[i]). Hence, it is required that N ≤ dm. A ben-

efit of modeling indices as m-digit numbers is to decrease the individual

degree to less than d in each variable of the polynomial f and increase the

degree of freedom by choosing an appropriate prime base d.

Lin et al. [11] introduce a recursive algorithm to interpolate polyno-

mial f(X1, . . . , Xm) with indivisual degree in all variables less than d over

Fd given dm points {yx}x∈Fm
d

in time O(dm ·m ·poly log(d)) such that f(x) =

yx. (If N < dm, let yx = 0 for all points x that do not represent a database

index.) The idea is to eliminate each variable in each iteration. The

first iteration is as follows. Univariate polynomials g(x1,x2,...xm−1)(Xm) =

y(x1,x2,...,xm−1,Xm) for all (x1, . . . , xm−1) ∈ Fm−1
d are determined. The degree

of these polynomials will be less than d. This is the well-known problem

of univariate polynomial interpolation. Then, the problem reduces to find

f such that f(X1, X2, . . . , Xm) = g(X1,X2,...,Xm−1)(Xm). In other words, if

g(x1,x2,...xm−1)(Xm) = Σd−1
i=0 c(x1,x2,...,xm−1,i)X

i
m, then f(X1, X2, . . . , Xm) should

be defined as Σd−1
i=0 fi(X1, X2, . . . , Xm−1)X

i
m such that fi(X1, X2, . . . , Xm−1) =

c(X1,X2,...,Xm−1,i), i.e., eliminating variable Xm. This reduces the problem

to find polynomials fi such that fi(X) = cX,i for all X ∈ Fm−1
d and i ∈ [d],

which can be solved recursively. Refer to Appendix B in [11] for more

details.

4 Somewhat Homomorphic Encryption (SHE)

A symmetric encryption scheme (Gen(1λ), Enc(m, k), Dec(c, k)) is somewhat

homomorphic encryption if the plaintext space is a ring and there is an

evaluation function such that given an allowed polynomial f(x1, . . . , xn)

and ciphertexts ci = Enc(mi, k), Eval(f, c1, . . . , cn) outputs encryption of

f(m1, . . . ,mn), i.e., Dec(Eval(f, c1, . . . , cn), k) = f(m1, . . . ,mn) [13].

Ciphertexts in HE schemes are noisy as these schemes rely on the

Ring-LWE assumption in which the adversary can not distinguish be-

tween two distributions that one of them involves random bounded noises.

This noise grows with the homomorphic operations (additions and multi-

plications) and can cause decryption to fail if they are too large. Hence, al-

lowed polynomials prevent this failure by restricting the set of supported

polynomials and the maximum number of multiplications.

In the following two Subsections, elements of Zq are represented with

that of (−q/2, . . . , q/2] ∩ Z.

4.1 Brakerski and Vaikuntanathan’s SHE scheme (BV scheme)

In their work [4], Brakerski and Vaikuntanathan introduce an SHE scheme

with security parameter λ, prime number q = q(λ) and degree n = 2g(λ) cy-

clotomic polynomial h(x) = xn+1. The plaintext space is Rt = Zt[x]/⟨h(x)⟩
where t ∈ Z∗

q is prime. Plaintext space can be seen as degree n− 1 polyno-

mials with coefficients in Zt. Since degree n− 1 polynomials over any ring

can be seen as n-tuples over that ring and vice versa, their formulation is

just an algebraic way to allow encryption of n plaintexts. A public error

distribution χ over Rq = Zq[x]/⟨h(x)⟩ is defined in the scheme for secret

key and error sampling. Finally, the ciphertext space in this scheme is

R≤D+1
q (tuples over Rq with at most D + 1 elements) where D is the max-

imum number of multiplications of fresh ciphertexts (a function of q, h,

χ). Note that ciphertexts are D + 1-tuples and can be viewed as degree D

polynomials which is the case for ASHE.

The key generation algorithm samples secret key s from χ, denoted by

s←$χ. The encryption algorithm is given message m ∈ Rt and s ∈ Rq.

It outputs ciphertext c = (c0 = as + te + m, c1 = −a) ∈ R2
q by sampling

a←$Rq and error e←$χ. Note that adding m ∈ Rt with as + te ∈ Rq is

allowed since t ∈ Z∗
q and there is a natural embedding from Rt into Rq. The

evaluation algorithm suffices to define how addition and multiplication

should be handled. Adding two ciphertexts with the same length D is

straightforward via a coordinate-wise addition. Namely, c + c′ = (c0 +

c′0, c1 + c′1, . . . , cD + c′D). (Shorter ciphertexts are padded with zeros.)

To motivate the definition of multiplication, observe that te + m =

c0 + c1s and te′ +m′ = c′0 + c′1s. Hence, (te+m)(te′ +m′) = (c0 + c1s)(c
′
0 +

c′1s). Expanding (te +m)(te′ +m′) gives t(em′ + e′m + tee′) +mm′ ≡ mm′

mod t. If the norm of the (c0 + c1s)(c
′
0 + c′1s) as a polynomial in Rq is

less than q/2, the error does not render the recovery impossible. (For

further discussion, refer to Section 2 and Section 3 in [4]. Theorem 1

of their paper summarizes the error upper bound for message recovery.)

However, expanding (c0 + c1s)(c
′
0 + c′1s) yields c0c

′
0 +(c0c

′
1 + c1c

′
0)s+ c1c

′
1s

2.

This entails including c0c
′
0, c1c

′
0 + c0c

′
1, and c1c

′
1 in the ciphertexts are

enough to recover mm′ using the secret key s. More importantly, anyone

can compute an encryption of mm′ given c and c′ without knowing the

secret key s or finding new information of m or m′, which is expected from

the public evaluation function. Therefore, c × c′ is defined as (c0c
′
0, c1c

′
0 +

c0c
′
1, c1c

′
1), which can be further generalized to longer ciphertexts using

polynomial multiplication, i.e., multiplication of c = (c0, . . . , cl) and c′ =

(c′0, . . . , c
′
l′) is defined as the coefficients vector of (Σl

i=0civ
i) · (Σl′

i=0c
′
iv

i) for

some indeterminate v.

Decryption of fresh ciphertexts (i.e., (c0, c1)) is as simple as c0 + c1s

mod t, while decryption of (c0, c1, c2) is computed via c0+ c1s+ c2s
2 mod t.

This can be immediately generalized to Dec
(
c = (c0, . . . , cD), s

)
= ΣD

i=0cis
i

mod t, provided that norm of polynomial ΣD
i=0cis

i as a member of Rq is less

than q/2. Remarkably, this upper bound is crucial for correct message re-

covery as computation in Rq and taking modulo t may not be compatible

with large errors. Multiplication hints at why the scheme lets the cipher-

text space be R≤D+1
q . Fresh ciphertexts generated by Enc have a length of

2. Addition leaves the length of ciphertexts unchanged, whereas multipli-

cation increases the length of ciphertexts.

Finally, Brakerski and Vaikuntanathan prove their scheme is secure

under the worst-case hardness of approximating shortest vectors on ideal

lattices within a factor of O(2nϵ
) (Theorem 2, [4]). This assumption im-

plies the RingLWE assumption when the quotient polynomial is cyclo-

tomic [12].

4.2 Algebraic Somewhat Homomorphic Encryption (ASHE)

As hinted in the overview, Lin et al. [11] avoided the need for an evalu-

ation function by endowing ring structure to the ciphertext space of BV’s

SHE scheme so that polynomial fDB can be directly applied to the ci-

phertexts, i.e., Dec(f(c1, . . . , cn), k) = f(m1, . . . ,mn) where Enc(mi, k) = ci.

They interpret the ciphertext tuples as polynomials. Namely, any tuple

in R≤D+1
q corresponds to a polynomial over Rq of degree at most D. Since

Lin et al. [11] are interested in evaluating polynomials of total degree

less than D over the ciphertexts, they set the ciphertext space of ASHE

scheme as C = Rq[y]/⟨yD + 1⟩ = Zq[x, y]/⟨xn + 1, yD + 1⟩. However, the

plaintext space is chosen to be Zd instead of Rt = Zt[x]/⟨xn + 1⟩. (Recall

from Section 3 that digits of database indices belonged to Fd.)

All public parameters (i.e., q, n, and β) of the scheme are derived de-

terministically by ASHE.Setup(1λ, 1d, 1D, N) from the security parameter

λ, plaintext space size d, the number of terms N in the multivariate poly-

nomial f with coefficients in Zd, which is evaluated over ciphertexts, and

the total degree of the polynomial less than D. They require q ≫ d to

be relatively prime to d but not necessarily prime. (cf. [4] where q was

chosen as prime.) They also introduce a notion of lifting that refers to

interpreting members of Zd as members of Zq, Rq, and C through the nat-

ural embedding of these rings into each other. For example, coefficients

of f are lifted to C before evaluating over ciphertexts. Analogous to BV’s

SHE scheme, a public β-bounded error distribution χ over Rq is defined

where Pr[||e||∞ ≤ β : e←$χ] = 1. The reader is referred to Section 3.1

of the works of Lin et al. [11] for a detailed discussion of the choice of

parameters.

The key generation algorithm ASHE.Gen(1λ) samples s←$Rq uniformly.

The encryption algorithm ASHE.Enc(s, µ) inputs secret key s ∈ Rq as well

as message µ ∈ Zd, samples a←$Rq and error e←$χ, interprets µ ∈ Zd

naturally as a constant polynomial in Rq (lifts µ to Rq), and outputs ct(y) =

−a · y + a · s + d · e + µ ∈ C. Notice that ct(s) = d · e + µ ≡ µ mod d and

fresh encryptions are polynomials of degree 1 in y. Multiplication and

addition of ciphertexts are defined naturally as polynomial multiplication

and addition, respectively. Ciphertexts correspond to the artificial polyno-

mials with indeterminate v, which were introduced when the multiplica-

tion of ciphertexts in BV’s scheme was defined. Generally, for decryption

of ct(y) under the secret key s, the algorithm ASHE.Dec(ct, s) computes

g = ct(s) ∈ Rq and outputs g(0) mod d. Observe that messages belong

to Zd and were naturally embedded as constant polynomials in Rq; there-

fore, g(0) ∈ Zq (the constant term) is computed modulo d. Similar to BV’s

scheme, decryption is correct as long as ||ct(s)||∞ ≤ q/2.

Security definitions of ASHE schemes are defined with indistinguisha-

bility under chosen plaintext attack (IND-CPA) and it follows directly

from the scaled error variant of the RingLWE assumption. Refer to Sec-

tion 3 of [11] for more details of the correctness and security proof.

5 Fast multivariate polynomial evaluation with preprocessing

Theorem 5.1 (Theorem 2.1, [11]). Let C = Zq[x, y]/⟨h(x), g(y)⟩ for some

q ∈ N and arbitrary monic polynomials h over x and g over y. Let f ∈
C[X1, . . . , Xm] be a polynomial of individual degree less than d in every

variable. There is a preprocessing algorithm that takes the coefficients

of f , runs in time

dm · poly(m, d, log |C|) · O(m(logm+ log d+ log log |C|))m,

and outputs a data structure of at most the same size, and there is an eval-

uation algorithm with random access to the data structure that com-

putes f(X) for all X ∈ Cm in time poly(d,m, log |C|).

Lin et al. [11] prove the theorem in three steps. They first prove a

simpler case by considering polynomials over Zq, then polynomials over

Rq = Zq[x]/⟨h(x)⟩, and finally polynomials over C = Rq[y]/⟨g(y)⟩. The

following Subsections explain the proof idea behind these steps.

5.1 Polynomials over Zq

The high-level idea is as follows. First, interpret the coefficients of f ∈
Zq[X1, . . . , Xm] in Z (lifting f to f lift by interpreting its coefficients in Z in-

stead of Zq). Then, store evaluations of f lift over all elements of Zp1 , . . . ,Zph

for small distinct prime numbers p1, . . . , ph, i.e., for every i ∈ {1, . . . , h},
store (x, f lift(x) mod pi) in table Ti for all x ∈ Zpi . Set D̃B = (p1, . . . , ph, T1, . . . , Th).

Lin et al. use the FFT-based fast multivariate multipoint evaluation algo-

rithm described in Theorem 4.1 in the work of Kedlaya and Umans [9] to

compute f lift(x) mod pi for all x ∈ Zpi in time O(m · (dm+ qm) ·poly(log q)).
To evaluate f(X) for some X ∈ Zm

q , first interpret X as a member of

Zm (lift X to X lift). Then, look up the values zi = f lift(X lift mod pi) in the

table Ti and use the Chinese Remainder Theorem (CRT) to obtain z where

z ≡ zi mod pi for all i. (X lift mod pi denotes coordinate-wise reduction of

X lift modulo pi.) Output z mod q as the evaluation result.

According to CRT, there exists a unique z mod p1 · · · ph satisfying the

conditions. However, z = f lift(X lift) mod p1 · · · ph. Wishing z to be exactly

f lift(X lift), Lin et al. require p1 · · · ph to be large enough to avoid computa-

tion wrap over. Towards this end, they set M = maxX∈Zm
q
f lift(X) and let

p1, . . . , ph to be all the primes less than or equal 16 logM . (Since f has in-

dividual degree less than d in all of its m variables with coefficients from

Zq, it can have at most dm monomials. Hence, M = dm · q · qm(d−1).) Based

on Lemma 2.4 in [9], M < p1 · · · ph. Since there is a unique z < p1 · · · ph
that satisfies z ≡ zi mod pi for all i and f lift(X lift) < M < p1 · · · ph sat-

isfies f lift(X lift) ≡ f lift(X lift mod pi) mod pi, z = f lift(X lift). Finally, z

mod q = f lift(X lift) mod q = f(X).

The preprocessing algorithm runs in timeO(md log q)m·poly(m, d, log q),

and the evaluation algorithm runs in time poly(m, d, log q). Lin et al. do

not stop here and repeat the same algorithm once again for polynomial

evaluations over Zpi ’s. Since the log q factor comes from logM upper bound

for the primes pi, applying the algorithm once again changes the running

time of the preprocessing algorithm to dm · poly(m, d, log q) · O(m(logm +

log d + log log q))m. The evaluation time remains the same. Lin et al. call

this technique two-level reduction. Refer to Appendix A.1 in [11] for the

running time analysis.

5.2 Polynomials over Rq = Zq[x]/⟨h(x)⟩

Lin et al. introduce an idea for moving from ring Zq to Rq = Zq[x]/⟨h(x)⟩
that also applies when moving from Rq to C = Rq[y]/⟨g(y)⟩.

The main idea for preprocessing and evaluation is Kronecker substi-

tution (Section 8.4, [15]). Kronecker substitution encodes a polynomial

p(x) = Σd
i=0pix

i with an integer p(M) by evaluating p over a value M

greater than all the coefficients pi. To recover the polynomial, it suffices

to consider digits of p(M) in base M as coefficients of p.

To motivate the approach, first interpret coefficients of f ∈ Rq[X1, . . . , Xm]

in Z[x] without reducing modulo q or h(x). (Lift f to f lift ∈ Z[x][X1, . . . , Xm].)

Moreover, interpret X ∈ Rm
q as a member of (Z[x])m. (Lift X to X lift.) Ob-

serve β(x) = f lift(X lift) ∈ Z[x] and let β(x) = ΣD
i=0βix

i with non-negative

coefficients βi and degree at most D = (deg h − 1)((d − 1)m + 1). (Notice

that degXi ≤ deg h − 1 (recall Xi ∈ Rq) and (d − 1)m + 1 members of Rq

may be multiplied by each other in a monomial of f .)

With the Kronecker substitution in mind, it is desired that β(M) ∈ Z

is computed for a large M greater than all βi so that digits of β(M) in

base M are βi. Since coefficients of Xi as polynomial over x are at most

q − 1, multiplication of two such polynomials can create coefficients at

most deg h(q − 1). There are at most dm monomials added in f and at

most (d− 1)m+ 1 multiplications happen in a monomial. Therefore, βi ≤
dm(deg h(q − 1))(d−1)m+1, and M = dm(deg h(q − 1))(d−1)m+1 + 1 is a strict

upper bound for βi.

Let X lift mod (x −M) denote coordinate-wise reduction of X lift mod-

ulo x − M . Observe that if f red = f lift mod (x − M) and Xred = X lift

mod (x−M), β(M) = f red(Xred) where β = f lift(X lift). Since Xred
i < β(M) <

MD+1, using the last observation and letting r = MD+1, β(M) can be com-

puted by evaluating f red ∈ Zr[X1, . . . , Xm] over Xred ∈ Zm
r , which is exactly

the case discussed in Subsection 5.1. In other words, the preprocessing

and evaluation algorithm for polynomial f red over Zr is invoked for the

evaluation on points Xred ∈ Zm
r . (Notice that bounding Xred

i by r and pre-

processing the whole Zr is very inefficient as the bound is far from being

tight.)

The preprocessing algorithm runs in time

dm · poly(m, d, log |Rq|) · O(m(logm+ log d+ log log |Rq|))m

and the evaluation algorithm runs in time poly(d,m, log |Rq|), determined

by log r and log log r.

5.3 Polynomials over C = Rq[y]/⟨g(y)⟩

Moving from Rq to C = Rq[y]/⟨g(y)⟩ is identical by lifting evaluations to

Z[x, y] and reducing f modulo (y−M ′) for large enough M ′ to obtain eval-

uation problem of f red ∈ Z[x][X1 . . . , Xm] over Z[x]. Similar to Subsection

5.2, some r′ is chosen to bound coefficients of f red. Moreover, a large D′

is also chosen to bound the degree of computations of f red so that they

do not wrap over (xD
′
+ 1). This gives a polynomial evaluation problem

over Zr′ [x]/⟨xD
′
+ 1⟩ such that Xred ∈ (Zr′ [x]/⟨xD

′
+ 1⟩)m, which is exactly

the previous case discussed in Subsection 5.2. Refer to Appendix A.2 in

[11] for more details. The running time of preprocessing and evaluation

algorithms do not change except that C replaces Rq.

Again, forcefully instantiating a problem of the previous case by mod-

ding out r′ and xD
′
+ 1 is very inefficient and causes the preprocessing to

store many redundant values in the ring (Zr′ [x]/⟨xD
′
+ 1⟩)m.

5.4 Optimizations by Okada et al. [13]

Okada et al. [13] introduce an optimization technique to avoid Kroe-

necker substitutions altogether by leveraging the algebraic structure of

Rq = Zq[x]/⟨xn + 1⟩ when q = p1 · · · pr, pi = 1 mod 2n, and xn + 1 is a

cyclotomic polynomial, i.e., n is a power of two. (Recall ciphertext space of

ASHE scheme was Rq[y]/⟨yD + 1⟩ where Rq was derived from BV’s SHE

scheme as quotient over a cyclotomic polynomial.) In such a situation,

Rq splits into prime ideals, and so Rq = Zq[x]/⟨xn + 1⟩ ∼=
⊕r

i=1

⊕n
j=1 Fpi .

Then, they choose prime k > D (to avoid wrap over modulo D, the total

degree of the encoded polynomial) and redefine the ciphertext space of

ASHE scheme C as below when pi = 1 mod 2nk:

C ′ ∼= Zq[y]/⟨yk − 1⟩ ⊗ Zq[x]/⟨xn + 1⟩ ∼= Zq[x]/⟨xnk + 1⟩ ∼=
r⊕

i=1

nk⊕

j=1

Fpi

Refer to Fourier decomposition of ciphertexts outlined in Section 6 in

work of Okada et al. [13] for more details.

6 DEPIR definition and main construction

Having all the tools ready, this Section starts with the formal definition

of DEPIR (syntax, correctness, security, and efficiency) and proceeds to

explain the construction and why it satisfies the definition.

6.1 Definition

Syntax

A DEPIR scheme consists of four algorithms Preproc, Query, Resp, and Dec.

• D̃B = Preproc(DB, 1λ) is a deterministic algorithm (notice notation =

instaed of ←$) that inputs a database DB ∈ {0, 1}N and security param-

eter λ and outputs the preprocessed database D̃B, which is stored by

the server. The server can run this algorithm independently and only

once before all queries of all clients, i.e., not limited to one client. More-

over, it does not interfere with the scheme security as the preprocessed

database is information-theoretically equivalent to the initial database

and only optimized for evaluation queries. In fact, for PIR schemes, D̃B

can be simply the encoding of DB as a polynomial as discussed in Section

3. The running time of this algorithm and its output size are known as

preprocessing time and server storage size, respectively.

• (c, s)←$Query(1λ, N, i) is a probabilistic algorithm that inputs the secu-

rity parameter λ, database size N , and database index i ∈ {1, . . . , N}
and outputs the ciphertext c to be sent to the server and secret key s

to be stored locally by the client for decryption of server response. The

secret key is only applicable for this query.

• a = Resp(D̃B, c) is a deterministic algorithm that inputs the prepro-

cessed database D̃B and ciphertext c sent by the client and outputs the

encrypted value in the database corresponding to the index i.

• b = Dec(s, a) is a deterministic algorithm run by the client that inputs

the secret key s and server answer a and outputs bit b at position i in

the database.

Surprisingly, query complexity is the collective running time of Query,

Resp, and Dec. Communication complexity is determined by the output

size of Query and Resp.

Correctness

It is expected of an honest execution of the protocol for all indices i and all

databases DB to satisfy Pr[Dec(s, a) = DB[i]] = 1 where D̃B = Preproc(DB, 1λ),

(c, s)←$Query(1λ, N, i), a = Resp(D̃B, c), and the probability is over the

random choices of the only probabilistic algorithm Query.

Security

The security requirement is that for all probabilistic polynomial time ad-

versary A and security parameters λ, there exists a negligible function

negl(λ) such that |Pr
[
ExpDEPIR

A (1λ) = 1
]
− 1/2| ≤ negl(λ) where:

ExpDEPIR
A (1λ)

(st, i0, i1, 1
N)←$A(1λ)

b←$ {0, 1}

(c, s)←$Query(1λ, N, ib)

b′←$A(st, c)

if b = b′ then

return 1

return 0

In other words, the adversary should not be able to distinguish between

encryptions of different queried indices of the databases even if they were

chosen by itself. The similarity to the IND-CPA security implies that secu-

rity can be reduced to that of a possible encryption scheme used by Query.

Since, in the context of DEPIR, even the server can be the adversary by

observing clients’ encrypted queries or making new queries itself, it is as-

sumed the adversary has access to the database. (Notice that this makes

the notion even stronger.) The state information st is common in secu-

rity experiment definitions that require the adversary to interact with

the challenger. Moreover, Resp is not modeled in the game as it can be

simulated by the adversary internally. Finally, Preproc as a deterministic

algorithm can be simulated by the adversary, and as mentioned before, it

does not affect security at all.

Efficiency

An scheme consisting of four algorithms Preproc, Query, Resp, and Dec is

doubly efficient if Preproc runs in polynomial time with respect to λ and

database size N , i.e., poly(λ,N) (ideally qausilinear in N , i.e., Npoly(logN)),

and Query, Resp, and Dec, collectively, runs in time sublinear in N (ideally

polylogarithmic in N).

6.2 Construction

Two public parameters d and m are chosen based on database size N such

that d is prime and dm ≥ N . Lin et al. [11] describe two options for

choosing them. The reader is referred to page 23 of their work for an

elaborate discussion of the choice of parameter effect on the efficiency.

The ASHE scheme is set up with ASHE.Setup(1λ, 1d, 1D = 1dm, dm) using

the scheme security parameter λ, d as before, and dm as the upper bound

for the total degree D of fDB with at most dm terms. This step defines the

rings Rq and C (ciphertext ring).

The preprocessing algorithm encodes the database DB as a polynomial

fDB explained in Section 3. The polynomial coefficients are lifted from Fd

to C, resulting in f lift
DB. (Refer to Section 4.2 for the definition of lifting.)

Then, the resulting lifted m-variate polynomial f lift
DB of individual degree

less than d over Rq undergoes the preprocessing algorithm of Section 5,

and the resulting evaluation tables D̃B are stored by the server in random-

access memory. The query algorithm finds the digits of i = (i1, . . . , im)

in base d, generates a secret key s←$ASHE.Gen(1λ), obtains the encryp-

tion of each digit cj←$ASHE.Enc(s, ij), and outputs (c1, . . . , cm) and s. The

server response generator algorithm uses the fast polynomial evaluation

algorithm introduced in Section 5 and outputs a = f lift
DB(c1, . . . , cm) using

random access to tables D̃B. The decryption algorithm simply outputs

ASHE.Dec(a, s).

Security, as hinted in Subsection 6.1, is reduced to that of ASHE,

since the adversary (including the server) only sees m ciphertexts for each

query. Lin et al. discuss how weaker security notions of ASHE can be used

by adjusting the parameters in Section 4.2 of their work [11].

The preprocessing algorithm running time is bounded by the encod-

ing and the polynomial preprocessing steps taking O(dm ·m · poly(log d))
and dm · mm · poly (m, d, log |C|) · O(logm + log d + log log |C|)m, respec-

tively. Note that log |C| = log qDn = Dn log q = poly(λ,D, log d, logN) =

poly(λ, d,m, log d) = poly(λ, d,m). (Refer to choice of parameter q in Sec-

tion 3.1 of [11].) The query complexity is bounded by the ASHE key gen-

eration, m copies of ASHE encryption, and server response, which is in

turn bounded by the running time of the fast polynomial evaluation algo-

rithm O(d,m, log |C|) mentioned in Section 5. Each of these algorithms is

bounded by poly(λ, d,m).

For any ϵ > 0, Lin et al. [11] choose d to be the first prime greater than

log2/ϵN and achieve query complexity poly (λ, logN) with preprocessing

complexity O(N1+ϵ)poly(λ, logN).

7 Conclusion and future work

This paper briefly discusses the main tools used for DEPIR construction

to accelerate the literature review process for future researchers. More-

over, it compiles the related work, such as that of Brakerski and Vaikun-

tanathan [4], Okada et al [13], and Kedlaya and Umans [9]. More im-

portantly, it hints at the connection between the work of Lin et al. [11]

and previous research, including the relation between ASHE and BV’s

scheme in Section 4.2 and the use of Kronecker substitution for encoding

polynomials as integers in Section 5.

However, the work of Lin et al. [11] is much more comprehensive.

They outlined an algorithm to update an already preprocessed database

and applied their ideas behind ASHE to construct a RAM-FHE scheme.

The work of Okada et al. [13] also includes other optimization techniques

including one for database encoding.

The most important observation of this paper for future development

is the inefficiency of polynomial preprocessing using the Kroenecker sub-

stitution, producing large integers. Subsections 5.2 and 5.3 pinpoint sev-

eral issues along the discussion. Additionally, Okada et al. [13] demon-

strated the impracticality of the naive implementation of the work of Lin

et al. [11]. They have also asked for alternative ASHE schemes with bet-

ter noise growth and ring size. According to them, common techniques

for decreasing noise and ring size, such as modulus-switching and re-

linearization, are not algebraic in nature, and, hence, incompatible with

ASHE.

References

[1] Dmitri Asonov. Querying Databases Privately: A New Approach to Private
Information Retrieval, volume 3128 of Lecture Notes in Computer Science.
Springer, 2004. https://doi.org/10.1007/B98671.

[2] Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computa-
tion in private information retrieval: PIR with preprocessing. In Mihir Bel-
lare, editor, Advances in Cryptology - CRYPTO 2000, 20th Annual Interna-
tional Cryptology Conference, Santa Barbara, California, USA, August 20-
24, 2000, Proceedings, volume 1880 of Lecture Notes in Computer Science,
pages 55–73. Springer, 2000. https://doi.org/10.1007/3-540-44598-6_4.

[3] P. B. Bhattacharya, S. K. Jain, and S. R. Nagpaul. Basic Abstract Algebra.
Cambridge University Press, November 1994. https://doi.org/10.1017/
CBO9781139174237.

[4] Zvika Brakerski and Vinod Vaikuntanathan. Fully homomorphic en-
cryption from ring-lwe and security for key dependent messages, 2011.
https://doi.org/10.1007/978-3-642-22792-9_29.

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information
retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer
Science, SFCS-95. IEEE Comput. Soc. Press, 1995. https://doi.org/10.
1109/sfcs.1995.492461.

[6] Eric Fung, Georgios Kellaris, and Dimitris Papadias. Combining differ-
ential privacy and PIR for efficient strong location privacy. In Christophe
Claramunt, Markus Schneider, Raymond Chi-Wing Wong, Li Xiong, Woong-
Kee Loh, Cyrus Shahabi, and Ki-Joune Li, editors, Advances in Spatial
and Temporal Databases - 14th International Symposium, SSTD 2015,
Hong Kong, China, August 26-28, 2015. Proceedings, volume 9239 of Lec-
ture Notes in Computer Science, pages 295–312. Springer, 2015. https:
//doi.org/10.1007/978-3-319-22363-6_16.

[7] Joseph Gallian. Contemporary Abstract Algebra. Chapman and Hall/CRC,
January 2020. https://doi.org/10.1201/9781003142331.

[8] Daniel Günther, Maurice Heymann, Benny Pinkas, and Thomas Schneider.
Gpu-accelerated pir with client-independent preprocessing for large-scale
applications. Cryptology ePrint Archive, Paper 2021/823, 2021. https:

//eprint.iacr.org/2021/823.

[9] Kiran S. Kedlaya and Christopher Umans. Fast polynomial factorization
and modular composition. SIAM Journal on Computing, 40(6):1767–1802,
January 2011. https://doi.org/10.1137/08073408x.

[10] Ali Khoshgozaran, Houtan Shirani-Mehr, and Cyrus Shahabi. Spiral: A
scalable private information retrieval approach to location privacy. pages
55–62, Beijing, China, 2008. IEEE. https://doi.org/10.1109/mdmw.2008.
23.

[11] Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private infor-
mation retrieval and fully homomorphic ram computation from ring lwe. In
Proceedings of the 55th Annual ACM Symposium on Theory of Computing,

STOC 2023, page 595–608, New York, NY, USA, 6 2023. Association for
Computing Machinery. https://doi.org/10.1145/3564246.3585175.

[12] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and
learning with errors over rings. page 1–35, 11 2013. https://doi.org/10.
1145/2535925.

[13] Hiroki Okada, Rachel Player, Simon Pohmann, and Christian Weinert. To-
wards practical doubly-efficient private information retrieval. Cryptology
ePrint Archive, Paper 2023/1510, 2023. https://eprint.iacr.org/2023/
1510.

[14] Ian Stewart and David Tall. Algebraic Number Theory and Fermat’s Last
Theorem: Third Edition. A K Peters/CRC Press, December 2001. https:
//doi.org/10.1201/9781439864081.

[15] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, 3 edition, 2013. https://doi.org/10.1017/
CBO9781139856065.

[16] Lawrence C. Washington. Introduction to Cyclotomic Fields. Springer New
York, NY, 2 edition, 1997. https://doi.org/10.1007/978-1-4612-1934-7.

Predicting Depression through Digital
Phenotyping

Antti Kokkonen
antti.j.kokkonen@aalto.fi

Tutor: Arsi Ikäheimonen

Abstract

Depression affects a significant part of the population globally. Like other

mental disorders, depression lacks reliable biomarkers and typically psy-

chiatric diagnoses are based on clinical interviews. This adds to the al-

ready great burden of the global health-care and also the patients might

not be able to report the changes in their mental state accurately. As an

option for this health data could be collected from mobile devices and with

these data and so called digital phenotyping we can try to create behav-

ioral markers that are related to the patient’s symptoms. And with these

markers and different statistical and machine learning methods we can

create predictive models to estimate current and future depressive state of

the patient.

This paper reviews how depression can be predicted using digital phe-

notyping. The current work is a literature review and 11 scientific articles

were selected for it. The paper reviews what types of data can be collected,

what machine learning algorithms can be used for the models, how these

models perform and what are their limitations.

From the selected articles most common data collected were related to

activity, location or sleep of the participants. Most of the articles selected

used machine learning models and the most common algorithm used was

Random forest. The models were generally able to predict depression with

good accuracy and show digital phenotyping as a viable option for pre-

dicting depression. However, there were limitations and more than half

of the studies warned that there are no guarantees that their work can be

generalized outside their participant groups.

KEYWORDS: depression; digital phenotyping

1 Introduction

Depression affects a significant part of the population globally. In the

2013 study by Ferrari et al. [1] the global prevalence of major depressive

disorder (MDD) was estimated to be around 5 %. According to the Global

Burden of Disease Consortium [2] MDD was the second leading contrib-

utor to the global disease burden in 2013. The symptoms of depression

include depressed mood, diminished interests, impaired cognitive func-

tion, vegetative symptoms and it can even lead to a suicide [3]. Like other

mental disorders MDD lacks reliable biomarkers [4] and typically psychi-

atric diagnoses are based on clinical interviews, which adds to the already

great burden of the global health-care. In addition, the patients might not

be able to report the changes in their mental state accurately [5].

To answer the challenges just mentioned, health data could be col-

lected from mobile devices. It is estimated that in 2023 there were glob-

ally almost 17 billion mobile devices and over seven billion mobile device

users [6]. These smartphones and wearable devices can be used to collect

data through the user interaction with the device or the devices’ different

sensors. With so called digital phenotyping, which Torous et al. [7] de-

fine as "moment-by-moment quantification of the individual-level human

phenotype in situ using data from digital devices", we can try to create

behavioral markers that are related to the patient’s symptoms. And with

these markers and different statistical and machine learning methods we

can create predictive models to estimate current and future depressive

state of the patient.

This paper reviews how depression can be predicted using digital phe-

notyping. The current work is a literature review and 11 scientific arti-

cles were selected for this paper. The focus is on how passive data from

smartphones and wearable devices can be used for predicting depression

changes and which machine and deep learning strategies are used for

these predictive models.

The structure of this paper is the following: First the methods for this

literature review are introduced in section 2. Then, in section 3, the re-

sults of this review are presented. After that, in section 4, we discuss the

results and limitations of predicting depression with digital phenotyping

and also the limitations of this review. Finally, section 5 gives a conclusion

of the contents of this paper.

2 Methods

For this literature review a handful of scientific articles were selected.

The articles were searched from the Scopus database. The goal was to se-

lect articles that researched predicting depression changes or future de-

pressive state through digital phenotyping using passive data collected

from smartphones and wearable devices. Some of the selected articles do

not exclusively discuss just depression but also other mental disorders as

well such as bipolar disorder (BDD) or general anxiety disorder (GAD).

First, a simple search query ’"depressi*" AND "digital phenotyp*"’ was

formed. Here the ’*’ symbol means that after the preceeding characters

in the string zero or more of any character may follow. Using the filters

of the Scopus search the results were limited to just articles (excluding

review articles).

Articles identified by
search query on Scopus

(n=138)

Articles after manually
analyzing titles

(n=65)

Articles after manually
analyzing abstracts

(n=23)

Articles after manually
analyzing instructions

(n=11)

Figure 1. Article screening process

For the article screening, which figure 1 describes, the PRISMA [8]

standard was applied. After the initial search the results were manually

reviewed. First the titles were analyzed and unfitting articles were ex-

cluded. Then the remaining articles were again reviewed this time based

on the abstract and again the unsuitable articles were excluded. Finally,

the introductions to the articles were analyzed and the final selection was

made. Also at this point two articles were excluded because the full texts

were not accessible for free. In the end, 11 articles were selected for this

review.

3 Results

This section provides the results of the review. The different types of data

collected in the reviewed articles are presented in section 3.1 with focus

on the more common types of data. After that, in section 3.2, the machine

learning algorithms used for the predictive models of the reviewed articles

are presented.

Author Year Passive data source Machine learning methods Results

Cho et al. 2019
Activity, Heart rate, Light ex-

posure, Sleep
Random forest

Depressive episode was predicted

with 85.3 % accuracy.

Jacobson

and

Chung

2020
Calls and text messages, Light

exposure, Location

Nomoethic extreme boosting,

Random forest

Depressed mood was predicted from

hour to hour with an average corre-

lation of 0.587.

Meyerhoff

et al.
2021

Calls and text messages, Loca-

tion, Phone usage
-

Changes in behavioral features pre-

dicted changes in depression but not

vice-versa.

Zhang et

al.
2021 Location

Hierarchical Bayesian linear

regression

Depression severity was pre-

dicted with the prediction metrics

R2=0.526, RMSE=3.891.

Liu et al. 2022
Calls and text messages, Loca-

tion

Histogram-based gradient

boost trees, Logistic regression

Text message sentiment among

other features were able to strongly

predict depression status.

Bai et al. 2023

Activity, Calls and text mes-

sages, Heart rate, Location,

Phone usage, Sleep

Decision trees, K-nearest

neighbors, Logistic regression,

Naive Bayes, Random forest,

Support vector machine

Changes in mood states were pre-

dicted with an accuracy of 76.67 %

at best.

Currey et

al.
2023

Activity, Location, Phone us-

age
Logistic regression

A 50 % change in mood could be de-

tected with 28 days of data.

Fried et

al.
2023

Activity, Heart rate, Sleep,

Stress
- -

Lee H.-J.

et al.
2023

Activity, Heart rate, Light ex-

posure, Sleep
Random forest

Impending MDE for the next three

days was predicted with 90.1 % ac-

curacy.

Lee T. et

al.
2023 Activity, Light exposure, Sleep

Hidden Markov model, Ran-

dom forest, Recurrent neural

network

Future depressive episodes were

predicted with 78 % accuracy.

Ross et al. 2023 Activity, Phone usage

Deep learning neural net-

works, Gradient boosting,

Random forest

Changes in depression predicted

with 95 % accuracy.

Figure 2. Summary of the selected articles

Figure 2 shows a summary of the selected articles. More than half of

the selected articles were published after 2021 and only two were pub-

lished before 2021. All of the articles were published less than five years

ago.

3.1 Data collection

1 2 3 4 5 6 7

Stress

Phone usage (keyboard usage,

screen on/off, app usage)

Calls and text messages

Light exposure

Heart rate

Sleep

Location (GPS,

WiFi, Bluetooth)

Activity (accelometer,

step count etc.)

Figure 3. Types of collected data in the reviewed material

Figure 3 shows the quantities of the types of data collected in the reviewed

articles. Between the different types there were some intersections of

which there are some examples in this section. There were differences in

how detailed the articles described the data collected.

The most common type of data was activity based data which was col-

lected in seven of the eleven articles [9, 10, 11, 12, 13, 14, 15]. Three of

these measured the step count of the users [9, 10, 13]. Curry et al. [11] and

Ross et al. [15] used accelometer data, latter of which measured accelome-

ter data only when the patient was still and typing with their smartphone.

Fried et al. [12] and Lee T. et al. [14] just mention measuring activity

without specifying which sensors were used.

As mentioned before there were some intersections with other types of

data collected. Curry et al. [11] determined sleep duration from accelome-

ter data and Bai et al. [9] used activity to determine whether the user was

active, in light sleep, in deep sleep or not wearing the tracker.

The second most common type of data was location based data. Six

of the selected articles [9, 11, 16, 17, 18, 19] used that in their stud-

ies. Almost all utilized Global Positioning System (GPS). Only Jacobson

and Chung [16] used WiFi whenever GPS was not available and Zhang

et al. [19] measured Bluetooth devices in the physical proximity of the

patient.

In addition to using just GPS location itself a lot of other features

were extracted from the data as well such as velocity and other movement

related features [16, 17, 18], which intersect with the activity based data.

Almost all of the six studies also determined the type of the locations

visited or some of them. Currey et al. [11] and Liu et al. [17] measured

time spent at home. Meyerhoff et al. [18] measured time spent at home,

work, shopping, social activites, religoius activites and excercise locations

based on labels assigned manually for each location. Jacobson and Chung

[16] recorded the location type based on Google Places location and local

weather information of the current location.

Also Zhang et al. [19] measured number of Bluetooth connections around

the user in different location types and with that estimated social con-

nections and interactions with family, friends, co-workers and strangers.

They also had features for time at home, mobility, social isolation and

working status.

After location based data the most favoured type of data was sleep

related data. Five of the selected articles [9, 10, 12, 13, 14] collected sleep

data. All of the five studies measured sleep duration and all except Fried

et al. [12] measured sleep efficiency and circadian rhythm related data.

Bai et al. [9] and Fried et al. [12] collected data also about sleep phases.

3.2 Predictive models

2 3 4 5 6

Other

Neural network

Logistic regression

Gradient boosting

Random forest

Figure 4. Machine learning algorithms in the reviewed articles

Figure 4 shows the different machine learning algorithms used to train

the predictive models in the reviewed articles and their quantities. The

most commonly used algorithm was Random Forest [9, 10, 13, 14, 15, 16]

which was used in over half of the articles. Gradient boosting appeared in

three articles [15, 16, 17] and Logistic regression as well [9, 11, 17]. Jacob-

son and Chung [16] utilized predictions of a nomothetic extreme gradient

boosting algorithm as secondary features for a random forest model.

Some studies tried multiple algorithms [9, 14, 15, 17] and compared

the results. Lee T. et al. [14], in addition to models constructed with Hid-

den Markov model, Recurrent neural network and Random forest, made

a hybrid model using all of the previously mentioned. Fried et al. [12] and

Meyerhoff et al. [18] had no mentions of machine learning algorithms in

their studies.

The prediction model accuracies were fairly good. Ross et al. [15] were

able to predict relevant changes in PHQ score with accuracy from 94 to

95.5 %. Lee H-J. et al. [14] got their highest accuracy of 79 % with Re-

current neural network model. Cho et al. [10] managed to predict a de-

pressive episode (DE) with 87 % accuracy and Jacobson and Chung [16]

predicted depressed mood scores with 95 % accuracy. Lee T. et al. [13]

achieved the accuracy of 90.1 % in predicting impending major depressive

episode (MDE). Bai et al. [9] tried also multiple different models with the

highest accuracy of 85.42 %.

4 Discussion

Among the selected articles a lot of different data was collected but the

most common were about activity, location or sleep of the participants.

Most used machine learning method was random forest and gradient boost-

ing with logistic regression after that. The created models were generally

able to predict depression changes with good accuracy.

The reviewed articles reported many limitations to their work and

many cautioned against generalizing their results without care. More

than half of the studies warned that there are no guarantees that their

work can be generalized outside their participant groups [10, 13, 14, 16,

17, 18]. Also at least for Ross et al. [15], Jacobson and Chung [16] and

Liu et al. [17] the participants’ symptom severities were determined by

self-reporting and were not confirmed clinically. In addition, a common

limitation was operating system related issues [9, 13, 18].

This literature review had also some limitations. Firstly, some studies

here did not use only passive data but active data as well and the research

was not restricted only to MDD. Also, because of the scope of this paper

the number of reviewed articles was quite small. In addition, one of the

articles [12] selected was a study design and had no complete results.

Finally, the search query might not have been ideal and only one search

portal was used which may have left articles out of the review.

5 Conclusion

This paper studied predicting depression through digital phenotyping. It

was a literature review and 11 scientific articles were selected for it. In

the paper some common data collection types and machine learning mod-

els were reviewed. Also, the model accuracies and some limitations were

discussed.

The selected articles collected different types of passive data. Collect-

ing data based on activity, location or sleep was the most common and this

paper reviewed them in more detail. Also different machine learning al-

gorithms were used including Random forest, Gradient boosting, Logistic

regression and Neural networks. Of these Random forest was the most

common one. Many of the selected articles were able to predict depres-

sion with good accuracy and show digital phenotyping as a viable option

for predicting depression. However, there were limitations and more re-

search should be done to generalize the results.

References

[1] A. J. Ferrari, A. J. Somerville, A. J. Baxter, R. Norman, S. B. Patten, T. Vos,
and H. A. Whiteford, “Global variation in the prevalence and incidence of
major depressive disorder: a systematic review of the epidemiological liter-
ature,” Psychological Medicine, vol. 43, no. 3, pp. 471–481, Mar. 2013.

[2] Global Burden of Disease Study 2013 Collaborators, “Global, regional, and
national incidence, prevalence, and years lived with disability for 301 acute
and chronic diseases and injuries in 188 countries, 1990-2013: a systematic
analysis for the Global Burden of Disease Study 2013,” Lancet (London,
England), vol. 386, no. 9995, pp. 743–800, Aug. 2015.

[3] C. Otte, S. Gold, B. Penninx, C. Pariante, A. Etkin, M. Fava, D. Mohr,
and A. Schatzberg, “Major depressive disorder,” Nature Reviews Disease
Primers, vol. 2, 2016.

[4] P. Boksa, “A way forward for research on biomarkers for psychiatric dis-

orders,” Journal of Psychiatry and Neuroscience, vol. 38, no. 2, pp. 75–77,
2013.

[5] T. Aledavood, A. M. Triana Hoyos, T. Alakörkkö, K. Kaski, J. Saramäki,
E. Isometsä, and R. K. Darst, “Data Collection for Mental Health Stud-
ies Through Digital Platforms: Requirements and Design of a Prototype,”
JMIR Research Protocols, vol. 6, no. 6, p. e110, Jun. 2017.

[6] “Mobile statistics report, 2021-2025,” THE RADICATI GROUP, INC, Tech.
Rep., 2021.

[7] J. Torous, M. V. Kiang, J. Lorme, and J.-P. Onnela, “New Tools for New
Research in Psychiatry: A Scalable and Customizable Platform to Empower
Data Driven Smartphone Research,” JMIR Mental Health, vol. 3, no. 2, p.
e5165, May 2016.

[8] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D.
Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou,
J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder,
E. Mayo-Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas,
A. C. Tricco, V. A. Welch, P. Whiting, and D. Moher, “The PRISMA 2020
statement: an updated guideline for reporting systematic reviews,” BMJ,
vol. 372, p. n71, Mar. 2021.

[9] R. Bai, L. Xiao, Y. Guo, X. Zhu, N. Li, Y. Wang, Q. Chen, L. Feng, Y. Wang,
X. Yu, C. Wang, Y. Hu, Z. Liu, H. Xie, and G. Wang, “Tracking and Monitor-
ing Mood Stability of Patients With Major Depressive Disorder by Machine
Learning Models Using Passive Digital Data: Prospective Naturalistic Mul-
ticenter Study,” JMIR mHealth and uHealth, vol. 9, no. 3, p. e24365, Mar.
2021.

[10] C.-H. Cho, T. Lee, M.-G. Kim, H. P. In, L. Kim, and H.-J. Lee, “Mood Predic-
tion of Patients With Mood Disorders by Machine Learning Using Passive
Digital Phenotypes Based on the Circadian Rhythm: Prospective Observa-
tional Cohort Study,” Journal of Medical Internet Research, vol. 21, no. 4, p.
e11029, Apr. 2019.

[11] D. Currey, R. Hays, and J. Torous, “Digital Phenotyping Models of Symptom
Improvement in College Mental Health: Generalizability Across Two Co-
horts,” Journal of Technology in Behavioral Science, vol. 8, no. 4, pp. 368–
381, Mar. 2023.

[12] E. I. Fried, R. K. K. Proppert, and C. L. Rieble, “Building an Early Warning
System for Depression: Rationale, Objectives, and Methods of the WARN-D
Study,” Clinical Psychology in Europe, vol. 5, no. 3, pp. 1–25, Sep. 2023.

[13] H.-J. Lee, C.-H. Cho, T. Lee, J. Jeong, J. W. Yeom, S. Kim, S. Jeon, J. Y.
Seo, E. Moon, J. H. Baek, D. Y. Park, S. J. Kim, T. H. Ha, B. Cha, H.-J.
Kang, Y.-M. Ahn, Y. Lee, J.-B. Lee, and L. Kim, “Prediction of impending
mood episode recurrence using real-time digital phenotypes in major de-
pression and bipolar disorders in South Korea: a prospective nationwide
cohort study,” Psychological Medicine, vol. 53, no. 12, pp. 5636–5644, Sep.
2023.

[14] T. Lee, H.-J. Lee, J.-B. Lee, and J.-D. Kim, “Ensemble Approach to Combin-
ing Episode Prediction Models Using Sequential Circadian Rhythm Sensor

Data from Mental Health Patients,” Sensors, vol. 23, no. 20, p. 8544, Jan.
2023.

[15] M. K. Ross, T. Tulabandhula, C. C. Bennett, E. Baek, D. Kim, F. Hussain,
A. P. Demos, E. Ning, S. A. Langenecker, O. Ajilore, and A. D. Leow, “A
Novel Approach to Clustering Accelerometer Data for Application in Passive
Predictions of Changes in Depression Severity,” Sensors, vol. 23, no. 3, p.
1585, Jan. 2023.

[16] N. C. Jacobson and Y. J. Chung, “Passive Sensing of Prediction of Moment-
To-Moment Depressed Mood among Undergraduates with Clinical Levels of
Depression Sample Using Smartphones,” Sensors, vol. 20, no. 12, p. 3572,
Jan. 2020.

[17] T. Liu, J. Meyerhoff, J. C. Eichstaedt, C. J. Karr, S. M. Kaiser, K. P. Kording,
D. C. Mohr, and L. H. Ungar, “The relationship between text message senti-
ment and self-reported depression,” Journal of affective disorders, vol. 302,
pp. 7–14, Apr. 2022.

[18] J. Meyerhoff, T. Liu, K. P. Kording, L. H. Ungar, S. M. Kaiser, C. J. Karr,
and D. C. Mohr, “Evaluation of Changes in Depression, Anxiety, and Social
Anxiety Using Smartphone Sensor Features: Longitudinal Cohort Study,”
Journal of Medical Internet Research, vol. 23, no. 9, p. e22844, Sep. 2021.

[19] Y. Zhang, A. A. Folarin, S. Sun, N. Cummins, Y. Ranjan, Z. Rashid, P. Conde,
C. Stewart, P. Laiou, F. Matcham, C. Oetzmann, F. Lamers, S. Siddi, S. Sim-
blett, A. Rintala, D. C. Mohr, I. Myin-Germeys, T. Wykes, J. M. Haro,
B. W. J. H. Penninx, V. A. Narayan, P. Annas, M. Hotopf, R. J. B. Dobson,
and RADAR-CNS Consortium, “Predicting Depressive Symptom Severity
Through Individuals’ Nearby Bluetooth Device Count Data Collected by Mo-
bile Phones: Preliminary Longitudinal Study,” JMIR mHealth and uHealth,
vol. 9, no. 7, p. e29840, Jul. 2021.

Technical survey of ad blockers

Artem Perevedentsev
artem.perevedentsev@aalto.fi

Tutor: Tuomas Aura

Abstract

Currently, online advertising is increasingly prevalent on the internet due

to the fact that modern users spend more time online. However, many users

are dissatisfied with the spread of online advertising because it distracts

them from the actual content and because marketing companies collect per-

sonal data to improve ad effectiveness. The use of programmatic solutions

to block advertisements has become necessary.

This paper describes the various types of internet advertisements and

the architecture of different ad-blocking techniques. It also analyzes recent

works related to circumventing ad-blockers by marketing companies and

the impact of ad-blockers on users’ behavior.

KEYWORDS: Ad Blocker, Online Advertising, Privacy

1 Introduction

In the digital age, the internet has provided advertisers an effective way

to spread information about their products. Currently, the revenue of on-

line marketing is actively rising, and there are at least two main reasons

for this phenomenon. First, the cost of distributing online advertisements

is significantly lower compared to television, radio, and newspaper ads.

Secondly, recent studies suggest that modern individuals spend a signifi-

cant amount of time on various websites, social media, and video-sharing

platforms. According to Montag [6], an average person spends about 3

hours a day using a cell phone. Thus, large marketing companies shifted

towards the new strategy of advertisement distribution.

However, concerns about advertising on the internet have become in-

creasingly common in recent times. The presence of advertisements on

websites distracts users from the actual content and makes it inconve-

nient for them to interact with the site. Another concern relates to the

increase in internet traffic, which remains expensive presently. Nah [7]

suggests that longer loading times for webpages can significantly decrease

the number of site visits. Another major issue that arises is the violation

of users’ privacy. Large companies tend to collect users’ data to make

advertisements more relevant. For example, Google and Facebook have

collected petabytes of users data, and there is no guarantee that this data

will be stored safely.

To eliminate these problems, people have started to create special soft-

ware which helps to decrease the number of advertisement seen online.

These programs are referred to as ad blockers and take various forms,

such as stand-alone applications, web browser extensions, and external

services. The main idea of ad blockers is to filter content before it is dis-

played on the user’s screen. By following this approach, it is possible to

eliminate various advertising elements. However, marketing companies

are continually enhancing their methods for delivering ads to users, and

ad blockers must also continually evolve.

This paper surveys different approaches to block online advertising.

The rest of the paper is structured as follows. Section 2 describes the

different types of online advertisements. Then Section 3 outlines the ar-

chitectures of modern ad blockers. Section 4 explains methods to counter

the use of ad blockers. Section 5 discusses the impact of ad blockers on

the users’ privacy. And finally, Section 6 summarizes and concludes the

analysis of the papers.

2 Types of online ads

There is a wide variety of online advertising. Internet marketing con-

stantly evolves and adapts to new technologies and new types of content.

This section lists the most common types of ads that can be found on the

internet today.

2.1 Web banners

Web sites are HTML documents that are downloaded from a server to

the user’s computer and displayed on the screen by a browser program.

HTML is a markup language that instructs the browser on where to dis-

play specific information. The displayed information can take the form

of text, images, or videos. One of the earliest forms of internet advertis-

ing involved adding designated areas for advertisements within a web-

page source code. These areas are known as web banners and are usually

placed next to the actual content. There are two types of web banners:

static and dynamic. A static web banner contains an advertisement at

the moment of loading the page from the server, while a dynamic web

banner loads the advertisement from a third-party server.

2.2 Pop-up windows

During the loading of a web page, the browser may execute JavaScript

code. Usually, JavaScript is used to implement interactivity that can not

be achieved by using HTML and CSS. However, JavaScript is a general-

purpose programming language, which means that it can be used to im-

plement any algorithm. Thus, while the site is loading, an arbitrary algo-

rithm could potentially be executed on the user’s computer. This feature

is actively used by marketing companies. For example, it is possible to

open additional browser windows and display advertisements in them.

This method of displaying ads is named pop-up windows and was popular

in the 1990s but is rarely used today because modern web browsers have

started to block pop-up windows by default.

2.3 Advertising in search engines

The internet is vast, making it challenging to locate the necessary in-

formation. To solve this problem, search engines index all the informa-

tion found on the internet. The search engines process a large number

of queries each day, and only large corporations are capable of maintain-

ing the necessary infrastructure. To maintain the infrastructure, search

companies had to find sources of monetization. The solution was found:

displaying advertisements in the search results. Each query displays ad-

vertisements as the top results. Marketing companies pay search engine

developers for the opportunity to appear higher in search results.

2.4 Social media

Social media has revolutionized the advertising industry. Due to the large

audiences of social networks and the ability for users to directly interact

with each other, it is possible to work with consumers in a more targeted

manner. This effect is mainly achieved by collecting and processing a

large amount of personal data from users.

2.5 Email spam

Email is one of the oldest approaches to distribute ads online. It is a

convenient tool for marketers since it enables sending advertisements to

millions of recipients without spending too much time and money. In this

case, even a small percentage of recipients who read the ad is enough to in-

fluence the audience. However, over time, organizations began installing

anti-spam systems on their e-mail servers to prevent spamming. As a

result, e-mail advertising is now mainly sent to established customers.

2.6 Product placement in videos

With the growing popularity of various blogging and video platforms on

the internet, advertising has begun to move there as well. Advertising

companies usually pay content producers to include their product in the

content or to review it favorably. This type of online advertising is known

as product placement.

3 Ad blocking techniques

The rapid increase in internet ads has led to complaints from some users,

resulting in the development of ad-blocking programs. Many of these

programs are open source, but they differ in their methods for blocking

ads. Since there is no universal method to block all ads, each of these

approaches can be useful in specific situations. The following sections ex-

amine these methods and give examples of programs that use them.

full-of-ads.com

1.2.3.4

DNS server Web browserX

Figure 1. IP filtering

3.1 IP and DNS filtering

IP and DNS filtering is one of the earliest forms of blocking online adver-

tisements. It involves refusing connections to addresses that distribute

ads. If a certain IP address or domain is known to distribute adver-

tisements, attempts to access these resources on the user’s device can

be blocked. Special lists are typically created to include addresses and

domain names that are prohibited from access. Figure 1 illustrates the

IP and DNS filtering algorithm. IP filtering is often implemented using

a firewall in practice. The simplest example of using DNS filtering ap-

proach is the file /etc/hosts on Unix-like systems. User can add pairs

of host names and IP addresses to this file, and later this data will be

used for resolving purposes. The project Pi-hole1 is a more advanced solu-

tion. In addition to DNS filtering, it can display visually appealing dash-

boards that provide information on the number of blocked ads. However,

this methods described above are no longer effective as many marketing

companies have started to dynamically change IP addresses and domains

names of their servers distributing ads.

3.2 Content filtering

example.com

Content filter Web browser

show-ads.js
X

index.html
index.html

Figure 2. Content filtering

Another method to detect online ads is to find them in HTML code or

DOM model of the downloaded web page. In many cases, it is possible to

exclude some of HTML tags before rendering. Such an approach is refered

as content filtering.

1https://pi-hole.net/

Content filtering programs are often distributed as web browser exten-

sions. This architectural choice was deliberate. At present, the majority

of websites use HTTPS protocol, which encrypts the content between the

user and the server. However, in order for an ad blocker to perform fil-

tering, it requires access to this data. The web browser is the only entity

with the ability to decrypt the traffic, which is why most content filtering

ad blockers are forced to operate as web browser extensions.

Figure 2 illustrates the content filtering algorithm. Some of such

blockers are uBlock Origin2, Adblock Plus3, Ghostery4, and Privacy Bad-

ger5. All of these are distributed as web browser extensions. The effective-

ness of these blockers has been tested multiple times in practice. Specifi-

cally, studies [3] and [8] measured the percentage of blocked ad requests

out of all the requests. For example, Garimella et al. [3] reported a range

of 25-34%, while Pujol et al. [8] reported 18%. These figures indicate

that approximately one third of the user’s requests are advertisements.

Although the figures differ significantly, the effectiveness of content filter-

ing approach is undeniable.

3.3 Embedded video ads filtering

video-host.com

Video filter Web browser

Database

Figure 3. Embedded video ads filtering

In the case of ads embedded into video streams, the approaches de-

scribed above do not work for obvious reasons. Therefore, the developers

have proposed completely different methods of filtering ads from video

2https://ublockorigin.com/
3https://adblockplus.org/
4https://www.ghostery.com/
5https://privacybadger.org/

streams. The main idea is based on the use of crowdsourcing technol-

ogy. This allows users who have already viewed a video and encoun-

tered an advertisement to share information with other users, enabling

them to skip the ad segment of the video. The accuracy of information

regarding ads must be verified to eliminate the possibility of false seg-

ments. To address this issue, other users vote for potential ad segments

if they are deemed correct. The architecture of video filtering technique

is represented on Figure 3. This algorithm was implemented in the pro-

gram SponsorBlock6, which allows to skip ads integrations in videos on

YouTube. This is a new direction in the field of ad blockers that is cur-

rently under active development.

4 Counter-measures against ad blockers

As ad blockers have become more common among regular internet users,

marketing companies are increasingly interested in detecting their usage.

The goal for marketers is to eliminate ad blockers usage because they lose

income. This section lists the most common methods for detecting and

bypassing ad blockers.

4.1 Ad requests detection

One approach to detect an ad blocker is by checking access to resources

that contain advertisements. This is typically done with JavaScript code

in the user’s browser. If the browser fails to load a request to a third-party

resource that contains advertisement, it is probable that the user has an

ad blocker installed. In such cases, the website may suggest that the user

disable their ad blocker or block access to its content.

4.2 Bugs in implementation of web browsers

Many modern browsers are open source. Therefore, it is possible to search

for bugs in the implementation of various web browser modules that will

circumvent the restrictions of ad blockers. This approach was demon-

strated in a paper by Bashir et al. [2]. Researchers investigated that a

number of advertising and analytics companies used a bug in implemen-

tation of Chrome’s API to bypass content filtering ad blockers for several

years. This bug prevented web extensions from being able to filter Web-

6https://sponsor.ajay.app/

Socket connections. WebSocket is a connection protocol built on top of TCP

which was designed to improve the performance of web applications. This

protocol was standardized in 2011 by RFC 6455.

In May 2012 Chromium users reported a number of issues with the

fact that Chrome’s API does not allow to filter WebSocket connections.

Thus web extensions were unable to block them. Then in late 2014 users

reported about unblockable ads which they found in Chrome browser.

Users investigated that this ad was distributing via WebSocket protocol.

And finally in April 2017 the bug was fixedin a new version of Chrome.

Based on these reports Bashir et al. [2] found out that during this

period of time when the bug was present a number of analytics companies

used it to bypass ad blockers and show ads to users.

4.3 RAD domains

Lin et al. [5] described one more approach which some marketing com-

panies use to be not detected by ad blockers. The idea is to use several

domains which distribute the same advertisement. Researchers call this

method as RAD (replica ad domains). They demonstrated that domain

replicas can remain unblocked for an average of 410.5 days. Often repli-

cas have the same owner which can be found in DNS or TLS records. At

the same time ad blockers can not instantly add a lot of domains to its

lists since there is a probability of false-positive filtering. That is why

RAD domains are very effective against ad blockers.

5 Ad blockers impact on users’ privacy

Privacy is one of the main reasons why users choose to use ad blockers.

Marketing companies are acquiring large massives of personal data for

targeting promotions. Ad blockers are trying to block such requests as

well as ad requests. Accorings to [3] uBlock Origin blocks about 100% of

tracking requests. But at the same time ab blockers can negatively affect

on user’s privacy.

5.1 Acceptable ads

Some ad blockers have started creating lists of so-called ’acceptable ads’

in order to monetize. Large companies pay ad blocker developers to be

included in these lists, making their ads acceptable and preventing them

from being blocked on users’ devices. Such an approach was implemented

in Adblock Plus. This solution may have a number of bad consequences for

a user especially in terms of privacy. Consider if some domain tracks users

who loads it and if the company can pay for it to become in acceptable list

then this tracker can easily bypass ad blocker. Zafar et al. [9] investigated

that acceptable ads from Adblock Plus also includes domains with 1x1

pixel images which are used to track users and by default blocked.

5.2 Cookies are still avaliable

In a recent paper, Jacobsson et al. [4] demonstrated in practice that ad

blockers have little or no effect on the number of cookies users have, while

cookies have been and continue to be one of the easiest and most effective

ways to track users’ movements between different sites. Analytics com-

panies collect this information, which they then sell to marketing com-

panies. In this way, cookies can accurately identify visitors to websites,

which undoubtedly has a negative impact on end-user security.

Ad blockers cannot afford to arbitrarily block the setting of cookies, as

in many situations such blocking can negatively impact the integrity of a

website. For example, cookie technology is the entire basis for user au-

thentication and authorization on virtually every modern website. There-

fore, there is currently no easy solution to this problem.

5.3 Browser fingerprinting

When a user accesses a web page, they leave behind a digital trace that

includes various parameters, such as the browser and operating system

version, time zone, browser extensions, and screen resolution. This com-

bination of parameters is known as a browser fingerprint, which can be

used to identify the user with a high degree of accuracy. The probabil-

ity of two different users having the same browser fingerprint decreases

as more parameters are involved in its formation. Marketing companies

often exploit this feature to advertise their products online, which can

compromise user privacy. A study by Gunes et al. [1] have documented

cases where marketing companies have used the unique characteristics of

font display in browsers to track users.

An ad blocker is typically a browser extension. Its presence in a user’s

list of extensions, along with its version, can potentially strengthen the

browser fingerprint, leading to more accurate user identification on web-

sites.

6 Conclusion

This article reviewed the different ways of distributing advertisements

on the internet, as well as the main programmatic methods of ad block-

ing. Some approaches used by marketing companies to bypass ad blockers

have also been listed. As a result, it can be seen that ad blockers are not a

universal method of countering advertising and marketers are constantly

finding newer ways to deliver ads to users. Therefore, continuous im-

provement of ad blocking methods is required. The paper also touches

on the impact of ad blockers on user privacy. The popular belief that ad

blockers help to maintain user privacy is largely untrue. The article cites

several possible scenarios in which the use of ad blockers does not improve

user privacy or even negatively affects it.

References

[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The web never forgets: Persistent track-
ing mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’14, page
674689, New York, NY, USA, 2014. Association for Computing Machinery.
https://doi.org/10.1145/2660267.2660347.

[2] Muhammad Ahmad Bashir, Sajjad Arshad, Engin Kirda, William Robertson,
and Christo Wilson. How tracking companies circumvented ad blockers us-
ing websockets. In Proceedings of the Internet Measurement Conference 2018,
IMC ’18, page 471477, New York, NY, USA, 2018. Association for Computing
Machinery. https://doi.org/10.1145/3278532.3278573.

[3] Kiran Garimella, Orestis Kostakis, and Michael Mathioudakis. Ad-
blocking: A study on performance, privacy and counter-measures. 05 2017.
https://doi.org/10.1145/3091478.3091514.

[4] Philip Gunnarsson, Adam Jakobsson, and Niklas Carlsson. On the im-
pact of internal webpage selection when evaluating ad blocker performance.
In 2022 30th International Symposium on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems (MASCOTS), pages 41–48,
2022. https://doi.org/10.1109/MASCOTS56607.2022.00014.

[5] Su-Chin Lin, Kai-Hsiang Chou, Yen Chen, Hsu-Chun Hsiao, Darion Cas-
sel, Lujo Bauer, and Limin Jia. Investigating advertisers domain-
changing behaviors and their impacts on ad-blocker filter lists. In
Proceedings of the ACM Web Conference 2022, WWW ’22, page 576587,
New York, NY, USA, 2022. Association for Computing Machinery.
https://doi.org/10.1145/3485447.3512218.

[6] Montag, Baszkiewicz, and Sariyska et al. Smartphone usage in the
21st century: who is active on whatsapp? BMC Research Notes, 2015.
https://doi.org/10.1186/s13104-015-1280-z.

[7] Fiona Nah. A study on tolerable waiting time: How long are
web users willing to wait? volume 23, page 285, 01 2003.
https://doi.org/10.1080/01449290410001669914.

[8] Enric Pujol, Oliver Hohlfeld, and Anja Feldmann. Annoyed users: Ads and
ad-block usage in the wild. Proceedings of the 2015 Internet Measurement
Conference, 2015. https://doi.org/10.1145/2815675.2815705.

[9] Ahsan Zafar, Aafaq Sabir, Dilawer Ahmed, and Anupam Das. Understand-
ing the privacy implications of adblock plus’s acceptable ads. In Proceedings
of the 2021 ACM Asia Conference on Computer and Communications Secu-
rity, ASIA CCS ’21, page 644657, New York, NY, USA, 2021. Association for
Computing Machinery. https://doi.org/10.1145/3433210.3437536.

How online games protect and violate
player privacy

Atte Haarakangas
atte.haarakangas@aalto.fi

Tutor: Tuomas Aura

Abstract

To be added.

KEYWORDS: To be added.

1 Author’s note

This paper is incomplete. It is missing parts. Some parts are early drafts.

Some parts have not been proofread. Some parts have not been seen by

the tutor. However, all parts that are here have been fact-checked and are

reliable. This paper contains correct and factual information, it mainly

lacks polish. This is due to the research and writing process taking a

longer time than expected.

2 Introduction

Online games are a form of interactive media where an online connection

is utilized to provide a service to a user. Online connection is often used

by video games in order to communicate with other online users. This

connection and things adjacent to it pose unique threats to user privacy.

Threats to privacy within the online gaming space come in many forms.

Some are related to the technology being used for networking. Some are

related to the networking features provided by the online game or its ser-

vice provider. Some threats are by design, either by compromise or to

enable a goal of the service provider. This paper will go through some of

the most common ones, as an overview of the privacy-related problems

that developers and users face when engaging in online gaming.

The focus of this paper is mainly on privacy for online games on PC

and console. For scope considerations, this paper does not cover privacy

aspects that are exclusive to smartphone gaming or social sciences.

3 Background

To be added.

4 Types of connections

This section explains five of the most common types of connections used

for online multiplayer: dedicated servers, peer-to-peer connections, hy-

brid models, cloud-based solutions and play-by-e-mail. The connections

are called networking models. Each networking model has strengths and

weaknesses when it comes to security and privacy.

4.1 Dedicated servers

In the dedicated server networking model, one participant is designated

as the server and others are designated as clients. A defining feature of

dedicated servers is that the server assumes the role of central authority

that manages the game for all clients. An individual participant’s game

functionality is split between server and client. How much of the game is

handled server-side or client-side depends on the game. In a typical sce-

nario, a player inputs data that is transmitted to the dedicated server and

processed by the server, after which the server can transmit an updated

status to all clients.

Servers are expected to store and transmit player data through se-

cure means. Players need to trust the server to handle their information

responsibly and to keep it safe from unauthorized access. This is espe-

cially important for servers which hold sensitive data. Sensitive data is

a broad term for anything that may compromise a player’s privacy, such

as e-mail addresses, payment information, private communications and

geolocation.

4.2 Peer-to-peer

In peer-to-peer (P2P) networking model, all participants are designated

as both clients and servers. Depending on the game, one participant may

be designated as a host server, which other clients rely on for handling

the game status. While dedicated servers have one centralized server,

P2P participants connect to each other, forming a decentralized network.

P2P is generally suitable for games that do not require dedicated servers

to function. However, connecting directly to other players requires send-

ing data directly to other participants without a central authority to con-

trol the transmissions. With this, P2P networking poses unique problems

when it comes to security and privacy.

4.3 Hybrid models

Hybrid networking models combine P2P networking with dedicated servers,

using both at the same time for effective data processing. For example, a

dedicated server could handle critical game functions that are important

for all clients, while clients may also communicate with each other for less

important tasks. This way, dedicated servers can avoid using resources for

tasks that do not require dedicated servers. This approach is challenging,

because it requires designing game systems to work with multiple kinds

of connections simultaneously.

4.4 Cloud

Cloud technology is useful for games requiring dynamic and scalable server

resources. They allow for reduced server costs compared to dedicated

servers, but require games to be designed in ways that use cloud resources

effectively. Not always having access to the same amount of computa-

tional power is a challenge that must be accounted for when developing

cloud games.

Cloud networking models typically use services of cloud platforms,

which introduces a third party that needs to be trusted with data. Addi-

tionally, cloud services distributing traffic means that data may be shared

between multiple servers at the same time, further complicating secure

data transmission and synchronization.

4.5 Play-by-e-mail

A rather archaic but effective form of multiplayer networking in which

communication is done via e-mail is still present in turn-based games.

These are called play-by-e-mail (PBEM) games. A recent example of a

PBEM videogame is Sid Meier’s Civilization VI (2016). Much like playing

postal chess by sending turns in mail, players in Civilization VI have the

option to send their game file to other players via e-mail. The next player

would receive the file, play their turn and send the file to the next player

in line. This type of networking is special in the sense that it has no

weaknesses typical to other networking models. It is as secure as the

method chosen for file transmission, assuming players do not find ways

to make the file itself insecure. It is also a useful alternative in cases

where other networking solutions are insufficient, for example, with strict

networking policies, firewalls or data transmission limits.

5 Netcode considerations

Netcode is what determines what data is transmitted during online play

and how it is processed. It determines how inputs are handled and how

the game state is updated. Ensuring the privacy of users leads to a set

of general considerations for netcode. It needs to have secure, encrypted

data transmission to avoid unauthorized access. It needs user authenti-

cation and access controls to ensure that correct individuals are accessing

user data. It needs to be specific about the data it collects from users to

meet bandwidth and processing requirements, and to avoid transmitting

user data that is unnecessary for the gameplay experience. It needs to

be clear to users about how their data is being used for both trust and

legal reasons. And finally, it needs to be kept up-to-date from potential

vulnerabilities that could compromise privacy.

For example, Raft (2022) had a networking-related remote code exe-

cution (RCE) vulnerability that was patched 6 months after the game’s

release [2].

6 IP

IP addresses are used for data transmission between players. They are

especially important in peer-to-peer networking, where players connect

directly to each other. IP addresses are considered sensitive data that

should not be available for other players to see, because they can be used

for tracking, geolocation and network attacks. Sharing another person’s

IP address is therefore considered to be an act of doxxing, which is a word

for the act of publishing private information about a person without their

permission.

A common problem in P2P games is that each player needs to know

the IP addresses of other players, which exposes the IP addresses of all

players to each other. Tools such as NetLimiter can be used to view all

connections used by a game, which commonly includes IP addresses of

other players. Players could take measures to hide their IPs themselves,

for example, with the use of a proxy server or VPN. I personally believe

this to be an unrealistic expectation for most players.

A network could make use of dynamic IP assignment that periodically

changes the IP address of players, making it more difficult to track players

based on their IPs. For example, an internet service provider (ISP) may

dynamically assign new IP addresses to customers, based on network us-

age. It provides a layer of security that developers have no control over,

and should take into account.

Developers could hide IP addresses with the use of dedicated proxy

relays, which are much like dedicated servers, except all they do is relay

communication between players. They act as intermediaries for IP dis-

covery and data transmission. This way, the IP addresses of other players

are only known by the relays. The relay maps real IP addresses to IP

addresses used for connecting to the relay. Players communicate to the

relay using the new IP addresses, and the relay forwards the communica-

tion to the correct player. This way, P2P networking works as usual, and

IP addresses are hidden at minimal server upkeep cost to the developers.

However, the relay server needs to stay online, which creates a potential

point of failure in the system. An alternative approach to achieve the

same outcome would be to make use of services designed for online game

networking.

7 Services

Services are a core part of modern online gaming. They include store-

fronts, tools and external networking services. Examples of storefronts

are Steam, Good Old Games (GOG) and PlayStation Network (PSN). Ex-

amples of tools are Steamworks, Battle.net and Xbox Live. Examples of

external networking services are Discord, Twitch and TeamSpeak. Each

of them add functionality to multiplayer games, with their own consider-

ations for privacy.

7.1 Integrations

Storefronts are defined by their ability to provide players with access to

games, but some of them come with tools and services to be used with

the games that are on the storefronts. For example, Steamworks is de-

signed to enable developers to integrate their games with Steam. Users

on Steam may play multiplayer games using their Steam user account

without a need to create a separate account for games that take advan-

tage of Steamworks. This means that players can use the same account

for multiple games on Steam, which makes it easy for players to follow

each other from one game to another. This also creates a privacy concern.

Players can see other players’ Steam accounts and all information that

the users choose to be public.

7.2 User accounts

A Steam account’s public user profile can reveal things about the user.

Steam allows its users to control what information is public, which is

good for privacy. Visible information includes a user’s game library, play-

time per game, achievements, games wishlist, list of friends and Steam

groups, Steam store and community activity, account age, recent activity

and purchases, Steam Workshop submissions, Steam forum posts, coun-

try of residence, profile decorations, profile comments from other users

and anything the user expresses in text on their profile. This informa-

tion can be used to deduce a lot of things about what a user has done, is

currently doing and possibly intends to do in the future. It is the user’s

responsibility to make sure that they are not sharing things that they do

not want to share. 1

1In December 2023, Steam added a feature that allows players to mark individ-
ual games as private, which hides everything about the games from others [23].
This was in addition to its existing privacy features.

7.3 Linking and social media

Not all games are accessible from the same storefront. Different publish-

ers, such as Electronic Arts (EA) and Ubisoft, have their own storefronts.

To avoid making new user accounts for each storefront, it is possible to

link user accounts from one storefront with another. Linking accounts

means sharing information about a user account to a third party for cross-

platform features. For example, it is possible to link a Steam account with

a Battle.net account in order to synchronize game progress in Overwatch

2 (2022) on Battle.net with the same game on Steam. Similarly, linking an

EGS account to a PSN account enables players to use the same save files

on both PCs and PlayStation systems, keeping their in-game progress re-

gardless of the choice of platform. Account linking may also allow logging

in to one service using credentials from another service provider. It is sim-

ilar to using a Google account to login to other websites, but with added

functionality to online games.

Linking accounts is incentivised with features beyond social network-

ing. Twitch is a livestreaming and social media platform. Linking a

Steam account to a Twitch account allows Twitch users to gain rewards

for games on Steam [26].

Discord is a social media platform that is popular in gaming communi-

ties. It enables players to discuss, join and spectate games online. By de-

fault, if Discord detects that a game is running on a supported platform,

such as Steam or EGS, it will update the user’s status to display what

game the user is currently playing. Depending on the game, platform or

linked accounts, this may be accompanied by additional information or op-

tions. For example, when playing League of Legends (2009), the player’s

chosen character, game mode, current status and match timer are shown.

Games such as Divinity: Original Sin 2 (2017) allow players to join games

of other players from Discord, even when the game is played on another

platform such as Steam.

Linking a Steam account to a Discord account increases the amount

of information visible to other users on Discord, such as the user’s Steam

profile. Discord also has an option to show others what services a user

has linked to their Discord. If a user is not careful with how they link

services, it becomes possible for other users to see what they are doing in

great detail on multiple platforms at the same time, including non-gaming

platforms such as Spotify [22].

7.4 Service requirements

In order to use a service or play a game on a service, the user may be

required to give the service information about themselves. For example,

Battle.net requires players to verify their identity by giving them their

phone number, real name and payment details before letting them play

Call of Duty: Modern Warfare 2 (2022). If a user purchased the game on

Steam with linking to Battle.net, they don’t need to give their name of

payment details to Battle.net. The reasoning for this is to deter cheaters

at the expense of users’ privacy, meaning that users need to trust Bat-

tle.net to protect their phone numbers from unauthorized access. [24]

7.5 Payment options

Some users may be unable or unwilling to provide private payment details

such as credit card information, name and address. For this reason, there

are often multiple possible privacy-oriented payment options available.

Many brick-and-mortar stores sell pre-paid cards for select games, ser-

vices and platforms. For example, Fortnite V-Bucks cards are sold in

stores and are redeemable through the PIN code contained within the pur-

chase [5]. V-Bucks are a digital currency usable within Fortnite (2017).

Some games feature the option to pay by phone call or SMS. For ex-

ample, JaGEx, the developers of RuneScape (1998), used to allow players

to pay by calling a number to add the cost to their phone bill [10]. In

certain countries, it is still possible to pay by sending an SMS message.

Through these methods, the buyer would only give their phone number to

the payment service provider.

An old method of paying for games privately was sending cash in tra-

ditional mail. For example, Simutronics used to have this as a payment

option for GemStone IV (1988). For modern gaming, traditional mail may

be too slow and impractical. Simutronics also used to provide the option

to pay by arranging an electronic check over a phone call. [21]

A recent trend in privacy-oriented payment options has been cryp-

tocurrency. Some games offer it as an alternative to credit cards, and

some only accept cryptocurrency. [31]

8 User aliases

In online multiplayer, players generally protect their privacy by adopting

a username that is different from their real name. This username is also

known as a nickname, or a gamer tag. It is the name that is shown to

other players. Players may recognize each other through their nicknames

across games and platforms.

8.1 Changing nicknames

Users may have the option to protect their privacy by changing their

usernames or nicknames. Changing nicknames makes it more difficult

for third-party attackers to monitor individual players. Different services

and games have different solutions for changing nicknames.

Some services don’t allow it at all, and require creating a new account

to use a different name. An example of this was PSN before 2019 [20].

Some services allow changing a nickname once for free, and charge

money to change it a second time. An example of this is Xbox Live, which

charges $9.99 USD every time the nickname is changed after the first

time.

Some services charge money for every nickname change. An example

of this is World of Warcraft (WoW) (2004) on Battle.net, which charges

$10.00 USD for every time the user wants to change their nickname.

Some services allow users to change their nicknames for free, but only

once within a specific amount of time. For example, Twitch lets users

change their username once every 60 days.

Some services allow users to change their nicknames for free as often

as they like. For example, Steam lets users change their nickname as

often as they want with no extra cost to the user. There is practically no

limit.

8.2 Levels of usernames

One of the reasons why a username change is easier with some services

is the level at which a username is applied. For example, on Steam, the

user account name cannot be changed, but is not visible to anyone. It is

a unique account identifier and cannot be changed by design. The name

that is visible to other users is the nickname, which can be changed any-

time.

Some games feature a privacy nickname option to use a game-specific

nickname that is separate from the normal nickname. For example, Tom

Clancy’s Rainbow Six: Siege (R6) (2015) has this feature [28]. When the

player uses a privacy nickname, that nickname is shown in place of the

player’s normal nickname, hiding the normal nickname for other play-

ers. Due to its competitive nature, players who stream R6 to live audi-

ences sometimes face problems in-game if other players recognize their

nickname. Other players could sabotage the streamer’s game on pur-

pose. Stream viewers could also attempt to sabotage the game by sending

friend invites to the streamer during pivotal moments in-game. Since R6

is an Ubisoft title on Ubisoft Connect -platform, knowing a streamer’s nor-

mal nickname could also enable others to track them on other platforms

through linked services.

A similar approach to privacy nicknames can be found in World of

Warcraft, where players play as characters with given names. Character

names are separate from usernames, and other players cannot know a

player’s username from the character name. The difference to privacy

nicknames is that character names are unique and cannot be changed

freely. This makes it easy to recognize the player in-game but protects

their privacy outside the game.

8.3 Pseudonyms, unique usernames and impersonation

Privacy is especially important for streamers and other online figures who

typically use pseudonyms to hide their real identity. Without pseudonyms,

they may find trouble in their life outside of streaming. A real name can

help attackers discover information about their target. An extreme exam-

ple of this is swatting, which is the act of deceiving emergency services

into sending a SWAT team to a streamer’s home. It is illegal and can lead

to death [29].

Pseudonyms are often associated with unique usernames. In theory,

unique usernames make it more difficult to deceive others into believing

that a person is someone else. For example, there is only one @elonmusk

on the social media platform X, previously known as Twitter. However,

unique usernames can also work against credibility and make it easier to

deceive people. When usernames are unique, a credible looking username

is inherently more believable.

As an example of what impersonation with unique usernames can look

like, in 2022, a Twitter account named @NintendoOfUS (or @NintenDoofus)

posted a picture of a popular Nintendo character Mario giving the middle

finger [3]. The picture was likely posted as critique to Twitter’s contro-

versial decision to allow any user to verify themselves through monthly

payment to appear more official [14]. This payment added a blue verifi-

cation badge to an account. As a result, the account was banned for im-

personation. It was considered believable enough to damage Nintendo’s

reputation, even though its violation of Twitter’s Parody Account Policy

at the time [27] was open to interpretation.

The credibility problem applies to players as well. Let us assume a

player whose online identity is defined by a nickname, for example Sin-

isterStriker. If their nickname had been taken by someone else for any

reason, they would have to use a different username, such as @sinister-

striker2. The person who has access to the username @sinisterstriker

would have the opportunity to impersonate SinisterStriker and make the

real SinisterStriker less credible. Being able to effectively impersonate a

person enables attackers, for example, to use social engineering to gather

private details about their targets.

It is also possible for a user to change their unique nickname. Depend-

ing on the platform, this usually frees it for others to claim. This makes it

possible for attackers to take advantage of anyone who is unaware of the

name change.

Until 2023, Discord had a different approach to unique usernames

through the use of discriminators [30]. They were four-digit numbers at-

tached to usernames, allowing 9,999 users to have the same username

with different discriminators. These types of usernames were good for

privacy, because knowing another user’s username was not everything

that was needed to find them on the platform. Attackers would have also

needed to know their discriminator. In 2023, Discord changed to a more

mainstream approach with unique usernames. Like in X, the downside

is that there can only be one @sinisterstriker, and it may not be the real

SinisterStriker. Nowadays, Discord allows users to use nicknames that

can be changed freely. The unique username is only shown when the

nickname is inspected, reducing the chance that footage of a Discord con-

versation would reveal the usernames of the people in the conversation.

This is unlike platforms such as X that always show the unique username.

8.4 Account trading

An additional threat to privacy with unique usernames comes with the

practice of selling usernames. It is possible to create accounts solely for

holding rare or desirable usernames. These accounts can be sold to users

looking to use the usernames. Later, the person who originally created

the account can use account recovery with proof of account creation to

hijack the account. This grants the account seller unrestricted access to

everything on the account, including private information.

Account selling is also a problem in competitive multiplayer games

with ranking systems. Players are incentivised to purchase accounts with

different rankings in order to play with players of specific skill levels.

Players with low skill purchase high rank accounts in order to play against

more skilled players. Players with high skill purchase low rank accounts

in order to play against less skilled players. This is known as smurfing or

boosting, depending on intent.

8.5 Real ID

An example of how online games can purposefully work against player

privacy is Battle.net Real ID, introduced in July 2010. Finding forums

for Blizzard games difficult to moderate, the company began to enforce all

Battle.net forum posters and repliers to use their real first and last names

[15]. Players expressed concern, but Blizzard developer Micah Whipple

set an example and revealed their first and last name. Within hours, the

community discovered and posted private details about them, including

their age, home address, phone number, family members and pictures [9].

Real ID became optional two months later [16], but it remains a part of

Battle.net to this day.

In 2018, a Reddit user reported an exploit where a player could see

another player’s Real ID without that player’s consent [11]. I did not have

an opportunity to verify this exploit, so I do not know if it is possible

in 2024. Although the information is not verified, it reinforces the notion

that even with good intentions, a game company having access to personal

and private information for unimportant reasons has the potential to be

harmful for privacy.

8.6 Use of player identity

In Tribes 3: Rivals early access release version v0.2.1.7. (2024), matches

were partly populated by bots. The bots appeared as if they were real

players by using the likeness of real players that were not in the same

match. This meant that a bot was practically indistinguishable from a

real player apart from the fact that bots did not behave like real players

[12]. This was not disclosed to players and was absent from the EULA

[19]. It violated the player’s right to choose how their identity was used.

Additionally, it had the potential to cause players to misattribute actions

done by bots as actions done by the real players. For example, a bot that

looked like SinisterStiker could have done something counterproductive

that caused their team to lose a game, making it possible for the other

players to believe that the real SinisterStriker was maliciously acting

against them. This is an example of a case where not respecting a player’s

privacy for seemingly harmless purposes could still have downsides.

A few days after the version went live, the developers stated on the

official Tribes 3 Discord that this was not an intended feature. It seemed

to have been caused by a bug where a server would fail to recognize that

a player had left the game, giving that player’s identity to bots until the

server was reset. According to developer Ghost: "Prophecy absolutely does

not collect player names to use them for bots." [8]

9 On-screen information in games

Online game livestreamers need to be careful not to inadvertently display

private information on stream to avoid broadcasting that information to

the viewers. Streamers have control over what programs their viewers

see, so they can keep things like private chat off stream in most situations.

Most of the time, a game streamer shows the game screen.

There are games that show private information on-screen with the

assumption that only the player can see the information. Online multi-

player games sometimes show the player’s own IP or location for match-

making purposes, for example, in Age of Wonders II (2002) [25]. In Mar-

vel’s Avengers (2020), the IP became visible on-screen by mistake, due to

an oversight by the game developer [18].

Some games display the local time in-game, which would reveal the

time zone of the streamer. World of Warcraft gives players an option

to show server time on screen instead of local time, which is a privacy-

friendly feature that also helps at scheduling events with other players.

Some games make use of private information for dramatic effect. Doki

Doki Literature Club! (2017) attempts to break the fourth wall by hav-

ing a character address the player in-game by their Windows username,

which is often the player’s real name. To protect the player’s privacy, the

game switches to different dialogue if it detects that streaming software is

running on the PC. The alternative dialogue directly addresses the stream

viewers instead of the player.

Pony Island (2016) does something similar. It tries to trick the player

by sending them messages in-game as if the messages were sent by their

Steam friends outside of the game. It makes it look like the player is

getting messages from their Steam friends, but the message contents are

actually the game’s antagonist trying to get the player’s attention. This

reveals some of the player’s Steam friends on screen.

9.1 Lobby codes

Multiplayer games with lobby codes often display the code on screen for

the host to share with their friends or audience. Some games allow the

host to hide the code. If an attacker had access to the lobby code, they

could join the game and see, for example, Steam profiles of other players

connected to the game. It is possible to design games around this problem.

For example, Jackbox Games protects their players’ privacy by making

the host be the only person running the game. Players connect to a game

by using a web browser and choose a display name. This avoids giving

players information about other players in the game.

9.2 Third-party overlays

For added functionality, some games use third-party overlays that ap-

pear on top of the game. For example, Steam allows players to open a

Steam overlay in-game that allows players to configure game features and

browse the Steam store without exiting the game program. This overlay

can display private information. For example, DotA 2 (2013) 2 handles

payments through Steam’s payment system. Clicking a purchase button

in DotA 2’s in-game shop opens the Steam overlay to allow the player to

2Although DotA 2 is a first-party title on Steam, it uses many of the same Steam
overlay features as third-party titles on the platform.

confirm their purchase without exiting the game. This purchase confirma-

tion screen shows the Steam account owner’s full name and address. This

means that the game functionally has a button that shows the player’s

private information on screen without warning.

There are other games on Steam, such as Battlerite (2016), which use

the overlay for transactions in a different way. Clicking a purchase button

in an in-game shop in Battlerite opens the Steam overlay, but unlike DotA

2, does not immediately show private information. Battlerite’s purchases

require multiple clicks to reach a purchase confirmation screen. This ap-

proach makes it less likely for a person to accidentally reveal information.

To avoid privacy problems with third-party overlays, streaming soft-

ware such as OBS may provide an option to exclude third-party over-

lays from being shown. However, this does not work in all cases. Also,

the inconsistencies in the ways games handle on-screen information dur-

ing payment confirmation make it good practice to hide the screen from

livestreams whenever handling payments.

10 Player profiling

Player profiling is the practice of gathering and analyzing information

about players in order to understand them more. It is useful for predict-

ing how the player might act in future gameplay. A common example of

player profiling is adaptive difficulty. If a game notices that the player

is performing below expectations, it can adjust the game difficulty to be

easier to achieve an intended experience. For example, in Alan Wake II

(2023), if a player is spending more resources than expected, the game

will increase the amount of resources available in lootable containers. 3

Player profiling can be done through any data points generated by

the player. Online games often use player profiling to generate a unique

player profile for each player. This allows games to create a unique expe-

riences for each player. It also enables games to use the information to

improve player retention and monetization strategies. For example, if a

player preferred to use certain types of items, the game could place those

items on a limited-time sale at a time when the player is usually online. In

3As a game design choice that affects the gameplay experience, it is not always
suitable to use player profiling to adjust gameplay. Some games, such as Dark
Souls (2011), avoid using adaptive difficulty in order to present the same chal-
lenge to all players.

Figure 1. A 2015 patent [1] by Activision demonstrates how player profiling can be used
to drive microtransactions in multiplayer games.

practice, this is similar to targeted advertising but in the context of game

systems. Due to how game systems are often tied to player profiling, it

is usually not an option for players to decline this type of data collection.

This privacy issue is exacerbated by always-online games, which require

the game to be played online. 4

Player profiling is likely going to be used more in future games. A

2022 patent for a Persona Driven Dynamic Content Framework (PDDCF)

[4] describes a profiling system where a psychological profile of the player

across multiple games and platforms is generated through gameplay. This

"player persona" is then used to deliver personalized game content and

4Certain always-online games require an internet connection regardless of
whether or not it has gameplay features which would require an online connec-
tion.

product recommendations. This is a privacy risk that could have seri-

ous consequences, should the player’s information be revealed or used for

anything outside of the games. With modern games’ player profiling ca-

pabilities, it becomes increasingly important to consider players’ privacy.

11 Anti-cheat

Some form of anti-cheat is used in most multiplayer games. Its purpose is

to ensure a fair gameplay experience by reducing the amount of cheaters.

Anti-cheat comes in many forms. 5 Many modern anti-cheat software

solutions function by monitoring activity on the computer in order to de-

tect cheat software. Due to the nature of cheating in games, anti-cheat is

commonly closed-source software. Additionally, many popular anti-cheat

solutions operate at the kernel level of the operating system, which is the

highest privilege level [17]. This type of anti-cheat is known as ring 0

anti-cheat. 6

Ring 0 anti-cheat has direct access to system resources. In simple

terms, it has absolute authority over the system. It can do anything with-

out the user’s knowledge and it can send any information or data on the

user’s computer to any third parties. In general, even on lower privilege

levels, anti-cheat that is based on monitoring and reporting can be classi-

fied as spyware [6, 13] with the potential to be used for mass surveillance.

Ring 0 anti-cheat is especially risky from a security and privacy perspec-

tive.

The security risk of ring 0 anti-cheat has multiple angles of exploita-

tion. In order to be viable, it requires trust, compatible conditions and

updates. The game has to come from a trusted developer and publisher.

The anti-cheat chosen for the game has to come from a trusted anti-cheat

developer and provider. The anti-cheat has to run on a trusted, uncompro-

mised computer. The anti-cheat has to run on compatible hardware and

software, which is why Linux users and virtual machine users often have

trouble with games that use ring 0 anti-cheat. The anti-cheat software

itself has to be uncompromised and resilient to backdoor access and other

exploits. It also needs to be resilient to user errors and avoid confusing

users with other users. Finally, it needs to be kept up to date from all

5For brevity, the focus is on the most severe privacy risks of anti-cheat.
6The term ring 0 comes from operating system protection rings designed to con-
trol access to system resources.

relevant threats.

With all its compromises to privacy and security, ring 0 anti-cheat is

still not able to completely eliminate cheating [7]. It is ineffective against

new and unknown cheats, and hardware-based cheating.

Ring 0 anti-cheat measures also incentivize cheaters to respond by

installing cheats that run on ring 0. This escalates the situation and gives

more third parties access to the players’ computers.

The consensus among game developers in the industry appears to be

that developing high-quality anti-cheat is a difficult and expensive task

that is generally not worth the resources required for it. Most developers

and publishers would rather deploy a third-party ring 0 anti-cheat solu-

tion made by anti-cheat professionals. The rationale is that cheating is

seen as far worse for a game than the potential risk to players’ privacy

and security. 7

The most effective way for players to stay safe from threats posed by

ring 0 anti-cheat software is to play games that use it on a dedicated

computer that is separate from sensitive data.

12 Conclusion

To be added.

References

[1] Activision Publishing Inc. System and method for driving microtransac-
tions in multiplayer video games, 2015. URL https://patents.google.
com/patent/US20160005270A1/en.

[2] Thomas Bouzerar. Remote code execution in raft survival game (cve-2022-
47530). Technical report, Synacktiv, 2022. URL https://www.synacktiv.
com/sites/default/files/2022-12/Raft_RCE.pdf.

[3] Giovanni Colantonio. Gaming companies become imperson-
ation targets as twitter verification opens to all. Digital
Trends, 2022. URL https://www.digitaltrends.com/gaming/

twitter-blue-verification-nintendo-gaming/.

[4] Electronic Arts Inc. Persona driven dynamic content framework,
2022. URL https://patentscope.wipo.int/search/en/detail.jsf?docId=
US367933587.

7This is based on uncited interviews and public posts of various game developers
responding to concerns regarding ring 0 anti-cheat.

[5] Epic Games. How to redeem a v-bucks card. URL https:

//www.epicgames.com/help/en-US/c-Category_Fortnite/c-Fortnite_

BillingSupport/how-to-redeem-a-v-bucks-card-a000084845.

[6] Jon Espenschied. No security reprieve from blizzard’s warden. Comput-
erworld, 2007. URL https://www.computerworld.com/article/1641355/
no-security-reprieve-from-blizzard-s-warden.html.

[7] Lorenzo Franceschi-Bicchierai. Esports league postponed after players
hacked midgame. TechCrunch, 2024. URL https://techcrunch.com/2024/
03/18/esports-league-postponed-after-players-hacked-midgame/.

[8] Ghost. Re: Using player names for bots, 2024.

[9] Godmode. Real names on the official forums [new real id function],
2010. URL https://web.archive.org/web/20100711143455/http:

//wowriot.gameriot.com/blogs/Americans-are-bad-at-games/

Real-Names-on-the-Official-Forums-New-REAL-ID-Function.

[10] JaGEx. New payment option - us paybysms/text, 2006. URL https://
secure.runescape.com/m=news/new-payment-option---us-paybysmstext.

[11] KaraliKing. Real id privacy issue, 2018. URL https://old.reddit.com/r/
Blizzard/comments/9awp29/real_id_privacy_issue/.

[12] Kenxai and Gavrok. hello gavrok, 2024. URL https://clips.twitch.tv/
CloudyEnticingPanPipeHype-QtIBzg4dOsD6pdNu.

[13] Corynne McSherry. A new gaming feature: Spyware. The Electronic
Frontier Foundation, 2005. URL https://www.eff.org/deeplinks/2005/
10/new-gaming-feature-spyware.

[14] Tomás Mier. Elon musk’s $8 checkmarks prove to be
a twitter misinformation disaster. Rolling Stone, 2022.
URL https://www.rollingstone.com/culture/culture-news/

elon-musk-paid-twitter-checkmarks-parody-shutdown-misinformation-disaster-1234628243/.

[15] Nethaera. Battle.net update: Upcoming changes to the forums,
2010. URL https://web.archive.org/web/20100708212320/http:

//forums.battle.net/thread.html?topicId=25626109041.

[16] Nethaera. Regarding real names in forums, 2010. URL https://web.
archive.org/web/20100712104703/http://forums.worldofwarcraft.com/

thread.html?topicId=25968987278.

[17] Serif Pilipovic. Every game with kernel–level anti–cheat
software. LEVVVEL, 2024. URL https://levvvel.com/

games-with-kernel-level-anti-cheat-software/.

[18] @PlayAvengers, 2021. URL https://twitter.com/PlayAvengers/status/
1407388018504257541.

[19] Prophecy Games. Tribes 3: Rivals - end user license agreement, 2024. URL
https://store.steampowered.com//eula/2687970_eula_0.

[20] Sid Shuman. Online id change on psn: Your questions an-
swered, 2019. URL https://blog.playstation.com/2019/04/10/

online-id-change-on-psn-your-questions-answered/.

[21] Simutronics Corp. Account & billing frequently asked questions,
1999. URL https://web.archive.org/web/19990421162807/http://www.
play.net/simunet_public/accfaq.asp.

[22] Spotify. Discord and spotify. URL https://support.spotify.com/us/
article/discord-and-spotify/.

[23] Steam Support. Steam private games, 2023. URL https://help.

steampowered.com/en/faqs/view/1150-C06F-4D62-4966.

[24] Ollie Toms. Modern warfare 2 phone number bug: How to
fix the warzone 2 "mobile phone number required" steam issue.
Rock Paper Shotgun, 2022. URL https://www.rockpapershotgun.com/
modern-warfare-2-mobile-phone-number-required-fix.

[25] Triumph Studios and Daidalos. Age of wonders 2 online multiplayer guide.
URL https://aow2.heavengames.com/library/online/.

[26] Twitch. How to earn drops. URL https://help.twitch.tv/s/article/
mission-based-drops?language=en_US.

[27] Twitter Help Center. Parody, commentary, and fan account policy,
2022. URL https://web.archive.org/web/20221107192852/https://help.
twitter.com/en/rules-and-policies/parody-account-policy.

[28] Ubisoft. Streamer mode update. Ubisoft Dev Blog, 2021. URL https:
//www.ubisoft.com/en-gb/game/rainbow-six/siege/news-updates/

7Adrc6XOcNCgpKTcymSRUi/streamer-mode-update.

[29] U.S. Attorney’s Office, District of Kansas. Ohio gamer pleads guilty in swat-
ting that caused a death, 2019. URL https://www.justice.gov/usao-ks/
pr/ohio-gamer-pleads-guilty-swatting-caused-death.

[30] Stanislav Vishnevskiy. Evolving usernames on discord. Discord Blog, 2023.
URL https://discord.com/blog/usernames.

[31] Sergio Zammit. 15 best crypto games to play in 2024. Crypto News, 2024.
URL https://cryptonews.com/news/best-crypto-games.htm.

Understanding Unique Aspects of
Tailwind CSS in Comparison with
Existing CSS Frameworks

Duc Vu Trong
duc.vu@aalto.fi

Tutor: Vepsäläinen Juho

Abstract

Tailwind CSS refers to a new CSS framework (2017) that follows the

utility-first CSS paradigm. Recently, this framework has gained popular-

ity and become a reliable option for styling web applications. This paper

aims to discover the core concepts of Tailwind by examining the unique

aspects of this framework. Tailwind provides a collection of simple util-

ity classes to define the style of web applications without creating separate

CSS files. Moreover, this CSS framework uses utility modifiers to support

many modern features for styling components, including styling of compo-

nent states, responsive UI, and dark mode.

This paper also presents the main features of Tailwind by showing

the differences between this framework and inline styling, Bootstrap, and

component libraries. Although Tailwind requires additional tooling, this

CSS framework offers a more consistent approach to styling components

and supports modern features that inline styling does not support. While

Tailwind helps web applications improve performance and a flexible cus-

tomization mechanism, Bootstrap and encapsulated components provided

by libraries can reduce the time and effort to style elements with their com-

pletely styled components.

KEYWORDS: CSS frameworks, Tailwind CSS, utility-first CSS, web styling

1 Introduction

In recent years, the Cascading Style Sheets (CSS) technology has changed

dramatically to improve the maintainability of code as well as the devel-

oper experience [9]. The term CSS refers to a language for defining a set of

rules that determine the rendering of a structured document, whose struc-

ture as well as semantics are encoded with document languages, such as

HTML [4]. Utility-first CSS refers to a new technique for using CSS that

has gained popularity recently due to the flexibility and developer focus of

this technique. Utility-first CSS emphasizes web design using compact,

single-purpose utility classes. A prominent implementation of this ap-

proach is Tailwind CSS [7]. Tailwind CSS provides developers with a set

of pre-designed utility classes to help them build modern, responsive, and

efficient user interfaces.

Traditional CSS provides a simple method to style a web page; how-

ever, using only CSS poses scalability issues because changes in CSS files

affect the entire project, which can lead to unexpected errors. Moreover,

traditional CSS is difficult to effectively reuse, which constitutes a major

problem in coding for developers. Currently, many new styling frame-

works have been developed for web applications using different method-

ologies and approaches. Nonetheless, these styling options cannot adapt

to several specific requirements due to their lack of customization ability.

For example, alternative CSS frameworks do not enable developers to de-

fine a new color and use it for styling elements. Tailwind CSS was created

to solve these problems using a utility-first methodology, which is new in

comparison to previous styling frameworks.

This paper seeks an answer to the research question: What is Tail-

wind CSS, and how does it differ from other available CSS frameworks?

To evaluate the feasibility of using Tailwind CSS in production, this pa-

per reviews the main philosophy behind Tailwind CSS and the method

that Tailwind uses for styling. In addition, this paper draws comparisons

between Tailwind and other popular CSS frameworks.

This paper is organized as follows. Section 2 demonstrates the main

ideas of the Tailwind framework. Section 3 presents the differences be-

tween Tailwind CSS and traditional inline styling. Section 4 describes

the comparison of Tailwind and Bootstrap, which is also a popular frame-

work. Section 5 discusses the advantages and disadvantages of Tailwind

compared to existing component libraries. Section 6 provides a discussion

of Tailwind CSS. Finally, Section 7 provides summarizing remarks.

2 Tailwind CSS Framework

Tailwind CSS, or simply Tailwind, is a constrained set of utility classes for

styling that can be directly used as the class names of HTML elements [9].

The pre-existing classes of Tailwind can comprehensively cover all styling

needs, such as color, spacing, transitions, and interactions of users. With

Tailwind, developers specify the style for components by applying these

pre-defined classes, as shown in Listing 1, instead of traditionally writ-

ing CSS [16]. This implementation helps front-end developers reduce the

time spent on developing web elements by removing the focus on man-

aging CSS files. For example, Tailwind enables developers to implement

a component in the Figure 1 using only the HTML code in the Listing 1

without additional CSS files.

1 <div className="shadow p-4 rounded bg-white flex">

2

3 <div className="font-mono">

4 <h1 className="font-bold">Seminar in CS</h1>

5 <p className="text-base">Tailwind CSS</p>

6 </div>

7 </div>

Listing 1. Tailwind CSS Example

2.1 Tailwind constructs necessary CSS based on usage

In addition, Tailwind creates corresponding CSS files based on the class

names of this framework in build time [9]. As illustrated in Figure 2,

CSS is generated correspondingly to the determined utility classes of Tail-

wind, which are font-bold and font-mono. This CSS framework scans the

source code for names of classes using regular expressions, which is a pat-

Figure 1. Result of the code in Listing 1

Figure 2. Tailwind parses class names to CSS

tern that the regular expression engine attempts to match in input text,

thus extracting all possible strings of class names without considering

the programming language of code. Therefore, the detection mechanism

of Tailwind CSS is simple and independent of the project framework and

language.

2.2 Component states

In a web application, many components have several different states to

provide their functionality. For instance, a button component can have

two additional states, which are clicking and hovering. The state of click-

ing illustrates the button when it is clicked by users, and similarly, the

state of hovering represents the button that is hovered by a cursor. The

style of the components in different states should be easily distinguished

to ensure accessibility and make the applications more attractive. To sat-

isfy this demand, Tailwind CSS uses predefined state modifiers, which

can be used with every utility class. The modifier is added to the begin-

ning of a utility class to ensure that the style of that class is only visible

in the state of the component, which is specified by the modifier. For in-

stance, as shown in Listing 2, a modifier hover: is used to assign a new

color to the button when it is hovered.

1 <div>

2 <button className="bg-blue-500 rounded hover:bg-blue-600">

3 Click Me

4 </button>

5 </div>

Listing 2. Tailwind Component State Modifier

Tailwind CSS adds a new class to the element that is only responsible

for styling in a specific state, whereas traditional CSS adds to an existing

class a new style, which corresponds to a state [7]. In other words, Tail-

wind CSS separates classes that are used for default styles and styles in

different states. This separation of Tailwind CSS guarantees that a utility

class can be applied conditionally, thus helping developers have complete

control over the behaviors of components in different states.

The state modifier in Tailwind CSS covers all necessary states of a

component. These modifiers, as shown in Table 1, can be divided into four

groups: pseudo-classes, pseudo-elements, media and feature queries, and

attribute selectors [7].

Tailwind Modifier Example

Pseudo-classes hover:, active:, odd:, even:

Pseudo-elements before:, after:, placeholder:, file:

Media and feature queries responsive breakpoint, dark mode

Attribute selectors [dir="rtl"], [open]

Table 1. Tailwind supports component state styling [7]

The pseudo-class modifiers focus on the states of the component that

correspond to user interaction, such as hovering, focusing, and visiting.

In addition, the modifiers of this group also cover states that are based on

the relation of a component with others, such as parent components and

sibling components, as well as the relative position of a component group,

including the first and last element in a list.

The pseudo-element modifiers emphasize detail elements that com-

pose the main components, such as elements that are added before or af-

ter a specific type of component, placeholder text for inputs, and markers

for a list.

The modifiers in the group of media and feature queries cover respon-

sive aspects and color schemes. These modifiers can be used to achieve

the dark mode feature, which has become increasingly popular in web

development.

The modifiers of the attribute selector group focus on the states that

depend on an attribute of the component. For example, the open modifier

can be used to apply style to a dialog component when it is in the opening

state.

2.3 Responsive Design

Responsive design refers to an approach that enables a web application

to adapt to the different layouts of devices, ranging from large devices,

such as monitors and personal computers, to small devices, such as smart-

phones and smartwatches [13]. Currently, responsive design has become

a major requirement of modern web applications due to the increasing de-

mand for working on multiple devices [13]. The responsive user interface

can be easily built with responsive modifiers provided by Tailwind CSS

that are present for media queries in traditional CSS. Responsive utility

modifiers of Tailwind CSS can be used with a similar method to other

modifiers of Tailwind, which is the addition to the beginning of the utility

class. Therefore, these responsive modifiers enable every utility class to

be conditionally applied to different sizes of device screens.

Breakpoint Prefix Min. Width CSS

sm 640px @media (min-width: 640px) {}

md 768px @media (min-width: 768px) {}

lg 1024px @media (min-width: 1024px) {}

xl 1280px @media (min-width: 1280px) {}

2xl 1536px @media (min-width: 1536px) {}

Table 2. Tailwind responsive modifiers [7]

By default, Tailwind provides five responsive prefixes, including sm,

md, lg, xl and 2xl [7]. As presented in Table 2, each of these modifiers

corresponds to a screen width breakpoint that defines a media query CSS

using the min-width property [7]. Tailwind responsive modifiers use the

minimum width of the screen as a breakpoint to support the idea of a

mobile-first breakpoint system [7]. To implement this idea, a utility class

without a responsive modifier is applied by default, those utility classes

accompanied with responsive prefixes can only override the design when

the screen has a width larger than the breakpoint of that modifier. For

instance, as presented in Listing 3, the utility class text-base is only ap-

plied when the screen width is greater than 768px, and similarly, class

text-xl is applied when the screen width is greater than 1280px; other-

wise, class text-sm is used by default.

1 <div>

2 <p className="text-sm md:text-base xl:text-xl">

3 Responsive design

4 </p>

5 </div>

Listing 3. Tailwind responsive modifiers

Tailwind responsive modifiers can be used together with the max mod-

ifier to improve the flexibility of using responsive breakpoints. The "max"

modifier is presented by the keyword max- and a Tailwind responsive

modifier, for example, keyword max-lg indicates the upper limit of break-

point to which a utility class should be applied [7]. The max modifier is

placed between a responsive modifier and a styling utility class, which

only affects the screen with a width in the range of the responsive mod-

ifier to the max modifier. For example, as illustrated in Listing 4, class

md:max-lg:text-base indicates that the text size is specified by the class

text-base when the width of the screen is between the md and lg break-

points.

1 <div>

2 <p className="text-sm md:max-lg:text-base xl:text-xl">

3 Responsive design

4 </p>

5 </div>

Listing 4. Tailwind max modifier

2.4 Customization

Sections Description

Content The paths to files in the project that include the utility

class of Tailwind [7].

Theme Visual design properties, including color, spacing, fonts,

sizing, and responsive breakpoints [7].

Plugins Registration of plugins with Tailwind for introducing new

utility classes, styles, and variants [7].

Presets Setting new configuration for the default configuration of

Tailwind [7].

Prefix Custom prefix that is added to generated utility classes of

Tailwind [7].

Important Configuration for the usage of !important with Tailwind

utility class [7].

Separator Customization for the character that should be used to

separate modifiers and utility names [7].

Core Plugin Configuration for disabling classes that Tailwind gener-

ates by default that are not necessary for the project [7].

Table 3. Tailwind configuration sections [7]

Tailwind CSS offers the developers extensibility and customization,

apart from its set of predefined utility classes. Tailwind CSS facilitates

extensive configuration through an optional configuration file at the root

folder of a project, whose name is tailwind.config.js [7]. Therefore,

customization can be achieved by applying several modifications to this

configuration file, such as changing default settings, adding new utility

classes, and redefining the color palette and other design elements. As

shown in Table 3, this configuration file includes eight different sections:

content, theme, plugins, presets, prefix, important, separator, and core

plugin. Every section of the configuration file is optional and all missing

sections are used with the default configuration of Tailwind [7]. Thereby,

developers only have to specify necessary sections that require customiza-

tion. Different customized themes can be created with Tailwind CSS to be

used with different projects, which helps projects using Tailwind become

unique and easy to identify. For instance, a configuration file of Tailwind

is presented in the Listing 5, which defines customized colors, and text

font for a project using theme section.

1 module.exports = {

2 content: ['./src/**/*.{html,js}'],

3 theme: {

4 colors: {

5 'blue': '#1fb6ff',

6 'purple': '#7e5bef',

7 'pink': '#ff49db',

8 'orange': '#ff7849',

9 'green': '#13ce66',

10 'yellow': '#ffc82c',

11 'gray-dark': '#273444',

12 'gray': '#8492a6',

13 'gray-light': '#d3dce6',

14 },

15 fontFamily: {

16 sans: ['Graphik', 'sans-serif'],

17 serif: ['Merriweather', 'serif'],

18 }

19 },

20 }

Listing 5. Tailwind configuration file

Tailwind CSS also allows the utilization of arbitrary styling, including

arbitrary values, properties, and variants, in order to provide flexibility

in crafting precise and pixel-perfect designs [7]. Arbitrary elements are

wrapped in a square bracket notation, which enables Tailwind to read and

dynamically generate new CSS classes corresponding to arbitrary values.

With this mechanism, completely arbitrary CSS values can be created

and used together with interactive modifiers in Tailwind as other utility

classes of Tailwind [7].

Moreover, Tailwind also enables developers to add customized style to

the CSS file of a project using the directive @layer of Tailwind that con-

tains three levels: base, components and utilities [7]. The base layer

refers to the default style that is applied to the plain HTML elements [7].

Thereby, this layer has the lowest priority of the three layers. The compo-

nents layer is used for class-based styles and the utilities layer presents

the single-purpose classes that can override any other styles [7]. The al-

lowance for breaking the constraints of Tailwind helps this CSS frame-

work gain adaptability to any specific project requirements. For example,

Listing 6 illustrates a declaration of a new utility class using the Tailwind

directive @layer in the CSS file of a project.

1 @layer utilities {

2 .content-auto {

3 content-visibility: auto;

4 }

5 }

Listing 6. Tailwind @layer directive

3 Comparison between Tailwind CSS and inline styling

Inline styling CSS refers to a method for styling HTML elements that

directly address CSS properties in the attribute style of an individual

element [12]. Since being introduced, Tailwind CSS has raised several

uncertainties about the differences between this new framework and in-

line style CSS due to their similarity in usage. Both approaches directly

apply style to elements instead of creating new class names with accom-

panying styles and assigning these names to the elements. Tailwind and

inline styling both focus on HTML elements and eliminate the necessity

of CSS files.

3.1 Advantages of Tailwind over inline styling

Inline styling determines the style information for the current HTML el-

ement using the attribute style [1]. For example, attribute style of the

element P in the Listing 7 defines the color of text and font size properties

of a paragraph element [1].

1 <P style="font-size: 12pt; color: fuchsia">Style sheets

Listing 7. Inline style CSS example [1]

While pre-defined classes of the Tailwind design system provide devel-

opers with constraints, inline styling uses arbitrary values for CSS prop-

erties. Random values in inline styling make the code obscure, which

leads to a lack of maintainability. Inline styling also supports the usage of

CSS variables, which also refers to CSS custom properties, to help devel-

opers define custom variables for styling values. However, inline styling

in the attribute style of an element can only specify the style information

for that element [1]. Therefore, a CSS variable used in inline styling can

not be reused to address the maintainability problem of inline styling. In

contrast, Tailwind CSS restricts the selection of developers to a fixed set

of options. For example, Tailwind offers a limited set of classes for the

text size property, as shown in Figure 3. Therefore, Tailwind can build

a consistent UI that is easier to maintain and continuously develop. In

addition, Tailwind CSS also supports the use of arbitrary values, which

must be placed inside square brackets, to fulfill the specific design re-

quirements without losing the flexibility of inline styling.

Furthermore, Tailwind offers more efficient cache performance for web

pages than inline styling. While Tailwind utility classes are converted

into corresponding CSS and contained in the CSS file, inline styling is

attached to the HTML content [7], [12]. As a result, Tailwind helps web

applications cache the style in CSS files instead of caching HTML in in-

line styling. CSS files require significantly fewer changes than HTML

contents; thereby, style can remain more constantly in CSS caching than

in HTML caching [3]. Therefore, Tailwind supports web applications to

achieve more efficiency in caching style than inline styling.

On the one hand, the inline styling approach cannot meet the require-

ment of responsive design because media queries cannot be used within

the inline style. On the other hand, Tailwind CSS provides responsive

utility variants to make applications adaptive [14]. For instance, as pre-

sented in Figure 3, Tailwind enables developers to change the size of text

Figure 3. Advantages of Tailwind over inline styling

components to fit different screen sizes, whereas inline styling needs to

use other declarations in CSS files. Each of the Tailwind utility vari-

ants, which is then transformed into CSS by Tailwind, corresponds to a

breakpoint in media queries [7]. Tailwind also has a specific mechanism

for using these responsive utilities to target a range of breakpoints in or-

der to increase flexibility. Similarly, Tailwind also supports styling with

pseudo-classes that can not be achieved with inline styling.

3.2 Disadvantages of Tailwind in comparison with inline styling

By default, Tailwind CSS is not included in any libraries or frameworks

for building UI. Therefore, Tailwind requires several steps of installa-

tion to be used in the production, which is similar to other major CSS

frameworks. Although Tailwind also can work directly in the browser, us-

ing Tailwind in this mode adds JavaScript dependencies to the resulting

build. Therefore, Tailwind is recommended to use the build step with in-

stallation, especially for production, to achieve optimal performance. Tail-

wind can be installed using several approaches, including the Tailwind

Client Interface (CLI), PostCSS, and Content Delivery Network (CDN) [7].

In addition, the installation of Tailwind depends on the framework that a

project uses to develop the UI, because different development frameworks

have specific methods for installing Tailwind. In contrast, inline styling

can be used without any further setup because inline styling is a basic

approach to using CSS inside HTML files that is accompanied by HTML

[1].

4 Comparison between Tailwind and Bootstrap

Bootstrap (2011) is a comprehensive CSS framework for front-end devel-

opment that has gained its reputation for many years [10]. This frame-

work offers developers design templates for many UI components, includ-

ing typography, forms, buttons, tables, and navigation [10]. Moreover,

Bootstrap also facilitates styling components by applying pre-existing classes

to HTML elements, which is similar to the approach of Tailwind.

4.1 Advantages of Tailwind over Bootstrap

In comparison with Bootstrap, Tailwind has several advantages. Tail-

wind CSS can help a web application achieve better performance than

Bootstrap from a scalability perspective since the file size of Tailwind is

smaller than that of the Bootstrap library. Tailwind CSS only includes

the CSS styles that correspond to the utility classes used by developers,

therefore decreasing the loading time of pages. These styles are converted

from used utility classes and included in the main CSS file of a project.

Whereas, the Bootstrap framework not only loads its entire CSS file but

also includes Javascript components that considerably increase the size of

the file, especially on page initialization. For instance, Figure 4 presents

network requests in a web browser for loading two similar web pages, one

of which uses Tailwind CSS and the other one uses Bootstrap. The page

using Tailwind CSS only needs to load a little CSS rules contained in the

file index.css which has a size of 14.9 kilobytes. In contrast, the page us-

ing Bootstrap has to load complete CSS and JavaScript files of Bootstrap

with a total size of 352 kilobytes.

Furthermore, Tailwind CSS offers better customization ability and

flexibility compared to Bootstrap. While Tailwind provides separate util-

ity classes that can be used to make a large number of different style com-

binations, Bootstrap uses built-in themes and templates. Tailwind CSS

Figure 4. Comparison of file loading between Tailwind and Bootstrap

also allows developers to create their own customized style options based

on the utility system of Tailwind. Therefore, using Tailwind CSS can help

develop applications with unique UI, which is laborious to achieve with

Bootstrap.

4.2 Disadvantages of Tailwind in comparison with Bootstrap

Figure 5. Comparison of coding between Tailwind and Bootstrap

Tailwind CSS still poses several drawbacks compared to Bootstrap.

The newer framework is less efficient than Bootstrap from a development

performance perspective. Since a class of Bootstrap framework includes

multiple built-in CSS rules to specify a complete component that can be

used immediately for production, this framework can significantly accel-

erate the development process. In contrast, a utility class of Tailwind

refers to a single CSS property, such as color and size. Therefore, Tail-

wind CSS requires developers to spend more time choosing suitable utility

classes that it provides and testing to ensure that the styled component

fits correctly with the design. Figure 5 illustrates the difference in code

for presenting a button component using Tailwind and Bootstrap. While

Tailwind needs to use five different utility classes to specify the button,

Bootstrap only requires two simple classes that contain many different

CSS rules to determine a pre-designed button. Furthermore, as shown

in Figure 5, Tailwind forces developers to select classes with detail prop-

erties, such as color of text and background, which is not necessary with

Bootstrap. As a result, Tailwind requires more time and effort to com-

plete a design than Bootstrap, especially with a project that does not have

a unique design. In addition, Tailwind also requires more time for begin-

ners to get acquainted with utility classes and understand the approach

that Tailwind uses.

5 Comparison between Tailwind and component libraries

Component library refers to a set of pre-built UI components that can be

used easily in front-end development to help developers save their time

and effort [15]. The library offers many complete components that can

satisfy common functionalities of modern web applications, including ta-

ble, form, and menu [15]. In addition, the component library also provides

several components that are already provided by plain HTML, includ-

ing buttons and input, because the default style of these components in

HTML can not fulfill the requirement of modern web applications, which

is having a distinct and user-friendly interface [15]. Recently, several com-

ponent libraries have been developed using Tailwind CSS from scratch for

different front-end development frameworks, such as Tailwind UI (2020),

Flowbite (2021), and DaisyUI (2022) [5], [8], [6].

5.1 Advantage of Tailwind over component library

Using Tailwind CSS offers a higher level of customization in comparison

with the component library. While each utility class of Tailwind is used

to determine a single property of the element, components provided by

the library are completely encapsulated. These components refer to the

black-box components that developers can directly use to implement the

design without acknowledgment of the compositions inside them or the

method that the library uses to create them. Therefore, pre-built com-

ponents from the library are difficult to customize with specific details.

In certain circumstances, the properties of these components can be over-

ridden by additional CSS, however, this approach can lead to conflicts of

styling, thus reducing the maintainability of the code. Although many

modern component libraries enable developers to configure several prop-

erties, this level of customization is not sufficient to implement a design

that is highly different from the design system of the library.

5.2 Disadvantages of Tailwind compared to component library

In comparison with component libraries, Tailwind CSS can complicate the

code. Tailwind CSS has to use many different utility classes, which can

occupy several lines of codes for class names, to visualize a component,

especially with complex and detailed designs. In contrast, component

libraries provide developers with comprehensively wrapped components

that can be used directly in the format of an HTML element. For exam-

ple, as shown in Listing 9, Tailwind requires the use of many different

utility classes with different HTML elements, including div, img and p,

to make a styled card component in Figure 6 that has UI effect on hov-

ering. Whereas, as presented in Listing 8, a card component from the

Ant Design library can significantly simplify the code and reduce the time

spent on implementation. Consequently, Tailwind CSS requires more ef-

fort from developers in designing components to guarantee the reusability

of the code. Otherwise, a large number of Tailwind utility class names can

reduce the maintainability of the project.

1 <Card

2 hoverable

3 style={{ width: 240 }}

4 cover={<img alt="example" src="https://os.alipayobjects.com/

rmsportal/QBnOOoLaAfKPirc.png" />}

5 >

6 <Meta title="Europe Street beat" description="

www.instagram.com" />

7 </Card>

Listing 8. Card component from Ant Design library [2]

1 <div className='bg-white rounded-lg shadow w-60

hover:cursor-pointer hover:shadow-xl'>

2 <img alt='example' src='https://os.alipayobjects.com/

rmsportal/QBnOOoLaAfKPirc.png'

3 className='rounded-t-lg'/>

4 <div className='p-6'>

5 <p className='font-medium text-base mb-3'>

6 Europe Street beat

7 </p>

8 <p className='font-light text-slate-500 text-sm'>

9 www.instagram.com

10 </p>

11 </div>

12 </div>

Listing 9. Card styled by Tailwind

Figure 6. An example for a card component [2]

6 Discussion

Tailwind CSS refers to a utility-based CSS framework that can fulfill

many requirements of modern web applications without the need to write

and manage separate CSS or style sheet files. However, Tailwind requires

time and several techniques to be used efficiently in a project. In addition,

although Tailwind CSS can be applied to different kinds of projects, this

framework can address several difficult requirements of specific projects.

6.1 Using Tailwind CSS in practical projects

Tailwind provides utility classes for styling instead of pre-defined UI com-

ponents [7], [17]. Therefore, using Tailwind in a real-world context is ac-

companied by a strong understanding of its utility classes as well as its

prefix modifiers. Although the name of these utility classes has many sim-

ilarities with that of traditional CSS properties, Tailwind CSS requires

developers to spend much time gaining a complete understanding to use

this CSS framework effectively. In addition, Tailwind CSS can slow down

developers who were attached to arbitrary values in traditional CSS.

Utility classes provided by Tailwind are placed directly in the attribute

className of HTML elements [7]. Therefore, these classes can complicate

the implementation of complex components because these components re-

quire many different Tailwind classes. To update the style of a component,

developers have to read through all the utility classes to find a specific

class that needs to be changed, which requires much effort and time. As

a result, Tailwind utility classes can reduce the readability of code and

perplex developers who have to work on code from others. To address this

problem, developers can determine components that need to be used mul-

tiple times in the project and separate them into reusable components to

minimize the duplicate codes of utility classes.

6.2 CSS frameworks are suitable for different kinds of project

This paper presents the basic differences between Tailwind CSS and three

other available options, which are inline styling, Bootstrap, and the com-

ponent library. These alternatives are chosen because they are popular

methods for styling web applications and have several similarities with

Tailwind that can confuse developers when selecting a technology to use

in projects. However, recently, many new CSS frameworks have been de-

veloped and have become increasingly popular for their modern features.

Therefore, Tailwind can also be compared with other frameworks to gain

more information.

This paper can not indicate that Tailwind can provide a more efficient

approach to using CSS than other CSS frameworks. The most effective

approach depends on the project because each project has a different scale

and requirements for styling. Therefore, the most effective framework for

a project refers to the framework that can adapt to the specific require-

ments of that project. Tailwind becomes the most suitable CSS framework

for a project that requires a unique UI and does not need to be completed

in a significantly short period.

7 Conclusion

This paper answers the research question: what is Tailwind CSS, and how

does it differ from other available CSS frameworks? The answer is pro-

vided by examining the styling principles of Tailwind CSS and comparing

Tailwind with other popular CSS frameworks. Tailwind CSS refers to a

modern CSS framework that uses utility-first CSS methodology. This CSS

framework offers developers a set of primitive utility classes that can be

used to determine the style of HTML components without writing sep-

arate CSS files [11]. In addition, Tailwind provides utility modifiers to

fulfill the requirements of modern web applications, including styling of

component state, dark mode, and responsive design.

Although both Tailwind CSS and inline styling apply directly the style

to the HTML elements, utility classes of Tailwind provide a more consis-

tent method for styling than inline styling. Moreover, Tailwind also sup-

ports responsive design and pseudo-class that can not be implemented

with inline styling.

While Tailwind helps applications reduce load time and offers sig-

nificant customization, the Bootstrap framework can be used more eas-

ily, thus decreasing the effort of developing. Similarly, Tailwind offers a

higher level of customization than component libraries, this CSS frame-

work can complicate the code and require more time for implementation.

While this paper presents the core concept of Tailwind CSS and illus-

trates the differences between Tailwind and other approaches, at least the

following open research questions remain:

• How can Tailwind CSS be improved or extended to optimize the styling

process without compromising its core philosophy of utility-first CSS?

• How does Tailwind CSS affect the performance of modern web pages?

References

[1] Adding style to html. https://www.w3.org/TR/html401/present/styles.h
tml. Accessed on March 25th, 2024.

[2] Ant design. https://ant.design. Accessed on March 25th, 2024.

[3] Comparation between utility class and inline style. Accessed on March
25th, 2024.

[4] Css snapshot 2023. https://www.w3.org/TR/CSS/. Accessed on March
25th, 2024.

[5] Daisyui. https://daisyui.com/. Accessed on March 25th, 2024.

[6] Flowbite. https://flowbite.com. Accessed on March 25th, 2024.

[7] Tailwind css. https://tailwindcss.com. Accessed on January 25th, 2024.

[8] Tailwind ui. https://tailwindui.com. Accessed on March 25th, 2024.

[9] Modern CSS with Tailwind, 2nd Edition. Pragmatic Bookshelf, 2022.

[10] S Shahu Gaikwad and PRATIBHA Adkar. A review paper on bootstrap
framework. IRE Journals, 2(10):349–351, 2019.

[11] Ivaylo Gerchev. Tailwind CSS : craft beautiful, flexible, and responsive
designs. SitePoint Pty. Ltd., Australia, [first edition]. edition, 2022.

[12] Eric A. Meyer. CSS pocket reference. O’Reilly, Sebastopol, California, 3rd
ed. edition, 2008.

[13] Kailashkumar V Natda. Responsive web design. Eduvantage, 1(1), 2013.

[14] Fadli Rifandi, Tri Adriansyah, and Rina Kurniawati. Website gallery
development using tailwind css framework. Jurnal E-Komtek (Elektro-
Komputer-Teknik), 6:205–214, 12 2022.

[15] Sanna Salonen. Evaluation of ui component libraries in react development.
2023.

[16] Maryam Shokrinejad Shirazifard. Tailwind CSS (Software framework). 08
2023.

[17] Marzieh Somi. User Interface Development of a Modern Web Application.
PhD thesis, Politecnico di Torino, 2023.

Encrypted DNS and Privacy

Emnet Mehari Tekeste
emnetmehari.tekeste@aalto.fi

Tutor: Tuomas Aura

Abstract

As internet use has become evermore prevalent, considerable work has

been undertaken to improve the privacy of the communications that hap-

pen over it. However, for many years, one of its most important build-

ing blocks, the Domain Name System (DNS), had remained a blind spot

in these efforts. Recent years have seen significant efforts to remedy this.

These efforts have primarily been directed towards encrypting DNS traffic

on the wire. While the results of these efforts have served to make DNS

traffic more secure in several aspects, there remain notable risks related to

side-channel attacks and logged DNS request data.

KEYWORDS: DNS, DoH, DoT, DoQ, Privacy

1 Introduction

The Domain Name System (DNS) is a central component of internet in-

frastructure. In simple terms, DNS is the distributed directory service for

resolving human-readable addresses into numerical addresses that are

used for routing on the internet. A device that seeks to access a domain

on the internet will connect to one or many DNS servers to retrieve the

numerical IP address of the domain and then initiate a connection to the

IP address [12, 20].

The original DNS design grew out of a need to accommodate more

varied usage of the internet [20], and while these needs were met, the

design overlooked the many privacy implications of such a system. Over

the years, much work has been done to both study the privacy implications

[25] and to try and design security improvements [13, 11, 15]. While the

most popular DNS resolvers now support these additions to DNS [8], most

DNS traffic remains unencrypted [18].

This paper examines different approaches to achieve a more private

DNS, their potential shortcomings, and their current prevalence.

The rest of the paper is organized as follows. Section 2 will provide an

overview of DNS and define some terms that will be used throughout. Sec-

tion 3 will outline the potential threats to privacy at various components

of the system. Section 4 will discuss proposed solutions and the degree

to which they are currently in use, while section 5 looks at possible prob-

lems in those solutions. Section 6 discusses the findings. Lastly, section

7 concludes the paper. While an overview of DNS and its privacy exten-

sions is provided, an understanding of the fundamentals of networking is

assumed.

2 Background

The DNS consists of three main components: resolvers, name servers,

and the domain name space and resource records. In the simplest mode

of operation, a resolver makes a query to a name server that responds

with the relevant resource record. However, on the internet scale, do-

main name resolution involves multiple queries following the initial re-

quest with caching at several points along the path [20]. Below is a broad

overview of the main components of DNS.

i Resolver: The resolver is included in the client-side operating system

or in an application such as a web browser. It sends a query to a name

server on another host in order to resolve a domain, although it might

cache the information locally. Its most common function is to resolve

host names to host addresses, but the reverse is also possible [20].

ii Name server (NS): The name servers store the database of mappings

divided into zones. Zones are subtrees within the tree-like structure of

The Internet

Your Site or Organization

Your Computer

Applications

Email Client

Web Browser

Application
Specific
Cache

Local Resolver
Caching/Forwarding
Resolver

Multi-
User

Cache

Recursive Resolver

Local
Cache

Authoritative Root
Server

Root
Zone

Authoritative TLD
Server

TLD
Zone

Authoritative SLD
Server

SLD
Zone

Redundant Caching
Forwarding Resolver

Local
Cache

Redundant
Recursive Resolver

Figure 1. Possible DNS resolution sequence [Aaron Filbert, CC BY-SA 4.0, via Wikimedia
Commons]

the domain name space. Upon receiving a query, a name server may

respond with the requested data if it is available in its zone or a re-

ferral to a name server that could have it. The zones will generally be

redundantly available on multiple name servers, and mechanisms exist

to propagate changes [19]. Recursive name servers are those that can

perform the entire name resolution on behalf of a user, sending requests

to other servers as required. Recursive servers are maintained by the

Internet Service Providers (ISP), or they can be open services, such as

Google Public DNS.

iii Resource Record (RR): A resource record [20, 21] is the information

contained within a node of the domain name space tree, which may also

be empty. A RR may be of different types based on the information it

contains, such mail exchange (MX) or IPv4 host address (A).

All communication over DNS is conducted via a single, extensible mes-

sage format. The message includes header information, such as whether

it is a query or response, or a normal, reverse or other type of query

[21]. While these messages are most commonly transferred over UDP,

TCP support has been a requirement for DNS since 2016 [9].

Subsequent sections will assess what privacy threats exist at the com-

ponents mentioned above and interactions between them, along with what

new threats may be introduced with proposed alternatives. Following pre-

vious similar works [25], this paper uses privacy-related terminology as

defined in RFC6973 [5].

3 Privacy Considerations for Traditional DNS

A discussion of the privacy issues of traditional DNS remains relevant as

most DNS traffic still remains unencrypted. Two scenarios to consider

are the case where there exists an eavesdropper somewhere on the path

and the case where the resolvers themselves are spying on their users. In

both cases, the unencrypted nature of DNS undermines security.

Recursive resolvers are more prone to both of these issues compared to

other servers in the hierarchy. This is not only because the heavily cached

nature of DNS means that they see the most traffic, but also because they

receive the user’s IP address as part of the request, whereas other servers

might only have access to the domain the user is trying to visit. Thus,

the path from the user to the recursive resolver is the most ideal target

for an eavesdropper. Malicious recursive resolvers also have the most

information available to them.

Previous work has demonstrated the possibility to identify different

users given sufficient logs of their DNS requests, even with changing IP

addresses. For instance, research [17] demonstrates the possibility to dis-

tinguish individual users with considerable accuracy and track their ac-

tivity across sessions, with this accuracy increasing further if the users

are highly active or known to visit highly distinguishable domains. In

addition to correlating user browsing sessions, work [1] has been done to

show that DNS traffic analysis can be used to correlate multiple requests

of the same session, such that, for instance, different secondary requests

generated from a single visit to a webpage can be identified as part of a

single activity.

Furthermore, the increasing adoption of public recursive resolvers has

necessitated the inclusion of all or a portion of the user’s IP address in the

request from the recursive to the authoritative NS [4] for performance

reasons. This can reveal a user’s location even behind a VPN. The added

information, along with introducing another point of weakness to the hi-

erarchy, can be used to perform cache poisoning attacks on select subsets

of users [16] by a malicious actor.

4 Encrypted DNS

Several encrypted alternatives to traditional DNS have been proposed

and have seen different degrees of adoption. A quick overview of the most

prominent ones is given below.

4.1 DNS over TLS

DNS over TLS was published in 2016 as RFC7858 [13]. DoT operates

in the same manner as traditional DNS, but over a TCP connection and

encrypted with TLS. While there exists a proposal for DoT that utilizes

UDP, it remains experimental and is considered out of the scope of this

paper. DoT uses a dedicated port, 853 by default, and requires that the

port not be 53 — the designated port for regular DNS traffic.

DoT aims to service two use cases [13]. The first is an opportunistic

mode that favors availability over complete privacy. It allows a client to

use a DNS server discovered via a means such as DHCP without first vali-

dating it. The second guarantees full privacy but requires that the clients

and servers have an established trust relationship. While this is feasible

in settings such as those in enterprises, it may pose some discoverability

problems in others.

4.2 DNS over HTTPS

RFC8484 [11], published in 2018, defines DNS over HTTPS (DoH). DoH

delivers its DNS messages via HTTP GET or POST requests over HTTPS.

The utilization of HTTP implies that, by design and unlike DoT, DoH does

not have a dedicated port and transports its messages intermingled with

normal HTTP traffic. Similar to the more strict mode of DoT, discovery

and configuration of a DoH server for use is conducted out-of-band.

4.3 DNS over QUIC

DNS over QUIC (DoQ) [14] was standardized in 2022 and is the most re-

cent addition to the list of DNS standards. DoQ aims to provide the same

protections as DoT on top of QUIC, which additionally grants it decreased

latency in the initial request. It similarly uses port 853 and offers oppor-

tunistic or strict usage profiles. In contrast to DoT and DoH, DoQ also

explicitly addresses privacy considerations for traffic between the recur-

sive and authoritative servers.

5 Privacy considerations for Encrypted DNS

Each of the encrypted DNS protocols mentioned above primarily intend

to address problems associated with DNS traffic on-the-wire. Encryption

of said traffic renders passive eavesdropping attacks infeasible. However,

certain active attacks might still be possible.

The most distinguishing aspect of DoH is its use of HTTP and the sub-

sequent intermingling of DNS traffic with regular HTTPS traffic. This

complicates passive analysis of DNS traffic for the passive observer. It

also renders identifying and blocking the DNS traffic more difficult al-

though not impossible. As Csikor et al [6] have demonstrated, a machine

learning based approach could identify DoH traffic with a negligible false

positive rate. HTTP will also necessarily entail the inclusion of additional

information with every request that would not otherwise be present [11]

in a DNS message, possibly to the benefit of a rogue recursive resolver.

DoT and DoQ can largely be discussed together as they are similar

in many ways and share the same goals. Unlike DoH, DoQ and DoT do

not require server authentication in their opportunistic modes and may

provide reduced protection as a result. Additionally, the use of a dedicated

port might trivialize efforts to restrict or monitor their use.

These opportunistic modes of operation of DoQ and DoT also hint at

a problem of discovery and negotiation. The Adaptive DNS Discovery

Working Group works with the mandate to draft unified methods for dis-

covering encrypted DNS servers and determining their capabilities and

this issue of discovery remains an active area of work.

Despite their encryption, all three protocols may be prone to some side

channel attacks in their basic mode of operation. Encrypted DNS traf-

fic is susceptible to fingerprinting attacks. In addition to the different

variations possible in regular internet traffic, DNS has added factors that

could aid in fingerprinting, such as the state of the cache at the recursive

resolver or the effects of load balancing [23].

For instance, Siby et al. [23] have demonstrated that it is significantly

easier to perform DNS fingerprinting to surveil browsing activity than

similar attacks on web traffic due to factors such as the smaller sizes of

DNS messages. They found that despite some variations based on the

resolvers in use and host location, DNS fingerprinting offers considerable

precision.

Mitigation strategies for fingerprinting attacks exist and offer varying

levels of efficacy. Padding the payload to equalize sizes is recommended

by all three protocol specifications. This is also a default for popular DoH

and DoT providers such as Cloudflare and Google. While the padding

does mitigate fingerprinting to some degree, it does not entirely prevent

it. Siby et al. [23] found the usefulness of the padding to prevent finger-

printing to be below expectation, but also noted that DoT appears to be

less susceptible to such attacks, possibly as a result of having a lower av-

erage number of requests per domain. Another study [3] similarly noted

that padding alone is insufficient and recommended its use along with

some mechanism to ensure uniform timing of packets.

6 Further discussion

While the methods discussed in the previous section improve DNS privacy

on-the-wire, little has been said about ensuring privacy of the queries at

the name servers. Different attempts have been made over the years to

remedy this. Oblivious DNS over HTTPS [15, 24] is a notable recent devel-

opment. It uses two servers, a DNS server and a proxy, such that neither

one is aware of both the client’s source IP and the contents of the DNS

message. Cooperative DNS servers can also implement their own ways to

ensure added protection. For instance, Mullvad recently announced that

all of its encrypted DNS servers would run entirely on the RAM to ensure

that no data will persist [2].

Another aspect of DNS worth mentioning is the link between the re-

cursive and the authoritative resolver. As discussed in section 2, mod-

ern internet infrastructure had necessitated that this link carry a con-

siderable amount of information. However, recent ventures have been

increasingly successful in diminishing the information being transmitted.

A notable example is QNAME Minimization which is a technique that

attempts to reduce the amount of information authoritative servers are

privy to by ensuring that a recursive server will only send them requests

consisting of information they are likely to have. This technique, while

having some impact on performance, could also improve privacy [7].

Furthermore, it ought to be emphasized that all of the efforts men-

tioned here fall far short of deterring any adversary with sufficient means

and commitment. Even if DNS data is completely private, internet traffic

will necessarily leak information elsewhere, such as in the Server Name

Indication (SNI) of the HTTPS handshake. While plenty of work is on-

going to reduce all kinds of privacy risks, for instance, Encrypted Client

Hello to hide SNI [22], it will perhaps never be enough. Regardless, these

efforts are worth undertaking with the intent to "increase the cost of at-

tacking, force what was covert to be overt, or make the attack more likely

to be detected" [10].

There also exist several non-technical questions that warrant mention

in any discussion of privacy. Whether there are legitimate reasons, such

as safety, to prevent the adoption such encrypted technologies will likely

remain an open debate.

7 Conclusion

Internet privacy has been a trending issue over the past couple of years

and DNS, being the bedrock of the modern internet, has been no excep-

tion. As such, there is a plethora of work being done to address the many

issues present in its design. This work has primarily come in the form of

efforts to encrypt DNS traffic on-the-wire that had remained in plaintext

for most of its existence. While considerable leaps have been made in this

regard, much work remains to be done to completely secure all the traffic.

Moreover, securing DNS traffic alone is no panacea for internet privacy,

and it should be remembered that it is impossibly difficult to conceive

technical solutions to what are, perhaps, social and political problems.

References

[1] Ignacio N. Bermudez, Marco Mellia, Maurizio M. Munafo, Ram Keralapura,
and Antonio Nucci. DNS to the rescue: discerning content and services in
a tangled web. In Proceedings of the 2012 Internet Measurement Confer-
ence, IMC ’12, pages 413–426, New York, NY, USA, 2012. Association for
Computing Machinery. https://doi.org/10.1145/2398776.2398819.

[2] Martin Brinkmann. Mullvad’s public encrypted DNS Servers run in RAM
now - gHacks Tech News — ghacks.net, 2023. [Accessed 26-03-2024].

[3] Jonas Bushart and Christian Rossow. Padding ain’t enough: Assessing the
privacy guarantees of encrypted DNS. In 10th USENIX Workshop on Free
and Open Communications on the Internet (FOCI 20). USENIX Association,
August 2020.

[4] Carlo Contavalli, Wilmer van der Gaast, David C Lawrence, and War-
ren "Ace" Kumari. Client Subnet in DNS Queries. RFC 7871, May 2016.
https://doi.org/10.17487/RFC6891.

[5] Alissa Cooper, Hannes Tschofenig, Dr. Bernard D. Aboba, Jon

Peterson, John Morris, Marit Hansen, and Rhys Smith. Pri-
vacy Considerations for Internet Protocols. RFC 6973, July 2013.
https://doi.org/10.17487/RFC6973.

[6] Levente Csikor, Himanshu Singh, Min Suk Kang, and Dinil Mon Di-
vakaran. Privacy of DNS-over-HTTPS: Requiem for a dream? In 2021 IEEE
European Symposium on Security and Privacy (EuroS&P), pages 252–271,
2021. https://doi.org/10.1109/EuroSP51992.2021.00026.

[7] Wouter B. de Vries, Quirin Scheitle, Moritz Müller, Willem Toorop, Ralph
Dolmans, and Roland van Rijswijk-Deij. A first look at qname minimiza-
tion in the domain name system. In David Choffnes and Marinho Bar-
cellos, editors, Passive and Active Measurement, pages 147–160, Cham,
2019. Springer International Publishing. https://doi.org/10.1007/978-3-030-
15986-3.

[8] Casey Deccio and Jacob Davis. DNS privacy in practice and prepara-
tion. In Proceedings of the 15th International Conference on Emerg-
ing Networking Experiments And Technologies, CoNEXT ’19, pages 138–
143, New York, NY, USA, 2019. Association for Computing Machinery.
https://doi.org/10.1145/3359989.3365435.

[9] John Dickinson, Sara Dickinson, Ray Bellis, Allison Mankin, and Duane
Wessels. DNS Transport over TCP - Implementation Requirements. RFC
7766, March 2016. https://doi.org/10.17487/RFC7766.

[10] Stephen Farrell and Hannes Tschofenig. Pervasive Monitoring Is an Attack.
RFC 7258, May 2014.

[11] Paul E. Hoffman and Patrick McManus. DNS Queries over HTTPS (DoH).
RFC 8484, October 2018. https://doi.org/10.17487/RFC8484.

[12] Paul E. Hoffman, Andrew Sullivan, and Kazunori Fujiwara. DNS Termi-
nology. RFC 8499, January 2019. https://doi.org/10.17487/RFC8499.

[13] Zi Hu, Liang Zhu, John Heidemann, Allison Mankin, Duane Wessels, and
Paul E. Hoffman. Specification for DNS over Transport Layer Security
(TLS). RFC 7858, May 2016. https://doi.org/10.17487/RFC7858.

[14] Christian Huitema, Sara Dickinson, and Allison Mankin. DNS
over Dedicated QUIC Connections. RFC 9250, May 2022.
https://doi.org/10.17487/RFC9250.

[15] Eric Kinnear, Patrick McManus, Tommy Pauly, Tanya Verma, and Christo-
pher A. Wood. Oblivious DNS over HTTPS. RFC 9230, June 2022.
https://doi.org/10.17487/RFC9230.

[16] Panagiotis Kintis, Yacin Nadji, David Dagon, Michael Farrell, and Manos
Antonakakis. Understanding the privacy implications of ecs. In Juan
Caballero, Urko Zurutuza, and Ricardo J. Rodríguez, editors, Detection of
Intrusions and Malware, and Vulnerability Assessment, pages 343–353,
Cham, 2016. Springer International Publishing.

[17] Matthias Kirchler, Dominik Herrmann, Jens Lindemann, and Marius Kloft.
Tracked without a trace: Linking sessions of users by unsupervised learn-
ing of patterns in their DNS traffic. In Proceedings of the 2016 ACM

Workshop on Artificial Intelligence and Security, AISec ’16, pages 23–
34, New York, NY, USA, 2016. Association for Computing Machinery.
https://doi.org/10.1145/2996758.2996770.

[18] APNIC Labs. ORR Encrypted DNS Use by Country.

[19] Edward P. Lewis and Alfred Hoenes. DNS Zone Transfer Protocol (AXFR).
RFC 5936, June 2010. https://doi.org/10.17487/RFC5936.

[20] P. Mockapetris. Domain names - concepts and facilities. RFC 1034, Novem-
ber 1987. https://doi.org/10.17487/RFC1034.

[21] P. Mockapetris. Domain names - implementation and specification. RFC
1035, November 1987. https://doi.org/10.17487/RFC1035.

[22] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS
Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-18, Internet En-
gineering Task Force, March 2024. Work in Progress.

[23] Sandra Siby, Marc Juarez, Claudia Diaz, Narseo Vallina-Rodriguez, and
Carmela Troncoso. Encrypted DNS => Privacy? A Traffic Analy-
sis Perspective. In Proceedings of the 2020 Network Distributed Sys-
tem Security Symposium (NDSS). The Internet Society, February 2020.
https://doi.org/10.14722/ndss.2020.24301.

[24] Sudheesh Singanamalla, Suphanat Chunhapanya, Jonathan Hoyland,
Marek Vavruša, Tanya Verma, Peter Wu, Marwan Fayed, Kur-
tis Heimerl, Nick Sullivan, , and Christopher Wood. Oblivious
DNS over HTTPS (ODoH): A Practical Privacy Enhancement to DNS.
In Proceedings on Privacy Enhancing Technologies Symposium, 2021.
https://doi.org/10.2478/popets-2021-0085.

[25] Tim Wicinski. DNS Privacy Considerations. RFC 9076, July 2021.
https://doi.org/10.17487/RFC9076.

Physics-Inspired Deep Learning for
Climate Forecasting

Fikri Şan Köktaş
san.koktas@aalto.fi

Tutor: Yogesh Verma

Abstract

This paper reviews state-of-the-art climate forecasting models that leverage

physics-inspired deep learning. Working mechanisms of GenCast, Neu-

ralGCM, ClimaX, and ClimODE are analyzed, thereby evaluating their

strengths and weaknesses. Models integrating physics-inspired deep learn-

ing offer promising alternatives to traditional simulation-based approaches.

KEYWORDS: climate forecasting, climate models, deep-learning, physics

1 Introduction

In the past, computer simulations based on atmospheric physics were

used to predict climate. However, recent progress in deep learning has

changed this approach. The newer models can make weather forecasts

without relying fully on simulations. Instead, they leverage the power

of machine learning algorithms. However, it is often hard to understand

how these models make predictions. For example, determining the precise

influence of each parameter on the outcome poses a significant challenge.

Moreover, these models don’t consider all of the important factors that

affect the climate. This paper presents a literature review of the state-of-

the-art models and explains how they tackle these issues.

2 Literature Review

Climate modeling extends beyond daily weather forecasts, covering long-

term climate patterns and trends over decades [1]. This section focuses

on 4 state-of-the-art climate forecasting models: GenCast, SRGAN, Neu-

ralGCM, ClimaX, and ClimODE, respectively.

2.1 GenCast

GenCast is a machine learning-based generative model for ensemble weather

forecasting. It yields faster, more reliable, and more accurate results than

conventional ensemble forecasting systems [2].

Figure 1. Figure illustrating the principle of ensemble weather forecasting [3]

In ensemble weather forecasting, the model is run multiple times with

different initial conditions to generate multiple possible outcomes [4]. This

approach helps to understand the uncertainty of predictions and increases

the reliability of the predictions by yielding multiple possible outcomes.

Table 1. Underlying Mathematical Equation for Ensemble Learning Models used within
GenCast

Ensemble Learning Model Mathematical Expression

General Form f̂(x) = 1
M

∑M
m=1 hm(x)

GenCast leverages a diffusion model. Diffusion models utilize equa-

tions that describe the physics of diffusion (mixing through random molec-

ular motion [5]) and advection (bulk movement of a fluid [6]) .

GenCast can forecast ensembles of trajectories for 84 different weather

variables, up to 15 days ahead [2]. GenCast is known for its skillful-

ness, fast performance, and reliability. It achieved a higher accuracy than

other ensemble forecast systems like European Centre for Medium-Range

Weather Forecasts’s (ECMWF) Ensemble Prediction System (ENS), while

also reducing the computation time [2].

Table 2. Mathematical expressions for diffusion and advection used within GenCast

Equation Type Equation

Diffusion Equation Fick’s first law: J = −D∇c
Diffusion equation: ∂c

∂t = D∇2c

Advection Equation Advection equation: ∂c
∂t + (v · ∇)c = 0

2.2 NeuralGCM

Neural General Circulation Model (NeuralGCM), combines neural net-

works with traditional general circulation models (GCMs) [7]. Traditional

GCMs utilize physics-based models to simulate Earth’s climate system

[8]. NeuralGCMs introduce neural networks to traditional GCMs, thereby

decreasing computational costs, improving the quality of simulations, and

enhancing the accuracy of predictions.

Figure 2. Diagram showing how neural network structure predicts precipitation [9]

NeuralGCM combines a differentiable solver for atmospheric dynam-

ics with machine-learning components. It uses Fifth Generation ECMWF

Reanalysis data (ERA5) for training, and it aims for up to 5-day accurate

weather forecasts [7].

Table 3. Fundamental Components of Neural Networks used in NeuralGCM

Component Equation / Description

Linear Transformation z = Wx+ b

Activation Function a = σ(z)

Loss Function L = f(y, ŷ)

Optimization θ = θ − α∇θL

Backpropagation ∂L
∂wl

ij

= δlia
l−1
j

Table 4. Fundamental Equations of GCMs used in NeuralGCM

Equation Equation

Navier-Stokes ∂u
∂t + (u · ∇)u = −1

ρ∇p+ ν∇2u+ g

Continuity ∂ρ
∂t +∇ · (ρu) = 0

Thermodynamic Equation of State p = ρRT

Energy Conservation ∂θ
∂t + u · ∇θ = 1

cpρ
∇ · (κ∇θ) + 1

cpρ
Q

Radiative Transfer dIλ
ds = −(κλρ+ σλ)Iλ + ϵλBλ(T)

2.3 ClimaX

ClimaX is a deep-learning-based model that is specifically designed for

weather and climate science [10]. It uses a type of neural network ar-

chitecture called the Transformer architecture. Transformer architecture

has an advanced attention mechanism that allows the model to focus on

the most important parts of the input sequence [11]. ClimaX can be fine-

tuned for multiple climate-related tasks such as predicting weather and

climate changes. It is more flexible, generalizable, and efficient than most

other data-driven models [10].

ClimaX is pre-trained on large, unsupervised datasets [10]. It should

be fine-tuned for specific tasks. However, this can be effortlessly done as

ClimaX supports distributed training through PyTorch Lightning [10].

ClimaX’s architecture uses Vision Transformers (ViT) [10], which are

a type of neural network architecture designed for processing images. For

feature extraction, ViTs use self-attention mechanisms, unlike traditional

CNNs that use convolutions [12]. ViTs of ClimaX are adapted for the dif-

ferent types of weather and climate data requirements. This is achieved

through variable tokenization and aggregation. These strategies are used

to handle the complexity and irregularity of climate datasets. ClimaX

achieved promising results even for variables not seen during pre-training

[10].

Figure 3. Diagram explaning the working mechanism of vision transformers [13]

Table 5. Underlying math equations of Vision Transformers

Equation Description

Self-Attention Mechanism A = softmax
(
QKT
√
dk

)

Feedforward Neural Networks FFN(x) = ReLU(xW1 + b1)W2 + b2

Positional Encodings PE(pos,2i) = sin
(

pos

100002i/dmodel

)

PE(pos,2i+1) = cos
(

pos

100002i/dmodel

)

2.4 ClimODE

ClimODE utilizes physics-informed Neural Ordinary Differential Equa-

tions (ODEs) for climate forecasting [14]. Unlike data-driven models like

transformers, ClimODE considers the underlying physics of climate change.

ClimODE also shows better performance than data-driven models by achiev-

ing a higher level of accuracy and fewer parameters [14].

ClimODE considers the movement of quantities (e.g. water, air) over

time (referred to as advection in statistical mechanics [6]) which can affect

weather changes. It uses a neural network to understand the movement

of weather-related elements (e.g. heat, moisture, etc.) and how they in-

teract with each other [14]. Moreover, ClimODE considers the fact that

quantities like energy or momentum are conserved based on the laws of

physics.

ClimODE uses a Continuous-time PDE model [14], which helps to

model climate processes without being limited to specific time intervals.

This flexibility can result in more precise and smooth simulations of cli-

mate events.

Table 6. Some simplified ODEs that could be used within ClimODE.

Name of the Equation Mathematical Expression

Radiative Transfer Equations dI
dx = −αI + β

Chemical Kinetics d[A]
dt = −k[A]

Simple Carbon Cycle Models dC
dt = I −O

Sea Ice Models dS
dt = G−M

Ecosystem Models dP
dt = αP − βPR, dR

dt = γβPR− δR

Ocean Circulation Models dT
dt = F (T, S), dS

dt = G(T, S)

Glacial Dynamics Models dh
dt = I −O

Table 7. General Form of Continuous-time PDEs used within ClimODE

Continuous-time PDE Mathematical Expression

General Form
∂u

∂t
= F

(
u,

∂u

∂x
,
∂2u

∂x2
, . . .

)

3 Discussion

Model Name Year Type Stand-out Feature

GenCast [2] 2023 GM Computational Efficiency

NeuralGCM [7] 2023 GM Computational Efficiency

ClimaX [10] 2023 TS Flexibility

ClimODE [14] 2024 TS Flexibility

Table 8. Comparison of models. "GM" stands for generative modeling whereas "TS"
stands for time series forecasting

Model Computational Resource Requirements

GenCast Low

NeuralGCM Low

ClimaX High

ClimODE Medium

Table 9. Computational Resource Requirements of Different Models

GenCast and NeuralGCM stand out with their computational efficiency

while ClimaX and ClimODE stand out with their flexibility. ClimODE

uses similar deep-learning techniques to NeuralGCM or GenCast, but it

incorporates more computationally intensive algorithms. Therefore, its

computational resource requirements were classified as "Medium". On

the other hand, ClimaX can require high computational resources espe-

cially if the dataset is large.

4 Conclusion

This section summarizes this paper, presents the main findings, and gives

recommendations for future research.

4.1 Summary

This paper provides an overview of state-of-the-art climate forecasting

models, focusing on their unique attributes, methodologies, and applica-

tions.

GenCast is a machine learning-based model for ensemble weather fore-

casting that leverages diffusion models to predict weather variables up to

15 days ahead. It achieves high accuracy and reduced computation time.

NeuralGCM combines neural networks with traditional GCMs to sim-

ulate Earth’s climate system. It achieves improvements in computational

efficiency, simulation quality, and prediction accuracy.

Climax is a flexible deep-learning model based on the Transformer

architecture. It uses Vision Transformers adapted for the irregular nature

of climate data. It is pre-trained on large datasets for weather and climate

science tasks, but it needs to be fine-tuned for specific objectives.

ClimODE uses physics-informed Neural Ordinary Differential Equa-

tions (ODEs) to forecast climate, focusing on the physics of climate change.

It models climate processes continuously over time without being limited

to specific time intervals.

4.2 Main Findings

• GenCast and NeuralGCM stand out with their computational efficiency

while ClimaX and ClimODE stand out with their flexibility.

• The choice of model should depend on individual priorities, whether

they prioritize accuracy, computational efficiency, flexibility, or other fac-

tors.

• Models that leverage physics-inspired deep learning can be a faster and

more accurate alternative to traditional models that rely fully on simu-

lations.

4.3 Future Research

• Future research should focus on decreasing the computational costs and

training time of the models.

• Hybrid models that combine physics inspired deep learning models with

traditional models should be explored further.

References

[1] R. McSweeney, “Q&a: How do climate models work?.”
https://www.carbonbrief.org/qa-how-do-climate-models-work/. [Accessed:
Mar 15, 2024].

[2] I. Price, A. Sanchez-Gonzalez, F. Alet, T. Ewalds, A. El-Kadi, J. Stott, S. Mo-
hamed, P. Battaglia, R. Lam, and M. Willson, “Gencast: Diffusion-based
ensemble forecasting for medium-range weather,” 2023. [Accessed: Apr 3,
2024].

[3] J. Dutton, “The difference between deterministic and ensemble forecasts,”
Jun 2022. [Accessed: Mar 30, 2024].

[4] D. Simecek-Beatty, “Chapter 11 - oil spill trajectory forecasting uncertainty
and emergency response,” in Oil Spill Science and Technology (M. Fingas,
ed.), pp. 275–299, Boston: Gulf Professional Publishing, 2011. [Accessed:
Apr 2, 2024].

[5] Libretexts, “12.9: Diffusion,” Nov 2020. [Accessed: Mar 29, 2024].

[6] F. Phillips and M. Castro, “5.15 - groundwater dating and residence-time
measurements,” in Treatise on Geochemistry (H. D. Holland and K. K.
Turekian, eds.), pp. 451–497, Oxford: Pergamon, 2003. [Accessed: Apr
3, 2024].

[7] D. Kochkov, J. Yuval, I. Langmore, P. Norgaard, J. Smith, G. Mooers,
J. Lottes, S. Rasp, P. Düben, M. Klöwer, S. Hatfield, P. Battaglia, A. Sanchez-
Gonzalez, M. Willson, M. P. Brenner, and S. Hoyer, “Neural general circula-
tion models,” 2023. [Accessed: Apr 1, 2024].

[8] A. Broccoli, “Paleoclimate modeling of last glacial maximum gcms,” in Refer-
ence Module in Earth Systems and Environmental Sciences, Elsevier, 2014.
[Accessed: Apr 3, 2024].

[9] C. Prathom and P. Champrasert, “General circulation model downscal-
ing using interpolation—machine learning model combination—case study:
Thailand,” Sustainability, vol. 15, no. 12, 2023. [Accessed: Mar 30, 2024].

[10] T. Nguyen, J. Brandstetter, A. Kapoor, J. K. Gupta, and A. Grover, “Climax:
A foundation model for weather and climate,” 2023. [Accessed: Apr 3, 2024].

[11] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” AI Open,
vol. 3, pp. 111–132, 2022. [Accessed: Mar 30, 2024].

[12] F. C. Morabito, R. Kozma, C. Alippi, and Y. Choe, “1 - advances in ai, neu-
ral networks, and brain computing: An introduction,” in Artificial Intelli-
gence in the Age of Neural Networks and Brain Computing (Second Edition)
(R. Kozma, C. Alippi, Y. Choe, and F. C. Morabito, eds.), pp. 1–8, Academic
Press, second edition ed., 2024. [Accessed: Apr 3, 2024].

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and
N. Houlsby, “An image is worth 16x16 words: Transformers for image recog-
nition at scale,” 2021. [Accessed: Apr 3, 2024].

[14] Anonymous, “ClimODE: Climate forecasting with physics-informed neural
ODEs,” in The Twelfth International Conference on Learning Representa-
tions, 2024. [Accessed: Mar 31, 2024].

State Management Solutions in React
Web Development Library

Furkan Ün
furkan.un@aalto.fi

Tutor: Juho Vepsäläinen

Abstract

This paper explores various state management strategies and libraries

within the React ecosystem, highlighting the challenges they address and

the options available to developers.

KEYWORDS: react, state management, prop drilling, redux, zustand,mobx,

jotai, recoil, valtio,

1 Introduction

In the early 1990s, the landscape of the World Wide Web was different

from what we experience today. Web pages were static, with fixed content

that remained the same for all users, regardless of their preferences or in-

teractions. Recently, modern web pages have transitioned towards a more

dynamic and personalized experience. As web applications evolve towards

dynamic user interfaces, the need to efficiently handle and manipulate the

business logic on the client side becomes increasingly important [25].

The emergence of single-page applications (SPAs) represented a sig-

nificant advancement toward achieving dynamic and interactive web ex-

periences. React library emerged as a key player in the development of

SPAs. It enables developers to build more scalable and maintainable web

applications with a component-based architecture [13].

In React, state refers to a plain javascript object and acts as a memory

for components. [21]. As the number of components, and interactions be-

tween these components grows, effective state management can become a

crucial challenge for application performance and user experience [24]. To

mitigate these issues, the React ecosystem has developed several libraries

and solutions dedicated to state management.

This paper reviews the different state management strategies and li-

braries, with a particular focus on the React ecosystem. It aims to explore

the current main state management options available to developers using

the React library for web development.

This paper is organized as follows. Section 2 describes the state and

necessity of state management solutions, and the problems they are ad-

dressing in complex React applications. Section 3 describes the most

widely used state management libraries in React ecosystem. Finally, Sec-

tion 4 provides concluding remarks.

2 State Management

In recent years, single-page web applications (SPAs) have emerged as a

prominent solution to increasing demand for highly reactive client-side

applications. Unlike traditional multi-page websites, SPAs load a single

HTML page and dynamically update content as the user interacts with

the app, minimizing page reloads and improving user experience [4]. This

approach requires robust state management to track changes in the ap-

plication state in response to user actions.

2.1 Components

Components are building blocks of SPAs and help create reusable views.

They are often classified into two main categories: stateful and state-

less. While stateful components actively keep track of changes and update

themselves accordingly(dynamic), stateless components are solely respon-

sible for rendering the properties that are passed to them without main-

taining any internal state (static). Figure 1 depicts how state changes are

reflected in view. In Figure 1,

State refers to a plain javascript object and acts as a “memory” for

components to keep track of changes.

Figure 1. One-way data flow [https://redux.js.org/tutorials/essentials/part-1-overview-
concepts]

View stands for declarative representation of user interface in differ-

ent states

Action refers to a user input or any event that causes state changes.

2.2 Component State

In a broader context, "state" refers to any meaningful data within a run-

ning application. However, when focusing on the component level, this

definition can be narrowed down into two distinct categories: local and

global state [20].

Local state, also called internal state, is local by how it is used and

not intended to be accessed by other components. An example of a local

state could be an object responsible for tracking the expanded status of

a menu in a navigation bar. On the contrary, global state refers to data

that needs to be accessible and shared across multiple components, such

as user preferences, login information, or the contents of a shopping cart

in an e-commerce application.

While management of the local state is easier and more predictable,

global state management could lead to performance and maintenance is-

sues depending on the complexity of an app and methods to manage the

state.

2.3 State Management Problem

Modular architecture of SPA, comprises hundreds, if not thousands, of

components depending on the size and complexity of the application. As

components nested each other, they form a hierarchical tree-like struc-

ture known as the component tree. Understanding the component tree is

essential for how data is shared and flows between components. [22]

In React, data flows uni-directionally from parent components to their

child components. Child components are unable to directly alter the orig-

inal data provided by their parent components or send data back to them.

While this uni-directional data flow improves predictability of state, it can

restrict data exchange between components. [20].

Consider a scenario where two components on the same level always

require synchronized updates. Since data flow is uni-directional, these

components cannot directly access each other’s state. One possible solu-

tion to this problem is moving the state to the closest common ancestor of

the components, and then passing it down as a property. This approach

is known as a “lifting state up” [20]. Overusing this approach may result

in an accumulation of state near the root, potentially leading to increased

component re-renders.

2.4 Component Rerenders

React framework re-renders the child component whenever its parent re-

renders. As a result, whenever the state changes, it causes the entire

subtree to be re-rendered, and it could lead to poor user experience and

performance issues.

Rendering performance is influenced by the number of components

rendered. To decrease the number of rendered components, memoiza-

tion techniques, such as useMemo and memo, can be used. useMemo and

memo enable caching the result of a calculation between re-renders and

increase the render performance by skipping unnecessary renderings [8].

Even though these techniques work well in theory, they introduce another

concern about where these memoizations should be placed in the compo-

nent tree. [17].

In the scenario above lifting the state one level up solves the problem

but in a different scenario, in which synchronized components were in a

different levels of a component tree and the nearest common ancestor was

in several levels above, this could lead to another issue known as “prop

drilling”.

Figure 2. Using context in distant children [https://react.dev/learn/passing-data-deeply-
with-context]

2.5 Prop Drilling

Prop Drilling refers to passing data deeply through several child compo-

nents. The name “drilling” refers to forcing intermediate components to

pass a property, that intermediate components are not interested in until

it reaches to intended component.

As the application evolves and the component tree grows, prop drilling

makes it difficult to reason about the application state. It causes the

state to be passed through multiple layers, and, more importantly, re-

sults in state mutations scattered throughout the component hierarchy.

This not only complicates the understanding of the application’s state but

also makes tasks, such as refactoring the state structure and debugging,

significantly more difficult for application developers.[10].

While prop drilling may suffice for smaller applications or simpler use

cases, developers tend to seek alternative solutions, particularly in more

complex applications. One such solution is the usage of React’s built-in

Context API [12].

2.6 Context API: Passing Data Deeply In The Component Tree

Context API enables parent components to provide data to the entire tree

below it without passing it through multiple layers of components.[19].

This approach allows only the consumers of context to be re-rendered

when the parent component, also known as the provider, is re-rendered.

However, despite its convenience, there are certain considerations as-

sociated with the Context approach. Eventually, developers tend to put

more value into the context [11]. Since it is not possible to perform granu-

lar updates on context-provided values by default, it can also lead to non-

optimal re-renders [18]. Single field change in provided value, re-renders

all of the consumers even if they are not dependent on it. One solution

for this issue could be splitting value into multiple "micro-contexts" and

placing consumers under their dependent micro-contexts. Even though

splitting context could solve the rendering problems, it introduces a lot of

layers in the component tree and forces specific positions for future com-

ponents in the tree depending on the business logic [17].

To address these challenges, developers often turn to state manage-

ment solutions. These solutions provide structured methodologies for

managing application states, offering centralized stores for data, and fa-

cilitating optimized re-renders. State management solutions promote cleaner,

more maintainable codebases and streamline the development process by

decoupling state management from the component tree.

3 State Management Solutions

Over the years, various approaches to state management have emerged,

each offering distinct methodologies and solutions to address the com-

plexities of managing application state. This section introduces the most

popular and common state management solutions in the React ecosystem.

Understanding the principles and trade-offs of each approach enables

developers to make informed decisions when selecting the most appropri-

ate state management solution for their projects, ultimately leading to

more scalable, maintainable, and responsive applications.

3.1 Redux

Redux is one of the most widely used [1] implementations of the Flux

architecture, offering a predictable state container for JavaScript applica-

tions, particularly within the React ecosystem.

The core idea behind Redux is to introduce a single centralized location

for managing the global state within an application and to follow specific

patterns when updating the state. Redux is structured around these four

fundamental concepts: [3]

Action refers to an event that describes something that has happened

in the application. Each action includes a mandatory string "type" prop-

erty that provides a descriptive name for the action.

Reducer behaves as an event listener and handles events based on

the action type. It determines how state transitions should occur by re-

Figure 3. Using context in distant children [https://react.dev/learn/passing-data-deeply-
with-context]

ceiving the current state and the action object as arguments and deter-

mines whether to update the state based on the action’s type field.

Store is an object where the application state lives. The store is cre-

ated by passing in a reducer function.

Dispatching an action is the only way to update the state in Redux.

The store contains a method called dispatch which takes action object

as an argument. Dispatching action could be thought of as "triggering an

event" to inform the store about a specific action. Reducers within the

store then listen for these events and update the state accordingly based

on the action type.

Figure 3 shows typical data flow in the Redux library. Redux uses a

uni-directional data flow in the given order. First, the UI dispatches an

action. Then, the store runs the reducers, and the state is updated based

on action. Finally, the store notifies the UI that the state has changed,

and the UI re-renders based on the new state.

3.2 Zustand

Zustand is a small, scalable hook based state management solution. It is

designed to be free from boilerplate codes [9].

The store in Zustand represents the central source of truth for the

application state. It encapsulates the current state data and provides

functions for updating the state. Creating a store typically involves using

Zustand’s create() function, which initializes the store with an initial

state and returns functions for reading and updating the state. Zustand

store is a hook and can be used anywhere in the application to manage

the global state without any provider or wrapper.

Zustand uses an immutable state model where modifying state object

properties is prohibited. Instead, state updates must be achieved by creat-

ing new objects. State update causes re-render on consumer components.

Since Zustand does not automatically track which fields are being used in

the component, render optimization is achieved manually. [5]

3.3 Recoil

Recoil is an experimental, atom-based state management library devel-

oped by a team at Facebook. Recoil has two core concepts: atoms and

selectors [23].

An atom refers to a piece of state that can be read and updated from

any component in the application. Each atom requires an application-

wide unique key (a string), and an optional default value. This key prop-

erty is passed as an argument to a special function called useRecoil-

State(), to read from and write to the atom. When an atom is updated

in one component, each subscribed component is re-rendered with the up-

dated value.

A selector accepts other atoms and selectors as inputs, and whenever

the value of a passed atom or selector changes, the selector’s value is re-

computed. Components can subscribe to selectors just as they do to atoms,

and changes in selectors trigger re-renders in subscribed components.

3.4 Jotai

Jotai is an atom based state management library inspired by Recoil. It

offers global state management with a simplicity similar to React’s lo-

cal state management hook, useState [14]. Jotai has two types of atoms:

primitive atoms and derived atoms

Primitive atom refers to small, isolated piece of state. Serve as a

building block for application state

Creating small atoms can lead too many atoms to organize. To avoid

this, Jotai enables creation of derived atoms from existing atoms.

Jotai takes a bottom-up approach[16], in contrast to the monolithic big

store model. Developers gain precise control over their application’s state

structure by creating small atoms and gradually combining them to form

larger atoms. This method allows re-render optimization by adding only

necessary atoms that will be used in components.

Figure 4. MobX State Flow[https://mobx.js.org]

3.5 Valtio

Valtio is a proxy-based, minimal state management solution. It uses

JavaScript’s native concept of proxies to create an observable state. Val-

tio’s proxy transforms the object passed to it into a self-aware proxy, en-

abling automatic tracking of changes to the state [2]. Valtio uses an im-

mutable state model and does not force any structural behavior, such as

action or dispatch to update the state. This approach allows developers

to update the state in a straightforward manner, similar to working with

regular JavaScript objects [15].

3.6 MobX

MobX is a standalone state management library. The core idea behind

MobX is to prevent producing an inconsistent state. This is accomplished

through a straightforward strategy: “Make sure that everything that can

be derived from the source state, will be derived. Automatically.” [7].

MobX is structured around four fundamental concepts:

State refers to any value that can be mutated and serves as a source

to derivations

Action represents functions that mutate the state

Derivations are automatically computed values from the source state.

It could be primitive data, for example, the count of items in an array or

more complex visual elements such as an HTML view. [26]

Reactions execute automatic task at the right time after state changes.

For instance, updating the React component tree in response to a state

change.

MobX uses a uni-directional data flow, where actions mutate the source

state, which in turn causes all derivations to be automatically and syn-

chronously updated. As a result, derivations never become stale, and the

side effects are immediately visible to any observer. [6]

Table 1 provides key characteristics of various state management so-

lutions discussed in this section.

Library Architecture State

Model

Learning

Curve

Github Stars

(Apr 3,2024)

Redux Flux Based Immutable Challenging 60401

Zustand Hook

Based

Immutable Easy 41815

Recoil Atom

Based

Immutable Moderate 19427

Jotai Atom

Based

Immutable Easy 17066

Valtio Proxy

Based

Mutable Easy 8352

MobX Observable

Based

Mutable Moderate 27159

Table 1. Comparison of State Management Solutions in React Applications

4 Conclusion

As applications become more complex, effective state management be-

comes paramount for ensuring optimal performance and user experience.

The React ecosystem offers various state management solutions to ad-

dress these challenges.

This paper examines various state management strategies and libraries

within the React ecosystem. Each state management library or frame-

work comes with its unique set of characteristics, advantages, and lim-

itations. From the simplicity and ease of use offered by React’s built-in

useState and useContext hooks, to the more elaborate and feature-rich

solutions such as Redux,Zustand,Jotai,Recoil,Valtio and MobX, develop-

ers are presented with a spectrum of choices. The decision to adopt a

particular state management strategy should, therefore, be guided by a

thorough understanding of the application’s specific requirements, scala-

bility needs, and the development team’s proficiency.

References

[1] Compare npm packages. https://npm-compare.com/@reduxjs/toolkit,
zustand,recoil,jotai,valtio/#timeRange=SIX_MONTH. [Accessed 26-03-
2024].

[2] Getting started - valtio, makes proxy-state simple for react and vanilla. ht
tps://valtio.pmnd.rs/docs/introduction/getting-started. [Accessed
01-04-2024].

[3] Redux fundamentals, part 2: Concepts and data flow. redux. https://

redux.js.org/tutorials/fundamentals/part-2-concepts-data-flow.
[Accessed 26-03-2024].

[4] What are single page applications? what is their impact on users’ experi-
ence and development process. https://www.netguru.com/blog/what-are
-single-page-applications. [Accessed 01-04-2024].

[5] Working with zustand, tkdodos blog. https://tkdodo.eu/blog/working-w
ith-zustand. [Accessed 30-03-2024].

[6] MobX Docs. The gist of mobx. https://mobx.js.org/the-gist-of-mobx.
html. [Accessed 24-03-2024].

[7] MobX Docs. Mobx: Getting started. https://mobx.js.org/getting-start
ed. [Accessed 24-03-2024].

[8] React Docs. memo. https://react.dev/reference/react/memo#skippin
g-re-rendering-when-props-are-unchanged. [Accessed 01-04-2024].

[9] Zustand Documentation. Introduction. https://docs.pmnd.rs/zustand/g
etting-started/introduction. [Accessed 30-03-2024].

[10] Kent C. Dodds. Prop drilling. https://kentcdodds.com/blog/prop-drill
ing, 2024. [Accessed 03-03-2024].

[11] Mark Erikson. Blogged answers: Why react context is not a "state manage-
ment" tool (and why it doesn’t replace redux). https://blog.isquaredsof
tware.com/2021/01/context-redux-differences/#why-context-is-not-s

tate-management. [Accessed 01-04-2024].

[12] David Herbert. A better way of solving prop drilling in react apps. https:
//blog.logrocket.com/solving-prop-drilling-react-apps/. [Accessed
24-03-2024].

[13] iBrandStudio. React js: The impact of react on web development. https:
//react.dev/learn/state-a-components-memory, 2023. [Accessed 24-03-
2024].

[14] Jotai. Introudction: Jotai. https://jotai.org. [Accessed 30-03-2024].

[15] Daishi Kato. How valtio proxy state works (react part). https://blog.axl
ight.com/posts/how-valtio-proxy-state-works-react-part/. [Accessed
01-04-2024].

[16] Daishi Kato. Micro state management with react hooks. https://learni
ng.oreilly.com/library/view/micro-state-management/9781801812375/,
February 2022.

[17] Jason Miller Marvin Hagemeister. Introducing signals. https://preactjs
.com/blog/introducing-signals/, 2024. [Accessed 26-03-2024].

[18] Ibrahima Ndaw. Pitfalls of overusing react context. https://blog.logrock
et.com/pitfalls-of-overusing-react-context/. [Accessed 24-03-2024].

[19] React. Passing data deeply with context — react.dev. https://react.dev/
learn/passing-data-deeply-with-context, 2024. [Accessed 26-03-2024].

[20] React. Sharing state between components. https://react.dev/learn/sh
aring-state-between-components, 2024. [Accessed 04-03-2024].

[21] React. State: A Component’s Memory – React — react.dev. https://reac
t.dev/learn/state-a-components-memory, 2024. [Accessed 07-02-2024].

[22] React. Understanding your ui as a tree. https://react.dev/learn/unders
tanding-your-ui-as-a-tree, 2024. [Accessed 04-03-2024].

[23] Recoil RSS. Core concepts: Recoil. https://recoiljs.org/docs/introduc
tion/core-concepts. [Accessed 30-03-2024].

[24] Technopalette Solutions. The power of state: A deep dive into state man-
agement. https://www.linkedin.com/pulse/power-state-deep-dive-man
agement-technopalette-solutions/. [Accessed 07-02-2024].

[25] Lorenzo Ventura. Analysis of Redux, MobX and BLoC and how they solve
the state management problem. Master’s thesis, Politecnico Milano 1863,
2021.

[26] Michel Weststrate. The fundamental principles behind mobx. https://ha
ckernoon.com/the-fundamental-principles-behind-mobx-7a725f71f3e8.
[Accessed 24-03-2024].

Mental Health Disclosures on Social
Media Platforms

Ghazal Shenavar
ghazal.shenavar@aalto.fi

Tutor: Yunhao Yuan

Abstract

Social media platforms have become hubs for individuals to openly dis-

cuss their mental health experiences and seek support. This paper provides

an analysis of the evolving dynamics of mental health disclosures on so-

cial media, focusing on individual behavior implications. By reviewing

recent literature spanning from 2021 to 2024, this paper categorizes stud-

ies based on their focus areas, motivations, and analytical approaches.

This paper found that language analysis, sentiment analysis, and ma-

chine learning techniques are commonly employed to extract insights from

social media data, with advanced models like Bidirectional Encoder Rep-

resentations from Transformers (BERT) gaining prominence. However, re-

searchers must struggle with privacy concerns and biases inherent in data

collection methods. By addressing these challenges, we can better under-

stand and address mental health issues in the digital age.

KEYWORDS: Literature Review, Mental Health, Social Media

1 Introduction

The number of social media users has had a steady increase over the past

decade. As per Statista records, Facebook alone had more than 3 bil-

lion users in January of 2024, followed by almost 2.5 million users on

YouTube [17]. These platforms have given voice to every person to dis-

cuss their narrative and share their own stories. Over time, these stories

have evolved to include personal details [15]. Furthermore, these plat-

forms have become a medium to discuss and raise awareness regarding

issues related to mental health.

In these platforms as well, the stigma surrounding mental health is-

sues persists, deterring many from seeking necessary treatment [5]. How-

ever, the anonymity afforded by social media platforms offers a potential

remedy to this barrier, providing individuals with a platform to seek sup-

port and share experiences without fear of judgment [2]. Moreover, a vari-

ety of advocacy strategies (e.g, awareness-raising, promotion of diversity

and inclusively) are employed by content creators and users to facilitate

conversations on mental health issues [16].

Consequently, a wealth of information on mental health has emerged

on social networking sites, offering valuable insights for various mental

health studies and interventions. Previous research has utilized social

media data for multiple purposes e.g. counselling methods [1] and social

media redesign [18, 4]. The data is used to discern indicators of mental

health issues, and how people in dire situations react to different conver-

sations [1]. Previous research have used the available data in developing

practical tools in clinical or Social Media contexts to help individuals in

need [6, 1].

There have been notable studies [3, 14] exploring and classifying the

work done regarding mental health surveillance in social media. This

work attempts to update the aforementioned survey [3] by looking at pa-

pers published between 2021 to 2024, focusing on the implications of in-

dividual behaviour on social media for mental health.

The structure of the article is as follows. In section 2, the corpus is

introduced and categorized based on year, mental health concern, motiva-

tion for study and the level it was conducted on. In section 3, the methods

and results of the papers are discussed. Following in section 4, some pri-

vacy concerns and possible reasons for data bias are discussed. Finally,

the paper concludes in section 5.

2 Methodology and Corpus overview

The process of gathering relevant papers involved two primary methods.

Firstly, a targeted approach was employed, where one key paper served

as an entry point to the subject [18], and additional papers were selected

from its references. Secondly, to ensure comprehensive coverage, the key-

words "Social Media" and "Mental Health" were utilized to retrieve per-

tinent literature from Google Scholar. Each search result was evaluated

based on its title and abstract, with a focus on relevance to the study’s

objectives. While numerous papers addressing the impact of social media

on mental health were identified, they were excluded from consideration,

as they fell outside the scope of this research. Subsequently, the selected

papers were categorized based on their year of publication, the specific

mental health issue under investigation, and the underlying motivations

driving the respective studies. The outcomes of these categorizations are

elaborated upon in the ensuing sections.

2.1 Year of Publication

This study contains two papers from each of the years 2021 [8, 12], 2022

[13, 7], and 2023 [9, 10]. As the papers were collected primarily in the

first two months of 2024, there weren’t many papers available for the

year 2024.

2.2 Mental Health Issue in Focus

The explored studies predominantly center around depression and sui-

cide. Moreover, there was a notable exploration of how depression might

lead to thoughts of suicide [8]. The exact issues are divided and can be

viewed in figure 1.

Additionally, while depression took center stage, other mental health

issues were indirectly addressed. For example, while examining depres-

sion severity in [10] and [7], there were indications of possible connec-

tions with eating disorders, although not explicitly stated as the focus

of research. Similarly, the instances highlighted in various studies also

touched upon stress, loneliness, and addiction, widening the array of men-

tal health concerns investigated.

Figure 1. Number of studies per issue. In this graph, studies are divided by what issues
they focus on. The most common concern is depression, followed by suicide.

2.3 Motivation for Study

This section aims to uncover the driving forces behind each study. Some

studies, like [10], sought to build upon existing research by establishing a

foundation and providing a dataset. Conversely, others such as [8, 13, 9],

were interested in harnessing social media as a passive mental health

sensor, offering potential aid to those in need. Another objective across

studies like [8, 12, 7] was to leverage the vast pool of social media data to

deepen our understanding of mental health issues and potentially apply

findings in clinical settings.

For instance, [13] explored social media’s role in predicting the neces-

sity for quantity of clinical assistance in a college environment, proposing

adjustments to resource allocation accordingly. Meanwhile, the study out-

lined in [12] discussed the ramifications of widespread media coverage on

suicide-related content, highlighting the potential influences of particu-

lar posts and categorizing them based on the observed Papageno 1 and

Werther effects 2.
1"The Papageno efect concerns how media can play a positive role in preventing
and mitigating suicidal ideation and behaviors" [18]
2"The Werther effect is a phenomenon in which cases of suicide increase after

2.4 Level of Study

Studies can be categorized into three levels based on their scope of inves-

tigation: post-level, user-level, and population-level studies [3].

• Post-Level Studies: Post-level studies center around analyzing individ-

ual social media posts. Researchers examine the content, language, and

sentiment of individual posts to identify indicators of mental health is-

sues. While post-level studies offer granularity and specificity, they may

overlook broader trends and patterns present across multiple users or

posts.

• User-Level Studies: These studies focus on individual users within a

social media platform. Researchers analyze the behaviors, interactions,

and content shared by specific users to gain insights into their mental

health status and patterns of engagement. User-level studies provide

detailed, personalized data but may lack broader generalizability.

• Population-Level Studies: Population-level studies encompass broader

analyses that consider the collective behavior and trends across a larger

population of social media users. Researchers may employ statistical

methods to identify patterns, correlations, and trends at the population

level. These studies offer insights into the prevalence and distribution

of mental health issues within a population but may lack the depth of

understanding provided by user- or post-level analyses.

Among the reviewed studies, only [13] adopted a population-level ap-

proach. The remaining studies focused on developing datasets or meth-

ods, with a primary emphasis on analyzing individual posts rather than

considering broader population trends.

3 Results

In this section, this paper discusses the methodologies used across various

studies, including aspects such as data sourcing, ground truth establish-

ment, variable selection, algorithm choice, and performance evaluation.

the publication of suicide news due to imitation." [11]

3.1 Source of Data

Given the primary emphasis of this investigation on language processing

techniques for identifying mental health indicators, the majority of the

data were sourced from two prominent social media platforms that focus

on text-based communication: Reddit [8, 13, 9, 7] and Twitter (renamed

to X in 2023) [12, 10].

For Reddit, posts were generally retrieved based on their association

with relevant subreddits, while on Twitter, researchers employed prede-

fined keywords to identify pertinent posts.

3.2 Ground truth

In [8], a mix of community associations and human annotation was used.

Alternatively, In [9], an already labeled dataset was used. In other cases

[13, 12, 7, 10], in addition to labeling depression severities in [8], hu-

man annotators were the ones establishing the ground truth. A common

method was using multiple annotators to label one post and then deciding

the confidence based on that (e.g. [10]). In some cases, posts which were

annotated differently by more than one annotator were removed from the

dataset; potentially simplifying the classification and removing confusing

cases resulting in better results than what could be expected from unfil-

tered data.

All papers had no mention of obtaining control data. Rather, it seemed

that they used the scraped data and posts labeled with not the issue by

annotators as the control group.

As per twitter [12, 10], URLs and usernames were either removed

from posts or posts mentioning them were removed overall. In [12], the

intention was to avoid confusion because of words used in the URLs and

usernames. For both, another consensus was to preserve the privacy of

users and avoid traceability in the resulting database.

In [10], tweets with less than 8 words were also omitted as they were

considered to contain too little information.

3.3 Variable selection

In [9], sentiment analysis was a component of the methodology, comple-

menting other analytical techniques. Conversely, the remaining studies

primarily centered around language analysis. Notably, [8] developed a

domain-specific lexicon tailored to the study’s focus. On the contrary, [13]

and [9] utilized a widely available general-purpose lexicon, namely LIWC

(Linguistic Inquiry and Word Count), for their analyses. Additionally,

[9, 12, 7, 10] adopted the BERT (Bidirectional Encoder Representations

from Transformers) model, trained on general data, in their methodolo-

gies. Furthermore, topical analysis emerged as another pertinent method-

ology in [9].

3.4 Algorithm Selection

Many of the reviewed studies relied on the BERT (Bidirectional Encoder

Representations from Transformers) model [9, 12, 7, 10] or variants de-

rived from BERT, such as XLNet [12] and DistilBERT [10]. BERT is a

powerful language representation model that has shown effectiveness in

various natural language processing tasks due to its bidirectional archi-

tecture and large-scale pre-training on diverse datasets.

In addition to BERT-based models, Support Vector Machines (SVM) [8,

13, 12, 7, 10] and Long Short-Term Memory (LSTM) networks [8, 7] were

commonly employed for evaluation alongside the aforementioned trans-

former techniques. BiLSTM (Bidirectional LSTM) architectures were specif-

ically utilized in [7, 10] to enhance the learning capabilities of LSTM net-

works.

Furthermore, [12] employed a majority classifier as a baseline for com-

parison with other methods. Random Forest [8] and Logistic Regression

[8, 7] were also explored as alternative classification approaches. Addi-

tionally, the use of Gated Recurrent Units (GRU) and Bidirectional GRU

(BiGRU) was investigated in [7].

3.5 Performance Parameters and Validation Methods

The primary evaluation metrics utilized across the studies included F1

score and Accuracy, which were commonly employed for performance as-

sessment [8, 9, 12, 7]. Additionally, Precision and Recall metrics were

frequently utilized to gauge the model’s ability to correctly identify pos-

itive instances while minimizing false positives [8, 9, 12]. Moreover, the

Area Under the Curve (AUC) metric was utilized by [8, 10] to evaluate the

model’s ability to discriminate between positive and negative instances.

While F1 score, Accuracy, Precision, Recall, and AUC are widely rec-

ognized metrics for evaluating classification performance, it’s essential to

note that other metrics were also explored by certain studies. For in-

stance, [9] employed Expected Calibration Error and Adaptive Calibra-

tion Error to quantify the impact of calibration efforts on their models.

Moreover, [13] utilized metrics such as Pearson correlation coefficient,

mean absolute error, and the symmetric mean in their evaluation process.

Furthermore, cross-validation emerged as a prevalent validation method

across the reviewed studies, with both 5-fold and 10-fold cross-validation

being employed [8, 13, 9, 12, 10]. This methodological approach aids in

assessing the model’s performance across multiple subsets of the dataset,

thereby enhancing the robustness and generalizability of the results.

4 Privacy Concerns and Data Bias

While the utilization of social media data for mental health studies presents

promising opportunities, several privacy concerns and potential biases

must be addressed. In the reviewed literature, measures were taken to

mitigate these risks, albeit with varying degrees of thoroughness (e.g. no

privacy concern was mentioned in [12]). Privacy measures used in the

studied papers are listed below.

• Username Omission: Several studies [8, 12, 10] removed usernames or

URLs from social media posts to safeguard user privacy. For instance,

in [8, 12], usernames were systematically scrubbed from the data. Simi-

larly, in [10], tweets mentioning usernames were entirely excluded from

the dataset. Anonymization was a recurrent theme across multiple

studies, reflecting a conscientious effort to protect user identities and

maintain confidentiality.

• Selective Data Sharing: In [7], authors exercised caution by sharing

the resultant database selectively and with the approval of an Insti-

tutional Review Board (IRB). This approach ensures that sensitive in-

formation is not indiscriminately disseminated and is consistent with

ethical guidelines for research involving human subjects.

• Anonymity Preservation: In [13], anonymity was leveraged as a privacy-

preserving mechanism. By allowing users to participate in discussions

without revealing their identities, this study prioritized privacy con-

cerns inherent in mental health-related discourse on social media plat-

forms.

Collection methods can introduce biases into the research findings. For

instance, the reliance on social media platforms like Reddit and Twitter

for data collection may inadvertently introduce selection bias. First, users

who actively engage on these platforms may not be representative of the

broader population, potentially skewing the data towards certain demo-

graphics or viewpoints. In addition, the use of specific keywords or sub-

reddit associations to retrieve posts may further exacerbate this bias by

favoring content that aligns with predetermined criteria.

Furthermore, the absence of a specific control group poses another

potential source of bias in mental health research utilizing social media

data. While some studies utilize posts labeled as not indicative of mental

health issues as a control group, the lack of a well-defined control group

introduces uncertainty regarding the comparability of the analyzed data.

This absence may obscure the true impact of mental health indicators

identified through social media analysis, as the absence of a control group

hinders the ability to differentiate between normal behavior and behavior

indicative of mental health concerns.

5 Conclusion

In conclusion, this study provides a comprehensive overview of the evolv-

ing landscape of mental health disclosures on social media platforms, fo-

cusing on individual behavior implications. The rise of social media usage

has facilitated a significant shift in how individuals discuss and share

their mental health experiences, offering both opportunities and chal-

lenges for mental health research and interventions.

Our analysis reveals a growing body of literature dedicated to explor-

ing mental health dynamics on social media, with studies spanning var-

ious mental health issues such as depression, suicide, stress, loneliness,

and addiction. These studies employ a range of methodologies, including

language analysis, sentiment analysis, and machine learning techniques,

to extract insights from social media data. Notably, the adoption of ad-

vanced machine learning models like BERT underscores the increasing

sophistication of data analysis methods in this domain.

While the utilization of social media data offers valuable insights into

mental health dynamics, researchers must remain vigilant regarding po-

tential biases introduced by collection methods and the absence of a spe-

cific control group. Addressing these concerns is crucial for ensuring the

validity and generalizability of research findings in this domain. More-

over, efforts to address privacy concerns should remain a priority to up-

hold the integrity and ethicality of mental health research in this digital

age.

In summary, this study contributes to the ongoing dialogue surround-

ing mental health on social media platforms, discussing emerging trends,

challenges, and opportunities. By advancing our understanding of indi-

vidual behavior implications, we can better inform mental health inter-

ventions, policies, and support systems in the digital era.

References

[1] Tim Althoff, Kevin Clark, and Jure Leskovec. Large-scale analysis of coun-
seling conversations: An application of natural language processing to men-
tal health. Transactions of the Association for Computational Linguistics,
4:463–476, 2016. doi: 10.1162/tacl_a_00111.

[2] Scott E. Caplan and Jacob S. Turner. Bringing theory to research on
computer-mediated comforting communication. Computers in Human Be-
havior, 23(2):985–998, 2007. doi: 10.1016/j.chb.2005.08.003.

[3] Stevie Chancellor and Munmun De Choudhury. Methods in predictive tech-
niques for mental health status on social media: a critical review. npj Digi-
tal Medicine, 3:43, 2020. doi: 10.1038/s41746-020-0233-7.

[4] Munmun De Choudhury, Sanket S. Sharma, Tomaz Logar, Wouter Eekhout,
and René Clausen Nielsen. Gender and cross-cultural differences in social
media disclosures of mental illness. Proceedings of the 2017 ACM Confer-
ence on Computer Supported Cooperative Work and Social Computing, 2017.
https://api.semanticscholar.org/CorpusID:19000482.

[5] Patrick Corrigan. How stigma interferes with mental health care. Ameri-
can Psychologist, 59(7):614–625, 2004. doi: 10.1037/0003-066X.59.7.614.

[6] Munmun De Choudhury, Emre Kiciman, Mark Dredze, Glen Coppersmith,
and Mrinal Kumar. Discovering shifts to suicidal ideation from mental
health content in social media. In Proceedings of the 2016 CHI Confer-
ence on Human Factors in Computing Systems, CHI ’16, page 2098–2110,
New York, NY, USA, 2016. Association for Computing Machinery. doi:
10.1145/2858036.2858207.

[7] Muskan Garg, Chandni Saxena, Veena Krishnan, Ruchi Joshi, Sriparna
Saha, Vijay Mago, and Bonnie J. Dorr. CAMS: An annotated corpus for
causal analysis of mental health issues in social media posts. 2022.

[8] Sanjana Garg, Jordan Taylor, Mai El Sherief, Erin Kasson, Talayeh Ale-
davood, Raven Riordan, Nina Kaiser, Patricia Cavazos-Rehg, and Munmun

De Choudhury. Detecting risk level in individuals misusing fentanyl utiliz-
ing posts from an online community on reddit. Internet Interventions, 26,
December 2021. doi: 10.1016/j.invent.2021.100467.

[9] L. Ilias, S. Mouzakitis, and D. Askounis. Calibration of transformer-
based models for identifying stress and depression in social media.
IEEE Transactions on Computational Social Systems, 2023. doi:
10.1109/TCSS.2023.3283009.

[10] Mohsinul Kabir, Tasnim Ahmed, Md. Bakhtiar Hasan, Md Tahmid Rah-
man Laskar, Tarun Kumar Joarder, Hasan Mahmud, and Kamrul Hasan.
DEPTWEET: A typology for social media texts to detect depression
severities. Computers in Human Behavior, 139:107503, 2023. doi:
10.1016/j.chb.2022.107503.

[11] LH Kim, GM Lee, WR Lee, and et al. The werther effect following the
suicides of three korean celebrities (2017–2018): an ecological time-series
study. BMC Public Health, 23:1173, 2023. doi: 10.1186/s12889-023-16080-
1.

[12] Hannah Metzler, Hubert Baginski, Thomas Niederkrotenthaler, and David
Garcia. Detecting potentially harmful and protective suicide-related con-
tent on twitter: A machine learning approach. 2022.

[13] K. Saha, A. Yousuf, and R.L. et al. Boyd. Social media discussions predict
mental health consultations on college campuses. Sci Rep, 12:123, 2022.
doi: 10.1038/s41598-021-03423-4.

[14] Ruba Skaik and Diana Inkpen. Using social media for mental health
surveillance: A review. ACM Computing Surveys, 53:1–31, 12 2020. doi:
10.1145/3422824.

[15] B. K. Smith, W. Bender, I. Endter, J. Driscoll, M. Turpeinen, and D. Quan.
Silver stringers and junior journalists: Active information producers. IBM
Systems Journal, 39(3.4):730–748, 2000. doi: 10.1147/sj.393.0730.

[16] Sarah Smith-Frigerio. Grassroots mental health groups’ use of advo-
cacy strategies in social media messaging. Qualitative Health Research,
30(14):2205–2216, 2020. doi: 10.1177/1049732320951532.

[17] Statista. Global social networks ranked by number of users.
https://www.statista.com/statistics/272014/global-social-networks-ranked-
by-number-of-users/. Accessed: February 17, 2024.

[18] Yunhao Yuan, Koustuv Saha, Barbara Keller, Erkki Tapio Isometsä, and
Talayeh Aledavood. Mental health coping stories on social media: A causal-
inference study of papageno effect. In ACM Web Conference 2023 - Pro-
ceedings of the World Wide Web Conference, WWW 2023, page 2677–2685,
United States, April 2023. ACM. doi: 10.1145/3543507.3583350.

Modelling cloud applications to achieve
energy efficient scheduling

Gianni Canavero
gianni.canavero@aalto.fi

Tutor: Jaakko Harjuhahto

Abstract

Energy consumption regarding cloud computing is a popular topic given

the impressive growth of data centre diffusion, and the industry focusing

on sustainability. In this paper we analyse state-of-the-art research based

on virtual machine consolidation, comparing the modelling of data centres

and the scheduling algorithms adopted. We observe that the proposed pa-

pers base their models on CPU and memory analysis and focus on virtual

machine consolidation.

KEYWORDS: cloud computing, VM consolidation, energy efficiency, en-

ergy modelling

1 Introduction

In 2022, the electrical demand for the global network of data centres was

estimated to range from 240 to 340 TWh, corresponding to 1-1.3% of the

global demand [12]. In the last two decades, data centres evolved from in-

house solutions to cloud technologies, which surpassed 600 billion dollars

in market share in 2024 [8]. These technologies implement the Infras-

tructure as a Service (IaaS) paradigm where companies can have access

to storage and computing power without the need to manage or control the

underlying infrastructure [15]. To best utilize the computing infrastruc-

ture, powerful machines are split in parts reserved for different customers

by virtualization technology.

These parts have variable computing power usage and are indepen-

dent between themselves, cloud providers can distribute them on different

machines according to their needs. To achieve a power efficient schedule

for these parts, several modelling approaches have been built.

Until recently, cloud computing power consumption was not particu-

larly relevant in research. Initially, priority was given to the quality of

service by choosing the closest data centre or the fastest for the requested

job to reduce latency. Then, the interest of cloud providers has moved

towards the control of operating costs, which are mainly divided into com-

puting power and cooling systems [5]; thus, research towards energy effi-

cient solutions is rising in popularity.

This paper reviews recent research in predicting energy consumption

of single applications, and how their scheduling on different machines can

lead to the most efficient solution.

The paper is organized as follows. Section 2 contains the background

knowledge needed to analyse the proposed solutions, section 3 explains

the methods of the papers presented in the following section. Section 5

inspects the presented works and section 6 concludes the paper.

2 Background

2.1 Virtualization

Virtualization permits the sharing of a computing machine between dif-

ferent isolated environments. This can be achieved by the hypervisor,

which interposes between the actual hardware and one or more operat-

ing systems guaranteeing them access to the computing power, as they

were the only OS being executed on the machine. Another method is us-

ing a single operating system with a kernel that supports virtualization

features through containers.

IBM [11] states "In a virtualized environment, computing environ-

ments can be dynamically created, expanded, shrunk or moved as de-

mand varies", which has become the key to the success of cloud comput-

ing. Thanks to cloud technologies, the providers have the ability to divide

large machines into multiple entities, which can be rented to different

customers and scaled in real-time following the demand.

Virtualization is used in the cloud environment mostly for the deploy-

ment of virtual machines (VMs) and containers. These two implemen-

tations differ from the presence of an operating system kernel in each

application for the former, and the usage of a single shared kernel for all

the applications in the latter. This difference affects access to the hard-

ware, but it is not relevant in the modelling approaches considered in

this paper, therefore, the following sections for modelling and scheduling

applications consider both virtual machines and containers in a general

case. The term VM will be used for both of them.

2.2 Data centres CPUs power consumption

Figure 1. Barroso and Hölzle [2] on the left and Jouppi et al. [6] on the right.

The power consumption of a CPU depends greatly on its usage, gener-

ally in a data centres environment is modelled as follows:

PCPU = Pidle +
∑

PVM (1)

Where Pidle is the power consumption when the machine has only

the operating system loaded, and PVM is the power consumption of each

loaded virtual machine. Barroso and Hölzle [2] have shown that CPU con-

sumption in idle is close to half the consumption at maximum utilization.

More recent studies have shown that Intel’s Haswell CPU architecture

consumes 56% of the maximum consumption at only 10% of the total load.

For other components, such as GPUs (NVIDIA Tesla K80) and tensor pro-

cessing units (TPU), energy consumption is even less reliant on system

utilization [6]. Figure 1 illustrates their reports.

This data clarifies that the goal of VM scheduling in a power-oriented

approach is to maximize machine utilization concentrating it on fewer

machines and turning off the remaining ones to avoid idle consumption,

this process is called virtual machines consolidation.

Consolidation leads to two major disadvantages: a highly utilized ma-

chine does not provide space to scale to VMs in case a spike in demand

occurs; this compromises performance and high-priority processes will

oblige the provider to move other applications to different machines. The

second disadvantage is connected to the first, and it is the moving of VMs:

this operation requires the application to be stopped for several seconds

(even more if the destination machine is currently switched off) and may

break the service level agreement (SLA) between provider and customer.

3 Methods

The analysis considers a data centre composed of a highly variable num-

ber of host machines. For a better representation of real data centres, host

machines are different in their hardware and grouped into several gener-

ations: older machines are less efficient in terms of computing power for

consumed electricity.

The following sections present three different scheduling solutions all

based on VM consolidation, the objective is to concentrate the VMs in the

minor number of host machines possible to switch off a major number of

unused host machines. Therefore the algorithm has to model host ma-

chines resource usage to identify on which group of them is more efficient

to consolidate the VMs. Also, individual virtual machines are modelled

providing information to the algorithm for choosing which VM has to be

moved, creating the final schedule.

The analysis focuses on the modelling and scheduling algorithms, com-

paring assumptions and different choices made to balance the benefits in

terms of the saved energy and the drawbacks regarding computing power

and quality of service.

4 Proposed papers

This section presents three approaches to modelling and scheduling cloud

applications focusing on energy efficiency.

4.1 Utilizing power consumption and SLA violations using
dynamic VM consolidation in cloud data centres

Arshad et al. [1] propose a classification of host machines in over-loaded

(HOL), medium-loaded (HML) and under-loaded (HUL). The classification

is done by measuring CPU and memory utilization and comparing them

with two thresholds (Thigh and Tlow).

If CU ≥ Thigh ∨MU ≥ Thigh → HOL (2)

If Tlow ≤ CU ≤ Thigh ∨ Tlow ≤MU ≤ Thigh → HML (3)

Otherwise, the machine is reported as HUL, and VMs are consolidated

by moving them from HOL and HUL machines towards HML ones.

In the case of a HOL machine the VM with the higher CPU utilization

over memory utilization is moved, this helps both freeing more computing

capacity and having a faster migration. In addition on overloaded hosts

with high CPU usage, the algorithm will prefer moving a CPU-intensive

VM, whereas for hosts with high memory usage memory-intensive VMs

are selected. For underloaded hosts, every VM is moved.

Every time the solution migrates a VM, the destination host is the one

using fewer resources at the moment (reported as less resource utilization

LRUh in the paper).

4.2 Enhancing Energy-Efficient and QoS Dynamic Virtual
Machine Consolidation Method in Cloud Environment

Liu et al. [14] follow the idea of the precedent paper of merging VMs from

overloaded and underloaded machines in the remaining ones. The paper

uses a host overload detection algorithm based on the ARIMA model [3],

which uses the historical CPU utilization of each host machine.

Host overload is defined as a workload close to the maximum capacity

because a part of the computing power is reserved to prevent SLA vio-

lations. For each overloaded host, their solution assumes that a loss of

computing power is guaranteed both in the case of moving the VM else-

where (due to the moving) and keeping it on the same machine (due to

the lack of computing power). Therefore, by analysing which of the two

options is more convenient for every VM, a group of them is moved.

Finally, the algorithm computes the destination host machines. In or-

der to prevent the overload of other machines, for each of them the pro-

gram calculates the median absolute deviation of the median (MAD) of the

CPU usage to have a robust index of it [10]. Then starting from the most

demanding VM to be moved, the algorithm selects the destination host

machines by checking two conditions: the machine is not overloaded, the

machine can host the VM and still has a defined amount of free capacity

to support fluctuations of demand.

The underloaded machines are defined by two conditions: not hosting

any migrated VM and has the highest hea defined below:

hea =
P (h)

hu
(4)

Where P (h) is the total power consumption of the machine, and hu is the

CPU usage, thus the host with the highest ratio is the least power effi-

cient. The VMs from the underloaded machine are moved according to

the same algorithm used for the overloaded hosts.

4.3 Security supportive energy-aware scheduling and energy
policies for cloud environments

Fernández-Cerero et al. [7] propose a scheduling approach which takes in

consideration both power efficiency and security demands.

The workload is divided into batch tasks and service tasks, the former

are independent between themselves and with a defined execution time,

the latter are long-lasting services that compose the base load of each

host machine in use and are not considered in the scheduling algorithm

in order to avoid disruption of their service.

Each batch task is categorized by its security demands (sd), whereas

the host machine is categorized by its trust level (tl) based on hardware se-

curity and software updates. Using this information, plus the task work-

load (wl) and the machine compute capacity (cc), the algorithm builds the

SBETC (Security Biased Expected Time to Compute) matrix. This ma-

trix has an entry for each (host machine, task)-tuple and is built by the

following:

SBETC[j][i](SD, TL) =
wlj
cci

+ b(sdj , wlj , tli, cci) (5)

where j ∈ [# of tasks], i ∈ [# of host machines], SD is the security

demand vector, TL is the trust level vector, b is the security bias function

that predicts the computing time needed by the security part of each task

given the host machine it is running upon.

A genetic algorithm computes the scheduling, using the optimization

formula described as follows:

Cmax = minS∈Schedules {maxj∈TasksCj} (6)

where Schedules is the set of all the combinations of groups of tasks

j, and Cj is the makespan of j-th task in the specific S schedule. The

makespan takes into consideration which machine is running upon and

the execution order.

The aim is to minimize the makespan of all the tasks.

A similar consideration is done for energy consumption, where the op-

timization is defined as:

argmins∈Schedules
∑

i∈1,...,m

n∑

j=1,δi,j(s)=1

P i
busy

(
wlj
cci

+ bij

)
+

n∑

j=1,δi,j(s)=0

P i
idlet

i
idle

(7)

again for each possible schedule s we consider each machine i ∈ [m]

and each batch service j ∈ [n], the function δi,j(s) returns 1 if the service

j is scheduled to the machine i in s. Each machine has its P i
busy, which

denotes the power consumption when executing a task, and P i
idle, which

is the power consumption in idle. The time passed executing is given by

the workload of the task over the computing capacity of the machine, the

security needs of the task related to the trust level of the machine denoted

by b are also considered. On the other hand, tiidle is given by the following

formula:

tiidle = Cmax − tibusy (8)

Cmax is the total computing time indicated by the chosen schedule s.

The paper shows four different approaches to manage the result of

the algorithm run on the two optimization formulas: makespan centric,

energy centric, makespan centric until given threshold, and energy centric

until given threshold. The first two consider the best result in the centric

feature and consider the other feature only in case of the same score. The

last two consider all the schedules that pass the centric feature threshold

and then analyse them by the other feature.

5 Analysis

The presented solutions aim all three towards the same solution: con-

solidate the VMs in a restricted number of host machines avoiding over-

loading and switching off the unused ones. The first two papers model

the data centre with a similar approach, by dividing machines into over-

loaded, medium-loaded and under-loaded ones. The third paper has a

different perspective on the modelling and adds an interesting view on

the security side of the scheduling.

The cited works differ in the VM computation usage analysis, in detail:

Liu et al. present the ARIMA model and review its robustness, on the

other hand, Arshad et al. work with an easier model based on real-time

CPU consumption. Fernández-Cerero et al. use a previous work without

investigating its statistical properties [13].

In the scheduling part, various stratagems from the presented papers

might be combined: Liu et al. approach of considering the most efficient

option between moving a VM and keeping the host overloaded is an in-

teresting feature to reduce the VM migrations. Arshad et al. formula

for selecting VMs with a high ratio of CPU to memory usage helps to re-

duce the migration duration, while Fernández-Cerero et al. approach to

security is relevant in categorizing host machines according to their trust

level.

In addition, while working with overloaded machines, Arshad et al.

differs from the other two papers. Their solution assumes the existence of

VMs with high CPU or memory utilization in any case. Therefore, if an

overloaded machine has a large number of VMs without any one of them

exceeding the imposed thresholds, the algorithm will not change the state

of the machine, leading to possible SLA violations.

The presented papers base themselves on the assumption that CPU

and memory are the main contributors to the energy consumption of a

cloud computing data centre. This strong assumption leads them to ignore

other high-consuming hardware, such as tensor processors and GPUs

highly used in artificial intelligence applications and HPC [4]. Another

factor useful for the modelling might be I/O usage, especially in cloud ap-

plications working on a big data platform, where tools like Apache Hadoop

or Apache Spark are I/O intensive.

Finally, the papers compare their scheduling approaches based on vir-

tual machine consolidation with other methods, such as dynamic voltage

and frequency scaling (DVFS). A heterogeneous algorithm that combines

both methods may help in the case of an under-loaded machine running

heavy VMs, where moving the VMs is not efficient. Recent literature has

proposed similar algorithms [16, 9].

6 Conclusion

This paper compares three different approaches to model and schedule

virtual machines in data centres to increase cloud computing energy effi-

ciency.

We found out that several state-of-the-art procedures base themselves

on VM consolidation, which guarantees higher energy efficiency but has

the major drawback of VM migrations that may cause SLA violations.

Therefore, the different presented works model the state of the data cen-

tre and manage migrations with different techniques and considering

varying factors.

We also noted lacking features that may be considered in further re-

search, such as not considering other hardware outside of CPU and mem-

ory, and focusing only on VM consolidation whereas other approaches

could produce better results in selected cases.

References

[1] Umer Arshad, Muhammad Aleem, Gautam Srivastava, and Jerry Chun-
Wei Lin. Utilizing power consumption and sla violations using dynamic
vm consolidation in cloud data centers. Renewable and Sustainable Energy
Reviews, 167:112782, 2022. https://doi.org/10.1016/j.rser.2022.112782.

[2] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Computing.
Computer, 40:33–37, 2007. https://doi.org/10.1109/MC.2007.443.

[3] Rodrigo N. Calheiros, Enayat Masoumi, Rajiv Ranjan, and Rajkumar
Buyya. Workload prediction using arima model and its impact on cloud
applications’ qos. IEEE Transactions on Cloud Computing, 3(4):449–458,
2015. https://doi.org/10.1109/TCC.2014.2350475.

[4] Pawel Czarnul, Jerzy Proficz, Adam Krzywaniak, and Jan Weglarz.
Energy-aware high-performance computing: Survey of state-of-the-art
tools, techniques, and environments. Sci. Program., 2019, jan 2019.
https://doi.org/10.1155/2019/8348791.

[5] Khosrow Ebrahimi, Gerard F. Jones, and Amy S. Fleischer. A review of data
center cooling technology, operating conditions and the corresponding low-
grade waste heat recovery opportunities. Renewable and Sustainable En-
ergy Reviews, 31:622–638, 2014. https://doi.org/10.1016/j.rser.2013.12.007.

[6] Norman P. Jouppi et al. In-Datacenter Performance Analysis of a Tensor
Processing Unit. 2017. https://doi.org/10.48550/arXiv.1704.04760.

[7] Damián Fernández-Cerero, Agnieszka Jakóbik, Daniel Grzonka, Joanna
Kołodziej, and Alejandro Fernández-Montes. Security supportive
energy-aware scheduling and energy policies for cloud environments.

Journal of Parallel and Distributed Computing, 119:191–202, 2018.
https://doi.org/10.1016/j.jpdc.2018.04.015.

[8] Gartner. Public cloud services end-user spending world-
wide from 2017 to 2024 (in billion U.S. dollars), 2024.
https://www.statista.com/statistics/273818/global-revenue-generated-
with-cloud-computing-since-2009/.

[9] Mirsaeid Hosseini Shirvani, Amir Masoud Rahmani, and Amir Sahafi.
A survey study on virtual machine migration and server consolidation
techniques in dvfs-enabled cloud datacenter: Taxonomy and challenges.
Journal of King Saud University - Computer and Information Sciences,
32(3):267–286, 2020. https://doi.org/10.1016/j.jksuci.2018.07.001.

[10] P.J. Huber. Robust Statistics. Wiley Series in Probability and Statis-
tics - Applied Probability and Statistics Section Series. Wiley, 2004.
https://doi.org/10.1002/9780470434697.

[11] IBM. IBM white paper (2009) Seeding the Clouds:
Key Infrastructure Elements for Cloud Computing.
https://public.dhe.ibm.com/software/sg/cioleadershipexchange/seeding_the_cloud.pdf.

[12] IEA. Tracking Clean Energy Progress 2023. Technical report, International
Energy Agency, 2023. https://www.iea.org/reports/tracking-clean-energy-
progress-2023.

[13] Joanna Kołodziej. Evolutionary hierarchical multi-criteria metaheuristics
for scheduling in large-scale grid systems, volume 419. Springer, 2012.

[14] Yaqiu Liu, Xinyue Sun, Wei Wei, and Weipeng Jing. Enhanc-
ing energy-efficient and qos dynamic virtual machine consolidation
method in cloud environment. IEEE Access, 6:31224–31235, 2018.
https://doi.org/10.1109/ACCESS.2018.2835670.

[15] Choi E. Lumb I. Rimal, B.P. A Taxonomy, Survey, and Issues of Cloud Com-
puting Ecosystems. Springer, 2010. https://doi.org/10.1007/978-1-84996-
241-4_2.

[16] Boris Teabe, Alain Tchana, and Daniel Hagimont. Enforcing cpu allocation
in a heterogeneous iaas. Future Generation Computer Systems, 53:1–12,
2015. https://doi.org/10.1016/j.future.2015.05.013.

Signals - new standard for state
management in the web?

Guting Huang
guting.huang@aalto.fi

Tutor: Juho Vepsäläinen

Abstract

As web applications grow in complexity, effective state management be-

comes crucial for providing seamless user experiences. The reactive pro-

gramming paradigm triggered the emergence of various JavaScript re-

active libraries that react to changes efficiently. Among them, signals

presents an efficient way to model reactivity that is distinct from previ-

ous more event-based solutions. This paper investigate the reactive ab-

stractions and techniques of stream-based libraries that uses observables

and signal-like libraries that implements signals and derived computa-

tions. The comparative analysis discusses design considerations, evalua-

tion models, and methods for dependency tracking and data propagation.

From this, we recognize that both stream-based and signal-like libraries

serves differing purposes and each is useful for various aspects to state

management.

KEYWORDS: signals, reactive JavaScript, state management, fine-grain

reactivity, observables

1 Introduction

As modern web applications continue to grow in complexity and inter-

activeness, the demand for a seamless user experience and robust state

management techniques has grown. Interactive web applications are of-

ten driven by events that the program must react to and coordinate asyn-

chronously. Traditional methods handle events through callbacks, which

are methods registered to the events and emit side effects. This approach

is highly imperative and error-prone, placing heavy loads on the program-

mer to coordinate the interdependencies between the side effects. On the

other hand, the increasing popular reactive programming (RP) paradigm

is declarative and focuses more on "what" to do, leaving the "how" prob-

lems to the compiler and the framework [5].

Concepts of RP can be dated back to Fran [6], a language designed for

constructing functional reactive animation and interactive media applica-

tions. In [6], Behaviors are time-varying values that continuously change,

and Events are values that are connected to discrete points in time. The

concept of continuous, time-varying values was carried onward to subse-

quent works and stimulated a number of JavaScript reactive program-

ming solutions. These solutions provide either a dedicated language that

later compiles to JavaScript or an extension with additional JavaScript

constructs to represent the continuously changing events and behaviors

[11].

Notably, signals has resurged since its initial introduction by Knock-

outJS [14] and captured the interests of many recent reactive frameworks.

Consequently, different variations have emerged revolving around this

reactivity-primitive-based paradigm.

This paper summarizes the reactive primitives and state management

techniques employed by modern signal-based libraries, aiming to provide

insights into their approaches to achieving reactivity in comparison with

previous reactive solutions. Section 2 introduces common problems and

design considerations for reactive systems. Sections 4 and 3 describe two

identified approaches to reactivity in the web. Section 5 compares the

solutions, discussing each of their benefits and drawbacks. Section 6 con-

cludes.

2 Design considerations

The survey consists of representative libraries selected based on their con-

tribution in shaping JavaScript’s reactive landscape and the availability

of documentations and discussions within the development community

involving the library authors. While these libraries share fundamental

similarities, each exhibits nuanced differences in how they model reactiv-

ity. The following sections discuss two ways to modeling reactive behav-

iors and events: one utilizes signals and computations, while the other in-

volves representing and operating on data streams. Before delving deeper

into the specifics, first we explore their common characteristics and issues

considered.

2.1 The observer pattern

The reviewed libraries implement variations of the observer pattern [8],

which is a common design pattern in software development useful for

managing one-to-many dependencies between entities where a state change

affects the dependencies. The pattern is also known as the publish-subscribe

pattern. This pattern was commonly implemented with abstractions to

subjects and observers. Observers subscribe themselves to subjects, who

notifies the observers in case of a change. The observers then request the

updated state from the subject to update its own state.

2.2 Evaluation models

In general, there are two approaches adopted by reactive frameworks:

push-based (event-driven) or pull-based (data-driven) [7]. In push-based

evaluation model, when the parent is updated, new values are pushed to

all its dependent decedents who will react to the changes. In other words,

propagation of data is driven by events. On the other hand, a node in

pull-based evaluation models pulls data from the source(s) in response to

incoming requests. As an example, consider the following expressions:

1 x = 3

2 y = x * 2

3 z = x + 1

4 sum = y + z

Listing 1. Dependency example

In push-based model, sum recomputes whenever x, y or z gets updated. In

pull-based model, sum recomputed when it is accessed (lazy evaluation).

A key challenge in the push-based model is the avoidance of waste-

ful computations in order to achieve more efficient state updates. In the

example above, when x changed, sum might be recomputed twice as a re-

sponse to change notifications from both y and z. In contrast, pull-based

approaches update the values only when they actually change. However,

extensive traversal and rerunning of the dependencies may be needed to

stabilize the sources of change [4]. Thus, there may be a delay before

results of an event are visible after the event’s occurrence .

2.3 Glitch Avoidance

Glitch avoidance refers to the problem of observing an inconsistent state

when the state is partially evaluated after a change. It may only occur to

push-based models [1]. In Listing 1, a glitch may occur when x updates

and sum responds to a change in y before z gets updated. The resulting

sum does not reflect the expected outcome.

3 Signal-like libraries

Library Signal Derivation Effect Fine-grain

KnockoutJS

[14]

observables computed - yes

SolidJS [15] Signals Memo Effects yes

VueJS [18] ref computed watchers yes

Preact [12] signal computed

signals

effect yes

MobX [17] observables derivations reactions /

autoruns

yes

Svelte [10] - - - no

Qwik [2] signals computed tasks yes

Angular

Signals [9]

signals computed effects yes

Table 1. Terminology variations used by signal-like libraries for describing signal, deriva-
tions, and effects

Signals [14, 15, 18, 12, 17, 2, 9] are first-class reactive values that

represent a piece of state or computation. Libraries designed around sig-

nals offer primitives to store and update reactive values, to derive and

cache computed values, and to create side-effects. The remaining of this

article commonly refer to these fundamentals as signals, derivations, and

effects, respectively. Table 1 summarizes the terminology variations for

the primitives. Signals work by wrapping around values and providing

a set of getter and setter functions that enables reading and writing to

the signals. Values are passed to other dependencies by reference to the

signal, and each signal holds a list of subscribers who will be notified of

any change.

Libraries such as Vue [18], Solid [15], Preact [12], and Qwik [2], im-

plement deep reactivity where elements inside nested objects and arrays

are also made reactive and tracked automatically when creating a signal.

On the other hand, shallow reactivity is when only the assigned value

or property will be made reactive. While deep reactivity may be desired

most of the time for its convenience, shallow reactivity can be useful for

avoiding the observation cost of large objects [18].

Common characteristics to signal-like solutions include automatic de-

pendency tracking, lazy evaluation, and synchronized change propaga-

tion. Next, we look into each of these characteristics in detail.

3.1 Dependency Tracking

Libraries such as Vue, Solid, Qwik make values reactive by intercepting

property access using JavaScript’s native Proxy API. As a result, reads

and writes of signals will be noticed and used to create subscription track-

ing and effect triggering functionalities. On the other hand, Svelte [10]

takes a different approach by tracking the subscriptions at compile time,

ignoring any JavaScript syntax limitations.

Dependency tracking in the signal-like solutions facilitates a dynamic

management of state dependencies that constructs the dependency graph

during runtime. A global context stack is maintained to track any running

derivations or reactions [3]. Derivations and computations are monitored

by being pushed to the stack, and on execution, each accessed signal links

itself as a dependency of the uppermost effect. When a signal updates, its

subscribers recompute. In the end, we have a dynamic dependency graph

that reconstructs each time during execution, possibly adding new nodes

or removing inactive ones [3]. This mechanism leads to what is commonly

referred to as fine-grain reactivity. Since the signals are binded to specific

DOM elements, only those elements are updated on change.

A refined approach used by compiled libraries such as Svelte is to stat-

ically analyze the dependencies during build. This implies that the reac-

tive behavior becomes inherently integrated into the final output, reduc-

ing potential runtime overheads.

3.2 Data Propagation

Data propagation is the process of updating the state in response to changes

in the underlying data or dependencies. MobX [17] uses a push-based

approach and defines a topological ordering of the nodes to be run syn-

chronously, preventing stale derivations to be observed as described in

Section 2.2. Since only relevant dependencies are tracked,

Other fine-grain reactive libraries such as Preact combine both pull

and push models by pushing the change notifications but delaying the

computation until the values are pulled. Preact signals keep a version

number that updates on value change and is compared during effect runs

to check if the sources have changed since their last update [16]. If the

resources have not changed, then it avoids walking up the dependency

graph. Solid follows a similarly approach with Preact except that it uses

graph coloring instead of version numbers.

4 Stream-based libraries

Stream-based libraries follow the concepts of Events and Behaviors more

closely through representations of data streams. For instance, RxJS [13]

model the data streams as observable streams. It implements a variation

of the observer pattern and has built-in primitives to represent subjects

and observers.

In RxJS, observables serve as sources of asynchronous data streams,

encapsulating sequences of values or events that may occur over time.

These streams emit values consumed by subscribed observers and can be

composed using operators including map, filter, and reduce [13]. Observ-

ables are push-based and lazy, meaning values are pushed to consumers

only upon subscription, and both synchronous and asynchronous events

may be emitted.

Observables [13] are push-based and lazy. Values emitted by the ob-

servable gets pushed to the consumers who react to the values. When

multiple values are emitted, the values are not pushed until the consumer

subscribes. Both synchronous and and asynchronous events may be emit-

ted.

Tracking dependencies between the subjects and observers is facili-

tated by the Subscription object, which monitors when an observer sub-

scribes or unsubscribes from the observable. When an observable emits

a value, this value is propagated downstream to all subscribers through

the observable chain. Data is propagated synchronously, resembling the

behavior of regular function calls. [13]

5 Discussion

Reactive libraries employ signals and observables for distinct purpose,

each serving unique roles in managing data and facilitating reactivity.

Observables primarily focus on modeling change propagation over time

and can handle asynchronous operations. In contrast signals are designed

for data storage and deriving data calculations.

One notable difference lies in the way they handle dependencies. Ob-

servables lack the dependency resolution required for glitch avoidance.

On the other hand, signals are inherently aware of other signals, enabling

dependency resolution through synchronous data propagation. This de-

sign facilitates optimizations not achievable with observables. By rec-

ognizing that the reactive dependency graph is oftentimes more shal-

low than the component graph, separate management of the dependency

graph allows more performant updates in reaction to changes [16]. Up-

dates are made only to relevant components dependent of the signal.

Lastly, signal’s synchronism simplifies stack tracing and the debugging

process.

Despite their advantages, signals also present certain drawbacks. They

emphasize data flow over control flow, which may pose challenges in JavaScript

who is not a data flow language. Update only through value access means

that it’s important where you access the values, thus requiring a learning

curve for programmers new to the concepts. Furthermore, overusing deep

reactivity can lead the difficulties in knowing which values are reactive or

not.

6 Conclusion

The resurgence of signals as an alternative paradigm to reactive state

management underscores a shift from traditional event-based control flow

to a data-centric flow. Signals, representing first-class reactive values, of-

fer a comprehensive approach to managing state and derived computa-

tions. This paper examined the available solutions from four axes: the re-

active abstractions, the evaluation model, the dependency tracking mech-

anism, and data propagation. We compared two common approaches to

reactivity, discussing their nuances and trade-offs.

By adopting signals, developers can achieve fine-grained reactivity

while mitigating the complexities associated with traditional event-driven

models, achieving easier management of the data flow. Finally, we recog-

nize that both stream-based and signal-like libraries serves differing pur-

poses and each is useful for various aspects to state management. While

signals allows us to express and more easily manage complex UI behav-

iors, observables will continue to be useful for user interaction and other

asynchronous events.

References

[1] BAINOMUGISHA, E., CARRETON, A. L., CUTSEM, T. V., MOSTINCKX, S.,
AND MEUTER, W. D. A survey on reactive programming. ACM Comput.
Surv. 45, 4 (aug 2013).

[2] BUILDER.IO. Qwik, Sept 2022. https://qwik.dev/.

[3] CARNIATO, R. Building a reactive library from scratch, Jan 2022.

[4] CARNIATO, R. Derivations in reactivity, Jan 2024. https://dev.to/this-is-
learning/derivations-in-reactivity-4fo1.

[5] CZAPLICKI, E. Elm : Concurrent frp for functional guis.
https://api.semanticscholar.org/CorpusID:11022636.

[6] ELLIOTT, C., AND HUDAK, P. Functional reactive animation. In Proceed-
ings of the Second ACM SIGPLAN International Conference on Functional
Programming (New York, NY, USA, 1997), ICFP ’97, Association for Com-
puting Machinery, p. 263–273. https://doi.og/10.1145/258948.258973.

[7] ELLIOTT, C. M. Push-pull functional reactive programming. In Proceed-
ings of the 2nd ACM SIGPLAN Symposium on Haskell (New York, NY,
USA, 2009), Haskell ’09, Association for Computing Machinery, p. 25–36.
https://doi.org/10.1145/1596638.1596643.

[8] GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, Boston, 1994.

[9] GOOGLE INC. Angular signals, Jun 2023. https://angular.io/guide/signals.

[10] HARRIS, R. Svelte, Nov 2016. https://svelte.dev/.

[11] KAMBONA, K., BOIX, E. G., AND DE MEUTER, W. An evaluation of reactive
programming and promises for structuring collaborative web applications.
In Proceedings of the 7th Workshop on Dynamic Languages and Applica-
tions (New York, NY, USA, 2013), DYLA ’13, Association for Computing
Machinery.

[12] MILLER, J. Preact, Sept 2022. https://preactjs.com/.

[13] RXJS TEAM. Reactive extensions library for javascript, May 2013.
https://rxjs.dev/guide/overview.

[14] SANDERSON, S. Knockoutjs, Jul 2010.
https://knockoutjs.com/documentation/introduction.html.

[15] SOLIDJS TEAM. Solidjs, Apr 2018. https://www.solidjs.com/.

[16] VIIDE, J. Signal boosting, Sept 2022. https://preactjs.com/blog/signal-
boosting/.

[17] WESTSTRATE, M. Mobx, Mar 2015. https://mobx.js.org/README.html.

[18] YOU, E. Reactivity in depth, Feb 2014. https://vuejs.org/.

Exploring contemporary user tracking
methods in web services

Gyeha Lim
gyeha.lim@aalto.fi

Tutor: Tuomas Aura

Abstract

Since their inception in 1994, HTTP cookies have been pivotal in shaping

the functionality of modern websites, providing convenience for users while

enabling website owners and advertisers to track online behavior for tar-

geted advertising. However, privacy concerns have influenced the tracking

methods, particularly highlighted by the European Union (EU)’s General

Data Protection Regulation (GDPR). This paper investigates user track-

ing methods without third-party cookies, focusing on exploiting first-party

cookies and browser fingerprinting. Analyzing existing research reveals

that first-party cookies are susceptible to leakage to third-party domains,

enabling them to track user behavior. Additionally, browser fingerprint

can be used to uniquely identify the user based on their browser and device

characteristics. The browser fingerprint can be used both independently

and in conjunction with cookies.

KEYWORDS: first-party cookies, third-party cookies, external cookies, fin-

gerprinting

1 Introduction

The concept of cookies emerged in 1994, developed by Lou Montulli, a web

browser programmer at Netscape Communications. Their initial purpose

was to enable users of e-commerce platforms to keep a persistent shop-

ping cart [5]. Since then, cookies have become integral to the features

of modern websites, enhancing user experience, enabling personalized in-

teractions, facilitating e-commerce transactions, and other functionalities

such as authentication. While convenient, the cookies have also allowed

website owners and advertising agencies to track online user behavior

and exploit users’ data for invasive advertising campaigns. This led to

privacy concerns, especially in the EU countries. The GDPR, adopted

in May 2018, requires organizations to gain consent from users to col-

lect and process personal data via cookies. As a result, users in the EU

have been asked to accept or reject cookies on websites. Some browsers

have enforced limitations on the usage of third-party cookies due to these

privacy concerns and regulations. However, advertisers have found new

ways to track users through first-party cookies and browser fingerprint-

ing. Henceforth, this paper will explore user tracking methods without

third-party cookies. Section 2 provides a short overview of cookies and

the user tracking network. Section 3 delves into using first-party cookies

and browser fingerprint for user tracking.

2 Background

This section provides a concise overview of HTTP cookies. Additionally,

it explores the intricacies of third-party tracking networks, elucidating

how ad exchange services or ad networks orchestrate the placement of

advertisements across domains by tracking user activities.

2.1 HTTP cookies

When a user visits a website, it stores cookies on the user’s browser. These

cookies are called first-party cookies. They have been used to enhance

the user experience by storing preferences and maintaining user sessions.

Modern websites embed third-party resources, such as images or scripts,

from other domains to provide useful features to improve the user expe-

rience. When a user visits a website that embeds third-party resources,

the browser sends a request to the third-party domain, allowing them to

set cookies on the browser while retrieving the required resources. These

cookies are called third-party cookies. Whereas first-party cookies can

track the user behavior only on the website the user is currently visiting,

third-party cookies enable data collection beyond the scope of the visited

website. Suppose the user continues to browse different websites that

contain the resources from the same third-party domain. In that case,

the browser will continue to send the same third-party cookies with each

request, allowing the third-party domain to track the user’s online activ-

ities and gather data across multiple websites. Thus, online advertisers

and tracking applications such as Google Analytics have used third-party

cookies to track users extensively across the internet [6].

2.2 Third-party tracking network

An ad exchange service is a digital marketplace where a website sells its

ad space and an advertiser purchases it via a real-time auction [9]. Web-

sites typically connect their ad inventory to ad exchange services through

one or more ad networks. Advertisers, on the other hand, often leverage

advertising agencies to participate in the bidding process for ad invento-

ries. When a user visits a website that subscribes to an ad exchange ser-

vice, third-party cookies from ad networks are set on the user’s browser

[9]. As the user browses other websites connected to the same ad net-

works, these networks can track the user across different websites. This

information about the user is shared with the ad exchange service and

the advertising agency so that the advertising agency would bid higher

for a user more likely to be interested in its advertised product or service.

Gomer et al. [9] referred to this network of websites, advertising agencies,

and tracking agencies as third-party tracking network, as shown in Figure

1.

Figure 1. Third-party tracking network

2.3 Cookie synchronization

Advertising agencies and ad exchange services also leverage third-party

cookies to identify the same user in the future by assigning distinct IDs

within their domains [9]. Consequently, each domain knows the same

user with a different ID. Cookie synchronization tackles this challenge

by enabling different domains to synchronize their cookies and share the

user’s data [12]. Figure 2 illustrates how cookie synchronization works.

Consider that third-party domains tracker1.com and tracker2.com set their

cookies on the user’s browser and assign user IDs user123 and userABC

to the same individual. When this user visits website3.com that only

embeds resources from tracker1.com, tracker2.com remains unaware of

the user’s visit to website3.com. However, tracker1.com responds with

an HTTP redirect that makes the user’s browser send a GET request

to tracker2.com specifying the ID of the user from tracker1.com so that

tracker2.com can map this ID to its own, effectively linking the previ-

ously separated user profiles. Thus, cookie synchronization allows users

to share their data with third parties that do not have their resources

embedded in the website. This enriches their knowledge of the user from

several data sources and helps them make better decisions during the

real-time auction [12].

3 Tracking users without third-party cookies

In 2005, Apple Safari became the first browser to block third-party cookies

by default with a privacy protection feature called Intelligent Tracking

Protection (ITP) [3]. Google also recently announced that it will no longer

support third-party cookies on Chrome [2]. Nevertheless, these measures

have proven insufficient to prevent advertisers and trackers from tracking

user activity. This section will review how advertisers and trackers could

track users without third-party cookies.

3.1 First-party cookie leakage and ID synchronization

Modern websites have become intricate, often incorporating numerous ex-

ternal third-party sources. The Document Object Model (DOM), a pro-

gramming interface for web documents, represents a page and allows it to

be modified with a scripting language such as JavaScript [1]. Through the

Figure 2. Example of cookie synchronization between trackers.

Document interface’s cookie property, JavaScript code can read and write

cookies associated with the page. Similarly, the embedded JavaScript code

can set first-party cookies on behalf of the third-party domains. Chen et

al. [7] call these first-party cookies set by the third parties external cook-

ies. The script can return the value of the external cookie to the server

from which the code originated by making an HTTP request. This tech-

nique has already been widely adopted, and according to Chen et al. [7],

approximately 98% of the Alexa top 10k websites they crawled had exter-

nal cookies.

Chen et al. [7] identified an additional vulnerability associated with

external cookies. They revealed that scripts embedded within a web page

can access and transmit external cookies set by other domains over the

network. In other words, these cookies can be sent to a domain entirely

different from the one initially created them. Chen et al. [7] analyzed

the 13,323 unique non-session external cookies, discovering that 31.6% of

them contained tracking IDs. Furthermore, they also found that 77.3%

of these external cookies were leaked to third parties that did not set the

cookies originally [7]. Their research also identified the top 10 source do-

mains whose cookies are shared with other third parties and the top 10

destination domains that receive external cookies from other third par-

ties (different source domains). google-analytics.com shares its cookies

with other third-party domains the most. The most shared cookie is _ga,

shared in 3456 websites to 329 different third-party domains in total. On

the other hand, google-analytics.com also received the highest number of

external cookies from different source domains, with 427 cookies from 198

source domains. Their analysis shows that all third parties with scripts

embedded in the page can access the external cookies set by other third-

party cookies without any agreement, bypassing browsers’ restrictions on

third-party HTTP cookies.

Facebook is also one of the domains that most intensely attempts to

retrieve and share users’ information. Chen et al. [7] found that 2377

websites had external cookies set by facebook.net, named _fbp, which is

shared to 76 different third-party destinations. Facebook employs pixels

to track visitors’ activities on a third domain [4]. A pixel is a JavaScript

code containing a URL connecting to the Facebook server [4]. Upon the

user’s first visit to a website where the pixel is implemented, the pixel

creates a first-party cookie called _fbp and sends the user’s activities to

Facebook during the user’s visit to the domain [4]. Pixel performs event-

driven tracking, with which the website can decide what event to track

with standard events pre-configured by Facebook [4]. The event is sent to

the Facebook server whenever the user triggers the event. According to

Bekos et al. [4], 2308 out of the top 10k websites (approximately 23%) use

Facebook Pixel to track their visitors in 2022.

Facebook can keep track of the user whether the user has a Facebook

account or not. If the visitor to the third-party domain has a Facebook

account, then Facebook can match the visitor with the account. When the

user clicks an advertisement or a post of a third-party domain on Face-

book, it sends an HTTP request to the third-party domain from where

the advertisement or the post originated with a query parameter called

fbclid [4]. The pixel on the third domain then creates a cookie named _fbc

that saves the value of fbclid. Then, the pixel sends the values of _fbc and

_fbp to the Facebook server, enabling Facebook to know that it is the user

with a Facebook profile who visited this third-party domain [4]. Facebook

gains further insights into its users through this synchronization. Face-

book can uniquely track the user and the browsing history of the user on

the third-party domain. Even if Facebook does not know the identity of

this visitor on the domain, for example, because the user does not have a

Facebook Account, Facebook can still monitor this unknown visitor’s activ-

ities on the site. Besides, upon the user’s creation of a Facebook account,

Facebook can connect the IDs and quickly learn the user’s preferences and

online browsing history. The first-party cookies set by Facebook have an

expiration time of 90 days [4]. However, as long as the user continues to

visit the website, then ’_fbp’ cookies can be renewed, enabling Facebook

to track the user persistently [4].

3.2 Fingerprinting

As mentioned in the beginning of section 3, major web browsers have be-

gun integrating built-in protection against cross-site scripting. However,

this has raised concerns regarding trackers’ potential shift toward state-

less tracking techniques such as fingerprinting. Fingerprinting is a state-

less tracking method that tracker can identify a user through a set of

attributes obtained from the user’s browser through JavaScript APIs and

HTTP headers[10]. Indeed, many studies suggest that the deployment of

fingerprinting across the web has been increasing over the years. A study

in 2013 discovered that only 40 of the Alexa top 10K utilized fingerprint-

ing codes [11]. However, a study in 2021 shows that 30.6% of the Alexa

top-1K websites contain fingerprinting scripts, and 10.2% of the Alexa

top-100K websites contain fingerprinting scripts [10]. These studies also

indicate that the adoption of the fingerprinting script is more common on

more popular websites. The author [10] also found that fingerprinting is

especially prevalent on news sites, possibly due to the heavy reliance of

news websites on advertising revenue.

Notable differences exist between fingerprinting and cookies based on

their inherent characteristics. Cookies stored in a user’s browser’s lo-

cal storage are readily visible to the user. In contrast, fingerprinting

data lacks visibility within the user’s browser environment. Furthermore,

there is also a distinction in the level of user control over cookies versus

fingerprint. Users can delete cookies, yet they cannot easily alter or erase

their fingerprint.

As modern web browsers have continued to develop new features through

JavaScript APIs, the chances of using those APIs to create unique fin-

gerprint have also increased. For example, Canvas, WebGL, fonts, exten-

sions, plugins, audio API, and even sensors can be used to identify the

device and build a browser fingerprint [10]. The author categorizes fin-

gerprinting into two types: functionality fingerprinting and algorithmic

fingerprinting. Functionality fingerprinting techniques probe for differ-

ent functionality supported by the browser [10]. For example, the differ-

ence in permissions, peripherals, and APIs across browsers can be used

as part of a fingerprint. Algorithmic fingerprinting techniques probe for

functionality supported by the browser and process the inputs algorithmi-

cally using different JavaScript APIs [10]. The different implementations

will process the inputs differently so that they can be used to create a

fingerprint. For example, the Performance API can be utilized to calcu-

late how long a particular function takes. The time would vary depending

on browsers and underlying hardware settings. Besides, the trackers can

also exploit animation, audio APIs, and the sensor to create an algorith-

mic fingerprint of the browser and client computer.

Lastly, the tracker can use fingerprint and cookies to respawn a cookie

when the user deletes it from their browser [8]. It works by first creating

a unique user identifier via fingerprinting and storing it in the cookies on

the user’s browser. If the user deletes the cookie, the tracker can respawn

the same cookie based on the fingerprint. When a fingerprint changes

over time, the tracker can use the old fingerprint stored in the cookie to

link with the new fingerprint and update the cookie. Thus, a cookie can

be respawned on the user’s browser and exploited by the tracker.

4 Conclusion

Concerns surrounding user privacy have led to efforts to control cross-site

tracking and limit the use of third-party cookies. While the phase-out

of third-party cookies represents a significant step for user privacy, sev-

eral researchers suggest alternative methods that could be exploited by

the trackers for user identification and tracking across different websites.

This study demonstrates two methods for tracking users without third-

party cookies: first-party cookie leakage and fingerprinting. The trackers

can leverage first-party cookies for data sharing with other domains. This

could undermine the intended privacy benefit of restricting third-party

cookies. The trackers can use browser fingerprinting techniques to gen-

erate a unique identifier for the user, raising significant privacy concerns.

However, it is essential to note that there are mechanisms to find scripts

that are used to generate fingerprinting, for example, by utilizing ma-

chine learning []. The limitation of this study is that it does not address

the most recent strategies to counteract fingerprinting techniques.

References

[1] Introduction to the document object model. https://developer.mozilla.org/en-
US/docs/Web/API/Document_Object_Model/Introduction. Accessed: 2024-
03-04.

[2] The next step toward phasing out third-party cookies in Chrome.
https://blog.google/products/chrome/privacy-sandbox-tracking-protection/.
Accessed: 2024-03-04.

[3] Safari privacy overview. Technical report, Apple, November 2019.

[4] Paschalis Bekos, Panagiotis Papadopoulos, Evangelos P Markatos, and
Nicolas Kourtellis. The hitchhiker’s guide to Facebook web tracking with
invisible pixels and click ids. In Proceedings of the ACM Web Conference
2023, pages 2132–2143, 2023.

[5] Hal Berghel. Toxic cookies. volume 46, pages 104–107. IEEE Computer
Society, 2013.

[6] Aaron Cahn, Scott Alfeld, Paul Barford, and S. Muthukrishnan. An empir-
ical study of web cookies. In Proceedings of the 25th International Confer-
ence on World Wide Web, WWW ’16, page 891–901, Republic and Canton of
Geneva, CHE, 2016. International World Wide Web Conferences Steering
Committee.

[7] Quan Chen, Panagiotis Ilia, Michalis Polychronakis, and Alexandros
Kapravelos. Cookie swap party: Abusing first-party cookies for web track-
ing. In Proceedings of the Web Conference 2021, WWW ’21, page 2117–2129,
New York, NY, USA, 2021. Association for Computing Machinery.

[8] Imane Fouad, Cristiana Santos, Arnaud Legout, and Nataliia Bielova. My
Cookie is a phoenix: detection, measurement, and lawfulness of cookie
respawning with browser fingerprinting. In PETS 2022 - 22nd Privacy
Enhancing Technologies Symposium, Sydney, Australia, July 2022. Privacy
Enhancing Technologies Symposium.

[9] Richard Gomer, Eduarda Mendes Rodrigues, Natasa Milic-Frayling, and
M.C. Schraefel. Network analysis of third party tracking: User exposure to
tracking cookies through search. In 2013 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technolo-
gies (IAT), volume 1, pages 549–556, 2013.

[10] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the fin-
gerprinters: Learning to detect browser fingerprinting behaviors. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1143–1161. IEEE,
2021.

[11] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher
Kruegel, Frank Piessens, and Giovanni Vigna. Cookieless monster: Ex-
ploring the ecosystem of web-based device fingerprinting. In 2013 IEEE
Symposium on Security and Privacy, pages 541–555. IEEE, 2013.

[12] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos.
Cookie synchronization: Everything you always wanted to know but were
afraid to ask. In The World Wide Web Conference, WWW ’19, page
1432–1442, New York, NY, USA, 2019. Association for Computing Machin-
ery.

Final paper for CS-E4000 Seminar:
Neural video coding

Han Le
han.le@aalto.fi

Tutor: Matti Siekkinen

KEYWORDS: deep learning, neural networks, video coding, neural video

coding

1 Introduction

Due to the surge in online video content, developing video compression

systems capable of producing higher-quality frames within specific band-

width budgets is essential. In recent years, deep neural network-based

video coding (also known as neural video coding) has gained much re-

search attention. Many studies have proposed new deep learning tools,

showing that neural network-based video coding tools can outperform tra-

ditional and non-neural counterparts [1, 2, 3].

However, because of the fast development of neural network-based

video coding technologies and the emergence of research publications on

neural video codecs, an overview literature review of neural video cod-

ing and the recent advances in neural video coding is much appreciated.

Therefore, this seminar paper aims to introduce the fundamentals of neu-

ral video coding, focusing on end-to-end neural video coding (i.e., deep

schemes) instead of traditional video coding methods with deep learning-

based components (i.e., deep tools). In addition, the paper presents two

recent state-of-the-art studies of deep video coding.

This paper is organized as follows. Section 2 introduces the fundamen-

tals of video coding and common metrics for comparison of different video

codecs. Section 3 gives an overview of neural video coding. Section 4 in-

troduces two recent advanced neural video codecs, focusing on the quality

perspective. Finally, Section 5 provides concluding remarks on the semi-

nar paper.

2 Video coding

2.1 Video coding

Video coding is the foundational technology for computer vision and vi-

sual communication systems. According to Liu et al. [4], video coding

typically refers to the technology that compresses videos into binary code,

which is bits. This process aims to aid the storage and transmission of the

visual video content. Video compression algorithms require an encoder

to compress the video and a decoder to reconstruct the original video [5].

Together, the encoder and decoder form a codec.

Traditional video coding standards are developed on the predictive

coding scheme (also known as P-frame coding), where a video frame (which

is a picture) is decomposed into m × n pixels and the probability of each

pixel is estimated one by one in the raster scan order. This strategy is

illustrated in Figure 1.

Figure 1. Illustration of a typical predictive coding scheme [4], where the pixels are en-
coded and decoded one by one. As an example, to predict the pixel value of the
gray pixel xi in the illustration above, all the previous pixels (in green) can be
used as condition. The green area is called the context for pixel xi.

In predictive coding, video codec predicts the relevant contexts from

the previous reconstructed signals to reduce the spatial (intra-picture)

and temporal (inter-picture) redundancy [2]. The compression efficiency

of a codec relies on whether the current signal can find the relevant con-

texts from the previous reconstructed signals. Therefore, video codecs are

designed to exploit both spatial and temporal redundancies within and

across video frames to achieve high compression efficiency. A traditional

video coding tool using this strategy is the High-Efficiency Video Coding

(HEVC) Standard [6]. It is considered one of the standard non-neural

video coding tools and is often used in performance benchmarking studies

of neural networks-based counterparts [1, 2, 3].

According to Rippel et al. [3], typical predictive coding has two steps:

(1) motion compensation and (2) residual compression. Motion compen-

sation aims to reduce redundancy between consecutive video frames by

accounting for the motion between frames, e.g., the motion of the objects

and the camera. This process involves comparing blocks of target pixels

in the current frame, for example, xt for time step t, to those in previ-

ously transmitted reference frames and searching for the best match. The

resulting motion vectors are then used to reconstruct the current video

frame. After motion compensation, the difference between the original

target frame and its motion-compensated approximation mt is computed

as ∆t = xt−mt. This difference is called the residual and is encoded using

a compression algorithm tailored to the sparsity of the residual data.

2.2 Types of video compression

According to the review paper of Liu et al. [4], generally there are two

types of video compression. The first type is lossless coding, where the

goal of compression is the perfect reconstruction of video from the bits.

The second type is lossy coding, where the compression does not aim at

perfect video reconstruction. Why should we adopt such lossy compression

strategy?

Efficient transmission of a compressed video over wired and wireless

networks requires that the video is compressed at a ratio of hundreds

to thousands compared to its original form. However, the compression

ratios of existing lossless coding schemes are only approximately 1.5 to

3, which is way below the requirement ratio. Therefore, lossy coding is

used to increase compression ratio but at the trade-off of incurring loss.

The loss function is typically measured by mean squared error (MSE) to

describe the difference between original and reconstructed images. The

lower the loss is, the better. Then, the quality of the reconstructed image

compared with the original image can be computed by the Peak Signal-to-

Noise Ratio (PSNR):

PSNR = 10 log10
(max(D))2

MSE
, (1)

where D is the definition domain of a pixel and max(D) is the maximal

value in D. As an example, for an 8-bit grayscale image, D = {0, 1, . . . , 255},
therefore max(D) = 255. The greater the PSNR value, the higher the qual-

ity of the output image.

Liu et al. [4] suggest that to benchmark different lossless video coding

schemes, comparing the compression ratio or the resulting coding rate

(e.g., in bits per second) is enough. The lower the coding rate, the bet-

ter—because a video codec aims to encode video data in the lowest num-

ber of bits possible. On the other hand, to benchmark different lossy cod-

ing schemes, both rate and quality need to be considered, because of the

trade-off between compression ratios and error.

3 Introduction to neural video coding

Thanks to the rapid development of deep learning, neural network-based

video codecs [7, 2] have shown comparable or better performance than

standard, non-neural counterparts such as HEVC [6]. An advantage of

deep neural networks is the data processing capacity with many levels

of abstraction, and converting data into different kinds of representa-

tions [8]. As mentioned in the Introduction part, this paper focuses on

deep coding schemes, which are novel coding schemes that are primarily

built upon deep neural networks. In this section, we briefly introduce the

auto-encoder (which is commonly used in deep coding schemes) and rate-

distortion cost. The rate-distortion cost is an important metric, which is

commonly used for the performance evaluation of video codecs.

Auto-encoder is a neural network architecture proposed by Hinton and

Salakhutdinov [9]. Generally, the network has an encoding part and a de-

coding part and it is trained for dimensionality reduction. Fig. 2 presents

the transform coding scheme, which relies on the architecture of auto-

encoder.

In neural video compression, by considering the tradeoff between com-

pression rate and quality, the neural network is trained to minimize the

joint rate-distortion cost:

L = λD +R, (2)

where D is the difference (i.e., distortion) between the original image x

Figure 2. In a typical transform coding scheme [4], the original image x is transformed
by an analysis function ga to y = ga(x). The code y is quantized (denoted by q)
and coded into bits. Here, the coding rate R is measured by the number of bits.
The quantized code ŷ is then inversely transformed by a synthesis function gs

to achieve the reconstructed image x̂. Both x and x̂ are then transformed by a
perceptual function gp into z and ẑ. The difference between z and ẑ is used to
measure the distortion D.

and the transformed image x̂. D can be measured by a loss function such

as MSE (mean squared error) or MS-SSIM (multiscale structural similar-

ity) [10]. λ is the Lagrange multiplier which controls the trade-off between

the distortion D and the coding rate R.

4 Recent advances in neural video coding

This section briefly introduces recent works on end-to-end deep learning-

based video coding in the past five years. Specifically, we will get an

overview of two paradigms of deep video coding schemes in recent years,

namely residual coding and conditional coding. For residual coding, we

use the study by Djelouah et al. [11] in 2019 as an example. For residual

coding, we use the study by Djelouah et al. [12] in 2021 as an example.

In the research publications using residual coding and conditional coding,

each video codec is compared to other state-of-the-art neural and non-

neural codecs at that time. For the comparison metric, the rate-distortion

cost and PSNR are emphasized.

4.1 Residual coding

Residual coding generates a predicted frame in the pixel domain as the

context and only uses subtraction to remove redundancy. A highlighted

study in 2019 on residual coding is by Djelouah et al. [11], who propose

an end-to-end deep learning codec that interpolates the predicted frame

from previous frames and future frames, and then the frame residue is

encoded. Three datasets are used for benchmarking: VTL, UVG [13], and

MCL-JCV [14]. Both high-quality UVG (Ultra Video Group) dataset and

MCL-JCV dataset (which are common datasets used for comparing video

codecs) have a resolution of 1920 × 1080 with a large variety of motion

and content.

As a result [11] in Fig. 3, the rate-distortion performance of their neu-

ral video codec (marked as green line) on different datasets and resolu-

tions is competitive with state-of-the-art video codecs by that time, in-

cluding DVC [7] (which is an end-to-end deep video coding scheme that

"deepens" the traditional video coding schemes).

Figure 3. Compression results on three different video datasets using a key-frame inter-
val of 12 frames [11].

4.2 Conditional coding

Figure 4. Schematic comparison between residual coding and conditional coding [12].
The current frame is marked as xt. x̂t is the current decoded frame and x̂t−1

is the previous decoded frame.

The second category, conditional coding, implicitly learns feature do-

main contexts. The high-dimension contexts can carry richer information

to facilitate encoding and decoding. Recent works have shown that condi-

tional coding can outperform residual coding. Li et al. [12] proposed the

DCVC framework (which is on the right side of Fig. 4) to learn feature

domain contexts to increase context capacity. They define the condition

as learnable contextual features with arbitrary dimensions that may be

useful to compress the current frame. The contextual information is used

as part of the input of contextual encoder, contextual decoder, as well as

the entropy modeling (marked in orange).

As a result [12] in Fig. 5, the rate-distortion of DVCVC (which is mea-

sured by PSNR) on different datasets and resolutions is competitive with

state-of-the-art video codecs by that time, including DVC [7] and DVCPro.

Figure 5. PSNR and bitrate comparison in [12]. The horizontal axis is bits per pixel
(BPP) representing bitrate cost and vertical axis is PSNR representing recon-
struction quality.

5 Conclusion and limitations

This paper has reviewed the basics of video coding and neural-based video

coding and its advances in the past few years. Residue coding-based

framework assumes the inter-frame prediction is always the most effi-

cient, which might be inadequate, especially for encoding new contents.

By contrast, conditional coding enables the adaptability between learn-

ing temporal correlation and learning spatial correlation. However, many

neural codecs are still too computationally expensive to be applied to real-

life settings, especially on mobile devices. Further research on practi-

cal neural codecs and benchmarking neural compression algorithms on-

deviceare are needed.

References

[1] F. Mentzer, G. Toderici, D. Minnen, S.-J. Hwang, S. Caelles, M. Lucic,
and E. Agustsson, “VCT: A video compression transformer,” arXiv preprint
arXiv:2206.07307, 2022.

[2] J. Li, B. Li, and Y. Lu, “Neural video compression with diverse contexts,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 22616–22626, 2023.

[3] O. Rippel, S. Nair, C. Lew, S. Branson, A. G. Anderson, and L. Bourdev,
“Learned video compression,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 3454–3463, 2019.

[4] D. Liu, Y. Li, J. Lin, H. Li, and F. Wu, “Deep learning-based video coding: A
review and a case study,” ACM Computing Surveys (CSUR), vol. 53, no. 1,
pp. 1–35, 2020.

[5] C.-Y. Wu, N. Singhal, and P. Krahenbuhl, “Video compression through image
interpolation,” in Proceedings of the European conference on computer vision
(ECCV), pp. 416–431, 2018.

[6] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high
efficiency video coding (HEVC) standard,” IEEE Transactions on circuits
and systems for video technology, vol. 22, no. 12, pp. 1649–1668, 2012.

[7] G. Lu, W. Ouyang, D. Xu, X. Zhang, C. Cai, and Z. Gao, “DVC: An end-to-
end deep video compression framework,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 11006–11015,
2019.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[9] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality as-
sessment: from error visibility to structural similarity,” IEEE transactions
on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[11] A. Djelouah, J. Campos, S. Schaub-Meyer, and C. Schroers, “Neural inter-
frame compression for video coding,” in Proceedings of the IEEE/CVF inter-
national conference on computer vision, pp. 6421–6429, 2019.

[12] J. Li, B. Li, and Y. Lu, “Deep contextual video compression,” Advances in
Neural Information Processing Systems, vol. 34, pp. 18114–18125, 2021.

[13] A. Mercat, M. Viitanen, and J. Vanne, “Uvg dataset: 50/120fps 4k sequences
for video codec analysis and development,” in Proceedings of the 11th ACM
Multimedia Systems Conference, pp. 297–302, 2020.

[14] H. Wang, W. Gan, S. Hu, J. Y. Lin, L. Jin, L. Song, P. Wang, I. Katsavouni-
dis, A. Aaron, and C.-C. J. Kuo, “MCL-JCV: a JND-based H.264/AVC video
quality assessment dataset,” in 2016 IEEE international conference on im-
age processing (ICIP), pp. 1509–1513, IEEE, 2016.

User engagement in wearable
technology

Hang Le
hang.1.le@aalto.fi

Tutor: Sanna Suoranta

Abstract

KEYWORDS: mobile health applications, user engagement, user motiva-

tion, wearable technology

1 Introduction

Currently, wearable technology has gained widespread popularity, becom-

ing integral to various aspects of daily lives. The wearable market is pro-

jected to reach 160 billion dollars by 2026 [1]. While individuals initially

embrace these devices with excitement, there is a recurring trend where

this enthusiasm tends to wane over time. One study revealed that one-

third of American users discontinue the use of wearable products within

six months of acquiring them [3]. In an aging society, where health and

fitness play crucial roles in maintaining well-being, understanding the

factors that sustain user engagement in wearable technology becomes one

of the key focuses.

As people age, the desire to stay physically active becomes increas-

ingly important for overall health. Wearable devices can support users to

monitor and encourage exercise routines. However, the challenge lies in

using the elements that contribute to sustained engagement over the long

term. What motivates users to continue using these devices and adhering

to their exercise routines?

This paper analyses existing research and experiments, leveraging

data collected from wearable technology, to investigate the key compo-

nents that keep users motivated and engaged. By examining various

studies and real-world experiments, the goal is to identify successful strate-

gies as well as potential shortcomings in current wearable technology ap-

proaches. Understanding these nuances is important for designing fu-

ture iterations of devices and applications that not only capture users’

initial excitement but also maintain their interest and commitment over

extended periods.

This paper is organized as follows. Section 2 describes the concepts

of user engagement and motivation within wearable technology. Fur-

thermore, this section also examines some established frameworks and

methodologies for quantifying user engagement. Section 3 discusses el-

ements that have yielded positive outcomes in maintaining user motiva-

tion. Section 4 discusses elements that, on the other hand, discourage

users from engaging with wearable technology. Section 5 provides a dis-

cussion that reflects the author’s perspective on the subject of this paper

as well as proposing potential directions for future research and develop-

ment. Finally, Section 6 offers concluding remarks, summarizing the key

findings in the field of wearable technology and user motivation.

2 Concepts of wearable technology and user engagement

Wearable technology has advanced significantly. This section explores the

concepts of wearables in healthcare and user engagement. Additionally,

it examines frameworks for evaluating user experience in wearable tech-

nology, highlighting the importance of user-centric design.

2.1 Wearable technology

The concept of wearable computers dates back to 1955 when Edward

Thorp and Claude Shannon developed a device intended to forecast roulette

results in Las Vegas[2]. Progress continued with experiments in smart

glasses and helmets in the 1960s, assisting photographers in the 1970s,

and developing augmented reality and smart shirts in the 1980s and

1990s [2].

In the context of health care, this paper focuses on wearables that al-

low users to collect and centralize all health and fitness data conveniently.

Wearable technologies can be classified into two types [4]. Primary de-

vices function autonomously and act as central hubs for connecting with

other devices or accessing information. Examples include wrist-worn fit-

ness trackers and smartphones. Secondary devices are intended to record

specific actions or measurements, such as chest-worn heart rate monitors.

These secondary devices then transmit the collected data to a primary

wearable device for analysis [4].

2.2 User engagement

User engagement, according to Lalmas et al, [6] refers to the depth of a

user’s positive interaction with an online application, characterized by a

willingness to continue using and return to the application. This concept

is important in the design of online platforms across various devices since

successful applications garner not just usage, but active engagement [6].

Engaged users devote their time, attention, and emotional investment,

aiming to fulfill both practical and pleasurable needs [6].

2.3 Frameworks in measuring user experience in wearable
technology

As illustrated by Kim et al [7], the framework for evaluation of wearable

devices follows product design space and evaluation factors. As depicted

in Figure 1, this framework evaluates the physical and functional aspects

of wearable technology in the context of user type, device type, task type,

and environment [7]. The emphasis here is on identifying and improving

design spaces to align with user values and enhance usability, hedonic,

and aesthetic qualities.

On the other hand, Asimakopoulos et al [8] examine the relationship

between user motivation, self-efficacy, and user experience with fitness

tracking mobile applications, using a diary study and validate question-

naires over a four-week period. Participants provide insights into their

engagement with the applications, revealing key motivational factors and

potential barriers to sustained use [8]. This framework employs a user-

centric research method, involving diary studies and questionnaires to

gauge self-efficacy and motivational factors affecting user engagement [8].

It highlights the importance of user feedback in understanding the effec-

Figure 1. Evaluation framework for wearable devices [7]

tiveness of wearable technology and the factors that motivate long-term

use.

Both of the aforementioned frameworks, while differing in method-

ology, underscore the necessity of integrating user feedback and design

considerations to foster a more engaging and valuable user experience.

This suggests that the focal point for measuring user engagement within

wearable technology is not only the functionality of the device but also the

user’s interaction with the device, which is shaped by individual motiva-

tions, habits, and the context of use.

3 Elements that support user engagement in wearable
technologies

The integration of wearable technologies in healthcare settings necessi-

tates a deep understanding of the factors that sustain user engagement.

This section describes some of the important elements that maintain user

engagement in wearable technology within healthcare contexts. The dis-

cussed elements include clearly defined problem, empowerment through

diagnosis and behavior change, and comfortable design.

3.1 Clearly Defined Problem

According to Smuck et al [9], one of the first focus for wearable technolo-

gies is addressing specific healthcare challenges to maintain user interest

and engagement effectively. For instance, some physicians in this study

identify issues that limit the effective management of diabetes and hyper-

tension, such as variability in core disease measures obtained outside of

clinical settings [9]. They develop solutions, including wearables, as part

of larger digital health programs to address these challenges [9]. By align-

ing the features and functionalities of wearables with distinct healthcare

issues, developers can ensure that users find value and relevance in using

these devices.

3.2 Empowerment through Diagnosis and Behavior Change

An interesting finding is that wearables that have the ability facilitat-

ing diagnosis, encouraging behavior change, and enabling self-monitoring

tend to exhibit higher levels of user engagement [10]. Wearable devices

provide a safe space for users to continue striving towards their goals,

even if they experience setbacks, which helps to create an internal drive

to remain dedicated and committed [5]. By offering features that empower

users to take control of their health through real-time data insights and

actionable feedback, wearables become indispensable tools that users ac-

tively engage with to improve their well-being.

3.3 Comfortable Design

As wearables have direct contact to human skin, "comfort-of-wear" is im-

portant for designing wearables that could encourage user’s willingness to

engage with wearables over time [12]. Factors such as adhesion, breatha-

bility, thermal management, soft power and signal processing [12] should

be considered when designing a device. Moreover, factors such as colors

and sizes of wearables have an influence on usage [11].

By focusing on these positive elements, developers and healthcare pro-

viders can optimize the retention of user interest in wearable technologies

within healthcare settings, ultimately improving health outcomes and en-

hancing the overall user experience.

4 Challenges that hinder users from engaging with wearable
technology

This section describes some of the barriers that users face when engaging

with wearable technology. Through an examination of challenges such

as psychological safety, environmental factors and affordability, one may

gain more insights into the challenges that users encounter. These in-

sights aid developers in producing more effective and user-centric devices,

thereby enhancing adoption and utility of wearables in healthcare and

daily life.

4.1 Psychological safety

Trust emerges as a central theme, with participants emphasizing the im-

portance of safety and confidence in wearable technologies [13]. Safety

and trust were key considerations for both patients and health providers

in relation to telemonitoring devices, in an experiment by Ferguson et

al [13]. Participants highlighted the devices’ impact on communication,

health promotion, and disease detection [13]. Montgomery et al [14] found

that wearables have the potential to address certain public health is-

sues. However, they also highlight significant privacy concerns due to

the possibility of combining the collected data with personal information

from other sources, which could lead to the creation of discriminatory pro-

files, manipulative marketing tactics, and data breaches. Excessive self-

monitoring may also have negative consequences, as reported in studies

of type 2 diabetics where patients found the data provided by wearables

uncomfortable, intrusive, and unpleasant [15].

4.2 Environmental factors

Interestingly, a study found that weather conditions such as tempera-

ture and sunshine, as well as certain weekdays have a notable influence

on wearable usage patterns [16]. Participants in the study tend to use

the wearable device less during days with extreme temperatures [16].

For example, physical activity reduces on days where the temperature is

higher than 25 Celcius degrees [16]. Additionally, the study observes that

weather conditions with a few hours of sunshine and moderate tempera-

tures result in more wearable usage compared to days completely absent

of sunshine [16]. The study also reveals a decrease in wearable device

usage on weekends, particularly on Sundays and Saturdays, in contrast

to weekdays [16]. This decline in usage behavior on weekends suggests

that individuals are less inclined to wear the device during leisure days

compared to regular workdays.

4.3 Affordability

Multiple studies highlight affordability as a significant barrier to the adop-

tion of wearable technology. In a study conducted by the All of Us Re-

search Program, it was found that a considerable percentage of individu-

als expressed interest in fitness trackers but cited affordability as a reason

for not owning one [17]. In another study about the adoption of wearables

in the workplace, despite the willingness to invest in wearable technol-

ogy from the respondents, concerns about cost are evident [18]. For ex-

ample, some respondents express concerns about the initial investment

required to purchase the devices, as well as ongoing costs related to main-

tenance, software updates, and potential replacements [18]. Additionally,

in a study that aims at both users and non-users of wearable technology,

both groups highlight concerns about the expense of wearables compared

to the perceived benefits [19].

5 Discussion

This paper reviews the significance of addressing user engagement to sus-

tain long-term adoption and utilization of wearable technology in health

care context. By analyzing various factors that influence users both posi-

tively and negatively, this paper provides insights that could enhance user

experience and promote continued use of wearable devices.

The findings of this paper align with the broader inquiry into the fac-

tors that contribute to sustained engagement with wearable technology.

To keep a user engaged, some of the focus should be on having a clearly

defined problem, enabling diagnosis and behavior change for the users,

and comfortable design.

Moreover, this study resonates with existing research by emphasiz-

ing the importance of addressing barriers to engagement, such as users’

trust, affordability of the devices and external environmental factors such

as weather and sunshine. By acknowledging these challenges, developers

can refine their designs and functionalities to better align with user pref-

erences, thereby enhancing their satisfaction and adoption rates.

However, while this paper discusses several aspects of user engage-

ment in wearable technology, it also leaves some important questions

unanswered. For instance, further research is needed to explore the inter-

play between user engagement and health outcomes. Another intriguing

question is about the long-term impact of wearable technology on behav-

ior change and lifestyle modifications.

One demographic that could particularly benefit from the insights of

this paper is the elderly population, which is not only growing in numbers

but also facing an increasing demand for wearables. These devices are

particularly helpful for the elderly as they often experience a greater num-

ber of chronic health conditions [20]. Elderly individuals often require on-

going monitoring and management of conditions such as diabetes or car-

diovascular disease. For instance, consider a wearable glucose monitor-

ing device designed specifically for elderly individuals with diabetes. This

device incorporates features enabling precise and real-time glucose mon-

itoring, together with user-friendly interfaces, which provides actionable

insights and supports positive behavior change. Such devices have the

potential to empower elderly users in effectively managing their health

conditions.

On the market, there are several wearables that have incorporated

the findings from this paper to enhance their user experiences, one of the

well-known wearable devices in Finland is the Oura ring. The Oura ring

is designed to be sleek, lightweight, and unobtrusive, enabling users to

wear it comfortably during the day and night without interference [21].

By prioritizing comfort of wear, the Oura ring encourages continuous us-

age, enabling users to seamlessly integrate it into their daily routines

without disruption [21]. In terms of empowerment through diagnosis and

behavior change, the Oura ring utilizes advanced sensors to track vari-

ous physiological metrics, including heart rate variability, body tempera-

ture, and sleep patterns. By analyzing these data points, the Oura ring

provides users with valuable insights into their health and well-being,

empowering them to make informed decisions about their lifestyle and

behavior [22].

6 Conclusion

This paper overviews the significance of user engagement in wearable

technology in healthcare sector. It highlights the importance of positive

elements such as clearly defined problems, empowering features for di-

agnosis as well as behavior change and comfortable design. In addition,

the paper addresses barriers like trust, affordability, and environmental

elements such as weather. By examining various influencing factors, this

paper offers insights to improve user experience and extend user usage of

wearable technology.

References

[1] Jayathilaka, W. A. D. M., Qi, K., Qin, Y., Chinnappan, A., Serrano-García,
W., Baskar, C., . . . Ramakrishna, S. "Significance of Nanomaterials in Wear-
ables: A Review on Wearable Actuators and Sensors," *Advanced Materials*,
vol. 31, issue 7, article 1805921, 2019, doi: 10.1002/adma.201805921.

[2] Fernández-Carmés, T. M., Fraga-Lamas, P. "Towards the Internet of Smart
Clothing: A Review on IoT Wearables and Garments for Creating Intelligent
Connected E-Textiles," Electronics, vol. 7, issue 12, article 405, 2018, doi:
10.3390/electronics7120405.

[3] Lee, J., Kim, D., Ryoo, H.-Y., Shin, B.-S. "Sustainable Wearables: Wearable
Technology for Enhancing the Quality of Human Life," *Sustainability*, vol.
8, article 466, 2016, doi: 10.3390/su8050466.

[4] A. Godfrey, V. Hetherington, H. Shum, P. Bonato, N.H. Lovell, S. Stuart,
"From A to Z: Wearable technology explained," Maturitas, vol. 113, pages 40-
47, 2018, ISSN 0378-5122, July 2018, doi: 10.1016/j.maturitas.2018.04.012.

[5] Wulfovich, S., Fiordelli, M., Rivas, H., Concepcion, W., Wac, K. "I must try
harder: Design implications for mobile apps and wearables contributing to
self-efficacy of patients with chronic conditions". Frontiers in Psychology, vol.
10, article 2388, 2019, doi: 10.3389/fpsyg.2019.02388

[6] M. Lalmas, H. O’Brien, and E. Yom-Tov, "Measuring User Engagement".
Springer Nature, page 8, 2015, doi: 10.1007/978-3-031-02289-0.

[7] Y. W. Kim, S. H. Yoon, H. Hwangbo, and Y. G. Ji, “Development of a User Ex-
perience Evaluation Framework for Wearable Devices,” in Human Aspects of
IT for the Aged Population 2017. Lecture Notes in Computer Science, J. Zhou
and G. Salvendy, Eds., vol. 10298, Cham: Springer, 2017, doi 10.1007/978-3-
319-58536-9.

[8] S. Asimakopoulos, G. Asimakopoulos, and F. Spillers, “Motivation and User
Engagement in Fitness Tracking: Heuristics for Mobile Healthcare Wear-
ables,” Informatics, vol. 4, no. 1, page 5, January 2017, doi: 10.3390/infor-
matics4010005.

[9] Smuck M, Odonkor CA, Wilt JK, Schmidt N, Swiernik MA, "The emerging
clinical role of wearables: factors for successful implementation in health-
care", NPJ Digital Medicine. vol. 4, issue 1, page 45, March 2021, doi:
10.1038/s41746-021-00418-3.

[10] Kang HS, Exworthy M. "Wearing the Future-Wearables to Empower Users
to Take Greater Responsibility for Their Health and Care: Scoping Review.",
JMIR Mhealth and Uhealth, vol. 10, issue 7, identifer e35684, July 2022,
doi: 10.2196/35684.

[11] Auerswald, T., Meyer, J., von Holdt, K., Voelcker-Rehage, C. "Applica-
tion of activity trackers among nursing home residents—a pilot and feasi-
bility study on physical activity behavior, usage behavior, acceptance, us-
ability and motivational impact", International Journal of Environmental
Research and Public Health, vol. 17, issue 18, pages 1–21, 2020, doi:
10.3390/ijerph17186683.

[12] T. Shimura, S. Sato, P. Zalar, N. Matsuhisa, "Engineering the Comfort-of-
Wear for Next Generation Wearables", Advanced Electronic Materials, vol 9,
identifier 2200512, 2023, doi: 10.1002/aelm.202200512.

[13] Ferguson C, Hickman LD, Turkmani S, Breen P, Gargiulo G, Inglis SC.
"Wearables only work on patients that wear them: Barriers and facili-
tators to the adoption of wearable cardiac monitoring technologies", Car-
diovasc Digit Health Journal, vol. 2, issue 2, pages 137-147, Feb 2021,
doi:10.1016/j.cvdhj.2021.02.001

[14] Montgomery, K., Chester, J., Kopp, K. "Health Wearables Ensuring Fair-
ness, Preventing Discrimination, and Promoting Equity in an Emerging
Internet-of-Things Environment," Journal of Information Policy, vol. 8 (Spe-
cial Issue), pages 34–77, 2018, doi: 10.5325/jinfopoli.8.2018.0034.

[15] Piwek, Lukasz, Ellis, David, Andrews, Sally, Joinson, Adam. "The Rise
of Consumer Health Wearables: Promises and Barriers," *PLOS Medicine*,
vol. 13, article e1001953, 2016, doi: 10.1371/journal.pmed.1001953.

[16] Hendker, A., Jetzke, M., Eils, E., Voelcker-Rehage, C. "The Implica-
tion of Wearables and the Factors Affecting Their Usage among Recre-
ationally Active People," International Journal of Environmental Research
and Public Health, vol. 17, issue 22, article 8532, November 2020, doi:
10.3390/ijerph17228532.

[17] Holko, M., Litwin, T. R., Munoz, F., et al. "Wearable fitness tracker use in
federally qualified health center patients: strategies to improve the health
of all of us using digital health devices," npj Digital Medicine, vol. 5, article
53, 2022, doi: 10.1038/s41746-022-00593-x.

[18] Schall, M. C. Jr., Sesek, R. F., Cavuoto, L. A. "Barriers to the Adoption of
Wearable Sensors in the Workplace: A Survey of Occupational Safety and
Health Professionals," Human Factors, vol. 60, issue 3, pages 351-362, 2018,
doi: 10.1177/0018720817753907.

[19] Burford, K., Golaszewski, N. M., Bartholomew, J. "“I shy away from them
because they are very identifiable”: A qualitative study exploring user and
non-user’s perceptions of wearable activity trackers," Digital Health, vol. 7,
2021, doi: 10.1177/20552076211054922.

[20] Nasir, S., Yurder, Y. "Consumers’ and Physicians’ Perceptions about High
Tech Wearable Health Products," In Sener, S., Saridogan, E., Staub, S.
(Eds.), World Conference on Technology, Innovation and Entrepreneurship,
pages 1261–1267, Amsterdam, Netherlands: Elsevier Science Bv, 2015. doi:
10.1016/j.sbspro.2015.06.279.

[21] Oura, "Inside the Ring: Oura Horizon." Oura Blog, accessed on April 4th
2024, available at: https://ouraring.com/blog/inside-the-ring-oura-horizon/

[22] Oura. "The Oura Difference." Oura Blog, accessed on April 4th 2024, avail-
able at: https://ouraring.com/blog/the-oura-difference/

Perfecting the Orchestration of
Workflows in the context of
Microservices Architectures

Ionut, Groza
ionut.groza@aalto.fi

Tutor: Ylä-Jääski Antti

Abstract

This survey explores the central role of workflow orchestration in the con-

text of microservices. It begins with an overview of the evolution from

monolithic structures to the microservices paradigm, which brings sev-

eral opportunities in terms of agile development but imposes the chal-

lenges of distributed computing environments. Focusing on the commu-

nication patterns between microservices components, the survey contrasts

the orchestration and choreography methods, underlining their advan-

tages and limitations. The paper analyses two orchestration engine typolo-

gies: standalone serverful orchestrators and provider-hosted orchestrators,

along with their construction, advantages, and real-world usage scenar-

ios. Furthermore, it discusses emerging trends such as application-level

orchestrators and two novel technologies: Temporal and DF/Netherite,

highlighting their impact on workflow management as state-of-the-art or-

chestration engines. By synthesizing insights from existing literature and

recent advancements, this survey provides valuable perspectives for re-

searchers and organizations and aims at optimizing workflow orchestra-

tion within microservices architectures.

KEYWORDS: Workflow, Orchestration, Microservices, Distributed Systems.

1 Introduction

In the ever-evolving society, people automate tasks to avoid engaging in

trivial, side activities that make them lose focus of the intended outcome.

Businesses leverage task automation through software [5] to produce rev-

enue and advance society.

One approach to building task automation software is by adhering to a

method known as microservices architecture. The microservices architec-

ture [10] involves multiple smaller, specific, individual components that

communicate with each other to complete a task. There are two represen-

tative communication strategies between the components of a microser-

vices architecture: orchestration and choreography. Orchestration [17]

relies on a central entity to distribute tasks to the participating compo-

nents. Components emit events concerning their processing state. The

orchestrating unit understands the events and understands how to coor-

dinate the components toward the completion of a task. Choreography

[19] assigns this responsibility to the components themselves, which are

responsible for processing and delegating actions that are outside of their

scope to more specialized components.

The microservice architecture has gained increasing interest because

it enables rapid adoption of new business approaches and improved re-

source management, both human and computational. However, it implies

increased complexity related to the communication between the contain-

ing components [13]. Addressing these communication challenges is im-

portant, as unstable communication may prevent, or interrupt the suc-

cessful execution of a task, or produce unintended effects.

This paper analyzes orchestration typologies that ensure a set of tasks

is executed once and to completion despite communication failures.

Section 2 is a history outline. It discusses the adoption of microser-

vices and the communication patterns they involve. Section 3 presents

two typologies of orchestration mechanisms, their adoption, architecture

and a practical use-case scenario. Section 4 outlines the contributions

of this paper and provides links to other solutions that showcase similar

outcomes. Finally, Section 5 concludes the paper.

2 Background

Historically, software was designed around two large components describ-

ing the user interface and the system internals. This approach is known

as monolithic architecture [11]. Businesses are constantly evolving to re-

main relevant in the market. In a monolithic architecture, reacting to

changes is complex and lasting [18].

As a response, researchers created Service-Oriented Architecture (SOA)

[12] to deliver software agility in terms of development. Instead of one or

two large pieces of software, SOA consists of simpler services that can be

developed independently by smaller teams and combined to deliver new

functionalities [23]. The services communicate between themselves using

a central messaging unit and a specialized messaging protocol [11]. As the

application evolved, managing the communication component became too

complex, making it unusable for large-scale, real-world applications. The

issue became so serious that SOA started to be seen as a set of monolithic

applications [9].

In this context, the microservices architecture arises from the success-

ful implementations of SOA, as reported by the leading tech businesses

[18].

2.1 Microservices

In 2006, Amazon, a high-performing retail business, described how it dis-

engaged from a monolithic system and adopted a more distributed ap-

proach [9]. Similar to SOA, the method describes building around inde-

pendent, smaller services that can be improved upon iteratively, facilitat-

ing the adoption of new business ideas. Other leading companies as well

as prominent figures in the computer science field outlined and proved the

validity of the microservice architecture, arguing for better cohesion with

the underlying data storage, more clear boundary lines between teams,

faster deployments, and release cycles [9].

A further evolution in the context of distributed systems is serverless

computing, which offers a paradigm shift in how applications are devel-

oped, deployed, and managed. Similar to microservices, serverless com-

puting relies on decomposing applications into smaller, independent units

of functionality. However, unlike traditional microservices, serverless ap-

plications allow developers to focus on implementing the business logic,

while cloud providers abstract away infrastructure management and dy-

namically allocate resources to match demand. This approach simplifies

deployment and scaling and represents a lower cost proportional to re-

source usage [6].

Applications that adopt the microservices architecture inherit all the

benefits of a distributed system. At the same time, they also employ the

challenges related to such systems, including the complexity associated

with distributed transactions, and the necessity of compensating for fail-

ures, which can lead to performance issues or degraded quality [23].

2.2 Microservices Composition

One of the most significant challenges in a microservices architecture is

combining multiple components to accomplish a unified goal. The two pro-

posed methods to overcome the challenge of composition are choreography

and orchestration.

Choreography. In choreography, each service performs the business

logic independently [1]. The services emit events to communicate with

each other in a decoupled manner. Each service publishes events as they

drive their computation. Similarly, each service listens to events emitted

by other services and reacts accordingly.

Orchestration forces the components to communicate with a special-

ized entity, known as the orchestrator. The orchestrator communicates

with all the other components and controls the flow of the business pro-

cess.

In literature, choreography is almost always preferred over orchestra-

tion. In his book, Newman suggests that orchestrated components tend

to become smart ’god’ services that call on trivial CRUD (Create Read

Update Delete) services. Following Newman’s suggestion, such systems

develop into a set of monoliths with the added cost of composition [18].

Others see choreographed systems as event-driven and reactive while or-

chestrated systems are synchronous and follow a request/response com-

munication.

Recently, however, there has been an increased interest in orches-

trated systems, especially in the context of reliable or long-running work-

flows. Such processes often employ a technique that compensates for fail-

ing actions, known as Saga [21]. Richardson advises the adoption of or-

chestration for complex sagas, stating that choreography can only be em-

ployed in simple scenarios [20].

3 Workflow orchestrators

According to Souza et. al. [22], workflows are a group of tasks that ab-

stract a business process. In modern businesses, workflows tend to be

lasting or involve multiple services. These services that execute critical-

for-businesses workflows are often unreliable and involve complex steps.

As the workflows must be successful, the services must guard against

unexpected failures, such as requests that take too long to respond, in-

terrupted connections or network congestion. These types of issues are

usually overcome by timeouts and retries, which add a increasing com-

plexity to the workflow implementation and the infrastructure that exe-

cutes them.

Workflow orchestrators allow developers to express workflows in terms

of their business logic. They also simplify building and managing the in-

frastructure needed for detecting and recovering from failures. This sec-

tion presents two state-of-the-art orchestrators in the context of workflow-

based applications.

3.1 Standalone Serverful Orchestrator - Temporal

Usage

Temporal is employed in production by well-known companies including

Netflix, Stripe, Snap Inc. and Datadog, for writing workflow-based ap-

plications at scale. One of the advantages of Temporal is that it allows

writing workflows as code and it evolves around an active community fo-

rum, offering a better developer experience.

Architecture

The main components of a temporal system are workflows and activities,

workers and task queues, and the central temporal service.

Workflows are the main components of a temporal system. They rep-

resent business logic that oftentimes involves dependencies on multiple

systems that need to be handled reliably. A workflow is formed out of

steps, where each step could invoke other workflows or activities. The

workflows must be idempotent, as they may be rerun by the temporal

service in case of failures.

Activities. Actions that do not respond in a deterministic approach,

could be performed by activities. Common use cases for activities are ac-

cessing a database, calling an endpoint through the network or handling

Figure 1. Microservice Architecture with Temporal
[https://community.temporal.io/t/springboot-microservices-managed-by-
temporal-io-rabbitmq/1489/6]

randomness. These actions are not deterministic as, if executed twice,

they may not yield the same result. Determinism is important for reli-

able systems where certain steps can be executed multiple times because

it guarantees each step will be executed at least once.

Workers and Task Queues. Workers are the entities that run the

workflows and activities. Each worker listens to one or more task queues.

Task queues contain events that instruct the worker what step they need

to execute at a certain time.

Temporal Service is the component that pushes events about the

state of the workflow execution to the task queues. For security reasons

and for maintaining a loose coupling between logic and infrastructure, the

temporal service does not execute any application logic but rather sched-

ules the steps that need to be executed by the workers so that a workflow

completes reliably. The orchestration takes place at the temporal service

level. At any point in time, the service is aware of the current state of the

application including the steps that need to be executed, the history of the

events and the map of relations between workers and task queues.

Use-case

Figure 1 depicts how Temporal can be adopted to manage microservices

composition.

The picture depicts two services that are responsible for implementing

the business logic. The temporal service maintains a pair of a task queue

and a worker for each business component. Another pair is deployed for

running a workflow that involves both business components. Mirroring

the online shop example, the workflow is initiated when the user places an

order on the website. The temporal service receives the event and starts

scheduling the tasks in the order they need to be executed by the workers.

At a closer look, this can include scheduling an activity to the storage

service to reserve the items and another one to the payments service to

charge the customer.

The temporal service performs the workflow execution using events

that are persisted in storage. This allows the temporal service to super-

vise the workflow execution and retry the same steps dictated by the his-

tory of events in case of unexpected failures. Other actions can be taken

in case of failure. These include timeouts, rate limiting, workflow cancel-

lation or marking an execution as idle in case of long-running workflows.

3.2 Provider-Hosted Orchestrator - DF/Netherite

Usage

Although not there yet, Temporal offers software as a service (SaaS) ser-

vices and it is in an ongoing process to support workflows running as

functions in cloud [4]. However, Researchers at Microsoft have already

seen the demand for running workflows serverless and have produced a

solution extending the durable function (DF) service. The solution is de-

ployed in production in nearly all applications built with DF, which count

for about 6% [7] of all serverless function apps deployed on Azure and it

is constantly improved upon, with specialized backend engines such as

Netherite [3].

Architecture

DF abstracts business functionality in work items. These can be simple

functions, usually stateless, or stateful functions, which require some sort

of storage to maintain their state. There are several approaches to imple-

menting serverful functions in the cloud. One example is Azure’s Durable

functions (DF) service, which enables stateful serverless functions, usu-

ally hiding event queues that keep the history of execution so it can be

reproduced in case of failures and the cloud storage where these persist.

By itself, DF can be seen as an orchestrator. It allows writing business

logic in terms of orchestrations, which are stateful functions. It allows the

adoption of an object-oriented approach through its entity framework. Or-

chestrations could be adopted for writing parallel tasks while entities cre-

ate a medium where operations that modify state are processed as serial

tasks. The orchestration is participates with the execution of workflows,

known as orchestrations in the DF, but similar to Temporal, the orches-

trator does not execute the tasks himself but rather schedules the tasks

that need to be executed.

In temporal, the workers are responsible for task execution. In DF,

tasks are executed as cloud functions, with the benefit of scaling high and

scaling to zero. Another novelty in DF is the extensibility of backend en-

gines. Netherite, for example, is a backend engine that improves latency,

throughput and cost, by using partitions, which abstract a set of stateful

instances [8, 7].

Use-case

The same e-commerce workflow can be implemented in DF. When the cus-

tomer checks out an order, DF starts a check-out orchestration, using

Azure functions, the Function as a Service (FaaS) implementation from

Microsoft. The check-out could invoke the price calculation orchestration,

the payment and the shipping orchestrations sequentially. The price cal-

culation orchestration could start three tasks in parallel for calculating

discounts, shipping prices and taxes. The event history is persistent at

every step, such that, if any of the invoked functions fails, the engine can

retry, or halt the workflow waiting for human interaction.

DF provides a many useful patterns, including function-chaining, branch-

ing, fan-in/fan-out, human interaction and timed invocations [2]. More-

over, as the workflow executes entirely on the cloud, it provides the ben-

efits of high scalability and availability and reduced cost, proportional to

the scalability rate.

4 Contribution and Further Reading

The main contribution of this paper is identifying the orchestrator typolo-

gies and providing contrasting information about the advantages, con-

struction and usage of each type. These typologies are brought into dis-

cussion after outlining the history of developing workflow-based applica-

tions, from monoliths to microservices and functions, where the latter two

demand a specific composition pattern, namely orchestration.

The two main typologies discussed are standalone serverful orchestra-

tors and provider-hosted orchestrators. Recently, researchers have inves-

tigated another typology, application-level orchestrator [16], which promises

the same correctness of execution as the existing engines, without an ex-

tra service that needs to be maintained and possibly paid for, and avoids

vendor lock-in as it is packaged as a runtime library.

All presented typologies are being continually improved upon. More-

over, In 2023, [15] introduced Composable Resilient Steps (CReSt) and

Deduplicated Asynchronously Recoverable Queues (DARQ) as a CReSt

implementation for building cloud-native applications. The authors ad-

vertise DARQ as being a foundational block for creating orchestrators

such as Netherite and Temporal.

Although they present benefits such as fault-tolerance, scalability, avail-

ability, ease of development and reduced cost, orchestration engines are

not built for systems that require low latency. Researchers continue to

investigate how orchestration engines can be optimized at each level to

correspond to the needs of low-latency systems with Nightcore [14] being

one such example.

5 Conclusion

In conclusion, workflow orchestration is a building block to implement-

ing efficient, scalable and reliable microservices solutions in modern soft-

ware development. This article has outlined the evolution of architectural

approaches, from monolithic structures to agile microservices, highlight-

ing the role of orchestration in designing seamless coordination and com-

munication between distributed components. Through the exploration of

various orchestration mechanisms, such as standalone serverful orches-

trators and provider-hosted orchestrators, the paper emphasizes the need

for robust solutions capable of ensuring the successful execution of com-

plex business processes.

Recent advancements in workflow orchestration technologies suggest

a promising trend for future innovation. This positions the field of work-

flow orchestration in the context of microservices architectures as a fertile

ground for further exploration within the science of software engineering.

References

[1] Choreography vs orchestration. https://theburningmonk.com/2020/08/choreography-
vs-orchestration-in-the-land-of-serverless/. Accessed: 2024-03-04.

[2] Durable functions. https://learn.microsoft.com/en-us/azure/azure-
functions/durable/. Accessed: 2024-04-04.

[3] Netherite. https://microsoft.github.io/durabletask-netherite//. Accessed:
2024-04-04.

[4] Temporal - support for serverless workflows.
https://community.temporal.io/t/support-for-serverless-workflow/8968.
Accessed: 2024-04-04.

[5] Rainer Alt, Jan Marco Leimeister, Thomas Priemuth, Stephan Sachse, Nils
Urbach, and Nico Wunderlich. Software-Defined business. Business &
Information Systems Engineering, 62(6):609–621, December 2020. doi:
10.1007/s12599-020-00669-6.

[6] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Alek-
sander Slominski, et al. Serverless computing: Current trends and open
problems. Research advances in cloud computing, pages 1–20, 2017.

[7] Sebastian Burckhardt, Badrish Chandramouli, Chris Gillum, David Justo,
Konstantinos Kallas, Connor McMahon, Christopher S Meiklejohn, and Xi-
angfeng Zhu. Netherite: Efficient execution of serverless workflows. Pro-
ceedings of the VLDB Endowment, 15(8):1591–1604, 2022.

[8] Sebastian Burckhardt, Chris Gillum, David Justo, Konstantinos Kallas,
Connor McMahon, and Christopher S Meiklejohn. Serverless workflows
with durable functions and netherite. arXiv preprint arXiv:2103.00033,
2021.

[9] C. Carneiro and T. Schmelmer. Microservices From Day One: Build robust
and scalable software from the start. Apress, 2016.

[10] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microser-
vices: Yesterday, today, and tomorrow. In Manuel Mazzara and Bertrand
Meyer, editors, Present and Ulterior Software Engineering, pages 195–216.
Springer International Publishing, Cham, 2017. doi: 10.1007/978-3-319-
67425-4_12.

[11] D. Gonzalez. Developing Microservices with Node.js. Community experi-
ence distilled. Packt Publishing, 2016.

[12] T.O. Group. SOA Source Book. TOGAF Series. van Haren Publishing,
2009.

[13] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan
Tilkov. Microservices: The journey so far and challenges ahead. IEEE
Software, 35(3):24–35, 2018. doi: 10.1109/MS.2018.2141039.

[14] Zhipeng Jia and Emmett Witchel. Nightcore: efficient and scalable server-
less computing for latency-sensitive, interactive microservices. In Proceed-
ings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 152–166, 2021.

[15] Tianyu Li, Badrish Chandramouli, Sebastian Burckhardt, and Samuel
Madden. Darq matter binds everything: Performant and composable cloud
programming via resilient steps. Proceedings of the ACM on Management
of Data, 1(2):1–27, 2023.

[16] David H Liu, Amit Levy, Shadi Noghabi, and Sebastian Burckhardt. Doing
more with less: orchestrating serverless applications without an orches-
trator. In 20th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 23), pages 1505–1519, 2023.

[17] Manuel Mazzara and Sergio Govoni. A case study of web services orchestra-
tion. In Coordination Models and Languages, pages 1–16. Springer Berlin
Heidelberg, 2005. doi: 10.1007/11417019_1.

[18] S. Newman. Building Microservices: Designing Fine-Grained Systems.
O’Reilly Media, 2015.

[19] C. Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, 2003. doi: 10.1109/MC.2003.1236471.

[20] C. Richardson. Microservices Patterns: With examples in Java. Manning,
2018.

[21] A. Rotem-Gal-Oz. SOA Patterns. Manning, 2012.

[22] Milton Secundino de Souza-Júnior, Nelson Souto Rosa, and Fernando An-
tônio Aires Lins. An execution environment as a service for adaptive long-
running workflows, March 2021. doi: 10.1108/ijwis-12-2020-0077.

[23] E. Wolff. Microservices: Flexible Software Architecture. Pearson Education,
2016.

Comparative study of the modern
cross-platform tools for mobile
application development

Isroilkhon Salikhodjaev
isroilkhon.salikhodjaev@aalto.fi

Tutor: Simo Aaltonen

Abstract

This article provides an overview and comparative analysis of three mod-

ern cross-platform mobile development technologies: React Native, Flutter,

and Kotlin Multiplatform. Each technology is examined in terms of its ar-

chitecture, advantages, drawbacks, and recommended use cases. React Na-

tive, relying on JavaScript ecosystem, offers rapid development and code

reusability. Flutter, built on Dart programming language, excels in per-

formance and user interface consistency. Kotlin Multiplatform, utilizing

Kotlin, enables code sharing while maintaining a native user experience.

Recommendations for technology selection are provided based on project

requirements and development priorities. As mobile development evolves,

informed decision-making and ongoing evaluation of these technologies

are essential for successful cross-platform application development.

KEYWORDS: Cross-platform, Mobile Applications, React Native, Flutter,

Kotlin Multiplatform

1 Introduction

In the last few years, smartphones have seen a rapid increase in usage

as a result of the technological advancements that make the devices ex-

tremely convenient to use. The demand for high-quality mobile applica-

tions has been steadily increasing ever since, prompting an increase in

application development tools. To simplify the development experience,

modern cross-platform frameworks have emerged, allowing developers to

utilise a unified code base for their applications. The most popular among

them are React Native, Flutter, and the newly released Kotlin Multiplat-

form. These frameworks mark a departure from the traditional practice

of having separate native code bases for iOS and Android applications.

The frameworks provide a better development and maintenance expe-

rience, but it often comes at a cost of performance efficiency. As a result,

developers are commonly faced with a challenge to decide whether the

ease of development outweighs the small decrease in application perfor-

mance. With an increase in popularity of the cross-platform solutions, it

becomes increasingly more important to carefully examine the strengths

and limitations of these frameworks to understand their intended use-

cases.

This paper provides a review of recent developments in the afore-

mentioned cross-platform solutions for mobile application development.

Specifically, the paper aims to provide a comparison between the capabil-

ities of each framework and to suggest use-case scenarios for each one.

This paper is organized as follows. Section 2 provides a general overview

and background of the leading cross-platform frameworks technologies.

Section 3 examines the architecture of each tool in more detail. Section

4 presents a discussion on particular strengths and shortcomings of each

framework based on the available literature to find a suitable use case for

each one. Finally, Section 5 provides conclusions based on the conducted

review.

2 Overview of cross-platform solutions

2.1 React Native

Released back in 2015, React Native is a cross-platform mobile appli-

cation development framework based on the existing React library for

JavaScript (JS)[3]. The framework allows developers to write a shared

JavaScript code both for Android and iOS platforms while keeping the

code structure akin to a web application. User interface (UI) elements in

React Native are created almost the same way as HTML components in

web applications, but the components are translated to native elements

during compilation. Cross-platform applications built with React Native

rely on an interpreter that executes the source code at runtime for the

target host platform.

Within the React Native ecosystem, developers can choose to utilise

the Expo development platform, which provides a set of tools built on top

of React Native to simplify building and distributing mobile applications

[6]. Expo abstracts away platform-specific Application Programming In-

terfaces (APIs) and instead provides a list of platform-agnostic APIs that

simplify the development process even further. However, such simplifi-

cation often comes at the cost of flexibility, as Expo offers only limited

support for platform native libraries.

2.2 Flutter

Flutter is a cross-platform software development kit developed by Google

and released in 2017 [14]. Unlike React Native, Flutter uses Dart pro-

gramming language for creating and managing application UI. Flutter

uses its own set of customisable widgets for creating UI elements, so mo-

bile applications written with Flutter do not rely on native components.

As a result, applications tend to look and behave identical across the plat-

forms. Flutter offers a straightforward way for developers to create re-

sponsive and customisable applications.

Flutter’s distinct feature is its own rendering engine, which is used to

create the UI components for the application [11]. Instead of using the

platform’s native components, Flutter’s engine relies on special "Canvas"

elements to precisely draw requested widgets. Thanks to this approach,

cross-platform applications made with Flutter tend to look and behave

identically across different platforms, as the engine is made to control

every pixel on screen.

2.3 Kotlin Multiplatform

Kotlin Multiplatform (KMP) is a tool developed by JetBrains that allows

developers to have a shared Kotlin module that is used both by Android

and iOS applications [10]. According to JetBrains, KMP aims to reduce

time and effort spent on maintaining two entirely separate projects while

maintaining flexibility of native application development. This is typically

Figure 1. React Native Bridge communication

achieved by delegating the application’s business logic to a shared Kotlin

module while keeping the corresponding UI elements as native.

In addition to KMP, JetBrains also provides the Compose Multiplat-

form framework for creating a common UI for different platforms in a

declarative manner [7]. This framework is based on the existing Jetpack

Compose toolkit, which provides a modern way for managing UI compo-

nents in native Android applications. At the time of writing this paper,

Compose Multiplatform have not yet reached the production-ready sta-

tus, so it is deemed to be out of scope for this work.

3 Evaluation

A good starting point for evaluating each technology’s capabilities is to

analyse their architecture. This paragraph aims to provide an outline of

platform architecture and application structure that comes together with

each of the discussed cross-platform tool.

3.1 React Native architecture

Traditionally, React Native applications consist of two main components:

JS bundle and native module, each running on a separate thread. The JS

bundle, also known as the JS virtual machine, is mainly responsible for

processing the application’s business logic written in JavaScript. The na-

tive module, on the other hand, is responsible for handling the incoming

commands from the JS bundle thread to perform the native platform’s op-

erations. These two components are able to communicate with each other

thanks to React Native’s special Bridge component [4]. This communica-

tion model is illustrated in the Figure 1.

The Bridge component utilises asynchronous communication model for

transferring messages between the JS and native modules. The messages

themselves are encoded in a JSON format before being sent to the other

side. The content of messages includes UI components that need to be

Figure 2. Flutter architecture

drawn, network requests that rely on platform’s engine, and various touch

events initiated by the application’s user.

Starting from the version 0.68 released in 2022, React Native team

introduced an alternative approach to the bridge architecture called the

JavaScript Interface (JSI). With this new model, the JS thread no longer

needs to rely on the bridge to transport json-encoded messaged to the na-

tive side. Instead, the JS thread now has access to the JSI layer, written

typically in C++, through which the native functions can be called directly.

This is achieved by having an intermediate object which holds a reference

to the requested function. The JSI architecture allows the native and JS

parts of the application to communicate synchronously without an addi-

tional overhead that is required for bridge communication. [5]

3.2 Flutter architecture

Flutter architecture consists of three main parts: embedder, engine, and

framework. The embedder acts as an entry point for flutter applications

and is responsible for coordination with the underlying operating system

of the device. The engine, written in C and C++, provides a set of low-level

APIs that form a core of each Flutter application. Finally, the framework,

implemented in Dart, includes the Flutter UI components alongside a rich

set of libraries and packages. Flutter developers primarily interact with

the framework components, though it is possible to access the engine APIs

through a package that wraps C++ code into Dart classes [9]. A high-level

overview of Flutter’s architecture is shown in the Figure 2.

Unlike React Native, which utilises interpreted approach, Flutter re-

lies on cross-compilation for executing applications in the target platform.

With this approach, a special cross-compiler is used for compiling applica-

tion’s source code into executable binaries for desired operating systems.

Flutter achieves this by using Android’s Native Development Kit (NDK)

and iOS’s Low-Level Virtual Machine (LLVM) to compile the C/C++ code

generated by the Flutter engine. [15]

Figure 3. Kotlin Multiplatform project architecture

3.3 Kotlin Multiplatform architecture

Kotlin Multiplatform projects usually consist of three separate modules:

the Android native part (androidMain), the iOS native part (iosMain),

and the shared Multiplatform part (commonMain). The Android and iOS

parts contain the corresponding native code that developers decide to keep

separate. Such code typically is typically limited to platform-specific APIs

and UI elements, but developers are free to keep other parts of the ap-

plication separate as well. The Multiplatform part is intended to include

parts of code which is not inherent to the specific platform’s implementa-

tion. This includes but not limited to network and database operations

along with class and interface logic. The shared module itself is divided

into common Android, common iOS, and overall common parts for cases

when platform-specific API calls are needed from within the Multiplat-

form code [12]. This architecture is presented in the Figure 3.

Similar to Flutter, Kotlin Multiplatform makes use of the cross-compilation

approach for running the applications. During the build process, appli-

cations targeting Android are compiled using the Kotlin/JVM platform,

while applications targeting iOS are built with Kotlin/Native technology.

Using Kotlin/JVM, Multiplatform applications are built with the same

technology as normal native Android applications due to Kotlin’s complete

interoperability with Java. Kotlin/Native, on the other hand, is based on

the LLVM technology, which allows developers to build native binaries

that can be executed without a separate VM. [10]

4 Discussion

Each cross-platform development solution has its own set of advantages

and disadvantages, so it is crucial for mobile application developers to

make informed decisions when choosing the development technology. This

sections aims to present an overview for a selection of qualities inherent

to each of the discussed technology.

4.1 React Native

React Native’s great advantage compared to other technologies is its JavaScript

runtime. Because of this, the technology was exposed to an ever-increasing

JavaScript ecosystem from its start. Moreover, React Native’s similarity

to the React library on the web makes it a perfect starting point for trans-

forming an existing web application into a mobile native one. If the target

application does not require complex platform-specific operations, the de-

velopment process can be expedited even further by utilising the Expo

platform [2].

The development speed offered by React Native might be enough of a

factor to co, but it may also lead to some unwanted consequences. Firstly,

the application performance might be slowed down due to the additional

overhead from the React Native architecture. While this can be mitigated

by making use of the JavaScript Interface, a portion of applications and

third-party packages in React Native ecosystem are still reliant on the

older bridge component. This performance degradation can be particu-

larly noticeable on devices with older hardware, as reported in [4].

Additionally, maintaining existing React Native applications may pose

certain challenges for developers, especially when it comes to package ver-

sion updates. The problem is often caused by certain third-party packages

that introduce breaking changes to their code, which makes them incom-

patible with other libraries used in the application [13]. Because of this,

React Native developers often need to maintain a careful versioning sys-

tem in order to lessen the impact of such updates, which may lead to some

decrease in the development speed.

4.2 Flutter

Flutter offers several great advantages compared to other similar tech-

nologies in cross-platform development field. Applications built with Flut-

ter often display increased consistency and reliability in their behavior.

This quality is achieved thanks to Flutter’s engine rendering own compo-

nents without relying on native components. Additionally, UI components

made with Flutter can be customised to great extent, which is often seen

as a desirable feature in cross-platform frameworks.

Another notable feature of Flutter applications is the performance

speed. Flutter’s reliance on the cross-compilation approach for building

mobile applications provides an improved performance, which at times

can be comparatively close to native application performance. [8]

As with every other technology, there are several caveats that need to

be considered when discussing Flutter’s characteristics. For instance, the

Dart programming language has little usage outside of the Flutter frame-

work, so using Flutter necessitates a certain learning curve for developers

who are not already familiar with Dart. Furthermore, Flutter applica-

tions tend to have a larger final build size and increased random-access

memory consumption, as reported in [1]. Such increased resource con-

sumption may not be desirable for applications that require performance-

heavy operations.

4.3 Kotlin Multiplatform

KMP’s primary appeal lies in the fact that a large portion of modern na-

tive Android applications are already written in Kotlin, so the shared

module automatically offers a complete interoperability with the Android

ecosystem. In practice, this means that Android applications that make

use of the KMP modules have no additional overhead, as the shared code

by default works the same way as native code. As analysed in [12], KMP

code on iOS platform can perform on par or even faster than the native

Swift code, though it is shown to consume higher amount of memory in

the process.

Kotlin Multiplatform stands out among other cross-platform technolo-

gies in that it does not aim to reduce the entire application structure to

a single codebase. Rather, it provides developers a flexibility to have a

shared module only for desired parts of the application. As a result, de-

velopers can introduce the Multiplatform code to existing native applica-

tions incrementally, without having to rewrite everything from scratch.

This also gives an option to keep the performance-critical parts of appli-

cation in native code, thus avoiding additional overhead that comes with

other cross-platform tools.

On the other hand, having separate Android and iOS codebases in-

evitably requires expertise in more than one programming language, which

in case of KMP is Kotlin and Swift. Because of this, the learning curve

for KMP might be the largest among cross-platform frameworks. Kotlin

Multiplatform is also the newest among the discussed technologies, so the

KMP ecosystem is not yet as rich as the ones in React Native or Flut-

ter. The majority of Kotlin libraries for native Android predicate on the

Kotlin/JVM APIs, which makes it incompatible with Kotlin/Native by de-

fault. Therefore, maintainers of open-source libraries need to put extra

effort to ensure that their package is Multiplatform-compatible.

4.4 Recommended use cases

It is clear that all cross-platform solutions have their own unique charac-

teristics, so there are distinct situations in which employing a particular

technology is optimal. These situations depend on the nature of the tar-

get application, the skill set of developers working on the project, and

the existing codebase of the project as a starting point. For example, if

the desired mobile application needs to be created from the start, and

the nature of the application is not remarkably complex, developers can

choose the utilise React Native or Flutter frameworks. Between the two,

React Native might be the better option if developers have expertise in

web development technologies like React, and Flutter can be utilised for

other cases. On the other hand, for projects with already existing native

codebase, introducing KMP can result in reduced work efforts for the ap-

plication, as KMP allows to reuse shared Kotlin code across the platforms.

5 Conclusion

In conclusion, this paper has explored and compared three prominent

modern cross-platform mobile development technologies: React Native,

Flutter, and Kotlin Multiplatform. Each technology offers unique fea-

tures and capabilities, catering to different development scenarios and

project requirements. React Native provides a great increase in develop-

ment speed for application thanks to its reliance on JavaScript ecosystem.

Flutter, on the other hand, excels in providing highly customisable UI ex-

perience without a big compromise in application performance, while still

maintaining a single shared codebase both for Android and iOS platforms.

Finally, Kotlin Multiplatform, leveraging Kotlin as its primary language,

shines in enabling code sharing between platforms while also maintain-

ing a native user experience when necessary, thus providing a balanced

approach to cross-platform development.

The selection of the technology for mobile application development pri-

marily depends on the specific needs and goals of the project. More impor-

tantly, the choice of technology should align with the development team’s

knowledge and experience in order to ensure a better development and

maintenance experience. It is also important to note that the mobile de-

velopment landscape continues to evolve rapidly, so each technology has

the potential to improve upon its existing drawbacks. Therefore, ongo-

ing evaluation and analysis of these technologies is crucial for facilitating

successful delivery of cross-platform mobile applications.

References

[1] Hugo Allain et al. Improving productivity and reducing costs of mobile app
development with flutter and backend-as-a-service. Master’s thesis, 2020.

[2] Andreas Biørn-Hansen, Christoph Rieger, Tor-Morten Grønli, Tim A Ma-
jchrzak, and Gheorghita Ghinea. An empirical investigation of performance
overhead in cross-platform mobile development frameworks. Empirical
Software Engineering, 25:2997–3040, 2020.

[3] Bonnie Eisenman. Learning React Native: Building native mobile apps
with JavaScript. " O’Reilly Media, Inc.", 2 edition, 2017.

[4] Rasmus Eskola. React native performance evaluation. July 2018.

[5] Timur Fatkhulin, Rafif Alshawi, Alena Kulikova, Alexander Mokin, and
Anna Timofeyeva. Analysis of software tools allowing the development of
cross-platform applications for mobile devices. In 2023 Systems of Signals
Generating and Processing in the Field of on Board Communications, pages
1–5, 2023.

[6] Hugo Hutri. Comparison of react native and expo. 2023.

[7] JetBrains. Compose multiplatform. JetBrains: Developer Tools for Profes-
sionals and Teams.

[8] Wellington Oliveira, Bernardo Moraes, Fernando Castor, and João Paulo
Fernandes. Analyzing the resource usage overhead of mobile app devel-
opment frameworks. In Proceedings of the 27th International Conference
on Evaluation and Assessment in Software Engineering, EASE ’23, page
152–161, New York, NY, USA, 2023. Association for Computing Machinery.

[9] Matilda Olsson. A comparison of performance and looks between flutter and
native applications: When to prefer flutter over native in mobile application
development. 2020.

[10] Nagy Robert. Simplifying Application Development with Kotlin Multiplat-
form Mobile: Write Robust Native Applications for IOS and Android Effi-
ciently/Robert Nagy. Birmingham Packt Publishing, Limited, 2022.

[11] Kewal Shah, Harsh Sinha, and Payal Mishra. Analysis of cross-platform
mobile app development tools. In 2019 IEEE 5th International Conference
for Convergence in Technology (I2CT), pages 1–7, 2019.

[12] Anna Skantz. Performance evaluation of kotlin multiplatform mobile and
native ios development in swift. July 2023.

[13] Farzaneh Tajik and Josefin Lindström. Swift vs react native: A perfor-
mance comparison for automatization of gamification using qr-codes. Octo-
ber 2023.

[14] Eric Windmill. Flutter in action. Simon and Schuster, 2020.

[15] Wenhao Wu. React native vs flutter, cross-platforms mobile application
frameworks. March 2018.

A Survey of Clustering: Algorithms and
Optimization

Jiaqi Chen
jiaqi.chen@aalto.fi

Tutor: Parinya Chalermsook

Abstract

Clustering is the process of grouping similar objects based on inherent

patterns or similarities. It plays an important role in data mining re-

search and application, helping with understanding various phenomena.

This paper presents an overview of typical clustering algorithms and their

strengths and weaknesses, summarizes common measurement metrics for

clustering problems and discusses the challenges of clustering algorithm

design.

KEYWORDS: Clustering, Clustering algorithm, Clustering measurement

1 Introduction

Clustering is a widely used method in various areas, including machine

learning, data science and statistics. This method refers to dividing ob-

jects into subsets based on their inherent similarities. According to dif-

ferent data types and application scenarios, researchers can use different

clustering algorithms to discover the patterns within the data, thus ob-

taining a better understanding of their research objects.

No clustering algorithm can be generally used on all different types of

data or in all scenarios. When applying clustering algorithms to a specific

problem, the performance relies on many factors, such as data presenta-

tions, measurements, and the initial cluster state. With the rise of high-

dimensional and big data, effective clustering algorithms are needed to

handle more complex problems.

In order to provide references for employing, designing and improv-

ing clustering algorithms, this paper surveys theoretical developments

of clustering, with a focus on algorithmic and optimization challenges of

clustering problems.

The paper is structured as follows. Section 2 introduces some common

clustering algorithms and typical improvements on the algorithms. Sec-

tion 3 describes metrics for algorithm performance measurement. Section

4 analyses challenges in current clustering methods and discusses future

research trends in this field. Finally, Section 5 presents the conclusion.

2 Clustering algorithms

2.1 Center-based clustering

Center-based algorithms are designed based on the assumption that the

center of a cluster is the center of data points that belong to the same

group. In these algorithms, each data point is assigned to its nearest

center, and an objective function is used to evaluate the quality of the

partition. Starting with an initial partition, the clustering is optimized by

iteration until it reaches an optimal result for its objective function.

The objective function can be defined in different ways. Common op-

timization criterion often used are k-center, k-median and k-means, in

which the goal is defined as minimizing the maximum distance, the sum

of distances, and the sum of squares of distances between data points and

their corresponding cluster center, respectively.

2.2 Density-based clustering

Different from center-based clustering, density-based clustering algorithms

assume that data points in the same cluster are located closely to each

other, composing a contiguous region of high density, with sparse or empty

areas around it to separate one cluster from others. These algorithms are

good at identifying clusters of arbitrary shapes, are resistant to noise and

outliers, and do not need to pre-define the cluster number[15]. However,

with high efficiency, density-based algorithms are usually computing re-

sources consuming, which will become a problem when dealing with large

data sets.

Density-based spatial clustering of applications with noise (DBSCAN)[5]

is the most well-known density-based clustering algorithm. It follows the

basic idea of density-based clustering, and is sensitive to its two param-

eters, the radius of the neighborhood and the point number threshold in

a neighborhood. To solve this problem, ordering points to identify the

clustering structure (OPTICS)[2] was proposed to produce a hierarchical

output by creating an augmented ordering of data points based on their

reachability distance.

2.3 Graph Theory-based clustering

Graph is a commonly used data structure in data analysis field. It consists

of nodes and edges that connect the nodes, modeling the relationships

between objects and their features. In clustering based on graph theory,

dataset is converted to a weighted, undirected graph, where objects, i.e.,

data points, are represented as nodes in the graph, and the relationship

among data points are represented as edges, with the weight on each edge

reflecting the proximity between data points.

2.4 Model-based clustering

Model-based clustering assumes that data are generated from a specific

statistical model, usually a combination of a basic probability model[3].

This clustering technique aims to find an appropriate model and optimize

it to better fit the observed data distribution. With the obtained mixture

model, data is represented by the model, and the components of the model

represent the clusters.

Model parameters can be estimated by Maximum Likelihood Estima-

tion (MLE) [12] and the Bayesian information criterion (BIC) [8]. A com-

monly used model-based clustering algorithm is expectation-maximization

(EM) algorithm [10]. This algorithm iteratively maximizes the likelihood

estimates of variables and can be applied to many different probabilistic

models.

Compared to heuristic methods, model-based clustering is less compu-

tationally efficient but more robust[9]. Although its clustering result is

dependent on model choices and parameter settings, it requires less sub-

jective decisions, such as dissimilarity measures and number of clusters.

2.5 Kernel-based clustering

Kernel-based clustering algorithms are developed based on Cover’s theo-

rem on the separability[4]. These algorithms use kernel method to trans-

form the data into a high dimensional space by performing a nonlinear

mapping, in which way some complex patterns that are not linearly sep-

arated can be linearly separated in higher dimensional space. Kernel

method can be useful when using traditional center-based methods on

data while the clusters seem not to be linearly separable.

Since the original data is mapped to a higher dimensional space, the

curse of dimensionality appears. To solve the problem, the kernel trick[11]

is applied to avoid explicitly defining the mapping process, using inner-

product to reduce time consumption.

3 Performance measurements

3.1 Similarity

To decide the clustering, a standard is needed to measure the dissimi-

larity (distance) or similarity between objects, objects and clusters, and

clusters[14]. All the clustering methods define their similarity measures

to determine the closeness degree among data points[7]. The most com-

mon similarity measures are listed below.

Minkowski distance is a distance measure defined as

D(Xi, Xj) =

(
m∑

k=1

(Xik −Xjk)
p

)1/p

, (1)

where Xi, Xj are two data points or objects, and m is the dimension of

data. This distance is a generalized metric and has some special cases.

When p = 1, it becomes Manhattan distance; when p = 2, it becomes

Euclidean distance, which is the most well-known metric for clustering of

numerical data; when p = ∞, it becomes Chebyshev distance, computed

as Eq.(2)

D(Xi, Xj) = max1≤k≤m |Xik −Xjk| (2)

Cosine distance measures the similarity between two data points by

compute the cosine of the angle between them. With data points repre-

sented as vectors, this metric measures the similarity as Eq.(3) and is

commonly used in information retrieval and text analysis.

D(Xi, Xj) =
Xi ·Xj

∥Xi∥ ∥Xj∥
(3)

3.2 Validation Measures

Different clustering algorithms can generate different clusters based on

the same data set. In addition, the parameter setting, initial state and

data presentation used in the algorithm may also affect the clustering

result. To evaluate the quality of the clustering, two main categories of

metrics are used to validate the results of clustering algorithms, internal

criteria and external criteria.

Internal criteria

Internal criteria do not depend on prior knowledge, but directly evaluate

the clustering results based on the intrinsic characteristics of the original

data. These metrics measure various aspects of clustering results, such as

compactness inside the cluster and separation among clusters. Some com-

mon internal validation criteria are sihouette coefficient, Davies-Bouldin

index and Dunn’s index.

External criteria

External criteria require prior knowledge about data, using external in-

formation to validate clustering solutions. The underlying structure of

data is usually unknown in real-world scenarios. Nevertheless, these met-

rics provide a valid standard, which can be used to assess the matching

between the clustering result and the pre-defined structure of the data

set. Some common internal validation criteria are Rand Index (RI), Nor-

malized Mutual Information (NMI), Fowlkes-Mallows Index (FMI) and F1

score.

4 Challenges with clustering

4.1 Determining the number of clusters

One of the major challenges of clustering is to determine the number of

clusters. In many application areas, the shape, size and density of clusters

are arbitrary, and the cluster number is unknown. Due to the lack of prior

knowledge, it is difficult to identify the number of clusters embedded in

the data. Many existing algorithms require users to specify the number

of clusters as an input parameter. New approaches are needed to utilize

the data properties and discover the number of clusters automatically.

4.2 High-dimensional data

When clustering high-dimensional data, algorithms such as K-means and

Gaussian mixture model-based clustering are not very effective[6]. Tra-

ditional distance or similarity metric become less meaningful and cannot

accurately capture the similarity information among data points. Spar-

sity issues may occur due to high dimensionality. In addition, high di-

mensionality of data can also increase the computational complexity of

algorithms. To solve this problem, high-dimensional data can be projected

to a lower-dimension subspace by dimensionality reduction techniques or

feature selection methods.

4.3 Scalability

As the size of data set increases, some clustering algorithms have dif-

ficulty scaling to data sets with large-size instances, since the process

may become time-consuming or even infeasible. One direct way to solve

the problem is using high-capacity GPU to acquire more computational

resources[13]. Moreover, some techniques can help with processing large-

scale data, such as mini-batch clustering and distributed computing[16].

4.4 Other challenges

In real world, noise and outliers are inevitable, thus the robustness against

noise and outliers is important for a clustering algorithm. A robust clus-

tering algorithm should be insensitive to the order of input, resistant to

noise and able to identify outliers.

Although many algorithms are designed for numerical data, applica-

tions may require clustering data with different types of attributes, such

as categorical, ordinal, binary and mixed data types[1]. Therefore, clus-

tering algorithms are required to be flexible in processing different data

types.

When using the most commonly used distance measures, Euclidean

distance, clustering algorithms tend to discover spherical clusters. How-

ever, the shape of the cluster could be irregular. Advanced algorithms

such as density-based and spectral algorithms show a better performance

in detecting clusters with arbitrary shapes.

5 Conclusion

Clustering algorithms are widely used in both research and practical ap-

plications of data mining. They can reveal hidden relationships among

different data points, extracting meaningful insight. With a wide range

of clustering algorithms and optimization techniques, the strengths and

weaknesses of different algorithms need thorough analysis, and the chal-

lenges of clustering problems require careful consideration. Further re-

search can focus on enhancing the robustness, effectiveness and scala-

bility of clustering methods, and utilize the characteristics of data, thus

ensuring the quality and reliability of clustering results in various com-

plicated domains.

References

[1] Parul Agarwal, M Afshar Alam, and Ranjit Biswas. Issues, challenges and
tools of clustering algorithms. arXiv preprint arXiv:1110.2610, 2011.

[2] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander.
Optics: ordering points to identify the clustering structure. In Proceed-
ings of the 1999 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’99, page 49–60, New York, NY, USA, 1999. Association for
Computing Machinery. https://doi.org/10.1145/304182.304187.

[3] Charles Bouveyron and Camille Brunet-Saumard. Model-based clustering
of high-dimensional data: A review. Computational Statistics Data Analy-
sis, 71:52–78, 2014. https://doi.org/10.1016/j.csda.2012.12.008.

[4] Thomas M. Cover. Geometrical and statistical properties of systems
of linear inequalities with applications in pattern recognition. IEEE
Transactions on Electronic Computers, EC-14(3):326–334, 1965. doi:
10.1109/PGEC.1965.264137.

[5] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, KDD’96, page 226–231. AAAI Press, 1996.

[6] Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith Abuali-
gah, Jeffery O Agushaka, Christopher I Eke, and Andronicus A Akinyelu.
A comprehensive survey of clustering algorithms: State-of-the-art ma-
chine learning applications, taxonomy, challenges, and future research
prospects. Engineering Applications of Artificial Intelligence, 110:104743,
2022. https://doi.org/10.1016/j.engappai.2022.104743.

[7] Absalom E. Ezugwu, Amit K. Shukla, Moyinoluwa B. Agbaje, Olaide N. Oye-
lade, Adán José-García, and Jeffery O. Agushaka. Automatic clustering
algorithms: a systematic review and bibliometric analysis of relevant liter-
ature. Neural Computing and Applications, 33(11):6247–6306, jun 2021.

[8] Chris Fraley and Adrian E Raftery. How many clusters? which clustering
method? answers via model-based cluster analysis. The computer journal,
41(8):578–588, 1998.

[9] Isobel Claire Gormley, Thomas Brendan Murphy, and Adrian E. Raftery.
Model-based clustering. Annual Review of Statistics and Its Applica-
tion, 10(Volume 10, 2023):573–595, 2023. https://doi.org/10.1146/annurev-
statistics-033121-115326.

[10] Geoffrey J McLachlan and Thriyambakam Krishnan. The EM algorithm
and extensions. John Wiley & Sons, 2007.

[11] Saburou Saitoh. Theory of reproducing kernels and its applications. Long-
man Scientific & Technical, 1988.

[12] Keshav Sanse and Meena Sharma. Clustering methods for big data analy-
sis. International Journal of Advanced Research in Computer Engineering
& Technology, 4(3):642–648, 2015.

[13] Ali Seyed Shirkhorshidi, Sr Aghabozorgi, Teh Wah, and Tutut Herawan.
Big data clustering: A review. In Computational Science and Its Appli-
cations – ICCSA 2014, pages 707–720. Springer International Publishing,
2014. https://doi.org/10.1007/978-3-319-09156-3_49.

[14] Rui Xu and Donald Wunsch. Survey of clustering algorithms.
IEEE Transactions on neural networks, 16(3):645–678, 2005. doi:
10.1109/TNN.2005.845141.

[15] Hui Yin, Amir Aryani, Stephen Petrie, Aishwarya Nambissan, Aland As-
tudillo, and Shengyuan Cao. A rapid review of clustering algorithms. arXiv
preprint arXiv: 2401.07389, 2024.

[16] Btissam Zerhari, Ayoub Ait Lahcen, and Salma Mouline. Big data cluster-
ing: Algorithms and challenges. In BDCA’15: Proceedings of the interna-
tional Conference on Big Data, Cloud and Applications, 2015.

Energy Prediction in Cloud Computing:
Contrasting Approaches in Virtual
machines and Containers

Jimena Bermudez Bautista
jimena.bermudezbautista@aalto.fi

Tutor: Jaakko Harjuhahto

Abstract

In cloud computing, energy efficiency has quickly become an important

issue, as it is transforming IT resources by providing scalable solutions,

raising concerns about its environmental effect, mainly on the energy used

in data centers. This paper compares energy prediction and calculation

methodologies between two leading used technologies: Virtual machines

(VMs) and containers. This research examines the energy consumption

condition in the cloud computing sector to unveil ways to increase resource

utilization. The research explores the role of VMs and containerizing tech-

nologies in energy efficiency. It reviews existing procedures for estimating

energy consumption and their application to determine the optimal strate-

gies to decrease energy consumption. The comparative analysis helped find

the current state of the art of energy calculation and prediction and a new

architecture proposal for sustainable cloud infrastructures. This new pro-

posed architecture utilizes an energy optimization strategy to implement

VM and container advantages, opening a new frontier of efficiency in cloud

computing.

KEYWORDS: cloud computing, energy consumption, virtual machines, con-

tainerization, energy efficiency, machine learning, energy prediction

1 Introduction

Cloud computing has revolutionized data and applications management,

access, and storage by remotely offering scalable and efficiently measur-

able IT resources. This technology facilitates remote access to decentral-

ized IT infrastructure, including networks, servers, storage, applications,

and services designed to provide scalable and measurable IT resources [1].

Cloud computing has opened up a new horizon for software development

and emerging technologies, increasing the need for these services. On

the other hand, the environmental impact of cloud computing has become

noticeable, with data centers around the world consuming about terawatt-

hours (TWh) of electricity by 2022, accounting for about 22% of global elec-

tricity energy consumption [3]. This usage is driven by energy demands

in computing power and cooling systems at these facilities, where artifi-

cial intelligence (AI) workloads and cryptocurrency mining play a signifi-

cant role. By 2026, data center capacity consumption is predicted to dou-

ble, reaching between 650TWh and 1,050TWh, based on factors such as

business development, AI, and cryptocurrency development [3][14]. With

these concerning predictions, this paper aims to review the current state

of the art of energy consumption of cloud computing to find the strate-

gies for resource efficiency and investigate the impact of virtual machines

and containerization to deepen the research of the strategies used and

their energy implications. By examining the methodologies for energy

consumption estimation or calculation and the effectiveness of existing

optimization strategies, this research seeks to contribute to the sustain-

able advancement of cloud computing practices. This paper is organized

as follows. Section 2 lays the foundational groundwork by discussing the

core principles of cloud computing and the critical role of virtualization

and containerization technologies in this context. Section 3 discusses en-

ergy prediction and the methodologies for virtual machines and contain-

ers. Section 4 summarizes the core papers that calculate or predict energy

consumption on VMs or containers. Section 5 compares the methods from

the papers and analysis of the key findings. Finally, Section 6 presents

concluding remarks and future work.

2 Cloud Computing

Cloud computing has changed how IT resources are used by providing

scalable resources via the Internet. Historically, "cloud" served as a metaphor

for the Internet—a vast, interconnected network enabling access to decen-

tralized computing resources. The cloud symbol commonly illustrates this

metaphorical representation in various technical documents and specifi-

cations related to web-based architecture. Within these boundaries, var-

ious cloud services like Infrastructure as a Service (IaaS), Platform as

a Service (PaaS), Software as a Service (SaaS), and Business Process as

a Service (BPaaS) are provided to cater to business and individual needs.

The rise of cloud computing marks a shift from localized computing setups

to remote and highly scalable IT resources, revolutionizing how comput-

ing services are accessed and utilized[1][13].

Virtualization

IBM initiated the history of virtualization in the 1960s by virtualizing its

mainframe, CP-40, which was later converted into CP-67, which employed

partitions to run multiple processes simultaneously [7]. The primary pur-

pose of virtualization is the abstraction of physical IT resources to virtual

ones, such as servers, storage, and networks [8]. Therefore, they can be

manipulated faster and more efficiently, increasing flexibility and avail-

ability [9].

Virtual machine-based virtualization

Virtual machine-based virtualization is a process that abstracts the entire

OS and emulates the hardware needed to create a virtual machine (VM).

In its most basic form, a VM is an independent system with an applica-

tion, an application environment, and its operating system referred to as

the guest OS. As seen in Figure 1, a layer on top of the host machine’s

operating system called a hypervisor allows for multiple virtual machines

per host or physical machine. This type 2 hypervisor is a hardware proxy,

allowing guest operating systems to believe they are operating on ded-

icated hardware [2]. The complete ISA (instruction set architecture) is

virtualized. Multiple operating systems can share the same hardware re-

sources, and the virtualized representations of each resource are available

to the VM [7].

Figure 1. Basic virtual machine architecture. (adapted from P. S. Kocher [2]).

Containerization

Containerization is a virtualization technique that allows the creation of

virtual hosting environments known as "containers" without requiring a

virtual server deployment for each solution. Like virtual servers, shown

in Figure 2, a container provides an environment with operating system

resources to host software programs and other IT resources. Containers

provide isolation for the process and the application. However, the OS’s

kernel, which all processes use, is shared by them all. The way this works

is that Linux kernel resource isolation features like containers use con-

trol groups and namespaces to enable the execution of separate processes

inside of a single Linux image. This relates to the original reason why,

unlike virtual machines, individual applications do not have their oper-

ating system. This also means that virtual machines offer higher levels

of isolation than containers. That being said, this very feature makes

containers incredibly lightweight and portable. Given their lightweight

design, containers allow you to run more than virtual machines (VMs) on

a given hardware configuration. Containers allow you to use your hard-

ware resources better [8][1].

Figure 2. Basic container architecture. (adapted from P. S. Kocher [2]).

3 Energy Prediction

In the cloud computing environment, “application” refers to a collection of

software services delivered over the internet. These services could either

have monolithic architectures, which are single-tiered software applica-

tions where the user interface and data access code are combined into

a single program from a single platform, to microservices, which are a

group of small services, each running in their process and communicat-

ing lightweight, often with an HTTP resource API [2]. The system model

maps the energy consumed by the deployment and maintenance of the ap-

plications. It considers the servers that do the computations, the storage

devices that hold the data, the networking infrastructure that connects

services, and the cooling systems that control the heat generated by these

components, as visualized in Figure 3 [3]. Therefore, the energy consump-

tion of cloud computing is primarily caused by the power it requires to op-

erate the hardware infrastructure, and the amount of energy consumed by

each one depends on various factors, such as utilization levels, workload

distribution, and cooling efficiency. Research shows that servers are the

primary consumers of energy in data centers, with around 60-70% of the

total energy consumption attributed to server infrastructure [10]. Several

studies have tried to find a way to reduce the energy consumption of cloud

computing infrastructure. These include the use of more energy-efficient

hardware components, the adoption of virtualization technologies, and the

implementation of energy-efficient cooling systems [11]. In addition, effi-

cient resource allocation algorithms can also reduce energy consumption

by optimizing the allocation of resources based on workload characteris-

tics [12].

Figure 3. Data center energy usage by its different components (adapted from R. Buyya
et al., 2024 [13]).

This paper compares and analyzes energy prediction in cloud computing,

specifically examining the differences and similarities between VMs and

containers. This research investigates how each technology approaches

energy consumption, its efficiencies, and the potential for optimization by

evaluating current models and strategies utilized within both VMs and

containers. The objective is more effective energy prediction and resource

allocation within data centers.

4 Related work

This section explores meaningful research papers that tackle energy pre-

diction and calculation for energy efficiency strategies associated with

VMs and containerized systems. These papers show the current state-

of-the-art energy management in cloud infrastructures, highlighting the

challenges and solutions. Analyzing these techniques synthesizes the pa-

per’s analysis and results, which will be the research’s core.

4.1 Machine Learning Approach for Energy Consumption
Prediction in Datacenters

In their study, Merizig et al. [15] focused on proposing an architecture

that includes the usage of machine learning techniques, specifically Sup-

port Vector Regression (SVR) and Artificial Neural Networks (ANN), to

predict energy consumption in data center environments and evaluate

historical energy usage data combined with various operating metrics as

the primary goal is enabling an efficient predictive model. Verifying the

diverse methods compared to the Support Vector Machine (SVM) method

resulted in a performance that showed a high correlation with the ac-

tual data points. This study confirmed that machine learning algorithms,

especially SVM and ANN, were potential tools for decreasing energy con-

sumption in data centers. It could help cloud service companies man-

age their infrastructure efficiently. The importance of using time series

methods for forecasting was highlighted, and it was suggested that in-

corporating additional features in future work could further enhance the

predictive model features.

4.2 Energy Saving Strategy of Power System Cluster Based on
Container Virtualization

Zheng et al. [16]worked to come up with ways that containers may be

adopted within power system clusters, mainly through energy-saving con-

tainer scheduling and migration algorithms, comparing the impact of these

algorithms on power system platforms and providing a deeper insight

into how container orchestration and mobility can influence energy effi-

ciency in data center environments. By exploring container scheduling

and migration, the researchers found how container orchestration and

mobility are potent factors in energy efficiency in data centers. There-

fore, container scheduling and migration substantially contributed to the

discussion about container scheduling for energy savings. Scheduling al-

gorithms define how and where the containers are initially placed inside

the cluster, as these algorithms consider optimum resource utilization and

energy conservation while doing this. Contrarily, migration algorithms

incorporate optimizations in terms of the dynamic adjustments of the

containers and their repositioning across the cluster based on real-time

energy efficiency assessment. Through this thorough investigation, the

scientists conclude that container technology is one of the most effective

solutions for making data center operations more energy efficient.

4.3 Virtual Machine Consolidation with Multiple Usage
Prediction for Energy-Efficient Cloud Data Centers

Nguyen Trung Hieu et al. [18] discuss reducing power consumption in

cloud data centers through virtual machine (VM) consolidation algorithms

combined with Multiple Usage Prediction algorithms. These algorithms

aim to predict future resource utilization in servers to increase the effi-

ciency in the energy of cloud data centers by reducing unreasonable mi-

grations and allocating resources that won’t be used efficiently through an

effective user management system. Hence, identifies overloaded servers

that need VM migration and underutilized servers that can be switched

to low-power mode for energy efficiency. VMCUP-M algorithm is a pro-

active algorithm based on a multi-purpose prediction scheme that em-

ploys historical use data and, therefore, chooses the virtual machines that

consume most of the server’s resources as the principal reason for its per-

formance without increasing the power state changes. by leveraging his-

torical data and forecasting future resource usage, VMCUP-M optimizes

resource allocation, reduces energy consumption, and enhances SLA com-

pliance. The algorithm’s performance evaluation demonstrates its effec-

tiveness in minimizing migrations, power state changes, and the number

of active servers, highlighting its potential to improve energy efficiency in

cloud environments significantly.

4.4 Kepler: A framework to calculate the energy consumption
of containerized applications

The work in [17] proposed by Amaral et al. presents how to calculate

the energy consumption of applications running in containerized environ-

ments with the core of the framework Kepler by using BPF (Berkeley

Packet Filter)-based monitoring, that entails the monitoring of real-time

data, which can be applied to different areas like CPU usage, memory

consumption, network I/O, and other performance indicators that will di-

rectly or indirectly impact on energy consumption. Accurate data and

analysis of container energy consumption patterns to predict future en-

ergy consumption might enable energy management and optimization of

the cloud infrastructure and data center environments. Therefore, it pro-

vides valuable information for data center operators and cloud service

providers. It allows them to identify which applications consume more

energy, optimize resource allocations based on actual energy usage, and

enhance their operation’s sustainability [5].

5 Results and Discussion

In this paper, the proposed approach to analyze the current state of the

art in energy prediction on the cloud is the comparison between VMs and

containers. This section compares the key features of each methodology

used in the analyzed core papers, focusing on energy prediction for Virtual

Machines (VMs) and containers. Therefore, the main focus of this section

is the differences between each architecture and how they influence the

prediction methodology and final prediction result.

From the comparative table Figure 4, papers referring to VMs and others

dealing with containers provide some major insight into energy consump-

tion in cloud computing environments. Firstly, in the context of contain-

ers, Amaral et al. [17] and Zheng et al. [16] argued that this kind of

architecture can help quite a lot in monitoring energy usage at a very

fine accuracy level because of microservices utilization. This provides

easy access and computation for real-time and historical data analysis

at a container level, consequently delivering admirable granularity when

calculating energy usage and demonstrating great potential for adaptive

management strategies through container orchestration. This is why the

predictive model’s scalability, flexibility, and simplicity are born from the

Figure 4. Comparison table between VMs and containers core papers.

straightforward mapping of the resources consumed. In contrast, the ap-

proaches defined by Nguyen Trung Hieu et al. [18] and Merizig et al. [15]

on VMs exhibit a complex predictive model due to the level of abstraction

of VM layers of the whole infrastructure. Therefore, the detailed level of

prediction may be lower because the prediction may only take into some

of the components. Nevertheless, the potential for a predictive model is

“direct” due to their methodology, which is already based on predictive

models that can be retrained with new data and present a high predic-

tive accuracy of machine learning models for energy management. Over-

all, these findings evidence the strengths and limitations of each virtual-

ization technique and the application of energy management strategies.

Containers exhibit flexibility and efficiency using real-time energy track-

ing, while VMs offer robust, though potentially more complex, predictive

modeling capabilities. Furthermore, both architectures can obtain accu-

rate energy calculation and prediction results to manage and possibly use

prediction models that improve energy optimization [15][16][17][18].

6 Conclusions

In the context of cloud computing, where energy consumption is of greater

importance, VMs and containers play crucial roles in the cloud’s ecosys-

tem, as they would in energy prediction and optimization. The com-

parison of the techniques shows the necessity of using both paradigms

strengths and not favoring one over the other in energy efficiency strate-

gies. Although table Figure 4 shows containers have a less complex model

to predict or calculate energy [16][17], this can be disputed because the

VMs techniques need to consider the whole data center infrastructure

[15][18]. Containerization techniques are less complex, only calculating

or predicting the energy of their environment and therefore complicating

the prediction of the whole infrastructure’s energy consumption [16][17].

In summary, this study prompts us to examine the undisputed coexistence

and interdependence of both VMs and container technologies for sophis-

ticated power forecasting and control under cloud computing platforms.

Combining the strengths of each of the technologies — detail-oriented en-

ergy management of containers and purposeful predictive models of VMs

— it is possible to create a more robust and coherent energy optimization

strategy in cloud infrastructures. In the end, even though not all the pa-

pers have a robust prediction model, the calculations used help develop a

future predictive model that can accurately predict both ways of virtual-

ization. For future work, a new architecture for energy management can

be implemented using the that the strengths observed in both VMs and

containers, covering both the micro-level operations and the macro-level

infrastructure of the data center [15][16][17][18].

References

[1] T. Erl, R. Puttini, and Z. Mahmood, "3.2 Basic Concepts and Terminol-

ogy," in Cloud Computing: Concepts, Technology Architecture, Prentice

Hall, 2013, ch. 3, sec. 2.

[2] P. S. Kocher, "Docker Containers," in Microservices and Containers,

Addison-Wesley Professional, Apr. 2018, ch. 5, ISBN: 9780134591728.

[3] International Energy Agency, "Electricity 2024: Analysis and Forecast

to 2026," IEA Publications, Jan. 2024. [Online]. Available: www.iea.org

[4] E. Ahvar, A.-C. Orgerie, and A. Lebre, "Estimating Energy Consump-

tion of Cloud, Fog, and Edge Computing Infrastructures," IEEE Transac-

tions on Sustainable Computing, vol. 7, no. 2, April-June 2022.

[5] P. Singh and H. Chen, "Introducing Kepler: Efficient Power Monitoring

for Kubernetes," Red Hat Emerging Technologies, 22 August 2023. [On-

line]. Available: https://next.redhat.com/2023/08/22/introducing-kepler-

efficient-power-monitoring-for-kubernetes/.

[6]S. Ghafouri, S. Abdipoor, and J. Doyle, "Smart-Kube: Energy-Aware and

Fair Kubernetes Job Scheduler Using Deep Reinforcement Learning," in

2023 IEEE 8th International Conference on Smart Cloud (SmartCloud),

Tokyo, Japan, 2023, pp. 154-163. doi: 10.1109/SmartCloud58862.2023.00035.

[7]S. M. Jain, "Linux Containers and Virtualization: A Kernel Perspec-

tive," 1st ed., Apress, Place of publication not identified, 2020. [Online].

Available: ISBN: 1-4842-6283-2, ISBN: 1-4842-6282-4

[8]T. Erl and E. Barceló Monroy, Cloud Computing: Concepts, Technology,

Security, and Architecture, 2nd ed. Pearson, August 2023, 608 pages.

[9] M. Portnoy, Virtualization Essentials, 3rd ed. Sybex, May 2023, 336

pages.

[10] L. A. Barroso and U. Hölzle, "The Case for Energy-Proportional Com-

puting," Computer, vol. 40, no. 12, pp. 33-37, 2009.

[11] J. Keppler, O. Kennedy, and T. Olson, "Energy Efficient Data Centers:

A Critical Review and Future Directions," Applied Sciences, vol. 9, no. 1,

p. 43, 2019.

[12]A. Beloglazov and R. Buyya, "Optimization of Energy Consumption

in Cloud Computing Environments," in Handbook on Data Centers, G.

Folino, B. Di Martino, A. Giordano, and M. Calzarossa, Eds. Springer,

2013, pp. 871–895.

[13] R. Buyya, S. Ilager, and P. Arroba, "Energy-efficiency and sustain-

ability in new generation cloud computing: A vision and directions for

integrated management of data center resources and workloads," Softw.

Pract. Exper., vol. 54, no. 1, pp. 24-38, Jan. 2024. [Online]. Available:

https://doi.org/10.1002/spe.3248.

[14] B. A. Stradi-Granados, Cloud Computing for Engineering Applica-

tions, 1st ed., Springer Cham, 2020. [Online]. Available: https://doi-

org.libproxy.aalto.fi/10.1007/978-3-030-40445-1.

[15] A. Merizig et al., "Machine Learning Approach for Energy Consump-

tion Prediction in Datacenters," in Proc. 2020 Int. Conf. on Mathematics

and Information Technology (ICMIT), Adrar, Algeria, Feb. 2020, pp. 142-

148.

[16] R. Zheng, H. Wang, and H. Jin, "Energy Saving Strategy of Power

System Cluster Based on Container Virtualization," 2020.

[17] M. Amaral et al., "Kepler: A framework to calculate the energy con-

sumption of containerized applications," in Proc. 2023 IEEE 16th Int.

Conf. on Cloud Computing (CLOUD), 2023.

[18]N. T. Hieu, M. D. Francesco, and A. Ylä-Jääski, "Virtual Machine Con-

solidation with Multiple Usage Prediction for Energy-Efficient Cloud Data

Centers," in IEEE Transactions on Services Computing, vol. 13, no. 1, pp.

186-199, Jan.-Feb. 2020, doi: 10.1109/TSC.2017.2648791.

Learning Hurdling Skills with Adversarial
Motion Priors

Jinglin Yang
jinglin.yang@aalto.fi

Tutor: Nam Hee Kim

Abstract

We present a method based on Adversarial Motion Priors (AMP) that en-

ables the discovery of natural-looking hurdling skills for physics-based

characters. AMP offers an efficient approach to separate high-level task

objectives from low-level motion styles, empowering physics-based agents

to execute natural-looking motions. The naturalness of the motion is mea-

sured by a discriminator trained based on Generative Adversarial Imita-

tion Learning (GAIL), which assigns a score to generated motions based on

their style similarity to the reference motions sampled from the dataset. We

introduce a method that incorporates random state initiation, early termi-

nation, and curriculum training into the vanilla AMP framework to facil-

itate the training process. We demonstrate the efficacy of properly designed

early termination conditions in facilitating the character’s understanding

of hurdling rules, such as the need to cross a hurdle without contact. The

introduction of random state initialization enhances policy robustness by

enabling the character to tackle hurdling tasks from diverse starting mo-

tions and positions Curriculum training plays a pivotal role in support-

ing the character’s skill acquisition, fostering perseverance in attempting

higher hurdles rather than prematurely abandoning the challenge..

KEYWORDS: Animation; Physical simulation; Deep Reinforcement Learn-

ing

1 Introduction

Hurdling is a famous sport where athletes race down a straight or curved

track, navigating a series of evenly spaced barriers known as hurdles, and

reach the finish line. The objective of our study is to develop a humanoid

agent that is capable of dynamically adjusting its movements to run and

navigate hurdles with agility and efficiency under physics-based simula-

tion.

To achieve this goal, we construct a simulated environment utiliz-

ing the NVIDIA Isaac Gym [5] with a humanoid and a hurdle bar posi-

tioned along the running track. We integrate adversarial motion priors

(AMP) into our deep reinforcement learning framework, where AMP acts

as an adversarial discriminator for imitating the reference motion clips

provided. The motion priors is modeled as an adversarial discriminator

utilizing a set of reference motions that constitute a desired motion style.

It serves to evaluate the resemblance between simulated motions and the

reference motion data. It Consequently, the agent undergoes training to

accomplish specified high-level task objectives, while its low-level motions

follow the behavioral style generalized from the reference motion data,

thereby generating natural movements.

2 Related Work

This section provides some related work including character animation,

physics-based simulation, and deep reinforcement learning. Currently,

there are two prevailing methods for synthesizing natural motions for vir-

tual characters: kinematics-based and Physics-based frameworks.

2.1 Kinematics-based Animation

In kinematics-based animation, motions refer to mathematical represen-

tations of the motion of objects or systems without consideration of the

forces causing the motion [11]. These models describe the positions and

velocities of objects over time based solely on their geometric and kine-

matic properties, such as shape, size, and constraints. By leveraging

datasets of motion clips, controllers can effectively select the appropriate

clip to play in a given scenario. Kinematic methods often yield superior

motion quality compared when provided with high-quality data. How-

ever, kinematic models face constraints when tasked with synthesizing

novel motions or strategies, particularly in the presence of complex envi-

ronmental conditions. Additionally, the absence of physics considerations

renders their outputs fundamentally unrealistic and unnatural in certain

circumstances.

2.2 Physics-based Animation

Physics-based animation leverages fundamental principles of physics to

simulate the interactions between objects and their environment, enabling

realistic and accurate representations of dynamic phenomena. Animation

based on this approach has been developed for decades, with the primary

challenge persisting in the design of a robust controller. Many manually

designed controllers have achieved great success such as locomotion [2].

However, manually designed controllers rely heavily on the insight re-

lated to the specific task, and the controller is difficult to generalize to dif-

ferent tasks. Tracking-based controllers have become a popular domain,

where the controller learns to reproduce the motions by imitating the ref-

erence capture motion data. Furthermore, Deep reinforcement learning

has been demonstrated to be capable of replicating diverse motions while

accomplishing targeted tasks [7]. In our work, we leverage the Isaac Gym

framework, which offers high-performance and high-fidelity simulation

capabilities, for constructing the physics-based environments [5].

2.3 Deep Reinforcement Learning (DRL)

Reinforcement learning (RL) is a machine learning framework focused on

iterative interactions between an agent and its environment to optimize

cumulative rewards. By employing sequential decision-making processes,

RL algorithms iteratively adjust the agent’s actions based on received

feedback, aiming to derive an optimal policy that maximizes long-term

rewards. Deep reinforcement learning (DRL), a subfield of RL, incorpo-

rates deep neural networks into the solution, allowing the agent to take

actions based on unstructured inputs instead of explicitly defining the

state space. DRL has found success in implementing robust strategies for

simulated agents in complex environments [4]). Noteworthy algorithms

such as TRPO and PPO showcase the efficacy of this approach in attain-

ing optimal solutions [3]. However, while many methods demonstrate

the capability to generate physically plausible motions, achieving natu-

ralistic movements without reference data poses a challenge. The design

of task rewards for natural movements relies heavily on human insights

and can struggle to generalize to other motions or tasks. Addressing this

challenge, the utilization of reference motion data in the training process

has emerged, wherein the motion data informs the reward function in

RL, aiming to minimize the discrepancy between the simulated charac-

ter’s motion and the reference motion [9]. Nonetheless, the impracticality

of obtaining reference motion data across all applications limits the util-

ity of this approach. Consequently, methods based on adversarial motion

priors (AMP) have been developed to enable simulated characters to ex-

ecute high-level tasks by combining multiple low-level motions that cap-

ture general behavioral features extracted from motion datasets [10].

3 System Overview

We model the character adapted from the Deepmimic [7], featuring 13

links and 34 degrees of freedom. To streamline the experimental setup, a

simplified rectangular prism serves as the hurdle bar. Our dataset com-

prises one motion clip depicting running movements, serving as reference

motion data. The primary methodology employed for training the sim-

ulated humanoid to execute the hurdling task is the Adversarial Motion

Priors (AMP) framework. Specifically, the agent is trained not to precisely

replicate provided motions but to adopt general styles extracted from the

reference motion data. This approach enables the agent to perform com-

plex tasks utilizing various motions that resemble the motion clips in the

dataset.

Figure 1 demonstrates the general framework of our model. In the

motion dataset, each motion is represented as mi = {q̂it}, where q̂it is the

pose at the sequence t. A policy controls the agent by generating motions

based on the given current states st and the goal of the task, which is rep-

resented as π(at|st, g). The action would result in a new state st+1 and a

reward rt for applying the actions. The objective of this agent is to learn

a policy that maximizes the expected discounted rewards, consisting of

the weighted task reward rGt and the weighted motion style reward rSt

which is specified by the adversarial discriminator. The task reward func-

tion rGt = rG(st, at, st+1, g) defines the high-level objective for the agent to

accomplish, in our case, running along the trace and jump over the hur-

dle. The style reward rSt = rS(st, st+1), which measures the naturalness

Figure 1. Overview of the system

of the motions generated by comparing with the given reference motion

data. In conclusion, the task reward encourages the policy to complete

the high-level task, while the style reward encourages the policy to pro-

duce motions in a way that resembles the given reference motions. In

our method, we adopt a single-clip imitation, thus the task-rewards is

set to 0. The system evaluates the performance of the current policy by

measuring whether the character crosses the hurdle bar at a success rate

that exceeds a predetermined threshold. If the success rate surpasses

this threshold, the system adjusts by setting a new, higher hurdle bar for

subsequent training.

The training procedure employs the proximal policy optimization (PPO)

algorithm, which facilitates stable learning within the defined framework

by avoiding to have too large policy updates. PPO updates the policy con-

servatively by measuring how much the current policy has changed com-

pared to the previous one using a ratio calculation between them, which

is then clipped within a range of [1 − ϵ, 1 + ϵ], effectively removing the

incentive for the current policy to deviate excessively from the old one.

3.1 Adversarial Motion Prior

In our design, we utilize the framework based on Adversarial Motion Pri-

ors (AMP), where the reward function is composed of two components:

r(st, at, st+1, g) = wGrG(st, at, st, g) + wSrS(st, st+1). (1)

While designing the reward function rG for the task in reinforcement

learning is relatively intuitive, designing the style reward rS to encour-

age natural movements poses a challenge. Instead of directly measuring

motion similarity between generated and reference motions, AMP adopts

the Generative Adversarial Imitation Learning (GAIL) framework to dis-

cern whether the motion is a real sample from the dataset or a fake one

generated by the policy. The AMP discriminator produces a general score

indicating the similarity between generated and reference motions. AMP

decouples motion style from task goals, enabling the accomplishment of

tasks using various motion priors. Additionally, the same motion prior

can be applied to perform different tasks. In our study, we employ run-

ning motion data as the motion prior, while the task is hurdling.

The discriminator is trained using sigmoid cross-entropy loss as the

objective, which has been demonstrated to be effective in imitating a wide

range of motions [10]. The discriminator evaluates input motion data and

predicts a score, with a score of 1 indicating that the data is predicted to be

sampled from the dataset, while a score of −1 suggests that the data is a

synthetic sample generated by the policy. These scores serve as labels for

the regression task, where 1 represents genuine data and −1 represents

synthetic samples.

The observation spaces in our model encompass various aspects of the

humanoid’s state. These include the 3D positions of all body parts relative

to the humanoid’s local coordinate system, the velocity and angular veloc-

ity of the root (the pelvis of the humanoid), the local rotation and velocity

of each joint, and the relative distance to the hurdle bar from the root.

It’s worth noting that not all features are utilized in training the discrim-

inator. For instance, certain features such as the relative distance to the

hurdle bar may have little relevance to assessing the similarity between

generated and sampled motions. Hence, careful selection of relevant fea-

tures is crucial to ensure the discriminator effectively evaluates motion

similarity.

3.2 Network Architecture

In our design, we incorporate three networks: a policy network, a value

function network, and a discriminator network, all having the same ar-

chitecture. This architecture consists of two ReLU hidden fully-connected

layers with 1024 and 512 units, respectively, followed by a linear output

layer. For the policy network, the output value represents the mean of

a Gaussian distribution N (µ(st, g),Σ). The policy then generates actions

sampled from this distribution given the current state st and goal g.

Figure 2. The character run away from the hurdle bar if early termination for

detection of running away is not set

4 Training and Evaluation

4.1 Early Termination

During the training, each episode is limited to a finite horizon, terminat-

ing either upon reaching the maximum horizon limit or when specific ter-

mination conditions are triggered. In locomotion tasks, a common early

termination condition is fall detection, typically characterized by contact

between the torso and the ground or when certain links fall below a pre-

determined threshold [8]. Once the early termination conditions are trig-

gered, the rewards for the remaining episode are set to 0. Consequently,

the policy is encouraged to avoid triggering these conditions. Another

benefit of early termination is its ability to bias training in favor of sam-

ples that are more relevant to the ongoing tasks. For instance, when the

humanoid is detected falling, it becomes challenging (and essentially an-

other task) for it to stand back. Without early termination, the rest of the

episode would be dominated by data where the humanoid is attempting

to recover to its normal trajectory. In our model, in addition to the two

existing termination conditions, we introduce two more early termina-

tion conditions. The first condition triggers termination if any body part

makes contact with the hurdle bar, while the second condition initiates

termination if the humanoid is detected deviating from the running trace.

These additional conditions reflect the necessary action of cleanly leaping

over hurdles in a hurdling race. Without the early termination condition

for hurdle contact, the humanoid agent tends to exhibit behavior where

it run normally and kick the hurdle bar away instead of cleanly jumping

over it. In addition, without the early termination condition for detecting

when the humanoid agent goes off track, it tended to bypass the hurdle

bar rather than jumping over it.

4.2 States Initialization

In our model, we employ random state initialization. Similar strategies

have been employed and proven to be efficient in learning from demon-

stration samples [6]. At the beginning of each iteration, the initial state

of the agent is randomly sampled from the motion clip dataset, rather

than starting from a fixed state. This approach offers several advantages.

Firstly, it allows the policy to learn later phases before mastering the pre-

vious ones, as opposed to learning the motion sequentially. Secondly, it

encourages the exploration of challenging motions. Without this random-

ized initialization, the agent may become stuck in receiving rewards ret-

rospectively until it reaches a high-reward state. Prior to encountering

such a state, the policy has no way of knowing that this state is favorable,

and potentially leading to convergence to local optima. Randomized ini-

tialization states address this issue by encouraging the exploration of po-

tentially favorable states, even before the policy has learned the necessary

strategies to reach them. This approach efficiently leverages information

from the reference motion dataset, ensuring comprehensive exploration

and utilization of the available data. Additionally, we implement random-

ization of the initial distance to the hurdle bar, which we demonstrate en-

hances the robustness of our policy. Without this setting, the humanoid is

more prone to task failure when the hurdle bar is slightly adjusted closer

to or further away from the starting position.

4.3 Curriculum Training

The key insight of curriculum training is to imitate the learning process

of humans that follows the easy-to-hard sequence by allowing models to

start learning with easy samples first and gradually progress to complex

samples and knowledge [1]. It’s easier for the model to learn easier tasks

before it has the capability to complete the more difficult tasks. In our

model, we refer to the insights of the curriculum training, to initially set a

short hurdle bar first, and increase the hurdle bar height gradually when

the success rate of the humanoid crossing the hurdle bar exceeds a certain

predefined threshold. This trick is the key for the humanoid to master

the techniques required to cross the hurdle bar. Similar approaches have

already been employed in training skills such as high jump, where the

height of the bar increases as the accumulated reward surpasses a certain

threshold [12]. We have tested that if the initial hurdle bar is set too high,

(a) hurdle bar height: 0.2m

(b) hurdle bar height: 0.5m

(c) hurdle bar height: 0.8m

Figure 3. Snapshots of motions from the trained policies with increasing hur-

dling bar height

Figure 4. The character would stop moving forward when encountering a hurdle

bar that is initialized too far away from its starting position

the humanoid would not learn or even attempt to cross the hurdle bar.

4.4 Task

In our approach, we employ single-clip imitation, where there is only

style-rewards from the motion prior with the absence of task-rewards.

Under this setting, the only task for the character is to imitate the motion

from the dataset as long as possible. Consequently, the character earns

higher rewards the longer it "survives" in the simulated environment. De-

spite the absence of explicitly defined tasks, the character remains moti-

vated to overcome hurdles, as the presence of a hurdle bar obstructs the

character’s ability to accurately imitate the reference motion. However,

we observed that if the hurdle bar is positioned too far from the character,

it may tend to prioritize mimicking the running motion without making

substantial forward progress, as depicted in Figure 4.

5 Conclusions

We present an architecture based on AMP for learning hurdling skills

with a physically simulated character. We further demonstrate efficient

training incorporating early termination, random states initialization, and

curriculum training. While our current implementation utilizes the mo-

tion data from running, we believe the incorporation of motion data from

jumping could enhance the learning process and produce more natural-

looking motions. AMP takes advantage of large datasets, and provide a

mechanism for automatically selecting appropriate motion clips for imi-

tation. Currently, our work has demonstrated that the character could

cross one hurdling bar, We envision extending our approach to incorpo-

rate multiple hurdling bars and to enable the character to execute the

entire hurdle sport process seamlessly.

References

[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
Curriculum learning. In Proceedings of the 26th Annual International Con-
ference on Machine Learning, ICML ’09, page 41–48, New York, NY, USA,
2009. Association for Computing Machinery.

[2] Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. Generalized
biped walking control. ACM Trans. Graph., 29(4), jul 2010.

[3] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Fir-
daus Janoos, Larry Rudolph, and Aleksander Madry. Implementation mat-
ters in deep policy gradients: A case study on ppo and trpo, 2020.

[4] Libin Liu and Jessica Hodgins. Learning basketball dribbling skills us-
ing trajectory optimization and deep reinforcement learning. ACM Trans.
Graph., 37(4), jul 2018.

[5] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier
Storey, Miles Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur
Handa, and Gavriel State. Isaac gym: High performance gpu-based physics
simulation for robot learning, 2021.

[6] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and
Pieter Abbeel. Overcoming exploration in reinforcement learning with
demonstrations, 2018.

[7] Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.
Deepmimic: example-guided deep reinforcement learning of physics-based
character skills. ACM Transactions on Graphics, 37(4):1–14, July 2018.

[8] Xue Bin Peng, Glen Berseth, and Michiel van de Panne. Terrain-adaptive
locomotion skills using deep reinforcement learning. ACM Trans. Graph.,
35(4), jul 2016.

[9] Xue Bin Peng, Glen Berseth, Kangkang Yin, and Michiel Van De Panne.
Deeploco: dynamic locomotion skills using hierarchical deep reinforcement
learning. ACM Trans. Graph., 36(4), jul 2017.

[10] Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa.
Amp: adversarial motion priors for stylized physics-based character control.
ACM Transactions on Graphics, 40(4):1–20, July 2021.

[11] H. Ruder, T. Ertl, K. Gruber, M. Günther, F. Hospach, M. Ruder, J. Subke,
and K. Widmayer. Kinematics and dynamics for computer animation. In
Sabine Coquillart, Wolfgang Straßer, and Peter Stucki, editors, From Ob-
ject Modelling to Advanced Visual Communication, pages 76–117, Berlin,
Heidelberg, 1994. Springer Berlin Heidelberg.

[12] Zhiqi Yin, Zeshi Yang, Michiel van de Panne, and KangKang Yin. Discover-
ing diverse athletic jumping strategies, 2021.

Overview of different migration
strategies from monolithic architecture
to microservices architecture

Joona Munukka
joona.munukka@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

Monolithic architecture has been the default choice for many software sys-

tems for a long time. Recently, its place has been taken by microservices

architecture. With the popularity of microservices architecture rising, mi-

grations from monolithic architecture to microservices architecture have

become a standard practice. This paper provides an overview of migration

strategies from monolithic to microservices architecture. It introduces the

concepts of monolithic and microservices architecture and covers several

migration strategies, including Big Bang migration and Incremental mi-

gration. The conclusion emphasizes the importance of thorough analysis

in assessing the benefits and challenges of the transition. Overall, this pa-

per offers insights into the complexities and considerations in transitioning

from monolithic to microservices architecture.

KEYWORDS: microservices architecture, monolithic architecture, migra-

tion strategies, big bang migration, incremental migration, strangler fig,

parallel run

1 Introduction

Monolithic and microservices architectures offer contrasting approaches

to software development and deployment. A microservice is a compact

application capable of independent deployment, scaling, and testing, de-

signed with a singular responsibility [21]. In contrast, a monolith is large

in size, and its modules lack the capability for independent execution [6].

The popularity of microservices has surged in recent years. Microser-

vices popularity extends beyond the adoption by new services, as even

legacy monolithic services transform to align with the trend of microser-

vices architecture [22]. However, migrating from a monolithic to a mi-

croservices architecture is not a simple task. Without proper guidance,

migration can lead to significant challenges, potentially resulting in a mi-

croservices solution that is less effective than the original monolithic. An

example of such a difficulty is the creation of "nanoservices", where an ex-

aggerated approach introduces more overhead than benefits. As a result,

integrating appropriate strategies and patterns is crucial for a successful

migration.

Different migration strategies and patterns offer distinct benefits, mak-

ing choosing the most suitable approach for a project challenging. Factors

such as code base size, application uptime requirements, team size, and

project deadlines may influence the selection of a migration strategy.

This paper aims to introduce several different migration strategies,

highlighting their benefits and problems. Section 2 first introduces the

microservices and monolith architectures, explaining their advantages

and disadvantages to establish a foundational understanding. Section 3

presents an overview of several migration strategies. Section 4 compares

the covered migration strategies and discusses the findings. Finally, Sec-

tion 5 provides the conclusion.

2

2 Microservices vs. Monoliths

2.1 Microservices Architecture

Definition and Characteristics

Microservices architecture is structured around the collaboration of mul-

tiple microservices [16]. Figure 1 illustrates the microservice architec-

ture. Microservices represent independently deployable services that en-

capsulate specific business functionalities, allowing for the construction

of complex systems from modular building blocks [15]. Each microservice

has a single responsibility, is self-contained, and exposes its function-

ality through Application Programming Interfaces (API) while abstract-

ing implementation details [4]. These services, modeled around distinct

business domains, operate autonomously and communicate via networks,

providing a flexible approach to problem-solving [15]. The autonomy of

each microservice increases its availability and enables it to be tolerant of

failures [20]. Moreover, they are technology-agnostic, enabling teams to

choose the most suitable tools and languages [15].

Microservices must be configurable to address different usage scenar-

ios [7]. From an external perspective, each microservice is a black box,

hosting business functionality accessible via networked endpoints [15].

Internal implementation details are concealed, and microservices avoid

shared databases, encapsulating their own data storage. Updates and

changes to the system only require modifying the component related to a

specific microservice or container rather than the entire system [20].

Benefits and Challenges

Microservices offer numerous advantages, including evolutionary devel-

opment, open standards compliance, high development velocity, reusabil-

ity, flexibility, and versioning capabilities [7]. They facilitate agile devel-

opment methodologies by allowing smaller, independent teams to work

on individual components [4]. Additionally, microservices enable the cre-

ation of large, scalable applications, enhance fault tolerance, and foster a

culture of automation and decentralized processes [20].

However, transitioning to microservices presents challenges such as

deployment complexity, automation requirements, and data management

complexities [4]. Organizational changes pose another hurdle when adopt-

ing microservices [7]. Furthermore, inter-process communication intro-

3

duces overhead that may affect the performance [4]. Overcoming these

challenges demands a shift towards a DevOps culture, cross-functional

teams, and investment in dynamic infrastructure [7].

Monolithic Architecture

Database

User Interface

Business Logic Data Access Layer

Microservices Architecture

User Interface

Microservice Microservice

Microservice Microservice

DatabaseDatabase

Figure 1. Visualization of Monolithic and Microservices Architectures [20]

2.2 Monolithic Architecture

Definition and Characteristics

A monolith encompasses all functionalities of a system deployed together,

with variations including single-process, modular, and distributed mono-

lithic architectures [15]. Visualization of monolithic architecture is shown

in Figure 1. Typically reliant on a single development technology, mono-

lithic architecture poses challenges in development and deployment ef-

ficiency, requiring rebuilding and deploying the entire system for any

changes [20].

Benefits and Challenges

Monolithic architecture offers simplicity in deployment, intra-process com-

munication, and familiarity in development practices [4]. It provides

a stable platform for large organizations [20] and facilitates code reuse

within the monolith itself [15]. However, monoliths are rigid systems that

struggle to adapt to new requirements and incur high scaling costs [20].

They suffer from complexity, unintended consequences, longer start-up

times, and scalability issues as the application grows [4]. Despite pre-

vailing negative perceptions, monolithic architecture remains a valid and

sensible choice, offering benefits often overlooked in favor of newer ap-

proaches [15].

4

3 Migration Strategies

3.1 Big Bang Migration

Big Bang migration involves a complete overhaul of an existing monolithic

system, transitioning it into microservices in a single event [8]. Users con-

tinue to use the old system until the new one is fully developed, tested,

and deployed [1]. This approach is complex and resource-intensive, de-

manding a code freeze on the legacy application during the re-architecting

process [5]. Development efforts may span several years, with data migra-

tion occurring at the project’s end [12].

Factors such as contractual requirements or the small size of the old

system may justify waiting for the transformation to complete, although

longer transformation periods pose challenges in maintaining the old sys-

tem without changes [12]. It is important to note that the Big Bang mi-

gration does not deliver any benefit until it is complete [17]. Despite its

challenges, the Big Bang migration is typically cheaper than alternative

options and may be preferred by some organizations for project manage-

ment purposes [12]. The Big Bang migration has potential benefits but is

relatively uncommonly used [5].

3.2 Incremental Migration

Incremental migration offers a structured approach to transitioning to a

microservices architecture by breaking the process into smaller, manage-

able steps, facilitating learning, and minimizing risks [16]. This strategy

introduces microservices gradually, guided by the determination of whether

re-architecting provides immediate value to the business and application

users [5]. Business needs drive the selection of services for independent

development, aiming for recognizable benefits while balancing transition

risks.

The incremental migration process typically unfolds through four pha-

ses: defining transition goals, specifying the scope and level of architec-

tural changes, preparing for resource readiness, and adjusting critical

development practices [5]. This approach allows for a gradual learning

curve, increased confidence, and immediate impact on targeted services

due to active development. However, risks such as co-existing architec-

tures, resource constraints, and maintaining quality standards amidst di-

5

verse technologies should be considered.

By incrementally splitting microservices, organizations unlock their

value gradually, rather than waiting for a big-bang deployment [16]. This

iterative process enables the identification of quick wins, builds momen-

tum, and reduces the impact of mistakes, fostering a smoother transition

to a microservices architecture.

3.3 Strangler Fig Pattern

The Strangler Fig Pattern offers a methodical approach to refactoring

monolithic applications into microservices by gradually replacing func-

tional domains [22]. Dividing the application into functional domains,

each domain is replaced with a microservices-based implementation, al-

lowing the old and new systems to coexist. Inspired by the growth pattern

of a fig tree, the new system wraps around the existing one, incrementally

replacing it over time [16].

Implementation of the pattern involves identifying parts of the exist-

ing system for migration, implementing the functionality in new micro-

services, and rerouting calls from the monolith to the new microservices

[16]. The implementation can be divided into three phases shown in Table

1.

Phase Description

Transform A parallel site is created and incrementally transformed

while coexisting with the original.

Coexist Both the original and migrated sites coexist, with gradual

redirection to the new site for newly implemented function-

ality.

Remove Old functionality is removed, and traffic is redirected away

from that part.

Table 1. Phases of the Strangler Fig Pattern [22]

The Strangler Fig Pattern promotes an incremental approach to micro-

services adoption, offering flexibility and reversibility [22]. This strategy

enables the gradual migration from monolithic systems to microservices,

allowing for the new system to grow and potentially replace the old one

entirely [16]. Importantly, it enables pausing or even stopping the mi-

gration while benefiting from current implementations. It is particularly

useful when migrating functionality without wanting to make significant

6

changes to the existing system, such as with black box systems or concur-

rently developed monoliths.

By monitoring progress and adjusting implementations with each new

microservice, organizations can adapt the transition to specific environ-

ments or requirements [8]. Overall, the Strangler Fig Pattern provides a

flexible and manageable pathway to transitioning from monolithic archi-

tectures to microservices [22].

3.4 Parallel Run

Parallel run strategy facilitates the simultaneous operation of both old

and new implementation of the same functionality in the production en-

vironment, enabling a comparison of results to ensure equivalence [16].

This approach involves calling both implementations concurrently, with

one considered the source of truth until verification confirms the reliabil-

ity of the new one.

Utilized for verifying both functional equivalence and non-functional

aspects of the new implementation, parallel run ensures that outputs

from both implementations match given the same inputs [16]. It is partic-

ularly beneficial for high-risk changes and situations with limited testing

time, allowing comprehensive verification.

In practice, requests are processed concurrently by the old monolith

and the new system, with the system validating its response against the

monolith’s response to ensure consistency [18]. Metrics are generated to

monitor consistency, aiding the gradual rollout per endpoint and facilitat-

ing feedback collection.

While parallel run offers advantages such as realistic testing scenar-

ios, gradual rollout, and performance evaluation before full deployment,

it also presents challenges like increased load, complex result compari-

sons, and GDRP compliance concerns [18]. Despite these drawbacks, it

remains a valuable strategy for ensuring the reliability and equivalence

of new implementations in complex migration scenarios.

More details on how the parallel run is used as part of a migration

strategy can be found in the following sources. The parallel run is the key

part of the migration strategy in [18]. The parallel run is employed in two

distinct phases of the migration process outlined in [14].

7

3.5 Data Migration Strategies

Transitioning from a monolithic architecture to microservices requires

careful consideration of data migration strategies [2]. Database migra-

tion is a critical aspect of transitioning to microservices, as monolithic

systems typically rely on a single shared database, whereas microservices

often have their own databases. Extracting and restructuring data to

align with the requirements of individual microservices demands careful

planning and robust migration strategies.

However, decomposing the data layer is notably difficult, with many

preferring to adopt microservices while retaining a centralized legacy data-

base [3]. The complexity of data migration often leads teams to avoid it

altogether [23]. Yet, database migration significantly impacts the success

probability of Microservices Architecture projects [2].

Addressing the migration of these databases requires careful consid-

eration, with recommendations suggesting the splitting of data to allow

each microservice access to its private database [19]. Failure to replicate

the database can result in it becoming a single point of failure, thereby

compromising the availability of the application [9].

There are three main options to execute this extraction: splitting the

database first, then the code; splitting the code first, then the database;

or splitting both simultaneously [16]. Each option has its benefits and

challenges, influencing the overall success of the migration process.

The first approach involves splitting the databases first, creating sep-

arate schemas or databases to logically isolate data related to different

services. While this enables early detection of issues and independent

evaluation of changes, it may not yield immediate benefits and requires

careful consideration of performance and consistency tradeoffs.

Alternatively, teams may choose to split the code first, allowing for

early deployment of independently deployable code artifacts and a simpli-

fied understanding of data requirements. However, this approach risks

persistent issues with shared databases and delays in identifying per-

formance or data consistency issues.

Finally, teams have the option to split both the code and data together

in one significant step. While this approach may take longer to assess the

impact, it is generally advisable to avoid it and instead consider splitting

either the database or code first.

8

4 Discussion

Migrating from a monolithic architecture to a microservices architecture

is a complex task. It is crucial to thoroughly analyze the potential benefits

and challenges of migrating to microservices. While the microservices

architecture is often perceived as the superior option, there is a growing

recognition that it may not always be the most suitable choice [5, 11, 16].

In a recent case, reverting to monolithic architecture helped to achieve

higher scaling, resilience, and reduced costs [13]. Therefore, migrating

to microservices should only be pursued with a clear rationale to avoid

wasting resources. The first step of the migration should always be to

evaluate whether the migration should even be done.

If the benefits of the microservices outweigh those of monolithic archi-

tecture, proper planning is required to capture the benefits. The Big Bang

migration is usually not advocated [8] and sometimes even recommended

to never be used [17]. That is because even though the idea of Big Bang,

migrating the entire application in a single rewrite, appears simple, it

is complex to implement. However, with extensive experience, Big Bang

migration can become a desirable option and should be considered when

planning the migration.

Incremental migration is often a more practical approach. Its goal is

to minimize the needed resources, whereas the Big Bang migration min-

imizes the duration [10]. There are many strategies to implement incre-

mental migration. Strategies, such as Strangler Fig and Parallel Run,

can be utilized to facilitate the transition, and a combination of different

incremental migration strategies may offer additional benefits. In the mi-

gration planning phase, it could be a good idea to experiment with the idea

of picking the best of multiple migration strategies to form the strategy

used for migration.

Regardless of the chosen strategy, data migration is always a chal-

lenging and critical aspect of the process. Failing to execute it success-

fully could lead to an inability to realize the full benefits of microservices.

Therefore, careful planning and evaluation of different methods for split-

ting the database are essential for a successful data migration.

9

5 Conclusion

The transition from monolithic architecture to microservices architecture

is a significant trend in software engineering. This paper has provided

an overview of several migration strategies and introduced the concepts

of monolithic and microservices architectures. The discussed migration

strategies include the Big Bang migration, incremental migration, Stran-

gler Fig pattern, and the parallel run strategy, along with a chapter fo-

cusing on data migration.

It is crucial to thoroughly evaluate the benefits and challenges of mi-

croservices compared to monoliths before initiating a migration. While

microservices offer numerous advantages, they may not always be the

best choice. If migration to microservices is deemed beneficial, it is essen-

tial to carefully assess different migration strategy options and select one

that aligns with the goals, constraints, and risk tolerance.

The Big Bang migration may offer simplicity, but it also presents sig-

nificant risks and challenges. In contrast, incremental migration allows

for a more gradual and controlled approach, enabling learning and adap-

tation throughout the migration. The Strangler Fig pattern and parallel

run strategy provide effective frameworks for implementing incremental

migration. However, they also come with their own set of challenges. Data

migration, an integral part of the process, requires meticulous planning

regardless of the migration strategy used.

In conclusion, a successful migration to a microservices architecture

necessitates comprehensive planning to address the technological and or-

ganizational challenges. By selecting the right migration strategy, creat-

ing a thorough plan, and prioritizing data migration, organizations can

execute the migration successfully while reaping the benefits of microser-

vices architecture.

In the future, further research is necessary to explore the transition

from monolithic to microservices architecture. This research is crucial for

the advancement of new and enhanced migration strategies and the iden-

tification of specific instances where migration yields significant benefits.

Given the evolving nature of this field, it is critical to re-evaluate previ-

ous challenges in light of current research findings. With increased know-

ledge, migration strategies once deemed complex and unfeasible may be-

come well understood and the preferred choice. This highlights the need

for continuous re-evaluation and adaptation within the field.

10

References

[1] Mohamed Abouahmed and Omar Ahmed. Machine Learning in Mi-

croservices: Productionizing microservices architecture for machine

learning solutions. 1st edition. S.l.: Packt Publishing, 2023. ISBN:

978-1-80461-214-9.

[2] Abdullah Alshammari et al. “High-performance computing-enabled

probabilistic framework for migration from monolithic to microser-

vices architecture using genetic algorithms”. In: Soft Computing

(31st Oct. 2023). DOI: 10.1007/s00500-023-09336-w.

[3] Saša Baškarada, Vivian Nguyen and Andy Koronios. “Architecting

Microservices: Practical Opportunities and Challenges”. In: Journal

of Computer Information Systems 60.5 (2nd Sept. 2020), pp. 428–

436. DOI: 10.1080/08874417.2018.1520056.

[4] Grzegorz Blinowski, Anna Ojdowska and Adam Przybylek. “Mono-

lithic vs. Microservice Architecture: A Performance and Scalability

Evaluation”. In: IEEE Access 10 (2022). DOI: 10.1109/ACCESS.2022.

3152803.

[5] Karoly Bozan, Kalle Lyytinen and Gregory M. Rose. “How to trans-

ition incrementally to microservice architecture”. In: Communica-

tions of the ACM 64.1 (Jan. 2021), pp. 79–85. DOI: 10.1145/3378064.

[6] Nicola Dragoni et al. “Microservices: yesterday, today, and tomor-

row”. In: (2016). Publisher: arXiv Version Number: 4. DOI: 10 .

48550/ARXIV.1606.04036.

[7] Bob Familiar. Microservices, IoT, and Azure: Leveraging DevOps

and Microservice Architecture to Deliver SaaS Solutions. Microser-

vices, Iot, and Azure. Berkeley, CA: Apress, 2015. ISBN: 978-1-4842-

1275-2.

[8] Ken Finnigan. Enterprise Java microservices. Shelter Island, NY:

Manning, 2019. 253 pp. ISBN: 978-1-61729-424-2.

[9] Augusto Flávio A. A. Freire et al. “Migrating production monolithic

systems to microservices using aspect oriented programming”. In:

Software: Practice and Experience 51.6 (June 2021), pp. 1280–1307.

DOI: 10.1002/spe.2956.

11

[10] Jonas Fritzsch et al. “Towards an Architecture-Centric Methodo-

logy for Migrating to Microservices”. In: Agile Processes in Software

Engineering and Extreme Programming – Workshops. Ed. by Phil-

ippe Kruchten and Peggy Gregory. Vol. 489. Series Title: Lecture

Notes in Business Information Processing. Cham: Springer Nature

Switzerland, 2024, pp. 39–47. ISBN: 978-3-031-48549-7 978-3-031-

48550-3. DOI: 10.1007/978-3-031-48550-3_5.

[11] Dimitrios Gravanis, George Kakarontzas and Vassilis Gerogiannis.

“You don’t need a Microservices Architecture (yet): Monoliths may

do the trick”. In: 2021 2nd European Symposium on Software En-

gineering. ESSE 2021: 2021 2nd European Symposium on Software

Engineering. Larissa Greece: ACM, 19th Nov. 2021, pp. 39–44. DOI:

10.1145/3501774.3501780.

[12] Pavel Hruby and Christian Vibe Scheller. “Microservice Architec-

ture Patterns for Enterprise Applications Supporting Business Agil-

ity”. In: Proceedings of the 29th Conference on Pattern Languages

of Programs. PLoP ’22. USA: The Hillside Group, 2nd Nov. 2023,

pp. 1–21. ISBN: 978-1-941652-18-3. URL: https://dl.acm.org/doi/

10.5555/3631672.3631698.

[13] Marcin Kolny. Scaling up the Prime Video audio/video monitoring

service and reducing costs by 90%. Prime Video Tech. 22nd Mar.

2023. URL: https://www.primevideotech.com/video-streaming/

scaling-up-the-prime-video-audio-video-monitoring-service-

and-reducing-costs-by-90 (visited on 01/04/2024).

[14] Alan Megargel, Venky Shankararaman and David K. Walker. “Mi-

grating from Monoliths to Cloud-Based Microservices: A Banking

Industry Example”. In: Software Engineering in the Era of Cloud

Computing. Ed. by Muthu Ramachandran and Zaigham Mahmood.

Series Title: Computer Communications and Networks. Cham:

Springer International Publishing, 2020, pp. 85–108. ISBN: 978-3-

030-33623-3 978-3-030-33624-0. DOI: 10.1007/978-3-030-33624-

0_4.

[15] Sam Newman. Building microservices: designing fine-grained sys-

tems. Second Edition. Beijing: O’Reilly Media, 2021. 586 pp. ISBN:

978-1-4920-3402-5.

12

[16] Sam Newman. Monolith to microservices: evolutionary patterns to

transform your monolith. First edition. Beijing Boston Farnham Se-

bastopol Tokyo: O’Reilly, 2019. 255 pp. ISBN: 978-1-4920-4784-1.

[17] Chris Richardson. Microservices patterns: with examples in Java.

Shelter Island, NY: Manning, 2019. 490 pp. ISBN: 978-1-61729-454-

9.

[18] Ali Sebzevari and Francesco Sarracco. Parallel Run Pattern - A Mi-

gration Technique in Microservices Architecture. Zalando Engineer-

ing Blog. 4th Nov. 2021. URL: https://engineering.zalando.com/

posts/2021/11/parallel-run.html (visited on 18/03/2024).

[19] Davide Taibi, Valentina Lenarduzzi and Claus Pahl. “Processes, Mo-

tivations, and Issues for Migrating to Microservices Architectures:

An Empirical Investigation”. In: IEEE Cloud Computing 4.5 (Sept.

2017), pp. 22–32. DOI: 10.1109/MCC.2017.4250931.

[20] Freddy Tapia et al. “From Monolithic Systems to Microservices:

A Comparative Study of Performance”. In: Applied Sciences 10.17

(21st Aug. 2020). DOI: 10.3390/app10175797.

[21] Johannes Thönes. “Microservices”. In: IEEE Software 32.1 (Jan.

2015). DOI: 10.1109/MS.2015.11.

[22] Victor Velepucha and Pamela Flores. “A Survey on Microservices

Architecture: Principles, Patterns and Migration Challenges”. In:

IEEE Access 11 (2023). DOI: 10.1109/ACCESS.2023.3305687.

[23] Xin Zhou et al. “Revisiting the practices and pains of microservice

architecture in reality: An industrial inquiry”. In: Journal of Sys-

tems and Software 195 (Jan. 2023). DOI: 10.1016/j.jss.2022.

111521.

13

How to browse the web without leaving
evidence

Joona Sauramäki
joona.sauramaki@aalto.fi

Tutor: Tuomas Aura

Abstract

There are multiple entities that want to track users on the internet, ranging

from malicious parties to advertisement networks, that want to monetize

user data for profit.

Browsing the internet relies on multiple technologies that each have

different problems with privacy and security. Browsing leaves evidence

of the session on the user’s device and on the accessed servers. Different

entities also try to fingerprint browsing sessions to identify users.

There are multiple solutions for anonymizing sessions. VPN hides client

IP, private browsing modes leave less evidence on the device and the TOR

network provides the most comprehensive protection for privacy.

Optimal privacy can be achieved by combining different solutions to

provide the best protection. However, it’s essential to acknowledge poten-

tial trade-offs in user-friendliness. Individuals must determine the level of

protection they think is necessary.

KEYWORDS: Browser, forensics, incognito

1 Introduction

Users on the web are becoming more aware of tracking on the internet

and how to protect against it. Now every major browser offers a private

browsing mode, and some browsers are solely focused on protected and

private browsing. VPNs are more popular than ever, but their benefits

seem to be overestimated or misunderstood.

The problem with when browsing the web with the intention of not

leaving any evidence is that the browsing session leaves evidence in multi-

ple places without the user’s knowledge. Even the private browsing modes

often lead users to believe in a stronger protection than what is realistic.

Private browsers also have had vulnerabilities and oversights that left

data accessible after a browsing session. Evidence of the browsing ses-

sion is stored by the browsers as client history, cache, cookies, and other

places. Additionally, external entities can track generated DNS queries

and activity on the web.

This paper goes through where browsers store information about a

browsing session and how forensics methods could gather evidence to

identify users and their activity on the web. Also, it discusses how to

protect information leakage from DNS queries, ISP traffic logging, and

website tracking.

Section 2 introduces different types of browsing artifacts that a brows-

ing session can create. Section 3 presents different technologies that can

be used to leave less evidence of the browsing session. Finally, section 4

provides the conclusion.

2 Browser Session Artifacts

Browsing the internet leaves behind traces of evidence about the session

in multiple places. The browser stores information on the user’s computer,

every domain needs to be resolved with a Domain Name System (DNS)

query, all of the data goes through an Internet Service Provider (ISP),

and the websites deploy technologies to track clients. These can be split

into evidence that is left on the user’s computer and traces that are left on

different cloud servers.

Digital forensics is a part of forensics that involves collecting, exam-

ining, and identifying digital evidence. Digital evidence comprises infor-

mation that can be extracted from the user’s computer and all artifacts

created by online activities to remote servers. Digital forensics is mostly

used as a tool for law enforcement to gather evidence. The knowledge of

forensic techniques also helps to understand how to protect against unau-

thorized snooping and tracking.

2.1 Local Files

All of the most common browsers leave behind local artifacts about a

browsing session on the client machine. The most commonly known arti-

facts are the browsing history and user-downloaded files, but many other

artifacts are generated in each session. For example, data typically stored

by browsers on the file system includes, bookmarks, cookies, favicons,

form autocomplete information, stored credentials, and cached files.

When the browser is running, additional information can be gathered

through a RAM analysis. It is a method where computer RAM is dumped

on a file and analyzed. The RAM can also be accessed if it is swapped

to a pagefile on another storage medium which persists between system

reboots. Ohana et al. [14] were able to extract information from RAM and

pagefile about cached images, URL history, and usernames. They could

do it with browsers running in private browsing modes.

Solomos et al. [16] proposed a method to track client sessions using the

favicon cache. When the web server is first accessed the browser caches

favicons of different attacker-controlled domain paths. After manipulat-

ing the cache, the server can track the client by testing the existence of

the cached favicons.

There are multiple forensic tools [15] for collecting and interpreting

information about browser activity. These tools make it easier to link, an-

alyze, and combine evidence from different sources to get a better picture

of the browser activity. Nalawade et al. [12] defined these advanced char-

acteristics as integrated analysis, timeline analysis, analysis of search

history, analysis of URL encoding, analysis of user activity, and recovery

of deleted information.

When removing browser-created files they should be handled in a sim-

ilar manner as when deleting any confidential data [18]. After deleting

the browser files, there may still be methods to recover the data from the

storage device. Hard drives only delete the indexes to the data, but it

can still be recovered using forensic methods. When a file is deleted from

a Solid State Drive, it runs a TRIM command for optimizing the drive

that deletes the content but if the operation is disabled at the OS level,

recovery of data is much more likely.

Many browsers allow the installation of browser extensions. From a

privacy perspective, the extensions are problematic because they often re-

quire access to the website information to be usable. They can also leave

additional files to the client, which can leak information on user activ-

ity. Many browser extensions offer also synchronization and cloud-based

services that can leak information. Starov et al. [17] analyzed browser

extensions and found that 6.3% introduce privacy leaks accidentally or

intentionally. There also has been research into extension security [5]

and privacy [7, 9].

2.2 Web Server Tracking

Another way of tracking clients is tagging and fingerprinting [19], done

by the accessed web servers. Tagging is where the web server puts some-

thing on the user’s computer, like a cookie [10], that can be tracked across

website access. In fingerprinting the webserver gather usually all avail-

able data about the browser connection and information to distinguish

the connection from other clients. Especially fingerpring does not guaran-

tee complete differentiability between all accesses, but is generally able

to differentiate between most of the clients.

Tagging and fingerprinting do not directly expose any sensitive infor-

mation but they can indirectly link data between different sessions to each

other resulting in leaking information between sessions.

2.3 Name Service

Another privacy consideration is Domain Name System (DNS) [11]. It

translates human-readable domain names to IP addresses. The DNS

queries are usually unencrypted, although there are solutions like DNS

over TLS and DNS over HTTPS.

The client’s stub resolver is responsible for querying a DNS server.

The DNS server gets access to many fields of data, most notably source IP

address, port, and domain name. With the combination of source IP and

port, the DNS server can even distinguish clients that share the same IP.

This is common when using mobile data because they are often behind a

Carried-Grade NAT. Some DNS servers may log queries, for example to

provide intrusion detection systems.

For performance reasons, DNS relies heavily on caching at every level.

The stub resolver typically caches all of the queries. Anyone who has ac-

cess to the computer has access to the information from the stub resolver.

Even without direct read access to the stub resolvers cache, some finger-

printing and tagging techniques can query to cache to get information.

There are multiple methods of tracking clients based on cached DNS

records. Kelin at Al. [8] proposed a technique where tracking users across

websites is achieved by inserting a tracking snippet into a website that

queries different name servers. Its goal is to put unique DNS cache data

into the stub resolver by querying tracker-controlled DNS records. These

records contain each time a randomly ordered set of A records of tracker-

owned IP addresses. Websites can use this information to query the server

to create statistically unique fingerprints. The fingerprint remains un-

changed as long as the stub resolver keeps records cached.

DNS has also other privacy implications besides revealing information

about accessed domain names. For example, the DNS system has other

queriable fields such as MX records for email addresses. Based on the ad-

dresses one can deduct where the client is sending emails to. Although,

you can only get information about domains and not specific users belong-

ing to that domain.

2.4 Internet Service Providers

As all of the internet traffic passes through an Internet Service Provider

(ISP) they can track it all. In many countries, it is mandated that the

ISPs log the current owner of each connected IP, but they are not allowed

to track any outgoing connections.

You could also assume that some ISP could be malicious and log all of

the possible information which could be assumed of that any party could

listen in on connections on the internet. As most of the internet traffic

is encrypted it can not be accessed, but everybody can see every IP ad-

dress that the client accesses and ISP can link this IP to the owner of the

connection.

3 Hiding Browsing Artifacts

This section goes through different methods of hiding information about a

browsing session. It is discussed how those methods work and what kind

of data they can hide.

Figure 1. Public mode data access by Aggarwal et al. [1]

3.1 Private Browsing Modes

All of the major browsers provide some kind of private browsing mode.

What complicates things more is that every browser has different imple-

mentations of private browsing modes with different names. The protec-

tions that the private browsing modes achieve and how they are repre-

sented to users often lead to misconceptions of their capabilities [20].

Aggarwal et al. [1] categorized the goals of private browsing modes

into two categories, privacy from a local attacker and a web attacker. Lo-

cal privacy means that the action of accessing a web server should not

leave any traces on a local filesystem that can be later accessed by an

attacker that has access to the client. This means that all of the local

browsing artifacts and cache should be unchanged when using a private

browsing mode.

Even though the browsing sessions in private mode should not change

any local files many of the solutions violate this. Aggarwal et al. [1] found

that many browsers violate this. The violations include modifying last ac-

cessed timestamps in SQLite databases, certificate authority certificates

stored, and plugin-related data. Also, browsers generally use a cache for

each incognito session that is deleted afterward. The cache could be ana-

lyzed when the session is open.

Privacy from web attackers is that it should be difficult for any web

server to link activities in private mode the activities in public mode.

This means the web servers accessed should not be able to fingerprint

the browsers between these modes.

Private browsing modes can not protect against leaking the client IP

addresses as they are local-only solutions. These modes have solved the

problem with browser extensions by generally disabling them by default

but the user can opt-in to use them.

3.2 Virtual Private Network

VPN is a secure connection between a device and a network or two net-

works. This can be achieved in many different ways but generally in

browser privacy VPN refers to a connection between the client and the

network that is provided to the client as a service. The client connects to

a VPN service that routes all of the internet traffic from the client over

the VPN services network that forwards them to the internet. This means

that the outgoing packet address belongs to the VPN service and not the

client.

Virtual Private Networks (VPN) have become more popular in recent

years partially because of the amount of marketing around them. These

have been marketed to hide IP addresses and the ability to circumvent

geoblocking. The problem with marketing these solutions is that they can

contain misleading claims, overpromise, and exaggerate the information

which can negatively affect the user’s view of internet safety [2].

VPN hides the client IP address by rerouting the packets through the

VPN provider’s network. It makes it harder to identify between differ-

ent VPN users as all of their packets are routed through the same IP

addresses.

One of the problems with commercial VPNs is that all of the data goes

through them and they have the same capability as ISPs to log informa-

tion. VPN providers are also less regulated than ISPs on how they can

operate.

There are also providers that offer free VPN services and some of them

are malicious. There are services that market private and non-loggin pol-

icy but still log connections and sell the data to third parties making the

benefits of a VPN non-existent [6].

3.3 The Onion Router

The Onion Router (TOR) [4] is open-source software that enables anony-

mous communication on the internet. TOR network consists of entry, mid-

dle, and exit nodes. The client’s traffic enters through an entry node, is

routed over multiple middle nodes, and then exits through an exit node.

TOR network relies on onion routing where the traffic is encrypted mul-

tiple times as it is passed over the nodes. Only the entry node knows the

client’s IP address and the exit node knows the destination address and

nothing about the client. The middle nodes know only the previous and

next hops in the chain. Exit nodes can eavesdrop on unencrypted traffic.

TOR relies on volunteers to operate these nodes comprising individu-

als, organizations, and non-profit entities. The volunteers enable the TOR

network to be decentralized and have resilient infrastructure. As the net-

work is run by volunteers there are malicious nodes present. TOR relies

also on the fact that any entity should not be able to gain a significant por-

tion of the network, which would enable the entity to trace the connection

over the nodes.

Another problem with TOR is that there have been traffic analysis at-

tacks [3]. In traffic analysis attacks the attacker typically controls the

entry and exit nodes and based on the timing, packet size, and other in-

formation, correlates traffic flow on entry and exit nodes. Recently there

have also been machine learning-based solutions for traffic correlations

[13].

Even though TOR has many vulnerabilities, when everything works

as expected and the attacker does not control any nodes, the network

provides decent anonymity. Also, my TOR browser by default provides

privacy-focused features. For example, it deletes cookies between ses-

sions.

4 Conclusion

This paper reviewed different types of solutions for network privacy and

how to leave as little evidence as possible of a browsing session. When

browsing the internet evidence is left in multiple places to the user’s de-

vice and the servers accessed. Browsing the internet is a complicated pro-

cess involving multiple technologies is hard to maintain privacy as each

of the technologies has the potential to leave evidence.

The most basic of protections is to use a private browsing mode that

protects from others using the same computer. Private browsing modes

do not provide any protection from leaking IP addresses or tracking done

by third parties.

VPNs have many benefits but for privacy, they provide the ability to

hide IP addresses. However, the VPN service provider still knows the IP

address and needs to be trusted to keep it secret.

TOR browser provides the most comprehensive protection against pri-

vacy. But it also has weaknesses that can be exploited to track users.

However, most of these exploits are hard to execute.

Often privacy is the balance between convenience and privacy. By com-

bining these solutions users can achieve good privacy on the internet even

though most of them have some kind of flaws. Some of the flaws can be

mitigated by using multiple solutions.

References

[1] Gaurav Aggarwal, Elie Bursztein, Collin Jackson, and Dan Boneh. An
analysis of private browsing modes in modern browsers. In 19th USENIX
Security Symposium (USENIX Security 10), 2010.

[2] Omer Akgul, Richard Roberts, Moses Namara, Dave Levin, and Michelle L.
Mazurek. Investigating influencer vpn ads on youtube. In 2022 IEEE
Symposium on Security and Privacy (SP), pages 876–892, 2022.

[3] Lamiaa Basyoni, Noora Fetais, Aiman Erbad, Amr Mohamed, and Mohsen
Guizani. Traffic analysis attacks on tor: A survey. In 2020 IEEE Interna-
tional Conference on Informatics, IoT, and Enabling Technologies (ICIoT),
pages 183–188, 2020.

[4] Roger Dingledine, Nick Mathewson, Paul F Syverson, et al. Tor: The
second-generation onion router. In USENIX security symposium, volume 4,
pages 303–320, 2004.

[5] Arjun Guha, Matthew Fredrikson, Benjamin Livshits, and Nikhil Swamy.
Verified security for browser extensions. In 2011 IEEE Symposium on Se-
curity and Privacy, pages 115–130, 2011.

[6] Muhammad Ikram, Narseo Vallina-Rodriguez, Suranga Seneviratne, Mo-
hamed Ali Kaafar, and Vern Paxson. An analysis of the privacy and security
risks of android vpn permission-enabled apps. In Proceedings of the 2016
Internet Measurement Conference, IMC ’16, page 349–364, New York, NY,
USA, 2016. Association for Computing Machinery.

[7] Soroush Karami, Panagiotis Ilia, Konstantinos Solomos, and Jason Polakis.
Carnus: Exploring the privacy threats of browser extension fingerprinting.
In In Proceedings of the 27th Network and Distributed System Security Sym-
posium (NDSS), 2020.

[8] Amit Klein and Benny Pinkas. DNS cache-based user tracking. In NDSS,
2019.

[9] David M. Martin, Richard M. Smith, Michael Brittain, Ivan Fetch, and
Hailin Wu. The privacy practices of web browser extensions. Commun.
ACM, 44(2):45–50, feb 2001.

[10] Jonathan R. Mayer and John C. Mitchell. Third-party web tracking: Policy
and technology. In 2012 IEEE Symposium on Security and Privacy, pages
413–427, 2012.

[11] Paul V Mockapetris. Rfc1034: Domain names-concepts and facilities, 1987.

[12] Apurva Nalawade, Smita Bharne, and Vanita Mane. Forensic analysis and
evidence collection for web browser activity. In 2016 International Confer-
ence on Automatic Control and Dynamic Optimization Techniques (ICAC-
DOT), pages 518–522, 2016.

[13] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr: Strong
flow correlation attacks on tor using deep learning. In Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS ’18, page 1962–1976, New York, NY, USA, 2018. Association for
Computing Machinery.

[14] Donny Jacob Ohana and Narasimha Shashidhar. Do private and portable
web browsers leave incriminating evidence? a forensic analysis of residual
artifacts from private and portable web browsing sessions. In 2013 IEEE
Security and Privacy Workshops, pages 135–142, 2013.

[15] Aamir Rasool and Zunera Jalil. A review of web browser forensic analysis
tools and techniques. Researchpedia Journal of Computing, 1(1):15–21,
2020.

[16] Konstantinos Solomos, John Kristoff, Chris Kanich, and Jason Polakis.
Tales of favicons and caches: Persistent tracking in modern browsers. In
Network and Distributed System Security Symposium, 2021.

[17] Oleksii Starov and Nick Nikiforakis. Extended tracking powers: Measur-
ing the privacy diffusion enabled by browser extensions. In Proceedings
of the 26th International Conference on World Wide Web, WWW ’17, page
1481–1490, Republic and Canton of Geneva, CHE, 2017. International
World Wide Web Conferences Steering Committee.

[18] Shashank Tomer, Aviral Apurva, Pranshu Ranakoti, Saurav Yadav, and Ni-
har Ranjan Roy. Data recovery in forensics. In 2017 International Con-
ference on Computing and Communication Technologies for Smart Nation
(IC3TSN), pages 188–192, 2017.

[19] Randika Upathilake, Yingkun Li, and Ashraf Matrawy. A classification of
web browser fingerprinting techniques. In 2015 7th International Confer-
ence on New Technologies, Mobility and Security (NTMS), 2015.

[20] Yuxi Wu, Panya Gupta, Miranda Wei, Yasemin Acar, Sascha Fahl, and Blase
Ur. Your secrets are safe: How browsers’ explanations impact misconcep-
tions about private browsing mode. In Proceedings of the 2018 World Wide
Web Conference, WWW ’18, page 217–226, Republic and Canton of Geneva,
CHE, 2018. International World Wide Web Conferences Steering Commit-
tee.

Optimisation of heating, ventilation,
air-conditioning, and cooling (HVAC)
with machine learning (ML) methods

Julius Mikala
julius.mikala@aalto.fi

Tutor: Matti Huotari

Abstract

Traditional HVAC control methods like rule-based control (RBC) have pro-

vided satisfactory indoor environments but lack optimisation in cost and

responsiveness to external influences. Enhanced control methods, particu-

larly those employing machine learning (ML) techniques, show significant

potential for advancement in HVAC optimisation. This paper presents a

overview of different approaches to HVAC optimisation with a focus on

ML and Reinforcement Learning (RL) methods. HVAC optimisation is

discussed by how various ML and simulation methods are employed to

predict how the building responds to control. Next, the RL control models

are discussed. The discussed literature suggests that ML controlled HVAC

systems demonstrate improvements in temperature stability and energy

expenditure.

KEYWORDS: HVAC control, artificial neural network, reinforcement learn-

ing

1 Introduction

Spending a substantial amount of time indoors has heightened the em-

phasis on the quality of indoor environments, with a direct impact on

human health and productivity. Numerous studies [1] highlight the posi-

tive association between indoor environment enhancements and the well-

being of occupants. Key to improving indoor conditions are Heating, Ven-

tilation, Air-conditioning, and Cooling (HVAC) systems, which have been

identified as major contributors to the overall indoor environmental fac-

tors affecting health and productivity. In the United States, HVAC sys-

tems constitute up to 50% of a building’s energy budget [16]. Conse-

quently, the pursuit for solutions that enhance HVAC energy efficiency,

while simultaneously maintaining or improving indoor occupant comfort,

becomes crucial for developing sustainable buildings.

Current control methods for HVAC include rule based control (RBC)

and other basic automation systems, which are often created through ex-

pert knowledge [12]. As a result, the control afforded by the RBC method

can provide satisfactory indoor environments, but is unoptimal when it

comes to cost. Furthermore, RBC method is poor at responding to out-

side influences such as weather, and occupancy [12]. As a result, en-

hanced HVAC control methods exhibit significant potential for advance-

ment. Moreover, the prevailing research trend underscores an inclination

towards machine learning methods, as evidenced by several literature re-

views [12, 5, 18]. The reason for utilising ML for building control stems

from its ability to use data to learn the complex building environment,

meaning that time and effort can be saved [18].

Other frequently used methods in HVAC optimisation include Model

Predictive Control (MPC) and Fuzzy Logic [5]. These aforementioned con-

trol methods are not ML since the methods do not use data for learning.

Instead non-ML methods may have the same drawback as RBC, requiring

expert knowledge for controller design. As ML control methods arguably

enable easier controller creation this paper will focus on them.

This will paper review will different approaches to optimising HVAC

with ML methods. The goal is to give the reader an overview of the dif-

ferent methods used in HVAC optimisation. Therefore, the paper will

cover the dynamic building models, what kind of buildings the control is

employed in, and the ML control methods employed. As Artifical Neu-

ral Network (ANN) and Reinforcement Learning (RL) are currently one

of the most frequently employed methods for HVAC control optimisation

this paper will focus on these.

2 Machine learning methods

ML is defined as a methods that use data to automate a solution to some

difficult problem [15]. ML differs from other ways of solving such prob-

lems by involving data that is used to train a model capable of a solution.

In contrast other methods often require expert knowledge to arrive at a

solution. Machine learning problems can be divided into supervised, un-

supervised, and reinforcement learning. ANN are a ML method, which

have sparked interest in ML and are often used to solve complex prob-

lems [15]. Arguably, this also applies to HVAC optimisation which is why

the rest of this chapter will focus on various ANN methods.

2.1 ANN methods

ANNs encompass a diverse array of methods, including Multilayer Per-

ceptrons (MLPs), Recurrent Neural Networks (RNNs), Convolutional Neu-

ral Networks (CNN), and more, each tailored to address specific tasks and

challenges in machine learning. Introducing Multilayer Perceptron (MLP)

networks serves as an good starting point in exploring the capabilities of

ANNs.

An ANN is designed to mimic biological neurons [11]. They function

by summing together inputs and a bias, which is then passed through

an activation function. The activation function is used to introduce non-

linearity to the network, and enables it to model more complex relation-

ships. This signal is then sent to subsequent neurons through synapses

which apply a weight to the signal. In a perceptron the activation func-

tion is such that the neuron output is 1 when the input sum is above a

threshold and 0 otherwise. Perceptrons and multilayer perceptrons are

an example of a feed-forward network where neurons are organised in

layers and connections always feed forward to the next layer. ANN typ-

ically learn with a back-propagation algorithm, where the weights and

biases of a network are adjusted layer by layer in order to bring the net-

work output closer to a desired value. The learning is also usually done

in several steps. This training can be done as supervised learning, where

the desired learning goal is known. Unsupervised learning is the opposite

of this, but is less commonly used for heating optimisation as can be seen

from a literature review [5]. Reinforcement learning is a learning setting

where the desired output is not known, but the a reward can be calculated

for it [11].

In recurrent neural networks the connections between neurons is not

limited to a feed forward direction, but instead the neurons can connect

backwards to create back-loops [11]. This enables the network to hold

memory to exhibit dynamic temporal behaviour. As a result, RNNs are

often used for time-series. However, RNNs suffer from vanishing or ex-

ploding errors with long input sequences [9]. Long short-term memory

(LSTM) networks are one adaptation that solves this issue by keeping the

long term memories constant. This enables LSTMs to forecast time series

effectively even when there are long periods between important events

[11].

Reinforcement learning techniques can be applied independently of

ANNs, as demonstrated by Q-networks [11]. Nevertheless, ANNs are

commonly employed in heating optimisation literature due to their capac-

ity to handle continuous states and actions. RL is created on the concept

that an agent performs an action in an environment when the environ-

ment is in a certain state [6]. During training the agent learns an optimal

control policy that is a mapping between states and the probability of se-

lecting an action. RL defines a state-value function that represents the

future rewards when following the optimal policy. The value of an action

is defined by action-value-function which indicates the value of an action

in a state when following the policy. During RL model training there is a

back and forth between exploiting already functional strategies, and ex-

ploring actions/states that have not yet been observed.

Convolutional neural networks are a variation on the way ANNs pro-

cess connections between layers. CNNs solve the issue stemming from

large amounts of inputs resulting in large amounts of parameters to tune

in traditional feed forward networks [3]. CNNs consists of several layers,

which include convolution, nonlinear, pooling, and fully-connected layers.

The nonlinear layer is the layer in which an activation function is applied,

whereas a fully-connected layer is an example of a simple ANN layer dis-

cussed previously. The convolutional layers use convolution mathematical

operations instead of connections with weights as in traditional ANNs. Fi-

nally, pooling layers are a method of downsampling large inputs and are

used after convolution layers.

3 Optimisation approaches

There are several different methods for optimising HVAC with ML. The

most discussed methods include model predictive control (MPC), rein-

forcement learning (RL) as can be seen in literature reviews [5, 18, 2].

While several From the literature reviews, the algorithms are distinguished

by how the dynamics of a building are modelled and the algorithms used

for controlling. Other distinguishing environmental factors are the vari-

ables that are accounted for, the number of actions available for the con-

troller, and the optimisation goal. As each building has different HVAC

and building characteristics, the control problem requires identification of

the system [5]. This also means that a universal model for control cannot

be created [5].

3.1 Building model

The optimisation of a building requires some form of representation of

a building, which is achieved with a dynamic model of the building [5].

Thus, HVAC optimisation control methods often use two different mod-

els, a dynamic for forecasting the behaviour of the building, and a control

algorithm for the output. The dynamic model can be used either in the

control loop, or to create the controller. When a dynamic controller is not

used in the control loop, the control method is referred to as model-free [5].

Model-free methods do not necessarily need a dynamic building model for

creating the model, but can instead be use historical data [12]. However,

this limits the controller based on the historical data. As a result, train-

ing the control model on a real building is likely infeasible due to cost and

time constraints. Most model-free implementations use RL or artificial

neural networks, but fuzzy logic has also been used for the control task

[12]. The reason for the lack of fuzzy logic implementations is the diffi-

culty in creating them. Dynamic models are often used in the training of

model-free controllers because because the often used methods, RL and

ANN, require large amounts of training data [12]. In contrast, control

methods used with dynamic building models in the control loop are more

varied, and include ANN, SVM, as well as other supervised ML methods

[5].

The building models can be divided into white-box, black-box, and grey

box-models [5]. The white-box models are based on modelling the physics

of the buildings. While this method ensures that the models are explain-

able, the models are also difficult and time-consuming to create. Exam-

ples of black-box models include the RL and ANN methods [5]. Such mod-

els require a lot of data from previous operation of the building. Finally,

grey-box models combine both both of the previous types.

An example of a black-box building, can be seen in a study [14] where

a convolutional neural network-long short term memory (CNN-LSTM)

model is used to approximate the the real world behaviour of the build-

ing. CNN-LSTM models are often used for time-series prediction in appli-

cations that range from stock-prices to energy consumption. These mod-

els are used in time-series problems because the number of inputs that

time-series problems require are often very large, which results in lengthy

training periods [14]. Therefore, reducing the number of features is bene-

ficial which can be achieved with a CNN model that reduces the number of

features by detecting patterns in the data. These features are then used

by the LSTM model to create a prediction of the next time-step. When

comparing an LSTM and a CNN-LSTM model, the latter learns faster and

produces more accurate results [14]. The CNN-LSTM energy consump-

tion prediction model used compressor suction temperature, evaporator

side water outlet temperature, condenser side water inlet temperature,

and condenser side water inlet temperature as inputs. The study [14] is

highly focused on the describing how the training of the DRL methods are

improved, and omits to mention what the HVAC controller action space

is. More information is provided on a building model in [17] where two

models are used to predict the behaviour of the house. These are a model

to predict the thermal environment of the room and a model to predict

the energy consumption of the environment. The study [17] compares an

LSTM model and a XGBoost model, and finds that the XGBoost model

performs better based on R2 score. The inputs for the models includes

several indoor temperatures, outdoor temperatures, and the state of the

HVAC system. These models are later used to train and validate RL mod-

els.

A of a white-box building model is used in [13] uses EnergyPlus soft-

ware to model how the building indoor temperature responds to control.

The modelling involves creating a 3D model of the building, where the

insulating properties of facade and airflow parameters are included. Sim-

ulation is then performed with contrast transfer functions and finite dif-

ference methods. "This algorithm discretises building enclosures such as

walls, floors, and ceilings into various nodes and numerically solves the

heat transfer equations using a Finite Difference Method" [13]. Other pub-

lications indicate that EnergyPlus is a frequently used model to forecast

building temperature and energy usage. While these white-box models

can not be considered ML, they are often used together with ML methods

to solve the building control problem.

3.2 Building control with Reinforcement Learning

When ML is used for HVAC control one of the most frequently used meth-

ods is currently RL. As a result, this section will focus on how the control

problem is solved with RL. Some often used reinforcement learning algo-

rithms include Q-learning, policy-gradient, actor-critic, and value based

[5, 18]. Several methods can be used to realise RL, when neural networks

are employed for this purpose the algorithm is referred to as deep rein-

forcement learning (DRL) [6]. In most papers [6, 8, 17] employing RL for

HVAC control the building model is only employed in the training phase.

The building model is used to teach the model an optimal policy based on

the building state As a result, RL can be considered a model free method.

When considering HVAC optimisation, the simplest approach is opti-

mising the heating in HVAC. This can be seen in three studies [6, 8, 17].

While all the aforementioned studies approach the control problem from

the perspective of improving temperature stability, the studies differ due

to differences in hardware and choice of methods. For example, in [6] the

heating system consists of water radiators, meaning that the control sig-

nal or action space is defined as the a discrete list of values that represent

the radiator water temperature. In contrast, when the control hardware is

a electric radiator the action can be defined as a boolean on/off [8]. Finally,

in [17] the state space is again defined as a discrete list which represents

the supply air setpoint temperature of a HVAC system. All three studies

use variations on DRL. As a result, the resign of the controller reward

function is important as it is used to indicate how well the control func-

tions during training. In each case the reward functions are similar as two

reward functions. The first reward functions measures temperature com-

fort, which is defined as how stable the indoor temperature is. The second

function, measures energy consumption normalised according to outside

temperature. Outside temperature must be accounted for in the energy

consumption reward function because heating becomes increasingly more

demanding as the outside temperature drops. The state-spaces for the

DRL algorithms use indoor environment sensors, mainly temperature,

and various weather features. Weather features include outside temper-

ature and sunshine. In cases where an office building is heated [6, 8] the

building schedule is also include since the temperature is expected to be

lowered when the building is not in use. The studies [6, 8, 17] reported

energy expenditure reductions of around 10%.

HVAC devices are responsible for controlling other factors apart from

the simple temperature use case, such as CO2 through ventilation [7, 19].

When considering several factors the control problem becomes more diffi-

cult since the action space becomes larger and different actions can affect

both temperature and indoor air-quality. Furthermore, HVAC devices are

often separated into zones, which means that control must be either im-

plemented for each zone separately or as multi-zone control. The former

introduces problems due to possible decreases efficiency, whereas the lat-

ter sees an increase in problem complexity. In [7] the problem with in-

creased action space is handled by training several DRL models in par-

allel. Each model control a different part of the HVAC system. This

approach saw an overall decrease in energy usage of around 11%. The

problem of multi-zone HVAC control is solved in a similar manner in an-

other study [19]. Here models for each zone are trained simultaneously

so that the control models are trained to work together. Further methods

are then employed to create a multi-zone controller, but due to their com-

plexity these are outside the scope of this paper. Testing of this approach

shows that indoor CO2 concentration, temperature stability, and energy

usage are all improved significantly.

4 Discussion

Given that ML control of buildings has been shown to shown to provide

a noticeable improvement in both simulated and real settings we might

question why this control method is not already widely adopted. This

lack of adoption in the building industry is evidenced by publications dis-

cussing ML control as possible improvements, but not as something that

has been realised on a large scale. Such an example can be seen in a

study [10], where the possibility of implementing ML control is buildings

is consider fro Finland. In part this lack of adoption may be explained by

the novelty of the subject. While there are publications as old as 2002,

the subject has seen a significant increase in publications starting from

2018 [2]. As a result, the ML solutions may not have had time to be im-

plemented in the building industry. Another drawback with ML control of

HVAC is the data requirement. Large office buildings or campuses may

use thousands of sensors. For older buildings the investment in sensors

might thus outweigh the improvement gained from ML control. Moreover,

when employing a ML based controller for as the building dynamic model,

this data must be stored in order for it to be usable. The same also applies

to new or renovated buildings where there is a lack of data required for

model training. In the case that the appropriate sensor are installed and

the data stored, there might still arise problems from the data format.

Currently, most buildings have data structures that vary between build-

ings [4], which means that data-points must be manually selected. As

result, ML solutions may not be scalable enough for widespread adoption.

Therefore, future research may need to tackle this problem of scalability

before ML HVAC optimisation is widely adopted.

5 Conclusion

This paper sought to give the reader an overview of methods employed

for HVAC optimisation. This was achieved by defining mL methods, such

as ANNs, and RL which are often used in HVAC control. These meth-

ods leverage data to learn complex building environments, enabling more

adaptive and responsive control strategies. Next, the two types of models

employed in HVAC control were discussed. First, the models predicting

how a building responds to control, meaning dynamic building models.

ML methods employed for these include variations on LSTM networks,

and XGBoost. However, building simulation software, which are not ML

was also employed for this purpose. The second sort of model used for

HVAC control is the model producing the control signal. These control

models included ANN, and DRL methods.

When deployed the ML controlled HVAC systems showed improve-

ments in both temperature stability and energy expenditure. However,

the adoption of ML-based HVAC optimisation faces challenges. Data re-

quirements, scalability issues, and variability in data structures may pose

significant hurdles.

References

[1] Yousef Al Horr, Mohammed Arif, Amit Kaushik, Ahmed Mazroei, Martha
Katafygiotou, and Esam Elsarrag. Occupant productivity and office indoor
environment quality: A review of the literature. Building and Environ-
ment, 105:369–389, August 2016.

[2] Maher Ala’raj, Mohammed Radi, Maysam F. Abbod, Munir Majdalawieh,
and Marianela Parodi. Data-driven based hvac optimisation approaches: A
systematic literature review. Journal of Building Engineering, 46:103678,
April 2022.

[3] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding
of a convolutional neural network. In 2017 international conference on
engineering and technology (ICET), pages 1–6. Ieee, 2017.

[4] Bharathan Balaji, Arka Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua
Gluck, Dezhi Hong, Aslak Johansen, Jason Koh, Joern Ploennigs, Yuvraj
Agarwal, et al. Brick: Towards a unified metadata schema for buildings. In
Proceedings of the 3rd ACM International Conference on Systems for Energy-
Efficient Built Environments, pages 41–50, 2016.

[5] Yasaman Balali, Adrian Chong, Andrew Busch, and Steven O’Keefe. En-
ergy modelling and control of building heating and cooling systems with
data-driven and hybrid models—a review. Renewable and Sustainable En-
ergy Reviews, 183:113496, September 2023.

[6] Silvio Brandi, Marco Savino Piscitelli, Marco Martellacci, and Alfonso
Capozzoli. Deep reinforcement learning to optimise indoor temperature
control and heating energy consumption in buildings. Energy and Build-
ings, 224:110225, October 2020.

[7] Qiming Fu, Xiyao Chen, Shuai Ma, Nengwei Fang, Bin Xing, and Jianping
Chen. Optimal control method of hvac based on multi-agent deep reinforce-
ment learning. Energy and Buildings, 270:112284, September 2022.

[8] Anchal Gupta, Youakim Badr, Ashkan Negahban, and Robin G. Qiu.
Energy-efficient heating control for smart buildings with deep reinforce-
ment learning. Journal of Building Engineering, 34:101739, February 2021.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neu-
ral computation, 9(8):1735–1780, 1997.

[10] Lotta Kannari, Julia Kantorovitch, Kalevi Piira, and Jouko Piippo. En-
ergy cost driven heating control with reinforcement learning. Buildings,
13(2):427, 2023.

[11] Andrej Krenker, Janez Bešter, and Andrej Kos. Introduction to the artificial
neural networks. Artificial Neural Networks: Methodological Advances and
Biomedical Applications. InTech, pages 1–18, 2011.

[12] Panagiotis Michailidis, Iakovos Michailidis, Dimitrios Vamvakas, and Elias
Kosmatopoulos. Model-free hvac control in buildings: A review. Energies,
16(20):7124, October 2023.

[13] SeyedehNiloufar Mousavi, Mohammad Gheibi, Stanisław Wacławek,
Neale R. Smith, Mostafa Hajiaghaei-Keshteli, and Kourosh Behzadian.
Low-energy residential building optimisation for energy and comfort en-
hancement in semi-arid climate conditions. Energy Conversion and Man-
agement, 291:117264, September 2023.

[14] Yi Peng, Haojun Shen, Xiaochang Tang, Sizhe Zhang, Jinxiao Zhao, Yuru
Liu, and Yuming Nie. Energy consumption optimization for heating, venti-
lation and air conditioning systems based on deep reinforcement learning.
IEEE Access, 11, 2023.

[15] Gopinath Rebala, Ajay Ravi, Sanjay Churiwala, Gopinath Rebala, Ajay
Ravi, and Sanjay Churiwala. Machine learning definition and basics. An
introduction to machine learning, pages 1–17, 2019.

[16] Vahid Vakiloroaya, Bijan Samali, Ahmad Fakhar, and Kambiz Pishghadam.
A review of different strategies for hvac energy saving. Energy conversion
and management, 77:738–754, 2014.

[17] Man Wang and Borong Lin. Mf^2: Model-free reinforcement learning for
modeling-free building hvac control with data-driven environment construc-
tion in a residential building. Building and Environment, 244:110816, Oc-
tober 2023.

[18] Zhe Wang and Tianzhen Hong. Reinforcement learning for building con-
trols: The opportunities and challenges. Applied Energy, 269:115036, July
2020.

[19] Liang Yu, Yi Sun, Zhanbo Xu, Chao Shen, Dong Yue, Tao Jiang, and Xiao-
hong Guan. Multi-agent deep reinforcement learning for hvac control in
commercial buildings. IEEE Transactions on Smart Grid, 12(1):407–419,
January 2021.

3D Gaussian Splatting

Junyuan Fang
junyuan.fang@aalto.fi

Tutor: Shuzhe Wang

Abstract

KEYWORDS: Novel View Synthesis, 3D-Gaussian Splatting, 3D Scene

Representation, Volume Rendering, Data Visualization, Spatial Analysis

1 Introduction

Novel view synthesis (NVS) is the task of generating new images of a

scene given single or multiple inputs of the same scene [7]. Novel view

image synthesis typically involves two main steps: representing the scene

and rendering the image. In recent years, NVS technology like Neural Ra-

dience Fields (NeRF) emerges as a prominent area of interest in computer

vision and computer graphics research. This technology applies from cre-

ating detailed 3D models for architectural projects to its use in the film

and gaming industries for producing photorealistic visuals and interac-

tive experiences, as well as generating NVS in VR and AR, etc.

NeRF performs state-of-the-art complex scene creation, but its inten-

sive computational demands, particularly during the ray-matching and

sampling processes, lead to considerable overhead. Consequently, both

the training and rendering phases in NeRFs are markedly slow. Thus, ad-

dressing the challenge of improving computational speed while achieving

high-fidelity 3D representation becomes imperative for practical applica-

tions in real-time rendering.

Recently, a groundbreaking non-neural network-based method, 3D Gaus-

sian Splatting (3D GS) [8], is introduced to the computer vision and com-

puter graphics community. This method leverages position, covariance,

color, and opacity parameters to construct a comprehensive volumetric

representation by using 3D Gaussians, significantly enhancing rendering

speed and quality. It surpasses the performance of the current state-of-

the-art in high-quality novel-view synthesis, Mip-NeRF360 [1], in a frac-

tion of the training time [8]. In less than four years since the publication

of the original NeRF paper, a substantial amount of research and numer-

ous advancements emerges on the NeRF framework. This body of work

includes various open word scene understanding tasks, such as the recent

3D visual and language model, LERF [9]. With its superior rendering

capabilities, 3D GS sets to become a leading alternative, potentially re-

placing previous NeRF-based tasks.

This paper follows the trend and focuses on the recently released 3D

GS method. This paper is organized as follows. Section 2 introduces the

background related to 3D GS, like novel view synthesis, traditional 3D

reconstruction and rendering and NeRFs. Section 3 describes how to rep-

resent the scene as a 3D GS with 3D Gaussians, spherical harmonic func-

tion (SH), and covariance matrices in world space and view space. Section

4 presents the optimization process of 3D GS. Section 5 discusses results

and evaluation. Finally, the paper concludes with a summary of findings

and contributions.

2 Background

In this section, we briefly review methods of NVS that rely on traditional

reconstruction, as well as the NeRF approach that can achieve higher

quality through implicit representation of 3D scenes.

2.1 Traditional 3D Scene Reconstruction and Rendering

Reconstructing a 3D scene from a collection of images and then rendering

the 3D scene into a novel view camera constitutes the traditional NVS

approach. Key early techniques, such as Structure-from-Motion (SfM)

[18, 16], and multi-view stereo (MVS) [5, 17], are the groundworks for

converting 2D images into 3D information via stereo vision. SfM initially

establishes a sparse point cloud during camera calibration, primarily for

basic 3D space visualization. In subsequent advances, MVS algorithms

produce a full 3D reconstruction. These foundational methods highlight

the importance of explicit scene representation, as the 3D model enables

the re-projection of new pixel-based images from a given target pose [15].

However, these traditional geometric methods [4, 16, 6] often struggle

with occlusions, high computational costs, incomplete surface reconstruc-

tion, and also limitations in understanding light source changes and re-

flections.

2.2 Neral Radiance Fields

NVS through Neral Radiance Fields (NeRFs) [11] surpasses traditional

algorithms in terms of performance issues mentioned above. As Figure

1 illustrates, NeRFs capture the propagation of light across the entire

space, offering an implicit, continuous volumetric representation [19] of

the scene. This approach effectively overcomes the challenges often en-

countered with traditional methods, including handling texture-less sur-

faces [14], occlusions [11], and incomplete surface reconstructions [11], as

well as managing complex lighting and reflections [23]. Moreover, NeRFs

ensure the continuity and completeness of the scene [11].

Figure 1. The description of NeRF’s volume rendering and training process. Image
sourced from [11]. (a) sends camera rays through the scene and generates a
set of sampling points for each pixel in the image being synthesized. (b) ap-
plied MLP to query learned color and volume density for corresponding points.
(c) uses volume rendering to turn colors and volume densities into pixel colors
along camera rays. (d) compares colors to ground truth images to calculate the
loss.

NeRFs adopt a different approach to scene representation, moving

away from traditional methods that rely on points, meshes, or voxels for

storing explicit radiance information. Instead, NeRFs utilize an implicit

radiance field, denoted as Fθ : (x, y, z, θ, ϕ) → (R,G,B, σ) for scene repre-

sentation. Function Fθ(·) processes spatial coordinates (x, y, z) along with

viewing direction’s azimuthal and polar angles (θ, ϕ), producing the color

information (R,G,B) and volume density σ. A deep learning model, often

a Multilayer Perceptron (MLP), parameterizes this function, marking a

significant advancement in how scenes are represented and visualized.

In NeRF’s framework, each ray emanating from the target pose cor-

relates directly with a pixel in the synthesized image. Through the use

of a ray-marching technique, NeRF iteratively samples points along each

ray to integrate color and density contributions, thereby determining the

pixel’s final color. This process effectively captures how light interacts

with the scene, incorporating both absorption and scattering effects [11].

Enhancements such as importance sampling and positional encoding have

significantly boosted NeRF’s ability to reconstruct 3D scenes with remark-

able detail and fidelity [11]. Despite these advances, the computational

intensity of volumetric ray-marching poses challenges for real-time appli-

cations. Alternatives like 3D GS have emerged as more computationally

efficient options for achieving real-time NVS.

3 3D Gaussian Splatting

3D GS [8] innovatively represents light distribution within a scene by

shifting from implicit to explicit radiance fields. Unlike methods that rely

on NeRF-like implicit radiance fields, which necessitate sampling dense

points along each ray, including those in vacant spaces. 3D GS stream-

lines scene representation.

3D GS starts from a sparse set of (SfM) points without normal [8] to op-

timise the rendering process by circumventing unnecessary computations

in areas devoid of content. This technique harnesses both the efficiency

and adaptability of explicit radiance field representation by employing

three-dimensional Gaussians, which are differentiable. 3D GS uses back-

propagation-driven optimization with the density control of explicit 3D

Gaussians, aiming for a balance that enhances visual quality, speeds up

the learning phase, and supports real-time rendering. The mathemati-

cal formulation of the 3D Gaussian representation’s idea is outlined as

follows [2]:

F3D−Gaussian(x, y, z, θ, ϕ) =
∑

i

G(x, y, z,µi,Σi) · ci(θ, ϕ), (1)

where G is the Gaussian function with mean µi and anisotropic covari-

ance Σi, ci represents the view-dependent color, and i indicates over-

lapped Gaussians’ index. This section explains 3D Gaussian representa-

tion in 3D GS, and how an image is rendered based on this representation

along with the covariance matrices in both world space and view space.

3.1 3D Gaussian

Reconstructed scene’s surface are constructed by millions of Gaussian "el-

lipsoids" [8]. Each ellipsoid’s shape is described by an unnormalized 3D

Gaussian function, which consists of a mean value µ ∈ R3, an anisotropic

covariance matrix Σ ∈ R3×3. Given a three-dimentional location x ∈ R3,

the probability density function of the 3D Gaussian function is defined as

follows:

G(x) = e−
1
2
(x−µ)TΣ−1(x−µ). (2)

Figure 2 provides a comprehensive understanding of a Gaussian function

for the uncoloured ellipsoid’s shape without applying a threshold1 to the

size of the 3D Gaussian.

Figure 2. 3D Gaussian distribution "ellipsoid"’s visualization. Red-coloured points are
points randomly sampled from 3D Gaussian, and dark blue-coloured points
are points projections of points on X-Y, Y-Z, and X-Z planes.

In Equation 1, the radiance field is represented by Gaussian functions

and the corresponding color [2]. Each Gaussian function encodes the color

1In gsplat [20], the Gaussians’ size is set up to 3 standard deviations, thereby ensuring

that the 3D Gaussian representations are clipped at the 99.8 % percentile.

ci ∈ R3 using SH [3, 12]. SH allows the color to vary with the view-

ing direction. The expansion of Equation 1 incorporates α-blending on a

point-based rendering, which enables the layering of N points according

to their depth [8]. This process arranges points from the nearest to the

furthest from the target pose, allows for the computation of the pixel color

C ∈ R3×3 by using the 3D Gaussian as a "point" :

Cpixel color =
∑

i∈N
ci · Ti, where Ti = αi

i−1∏

j=1

(1− αj). (3)

Here, Ti reflects each 3D Gaussian’s opacity αi ∈ [0, 1], adjusted for the

combined transparency of preceding Gaussians, influencing the depth-

based color blending. Opacity αi is given by a 2D Gaussian function mul-

tiplied by a learned opacity oi obtained for each Gaussian:

αi = oi · e−
1
2
(x′−µ′

i)
⊤Σ′−1

i (x′−µ′
i), (4)

where Σ′ is view space covariance of the 3D Gaussin, and x′ and µ′
i are 3D

Gaussian position and mean position coordinates in the projected space.

3.2 World Space and View Space Covariance Matrices

Pixel’s color C calculation uses a step to project 3D Gaussian to the 2D

image plane. The view space covariance matrix Σ′ ∈ R2×2 describes the

covariance of the projected 2D Gaussian. Projection from 3D to 2D in-

volves transforming the mean position µ of the 3D Gaussian using point

projection and the transformation of word space covariance Σ ∈ R3×3 ac-

cording to the following equations:

Σ′ = JWΣW TJT , (5)

where W ∈ R3×3 is the viewing transformation and J ∈ R2×3 is the Jaco-

bian of the affine approximation of the projective transformation [8, 24].

The covariance matrix defines Σ ∈ R3×3 an ellipsoid, its equivalent de-

composed representation is used as follows [8]:

Σ = RSSTRT , (6)

where R ∈ R3×3 and S ∈ R3×3 are the rotation and scaling matrices, re-

spectively. Finally, by substituting the formula from equation 6 into equa-

tion 5, then equation 5 into equation 4, and so on, the rendered pixel for

the target pose is computed. Replicating these steps for all pixels allows

us to render the entire image in the target pose.

4 3D Gaussian optimization step

The core of 3D GS is the optimization step [8], it offers a method to rep-

resent the scene accurately by optimizing 3D Gaussian’s mean position

µ, opacity α, covariance matrix Σ, and SH coefficients. Controlling the

density of 3D Gaussian in different areas also constitutes an optimization

step after optimizing parameters for a single 3D Gaussian. This section

introduces parameter optimization and density control for 3D GS.

4.1 Parameter Optimization

In order to enhance the quality of NVS images, 3D GS employs a weighted

loss function that assesses both the absolute error and the similarity dif-

ference between synthesized and ground-truth images. It utilizes the

well-known gradient descent method for optimizing the parameters. The

weighted loss function is outlined as follows:

L = (1− λ)L1 + λLD−SSIM , (7)

where term L1 compares the absolute value difference, term LD−SSIM [13,

21] compares the structural similarity of the images, and weighting factor

λ balances these assessments for NVS images.

In the parameter optimization phase, particularly during gradient de-

scent steps2, directly optimizing the anisotropic covariance matrix Σ can

lead to Σ becoming non-positive semi-definite, which complicates the loss

function’s search for a local minimum. Constraining and decomposing Σ

into a rotation matrix R and a scaling matrix S separately as mentioned

in equation 6 helps avoid the problem of non-positive semi-definiteness.

To further enhance the efficiency of parameter optimization and the

rendering process, 3D GS designs a tile-based rasterizer [10, 8], which

splits the screen into 16x16 tiles and then excludes 3D Gaussians that do

not visually affect the current tile. This strategy reduces the number of

Gaussians that need to be processed and accelerates the parameter opti-

mization steps, enabling faster and more effective NVS image generation.

4.2 3D Gaussian Density Control

3D GS starts with sparse points obtained from SfM as starting points for

initializing 3D Gaussians. The process transitions 3D Gaussians from
2For an in-depth discussion on parameter optimization, refer to the mathematical

supplement [22].

sparse to dense ensembles by adaptively cloning, splitting, and pruning

to adjust both the count and density of Gaussians per unit volume [8].

The process of moving from sparse to dense 3D Gaussian represen-

tation is based on filling information in empty areas. The area lacking

in geometric detail is known as the "under-reconstructed" area, and the

area has huge 3D Gaussians across vast portions of the scene known

as the "over-reconstructed" area. Both "under-reconstructed" and "over-

reconstructed" areas can be identified by the large view-space positional

gradient. To overcome this, large Gaussians in the "over-reconstructed"

area are split into smaller Gaussians. For small Gaussians in the "under-

reconstructed" area, the new geometry can be covered by cloning, i.e., cre-

ating a Gaussian copy of the same size and moving it toward the posi-

tional gradient. In addition to obtaining precise scene representation by

not only increasing 3D Gaussian density, 3D GS applied a thresholded

hyperparameter ϵα to the opacity α of 3D Gaussians, thresholding the

minimal visual contribution of 3D Gaussians, as a pruning step.

During the optimisation process, the system encounters floaters close

to the input camera, which is common in volumetric representations [8].

In this case, the presence of these floaters leads to an unjustified increase

in the 3D Gaussian density in an attempt to represent these irrelevant

objects close to the camera. Therefore, the 3D GS sets the opacity α on

the camera edges close to zero. This is because, as mentioned above, the

3D Gaussians will increase as needed, at the same time threshold ϵα can

remove 3D Gaussians if they are not needed. This allows us to control the

density of the 3D Gaussians.

5 Results

Table 1 uses structural similarity index measure (SSIM), peak signal-to-

noise ratio (PNSR) and learned Perceptual Image Patch Similarity (LPIPS)

error metrics to compare the NVS performance of Mip-NeRF360 and 3D

GS from different aspects. Quote to the original 3D GS paper results, from

Table 1, experiments of 3D GS use a single A6000 GPU, and Mip-NeRF360

experiments use a 4-GPU A100 node for 12 hours, which is approximately

equivalent to 48 hours on a single A100 GPU. As Table 1 shows, some-

times 3D GS is even slightly better than the SOTA Mip-NeRF360 method

with less than 1.5 percent of Mip-NeRF’s training time.

Figure 4 shows nerfstudio [20] implemented reproduction of novel view

Table 1. Performance comparison of Mip-NeRF360, 3D GS with 3K iterations and 7K
iterations on Mip-NeRF360 dataset. Results marked with dagger † have been
directly adopted from the original Mip-NeRF 360 paper [8].

Dataset Mip-NeRF360

Method SSIM↑ PSNR↑ LPIPS↓ Train FPS Mem

Mip-NeRF360 0.792† 27.69† 0.237† 48h 0.06 8.6MB

3D GS-7K 0.770 25.60 0.279 6m25s 160 523MB

3D GS-30K 0.815 27.21 0.214 41m33s 134 734MB

image syntheses with 3D GS. Figure 3 shows training images, which are

a series of collected 360-degree view images of a uniform altitude taken

around the aircraft. Based on these outcomes, we discover that 3D GS

also like NeRF, both rely on training sources, and both give artefacts in

under-observed parts of the scene.

Figure 3. Overlay of NVS image with different pose’s training images

.

Figure 4. NVS of an RGB image and a depth map trained with 30K iterations. The
model is trained on an Nvidia 2080Ti GPU in 30 minutes using the gsplat [20]
method.

6 Conclusion

This paper reviews 3D GS and assesses the strengths as well as the weak-

nesses of this novel view synthesis method. 3D GS uses explicit 3D Gaus-

sian representations and implements fast and accurate NVS tasks with

significantly less training time than NeRFs. However, this method pro-

duces artefacts in under-observed parts of the scene, a problem that is

not unique to 3D GS, but is also present in other methods such as Mip-

NeRF360 [1].

References

[1] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and
Peter Hedman. Mip-nerf 360: Unbounded anti-aliased neural radiance
fields. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 5470–5479, 2022.

[2] Guikun Chen and Wenguan Wang. A survey on 3d gaussian splatting.
arXiv preprint arXiv:2401.03890, 2024.

[3] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin
Recht, and Angjoo Kanazawa. Plenoxels: Radiance fields without neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5501–5510, 2022.

[4] Yasutaka Furukawa and Jean Ponce. Accurate, dense, and robust multi-
view stereopsis. IEEE transactions on pattern analysis and machine intel-
ligence, 32(8):1362–1376, 2009.

[5] Michael Goesele, Noah Snavely, Brian Curless, Hugues Hoppe, and
Steven M Seitz. Multi-view stereo for community photo collections. In
2007 IEEE 11th International Conference on Computer Vision, pages 1–8.
IEEE, 2007.

[6] Richard Hartley and Andrew Zisserman. Multiple view geometry in com-
puter vision. Cambridge university press, 2003.

[7] Yuxin Hou, Arno Solin, and Juho Kannala. Novel view synthesis via depth-
guided skip connections. In Proceedings of the IEEE/CVF Winter Confer-
ence on Applications of Computer Vision, pages 3119–3128, 2021.

[8] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Dret-
takis. 3d gaussian splatting for real-time radiance field rendering. ACM
Transactions on Graphics, 42(4), 2023.

[9] Justin* Kerr, Chung Min* Kim, Ken Goldberg, Angjoo Kanazawa, and
Matthew Tancik. Lerf: Language embedded radiance fields. In Interna-
tional Conference on Computer Vision (ICCV), 2023.

[10] Christoph Lassner and Michael Zollhofer. Pulsar: Efficient sphere-based
neural rendering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 1440–1449, 2021.

[11] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron,
Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radi-
ance fields for view synthesis. Communications of the ACM, 65(1):99–106,
2021.

[12] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. In-
stant neural graphics primitives with a multiresolution hash encoding.
ACM transactions on graphics (TOG), 41(4):1–15, 2022.

[13] Jim Nilsson and Tomas Akenine-Möller. Understanding ssim. arXiv
preprint arXiv:2006.13846, 2020.

[14] Barbara Roessle, Jonathan T Barron, Ben Mildenhall, Pratul P Srinivasan,
and Matthias Nießner. Dense depth priors for neural radiance fields from
sparse input views. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 12892–12901, 2022.

[15] Daniel Scharstein. View synthesis using stereo vision. Springer, 2003.

[16] Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion
revisited. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 4104–4113, 2016.

[17] Johannes L Schönberger, Enliang Zheng, Jan-Michael Frahm, and Marc
Pollefeys. Pixelwise view selection for unstructured multi-view stereo. In
Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part III 14, pages 501–518.
Springer, 2016.

[18] Noah Snavely, Steven M Seitz, and Richard Szeliski. Photo tourism: explor-
ing photo collections in 3d. In ACM siggraph 2006 papers, pages 835–846.
2006.

[19] Richard Szeliski. Computer Vision: Algorithms and Applications, chapter
13.5 Volumetric Representations, pages 830–833. Springer Nature, 2022.

[20] Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Justin
Kerr, Terrance Wang, Alexander Kristoffersen, Jake Austin, Kamyar
Salahi, Abhik Ahuja, David McAllister, and Angjoo Kanazawa. Nerfstu-
dio: A modular framework for neural radiance field development. In ACM
SIGGRAPH 2023 Conference Proceedings, SIGGRAPH ’23, 2023.

[21] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
transactions on image processing, 13(4):600–612, 2004.

[22] Vickie Ye and Angjoo Kanazawa. Mathematical supplement for the gsplat
library. arXiv preprint arXiv:2312.02121, 2023.

[23] Junyi Zeng, Chong Bao, Rui Chen, Zilong Dong, Guofeng Zhang, Hujun
Bao, and Zhaopeng Cui. Mirror-nerf: Learning neural radiance fields for
mirrors with whitted-style ray tracing. In Proceedings of the 31st ACM
International Conference on Multimedia, pages 4606–4615, 2023.

[24] Matthias Zwicker, Hanspeter Pfister, Jeroen Van Baar, and Markus Gross.
Ewa volume splatting. In Proceedings Visualization, 2001. VIS’01., pages
29–538. IEEE, 2001.

Scalability challenges of microservices

Kalle Korhonen
kalle.a.korhonen@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

Microservice architecture is an emerging software architecture, where soft-

ware is divided into small, individually developed, and executable units.

This paper investigates the scalability challenges of microservices com-

pared to monoliths. While monoliths can be scaled by launching multi-

ple instances of the same application, microservices offer the advantage

of scaling individual parts of the application independently. However, the

scalability advantages of microservices bring challenges in automatic scal-

ing, load balancing, service discovery, and data consistency.

Automatic scaling is used for dynamically adjusting the number of in-

stances of a microservice based on current workload demands. Load bal-

ancing is a technology used for distributing traffic across scaled microser-

vice replicas. Service discovery is a solution to dynamically changing IP

addresses, facilitating communication between microservices. The Kuber-

netes microservices platform includes solutions to these challenges.

Data consistency is a significant challenge in microservices due to the

database-per-service approach used in microservice systems and the in-

ability to guarantee ACID properties across distributed transactions. This

paper looks at how to deal with this problem, suggesting the use of sagas

to handle distributed transactions better.

KEYWORDS: microservices, software architectures, distributed systems

1 Introduction

Software has traditionally been developed using the monolithic approach

[6, 11, 18], where all parts of the software are developed in a single code-

base, and the software is compiled into a single executable which includes

all parts of the software. The monolithic approach might become limiting

with complex applications that receive a high amount of traffic because

monolithic applications can be more difficult to maintain and scale.

Microservice architecture [6, 11, 18] is one solution to the challenges

of monolithic architecture. In the microservices architecture, the soft-

ware is divided into smaller, independently developed, and executable

units called microservices. Microservices architecture has gained popu-

larity since the beginning of the 2010s.

One of the biggest advantages of microservices architecture is the po-

tential for better scalability. This is possible by the ability to scale indi-

vidual parts of the software separately, addressing areas with the highest

load. However, there are challenges in managing scalability, including is-

sues with automation and ensuring consistency in the application’s data

and state.

This paper discusses the scalability of microservice systems by looking

at current solutions and methods. Using related literature, it provides an

analysis that highlights practical approaches to address scalability issues.

This paper is organized as follows. Section 2 explains the general con-

cepts and background of microservices. Section 3 discusses scaling mi-

croservices and presents various concepts used in scaling microservices.

Section 4 discusses the challenges encountered in scaling microservices

introduced in Section 3. Section 5 concludes the findings of this paper.

2 Microservices

This section provides general concepts and background knowledge re-

quired for understanding microservice systems. Section 2.1 provides a

definition of monoliths. Section 2.2 explains the general concept of mi-

croservices.

2.1 Monoliths

Monolithic architecture [6, 11, 18] has been a traditional way of building

software for a long time. In monolithic architecture, the whole application

is built from a single codebase and is commonly compiled into a single ex-

ecutable binary [4]. This means that the individual parts of the applica-

tion cannot be executed independently, the whole application executes in

a single process. An example of a monolithic architecture can be seen in

Figure 1. It consists of a single application that contains everything from

the user interface to business logic. Monolithic applications typically have

a single database for storing data.

Monolith architecture can be a good design choice for many applica-

tions. When the codebase is small, the monolith can be a simple and

effective choice [12]. Dragoni et al. [6] highlight several challenges asso-

ciated with monoliths, including issues related to complexity, scalability,

deployment and technology lock-in.

Large monolithic applications can become very complex and maintain-

ing them can get difficult. Developing new features and fixing existing

issues might need large changes in many different parts of the codebase

[4]. There can be dependency conflicts if a certain dependency requires a

specific version of some library, but another dependency requires another

version of the same library. Compiling large monolithic applications may

be time-consuming, it can cause a slowdown when the program is tested

during the development [18].

It is possible to scale monolithic applications by creating replicas; in-

creasing the number of running instances of the application. This in-

creases the processing capacity of the application and allows processing

of more requests at once. The traffic will be distributed uniformly among

the replicas. The issue with scaling monolithic applications is that the

parts of the application that are affected by the high load might be just

a small part of the application. Scaling the whole application instead of

specific parts of it can be wasteful and end up consuming unnecessary

resources [6].

Technology lock-in means that the developer team must keep using

the same programming language and technologies for the whole applica-

tion [6]. Some programming languages are better suited for some tasks

than others. With monolithic applications, the whole application is writ-

ten in the same programming language. The developers working on the

Figure 1. An example of a monolithic architecture

application must all agree to use the same language [6].

2.2 Microservices

Microservice architecture [6, 11, 12] is an emerging way to build software.

In the microservices architecture, the application logic is split into small

separate modules called microservices. Microservices are independent of

each other and are developed individually. They follow the single respon-

sibility principle (SRP) [12] which means that each microservice aims to

serve only one functionality. Microservices started gaining popularity in

the early 2010s as companies like Netflix [4] adopted this architecture.

Compared to monolithic applications, in microservice applications all

application code doesn’t run in the same process or thread, it might not

even run on the same machine. In monolithic applications, the communi-

cation between the modules is done internally using function calls inside

the same process [4]. Microservices rely on the network for communi-

cation. Communication between microservices should happen through

well-defined interfaces that hide the internal workings of the microser-

vices. Microservices shouldn’t be able to access other services’ internal

components or function calls [18]. A typical communication method used

in microservices is REST APIs over HTTP [4]. Other popular options are

binary-based RPC protocols such as gRPC [16] which can offer better per-

formance than HTTP. Message queue protocols such as MQTT are also

popular choices for microservice communications [15].

Monolith systems usually use a single central database, but with mi-

croservices, the common practice is that each microservice has its own

database [4]. This is called the database-per-service approach [13]. The

approach provides flexibility and independence for microservice develop-

ers, because different database systems can be chosen for each microser-

vice based on their needs [8]. For example, an online store with orders

and product microservices could benefit from using a relational database

for the orders microservice and a document database like MongoDB for

the product information microservice. The separation of databases also

Figure 2. An example of a microservice architecture

makes it possible to alter database schemas without affecting other parts

of the application [12].

Microservice architecture relies heavily on container technology. Each

microservice runs in its own container which contains all its dependen-

cies. Containerization tools such as Docker [9] and Kubernetes [2] have

made the implementation and deployment of microservices more accessi-

ble [11]. Modern cloud platforms provide extensive facilities for running

and managing containerized applications, for example, managed Kuber-

netes clusters and Docker container hosting services.

There are many benefits in microservice architecture when compared

to traditional monolithic architecture. Dragoni et al. [6], Jamshidi et al.

[11] and Laigner et al. [13] highlight several advantages of microservice

architecture, including improved scalability, flexibility and independence.

One of the main benefits of microservices is the improved scalability.

Because the system consists of independent microservices, each microser-

vice can be scaled individually [11, 7]. This means that only the parts of

the application that receive high load need to be scaled. This can improve

resource utilization when the whole application doesn’t have to be scaled.

Different parts of the application can also have different performance re-

quirements. Some parts might require a large amount of RAM while some

parts might need a high single-threaded CPU performance [18].

Microservices are developed independently, making it possible to im-

plement them in different programming languages. This flexibility en-

ables development teams to adopt the most suitable technological choices

for each microservice, and the independence to use their preferred tech-

nologies [11]. Independence also improves fault tolerance, if one microser-

vice fails, other parts of the application can still stay functional.

Figure 2 shows a typical microservice architecture using a fictitious

online store as an example. The online store’s functionality is split into

individual microservices, products, users, shopping carts and orders that

have their own services. In this example, the microservices are connected

to an API gateway [10]. API gateway is a service that receives incoming

requests and routes them to correct microservices.

3 Scalability in microservices

This section discusses the scalability of microservice systems and the chal-

lenges related to scalability. Each challenge is described, and it is ex-

plained how they have been solved in existing systems.

Section 3.1 explains scalability in general. Section 3.2 explains the

automatic scaling of microservices. Section 3.3 introduces load balancing,

which is one of the essential technologies used for scaling. Section 3.4

discusses service discovery, and how microservices can reliably find and

connect to each other. Finally, section 3.5 discusses data management and

consistency in microservice systems.

3.1 Scalability

Scalability means being able to adapt to changing workloads by increasing

or decreasing the system’s resources based on the demand [5]. Scaling is

needed when the current processing power of the system is not enough to

handle all user requests without significant delays or loss of service. The

emergence of cloud computing has made scalability possible for larger au-

diences by providing computing resources that can be deployed instantly

on demand.

There are two different ways of scaling: vertical and horizontal scaling

[14]. In vertical scaling, a single server’s computing resources such as

CPU and memory are increased. On the other hand, in horizontal scaling,

the number of servers is increased and the workload is distributed among

them. Horizontal scaling is commonly used with microservices [4]. When

a high load is detected on a microservice, more replicas of the microservice

can be created and the traffic will be distributed among them.

3.2 Automatic scaling

The load that the microservice application receives is often dynamic. The

load can be higher at certain times, for example when launching a new

product or a discount sale at an online store. When the system receives a

high amount of traffic, the corresponding microservices need to be scaled.

This is done by increasing the amount of replicas of each microservice. On

the other hand, when the traffic is low, the system needs to be scaled down

by removing replicas. Scaling microservices manually is not feasible if the

amount of traffic is unpredictable.

Automating scaling aims to scale the microservice automatically de-

pending on the load it receives. The load can be measured by measuring

the individual microservices and how much processing power they are us-

ing, for example, CPU and RAM usage.

Kubernetes [2] is a container orchestration platform created by Google.

Kubernetes can run containerized applications on clusters consisting of

multiple nodes. Kubernetes can be used to scale the microservice horizon-

tally by creating multiple replicas of it. The scaling can be done automat-

ically using a feature called HorizontalPodAutoscaler [1]. HorizontalPo-

dAutoscaler monitors the CPU and memory usage metrics of the microser-

vice and either increases or decreases the number of replicas depending

on the thresholds set by the developer.

3.3 Load balancing

Load balancer [17] is a service that distributes incoming traffic on mul-

tiple servers in order to distribute the load. The load balancer is typi-

cally an HTTP reverse proxy server, but there exist lower-lever load bal-

ancers for raw TCP/UDP protocols too. Load balancing is commonly used

when scaling microservices. When a microservice has multiple replicas,

the traffic is distributed among them using a load balancer.

A load balancer distributes the traffic to its backends using load-balancing

algorithms. The most common load-balancing algorithm is round-robin

[17], which distributes the traffic uniformly on all backends circularly.

The load balancer can also route all traffic from a single IP address to the

specific backend, for example, to preserve the session state. In geograph-

ically distributed systems, the load balancer can distribute the traffic to

the backend nearest to the user.

The disadvantage of using a load balancer is that it adds a single point

of failure to the system. If the load balancer is down, the whole system

will be inaccessible. Adding load balancers to a microservice system also

increases the complexity of the system.

3.4 Service discovery

Microservices need to be able to communicate with each other. To make

communication possible, microservices have to know the IP addresses and

ports of the other microservices they need to communicate with. Microser-

vices are usually running in environments where they are created and

destroyed dynamically, such as container platforms or virtual machines

[18]. Because of this, the IP addresses of the microservices are dynamic.

Because of the changing addresses, it is not feasible to hard-code the IP

addresses in the application code or configuration files.

Microservice systems use service discovery mechanisms to locate other

microservices [19, 18]. Service discovery is commonly done using a service

directory [18]. The service directory keeps track of the running microser-

vices and their addresses.

There are two common ways for service discovery: server-side service

discovery and client-side service discovery [18]. In server-side service dis-

covery, a dedicated request routing server or load balancer component is

used. When a microservice needs to communicate with another microser-

vice, the request is sent to the routing server. The routing server com-

municates with the service directory and will direct the request to the

target microservice. Usually, the routing server is a load balancer that

can distribute the incoming requests over multiple scaled replicas of the

microservice. This routing server component is usually integrated into

the platform, such as in systems like Docker and Kubernetes. The benefit

of this approach is that it doesn’t need changes to the client’s code. The

disadvantage is that it adds additional network hop.

In client-side service discovery, the microservice has code that com-

municates with the service directory. The microservice uses this code to

query the target microservices’ address from the service directory. The

microservice then makes a request directly to the destination. The ben-

efit of this approach is that the connection to the microservice is direct,

there are no additional hops needed like in the server-side approach. The

disadvantage is that it requires custom code for connecting and commu-

nicating with the service directory.

There are existing solutions that provide service discovery. Container

platforms such as Kubernetes [3] and Docker [9] offer service discovery

features. Kubernetes uses the server-side service discovery method. Ku-

bernetes has a Service type which acts as a global endpoint for accessing

the microservice associated with the Service. Kubernetes uses its inter-

nal DNS system to give the Service a DNS name which can be used by

other microservices running in the cluster. Kubernetes routes the request

to a pod defined in the Service. If the microservice is scaled using a Repli-

caSet, Kubernetes provides load-balancing and distributes the incoming

requests to the pods in the ReplicaSet.

3.5 Data consistency

One of the challenges of the microservice architecture is data manage-

ment and consistency. Microservice architectures typically use a database-

per-service approach [13], where each microservice has its own database.

The approach of having multiple databases can cause data consistency

problems when data needs to be updated or queried from multiple mi-

croservices in a single query [18].

Requests to a microservice application typically involve multiple mi-

croservices; the request could go to an API gateway, which will call the

required microservices and combine their output. With monolithic appli-

cations using a single database, ACID (atomic, consistent, isolated, and

durable) transactions can be used. ACID principles ensure that multiple

tables can be modified safely.

In microservice systems with multiple databases, it is not possible

to use transactions. The database operation must be executed on each

microservice’s database individually. Due to the lack of proper transac-

tions, the ACID property atomicity is lost. The state of one microservice

may then change in the middle of an update, resulting in an inconsistent

state. Microservice systems generally aim for eventual consistency, which

means that data might not be consistent at all times.

Saga [18] is a pattern used in microservice systems to help with exe-

cuting transactions over multiple microservices. They are a way to main-

tain data consistency across microservices without distributed transac-

tions. In sagas, the transactions are divided into steps divided to each

microservice part of the saga. Sagas are implemented using message-

passing between the microservices. In sagas, each microservice passes a

message indicating if the transaction step was successful. After a suc-

cessful step, the next step can proceed. If some step fails, a compensating

transaction is created to undo the other steps.

The saga pattern can be used to ensure data consistency in microser-

vice systems, but it has its challenges. Implementing sagas increases the

complexity of the application. Development and debugging of the applica-

tion becomes more challenging.

4 Discussion

From the literature reviewed in this paper, the main challenges of mi-

croservice scalability are automatic scaling, load balancing, service dis-

covery and data consistency. These challenges are mostly caused by the

distributed nature of microservice architecture and the required network

communications between the microservices.

It seems that modern microservice platforms such as Kubernetes can

solve many of the discussed challenges in scalability. Kubernetes has an

internal load balancer, service discovery system and capabilities for au-

tomatic horizontal scaling. But Kubernetes doesn’t solve the data man-

agement challenges of the microservices. There has been a lot of research

on microservices, but more research is needed on data management and

consistency.

5 Conclusion

This paper explored microservices and their scalability challenges. The

literature review conducted in this paper shows that microservice archi-

tecture offers more scalability than monolithic architecture. While the

monolith application can be scaled simply by increasing copies of the ap-

plication, it can be wasteful because the load usually targets specific parts

of the application. On the other hand, microservices offer more flexible

scalability possibilities, when only the parts of the application that are

receiving the high load need to be scaled. This increases the efficiency of

the system.

The improved scalability brought by microservices also brings chal-

lenges. The biggest challenges in scalability are automatic scaling, load

balancing, service discovery and data consistency. Different solutions for

the challenges were found. It was noted that microservice platforms such

as Kubernetes have existing solutions for many of the challenges, includ-

ing automatic scaling, load balancing and service discovery.

References

[1] The Kubernetes Authors. Horizontal Pod Autoscaling, 2024. url:
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale.

[2] The Kubernetes Authors. Overview, 2024. url:
https://kubernetes.io/docs/concepts/overview/.

[3] The Kubernetes Authors. Service, 2024. url:
https://kubernetes.io/docs/concepts/services-networking/service/.

[4] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. Monolithic vs.
microservice architecture: A performance and scalability evaluation. IEEE
Access, 10:20357–20374, 2022. doi: 10.1109/ACCESS.2022.3152803.

[5] André B. Bondi. Characteristics of scalability and their impact on perfor-
mance. In Proceedings of the 2nd International Workshop on Software and
Performance, WOSP ’00, page 195–203, New York, NY, USA, 2000. Associa-
tion for Computing Machinery. doi: 10.1145/350391.350432.

[6] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:
Yesterday, Today, and Tomorrow, pages 195–216. Springer International
Publishing, Cham, 2017. doi: 10.1007/978-3-319-67425-4_12.

[7] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara,
Ruslan Mustafin, and Larisa Safina. Microservices: How to make your
application scale. In Alexander K. Petrenko and Andrei Voronkov, editors,
Perspectives of System Informatics, pages 95–104, Cham, 2018. Springer
International Publishing. isbn: 978-3-319-74313-4.

[8] Wilhelm Hasselbring. Microservices for scalability: Keynote talk abstract.
In Proceedings of the 7th ACM/SPEC on International Conference on Per-
formance Engineering, ICPE ’16, page 133–134, New York, NY, USA, 2016.
Association for Computing Machinery. doi: 10.1145/2851553.2858659.

[9] Docker Inc. Docker overview, 2024. url: https://docs.docker.com/get-
started/overview/.

[10] F5 Inc. What Is an API Gateway?, 2024. url:
https://www.nginx.com/learn/api-gateway/.

[11] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonça, James Lewis, and Stefan
Tilkov. Microservices: The journey so far and challenges ahead. IEEE
Software, 35(3):24–35, 2018. doi: 10.1109/MS.2018.2141039.

[12] Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen. Challenges when
moving from monolith to microservice architecture. In Irene Garrigós and
Manuel Wimmer, editors, Current Trends in Web Engineering, pages 32–47,
Cham, 2018. Springer International Publishing. isbn: 978-3-319-74433-9.

[13] Rodrigo Laigner, Yongluan Zhou, Marcos Antonio Vaz Salles, Yijian Liu,
and Marcos Kalinowski. Data management in microservices: state of
the practice, challenges, and research directions. Proc. VLDB Endow.,
14(13):3348–3361, sep 2021. doi: 10.14778/3484224.3484232.

[14] Dan C. Marinescu. Cloud Computing: Theory and Practice. Morgan Kauf-
mann, Boston, 2013. doi: 10.1016/B978-0-12-404627-6.00010-5.

[15] Milica MATIC, Marija ANTIC, Istvan PAPP, and Sandra IVANOVIC. Op-
timization of mqtt communication between microservices in the iot cloud.
In 2021 IEEE International Conference on Consumer Electronics (ICCE),
pages 1–3, 2021. doi: 10.1109/ICCE50685.2021.9427602.

[16] Katherine Nieman and Sayeed Sajal. A comparative analysis on load bal-
ancing and grpc microservices in kubernetes. In 2023 Intermountain En-
gineering, Technology and Computing (IETC), pages 322–327, 2023. doi:
10.1109/IETC57902.2023.10152023.

[17] Mazedur Rahman, Samira Iqbal, and Jerry Gao. Load balancer as a
service in cloud computing. In 2014 IEEE 8th International Sympo-
sium on Service Oriented System Engineering, pages 204–211, 2014. doi:
10.1109/SOSE.2014.31.

[18] C. Richardson. Microservices Patterns: With examples in Java. Manning,
2018. isbn: 9781617294549.

[19] Yuwei Wang. Towards service discovery and autonomic version manage-
ment in self-healing microservices architecture. In Proceedings of the 13th
European Conference on Software Architecture - Volume 2, ECSA ’19, page
63–66, New York, NY, USA, 2019. Association for Computing Machinery.
doi: 10.1145/3344948.3344952.

Weaknesses in the Tor network

Kalle Saarinen
kalle.saarinen@aalto.fi

Tutor: Tuomas Aura

Abstract

This paper investigates attacks on the Tor network and its users. The pa-

per looks at weaknesses in the Tor network and attacks exploiting those

weaknesses. This paper shows that even if Tor has its flaws it can still be

used anonymously if enough people use it.

KEYWORDS: security, anonymity, onion routing, tor

1 Introduction

The Onion Router or Tor is a circuit-based network designed for anony-

mous communication via the Internet.

The Tor network is decentralized and consists of nodes also called re-

lays, run by volunteers, through which a connection is made to the wanted

website or service. This connection through the nodes is called a circuit.

The circuit consists of three nodes with the first node being either a guard

node or a bridge node, the second node being the middle node, and the last

node being the exit node.

This paper is a literature review focusing on different kinds of attacks

against the Tor network which either deanonymize its users or render the

Figure 1. A circuit as shown in the Tor browser.

Figure 2. A map showing the circuit of figure 1. The number of nodes shown on the map
does not reflect the number of nodes in the real world.

network unusable.

The rest of this paper is structured as follows. Section 2 will cover the

different types of nodes in the Tor network and their purpose. Section

3 covers weaknesses in the network and what kind of attacks have been

designed exploiting those weaknesses. Section 4 covers suggested and

implemented defenses against these attacks. Section 5 covers the hosting

requirements of nodes and the challenges that come with it. Section 6 is

the discussion section and finally section 7 is the conclusion.

2 Types of nodes and their purpose

The network consists of four different kinds of nodes: guard nodes, middle

nodes, exit nodes, and bridge nodes. The IP addresses of all non-bridge

Tor nodes are public information, making it trivial to block all incoming

or outgoing traffic to and from them. This is where the bridge nodes come

in. A bridge node is not necessary for forming a circuit, but since their

IP addresses are not public information one can connect to a bridge node

through which the user connect to the Tor network [5].

Figure 1 shows a circuit as it is shown in the Tor browser. The figure

shows that the guard node is located in the Netherlands, the middle node

is located in Canada and the exit node is located in Romania. Figure 2

shows that same circuit on a world map.

2.1 Guard nodes

Guard nodes, also called entry nodes, are usually the first node in a cir-

cuit, the other possible first node in a circuit being a bridge node. The

IP address of guard nodes is public information meaning, it is possible to

block access to them. In these cases, a bridge node is used instead of a

guard node. When forming a new circuit the guard node does not always

change. This is due to the fact that upon running the Tor browser for the

first time, the browser chooses a few of nodes and uses those as its guard

nodes [5]. These guard nodes are used for two to three months after which

a new set of guard nodes is chosen [10].

2.2 Bridge nodes

Bridge nodes can be the first part of a circuit. Bridge nodes are usually

only used when someone or something is preventing the user from directly

connecting to a guard node. Since the IP addresses of all guard nodes are

known an ISP or a government can block access to all of the guard nodes,

a bridge node bypasses this since the IP addresses of bridge nodes are not

public information meaning bridge nodes can be thought as more private

guard nodes.

2.3 Middle nodes

Middle nodes, as the name suggests, are located in the middle, between

the guard or bridge node and the exit node.

2.4 Exit nodes

Exit nodes are the last nodes on a circuit, these nodes connect to the des-

tination server or service. When a Tor user connects to a service it looks

like their connection is coming out of the exit node, this can cause issues

for the operator of the node. This will be explained in section 5.1.

3 Weaknesses in the network

When using Tor there are three different parts which can be attacked. The

client, the server, and finally the network itself [3]. Each of these parts

have different weaknesses and are used differently depending on what

an attacker wants to accomplish. Usual goals for an attacker would be

to deanonymize a certain user, deanonymize users of a certain service, or

take down parts of the network making in inaccessible. The attacker itself

could be in any part of the network. They could be a client trying to take

down nodes. They could be a server trying to deanonymize users of the

service or they could be operating a malicious node trying to deanonymize

users.

3.1 Deanonymizing users in the network

The simplest way to deanonymize a user of the Tor network is for the

user’s circuit to have the guard node and the exit node to be controlled

by the same attacker [5]. The attacker can then correlate the traffic be-

tween the guard node and the exit node to determine the user’s actual IP

address, the IP address of the destination, and the content of the traffic.

With Tor having thousands of nodes the chance of this happening natu-

rally is very small. Other users are a crucial part in making Tor anony-

mous. The more traffic there is the harder it is to correlate the traffic in

entry and exit nodes. Also the more nodes there are in the network the

smaller the chance of getting a circuit with an attacker controlled guard

node and exit node.

3.2 Super nodes

An attacker would need a huge resources to attack the network. This is

where the so called super nodes come in. Super nodes are high bandwidth,

high availability and long-lived nodes on the network. When creating a

circuit, the circuit creation algorithm prefers these nodes over others due

to their reliability.

Li et al. [8] show that the existence of super nodes creates weakness

in the network and the authors design a new theoretical attack on the

Tor network. In the paper, the authors discovered that 21 percent of the

nodes in the network, are super nodes through which 66 percent of the

traffic flows through. If an attacker were to control a small number of

super nodes they would have a much higher chance of deanonymizing

users than if they were controlling the same number of regular nodes.

3.3 Centralization

Decentralization is an important factor in the Tor network. The more

centralized the network is, the less anonymous it is. Abbott et al. [1]

describe a method of deanonymizing users by having one of the user’s

circuits have an attacker controlled exit node and a later one having an

attacker controlled guard node. It is important to note however that this

attack requires the destination to use HTTP instead of HTTPS since it

modifies the HTTP traffic.

The paper by Johnson et al. [7] came to the conclusion that if an at-

tacker operates nodes with a total of 100 MiBps they have a 80 percent

chance of deanonymizing a user in 6 months. If the attacker controls an

Internet exhange point (IXP), they will can have a 95 percent chance to

deanonymize a user in three months.

3.4 Denial-of-service

Denial of service attacks, can drive away users by making the network

slow. The less users there are the harder it is to maintain anonymity

within the network. As the traffic amount becomes smaller, it is easier

to identify certain users using patterns or correlating their activity. Also

with users leaving the network the number of legitimate nodes would also

decrease. This would make it easier for an attacker to have bigger propor-

tion of the total nodes under their control.

Barbera et al. [2] created a denial-of-service attack against Tor nodes

called CellFlood. This attack sends specially crafted packets or cells to

Tor nodes which the node has to process. This attack works because pro-

cessing the cell takes four times longer than generating it. This is due to

the cryptography used in these cells.

Jansen et al. designed a new attack called the sniper attack [6]. This

attack could be used to disable arbitary Tor nodes. It was estimated by

the authors that “a strategic adversary could disable all of the top 20 exit

relays in only 29 minutes, thereby reducing Tor’s bandwidth capacity by

35 percent”. With the existence of super nodes an attack like the sniper

attack is concerning. This attack can not only cause damage to the avail-

ability of the network but it can force its users to use Tor nodes in control

of the attacker, deanonymizing them that way.

Li et al. [8] discussed a new theoretical denial-of-service attack called

the loop attack. This attack takes advantage of the fact that super nodes,

which were discussed in chapter 4.1, exist in the Tor network. In this at-

tack, the attacker needs to have a sizeable part of the network under their

control. The attacker then blocks access to all the known super nodes,

making the network extremely slow for the users. The loop in the name

of this attack comes from the fact that, with a slow network, users will

stop using it since it is not reliable or fast enough. With users leaving the

network, it becomes even less secure. Node operators stop operating their

nodes, making the network slower since the number of legitimate nodes

decrease. The strong suit of this attack is the fact that it would be almost

impossible to detect in the beginning and become detectable only after it

has made users and operators leave the network due to its unreliability.

4 On the defense

According to Dingledine et al. [5] there is nothing that can be done about

the small chance of a created circuit being compromised. As mentioned

in section 2.1 the guard node is always chosen from a small subset of all

guard nodes. This makes it so that if none of the chosen guard nodes are

controlled by an attacker then it is impossible for the circuit to be fully

compromised by an attacker. This lessens the chance of a user having a

compromised circuit but this chance is never zero. The same thing is with

super nodes. It is a design flaw that is basically impossible to fix. If there

were no super nodes and every node essentially had a weight of one, an

attacker could simply create an huge number of slow nodes. This would

make the network unusable for its users.

Jansen et al. [6] propose three ways to counter the sniper attack, Au-

thenticated SENDMEs, Queue Length Limit, and Adaptive Circuit Killing.

The most effective out of these three is the Adaptive Circuit Killing method.

This defense mechanism has been added to Tor [9].

Johnson et al. [7] discovered that increasing the time for choosing a

new set of guard nodes significantly increased the time it took for an at-

tacker to compromise a user. At the time of the paper that time was 30

days. As mentioned in section 2.1, this has been increased to over 60 days.

Barbera et al. [2] propose client puzzles as a solution to the CellFlood

attack.

Figure 3. A chart showing the number of exit and guard nodes compared to the total
number of nodes from 1.1.2024 to 29.2.2024 [11]

5 Operating different types of nodes

When someone wants to host a Tor node there are some choices the op-

erator can make regarding their hosted node. The operator can set the

exit policy of their node. When the exit policy is set to reject *:*, the node

will only act as a middle or guard node. The operator cannot directly de-

cide to run a guard node. The reason as to why is explained in the next

subsection.

5.1 Hosting requirements and challenges

The easiest type of node to operate is a bridge node since the IP address

of a bridge node is not made public, services will not likely block the IP

address of a bridge node from accessing their service.

Guard and middle nodes are nearly identical in terms of hosting. When

operating a non-exit node, the node will act as a guard node if it meets a

requirement to be one. This requirement is a 2 MB/s bandwidth both up

and down. If this requirement is not met, the node will only act as a

middle node [4].

Exit nodes are the most demanding to operate due to the fact that

these nodes connect to the outside world. When a Tor user connects to a

website, to the outside world it looks like the exit node operator is connect-

ing to that website. If the website the user is connecting to hosts illegal

content for, example, it looks like the node operator is accessing the illegal

content. This can cause issues for the operator of the exit node. For this

reason, most nodes on the network do not allow exiting on the node and

are middle or guard nodes. This can be seen in figure 3.

Because hosting a Tor node, especially an exit node, can affect the op-

erators own internet usage not everyone wants to host a node. Especially

users with a metered connection since a Tor node is required to be able to

handle at least 100 Gigabytes of traffic up and down a month [4].

6 Discussion

Not every attack needs a countermeasure against it implemented in Tor

itself. For example the attack by Abbott et al. [1] requires the server to be

using HTTP instead of HTTPS. In 2007, when the paper was published,

this was a bigger issue but nowadays the vast majority of websites use

HTTPS making this attack very niche today.

An attacker with unlimited resources could take down the network

with a denial-of-service attack. There is nothing that can be done in order

to completely prevent this. If an attacker were to have more resources

available than the enterity of the network it could take down the whole

network. Even if an attacker could not take down the current network

it could first try to weaken it by making operators not want to host their

nodes anymore. With this in mind it would be interesting to know what

percentage of exit nodes are operated by ordinary individuals since oper-

ating exit nodes can impact the operator’s daily life. If one were to assume

that a good number of exit nodes were operated by an attacker what would

be the chances of having a compromised circuit.

7 Conclusion

Over the years different kinds of vulnerabilities have been discovered in

Tor. Attacks have been designed using these vulnerabilities. These at-

tacks are closely monitored, and the vulnerabilities fixed. The biggest

issue with Tor is the fact that there is always a small chance that their

circuit has been compromised. The only counter to this flaw is to have

more nodes to make the selection of a compromised node slimmer and to

have more users to make traffic correlation harder. Tor is actively main-

tained and upon the discovery of new vulnerabilities they are fixed as fast

as possible.

Bibliography

[1] Timothy G Abbott, Katherine J Lai, Michael R Lieberman, and Eric C Price.
Browser-based attacks on Tor. In International Workshop on Privacy En-
hancing Technologies, pages 184–199. Springer, 2007.

[2] Marco Valerio Barbera, Vasileios P Kemerlis, Vasilis Pappas, and Angelos D
Keromytis. Cellflood: Attacking tor onion routers on the cheap. In Computer
Security–ESORICS 2013: 18th European Symposium on Research in Com-
puter Security, Egham, UK, September 9-13, 2013. Proceedings 18, pages
664–681. Springer, 2013.

[3] Enrico Cambiaso, Ivan Vaccari, Luca Patti, and Maurizio Aiello. Darknet
security: A categorization of attacks to the Tor network. In ITASEC, pages
1–12, 2019.

[4] Tor Community. https://community.torproject.org/, 2024.

[5] Roger Dingledine, Nick Mathewson, Steven Murdoch, and Paul Syverson.
Tor: The second-generation onion router (2014 draft v1). 2014.

[6] Rob Jansen, Florian Tschorsch, Aaron Johnson, and Björn Scheuermann.
The sniper attack: Anonymously deanonymizing and disabling the Tor net-
work. In NDSS. Citeseer, 2014.

[7] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syver-
son. Users get routed: Traffic correlation on Tor by realistic adversaries. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communi-
cations security, pages 337–348, 2013.

[8] Chenglong Li, Yibo Xue, Yingfei Dong, and Dongsheng Wang. "Super nodes"
in Tor: existence and security implication. In Proceedings of the 27th An-
nual Computer Security Applications Conference, pages 217–226, 2011.

[9] Nick Mathewson. https://blog.torproject.org/tor-02510-released-and-tor-
023x-deprecated/, 2014.

[10] The Tor Project. Tor browser user manual. https://tb-manual.torproject.org/,
2024.

[11] The Tor Project. Tor metrics. https://www.metrics.torproject.org/, 2024.

Analysis of mental health discourse on
social media

Kiira Karonen
kiira.karonen@aalto.fi

Tutor: Yunhao Yuan

Abstract

Mental health issues are a growing threat to public health globally. As

a result, more people are turning to online communities and social media

for support. This paper reviews natural language processing (NLP) meth-

ods and techniques employed in the study of mental health discourses on

social media. Results of previous studies on the topic are summarized in

order to provide an analysis on the nature and effects of mental health dis-

cussion online. The findings of the review suggest that online interactions

can have a positive impact on individuals mental health. Analysing the

linguistics, cognitive and behavioral features of online mental health dis-

course shows that online social support can have similar benefits as tradi-

tional treatment methods. Receiving emotional support and engaging with

coping stories were found to result in psychosocial benefits for individual

users. Thus, this paper concludes that social media and online communi-

ties can potentially be leveraged into useful tools in the battle against the

global mental health crisis.

KEYWORDS: mental health, social media, NLP

1 Introduction

Mental health problems are a growing threat to public health globally.

According to the World Health Organization (WHO), one in every eight

people in the world were living with a mental disorder in 2019 [24]. Fur-

thermore, there exists growing concern that mental health problems af-

fect youth and young adults disproportionately. In 2021 WHO estimated

that one in seven 10-19 year-olds experience mental health issues [23].

As a result of the rising prevalence of mental health problems, concern

regarding the accessibility and adequacy of treatment grows. According

to WHO the mental health conditions of adolescent "remain largely un-

recognized and untreated" [23]. Concurrently, more people are turning to

the Internet for support. Social support is an important factor in men-

tal well-being [5], and online communities present a novel way to achieve

the psychosocial benefits of social support that help combat mental health

problems [18].

Anonymity, accessibility, interaction management and social distance

are perceived as some of the advantages of online social support compared

to traditional face-to-face interaction [22]. Internet forums are seen as

particularly desirable sources of social support for people struggling with

illnesses associated with stigma, such as depression. Affordability and

accessibility for people living in rural areas are also considerable advan-

tages of online support compared to traditional approaches. [16]

Seeking and providing social support online is a relatively novel phe-

nomenon resulting from the emergence of the Internet. To better under-

stand the phenomenon and its effects on individuals and public health,

approaches to measure and analyze conversations surrounding mental

health on social media are being developed. This literature review exam-

ines the methods and techniques that are applied to study mental health

discourses on social media computationally. The second objective of this

paper is to summarize the results of previous studies on the topic and

thereby analyze the nature and effects of mental health discussion online.

The structure of the paper is as follows. Section 2 explores previous

research on the topics of social support in the context of mental well be-

ing as well as characteristics of mental health discourse online. Section

3 discusses the methods and techniques that can computationally be ap-

plied to study mental health discourse on social media. Some interesting

findings from previous research into online mental health discussion are

examined in section 4. Section 5 discusses the limitations and other con-

siderations in the research of mental health discussions online. Finally,

section 6 concludes the review.

2 Background

Social support can be seen as one of the key factors promoting health and

well-being [12]. The benefits of traditional face-to-face social support ex-

tend to the context of social media as well. The results of a 2013 study

by Oh et al. [12] reveal that social networking sites such as Facebook can

function as effective spaces for supportive interactions, and therefore con-

tribute to enhancing users health self-efficacy and capability to manage

ones own health. The potential of online communities as health promot-

ing resource is recognized especially among younger generations who live

increasingly digital lives [11].

Social support is recognized as a particularly significant element in

coping with mental health struggles as it can reportedly have a protective

effect against the negative consequences of mental disorders [5]. Through

the adoption of social media, dedicated online mental health communities,

where individuals who suffer from mental disorders seek information, ad-

vice and support, have increasingly appeared in online spaces [5] [10].

These communities provide support seekers the psychosocial benefits of

social support that in turn can aid in coping with mental health issues

[18].

Individuals who struggle with stigmatized health conditions can pur-

posely avoid situations where the state of their health may be revealed

to others [2]. Thus online discourse may appear more appealing for peo-

ple suffering from issues associated with stigma and shame than tradi-

tional face-to-face interaction. Consequently, anonymity is recognized as

an important property of online mental health communities, as it helps

individuals to make self-disclosures on stigmatized topics less hesitantly

[18] [10]. On the other hand anonymity in online contexts is linked to re-

duced accountability, which in turn can result in negative behavior such

as bullying and harassment [1] [21].

In addition to anonymity, a 2002 study by Walther and Boyd [22] rec-

ognized three other attractive features of computer-mediated social sup-

port first of which is accessibility. Accessibility allows support seekers

to apply for support from anywhere regardless of the time of day, which

is a particularly significant advantage for those who reside in geograph-

ically remote areas [16]. The constant availability of informational and

emotional support may lower the threshold for interaction, compared to

making an appointment with a healthcare professional. Because of this,

the accessibility of online support could also be seen as a factor that eases

the burden on the healthcare sector. Accessibility also relates to the af-

fordability of social support provided by online forums [16], which can be

considered a significant factor on the global scale.

The other factors identified by Walter and Boyd include social distance

and interaction management [22]. Interaction management in the context

of mental health discourse means that both those seeking support and

those giving it have the time to reflect on their messages and manage

the situation according to their preferences. Additionally, social distance

in computer-mediated relationships allows improves stigma management

and candor in contrast to face-to-face communication, according to the

study.[22]

Online mental health communities rely on peer to peer interaction for

support. Peer support in the traditional sense is successfully applied by

many well-functioning mental health services such as Alcoholics Anony-

mous [21]. However, one of the challenges of online social support is that

in the online context supporters are expected to temporarily assume the

role of a psychological counselor when helping those seeking support. [21]

As a result, the quality of interactions can vary and there is no guarantee

that support-seekers receive appropriate assistance.

Some of the proposed solutions to improve the quality of mental health

discourse online include moderation and guided chats [21] [13]. A 2021

study by Wadden et al. found that moderation in online mental health

conversations "improved civility, supportiveness, and coherence" [21]. The

results of the study indicate that moderation could potentially serve as a

useful and scalable tool in the global mental health crisis [21]. Another

proposed solution by O’Leary et al. are chats guided by prompts based

on psychotherapy skills. The study conducted in 2018 discovered that

both guided and unguided chats succeeded to reduce symptoms of anxi-

ety. However, guided chats were found to perform better in providing in-

formational support and insights, while unguided chats directed towards

distractions from troubles rather than solutions and emotional support.

[13]

3 Methods

Natural Language Processing (NLP) is a central concept in the research

into computer-mediated mental health discourse. NLP is a field of ma-

chine learning that employs computers to develop models of how people

understand and use language [4]. The availability of natural language

use enabled by social media as well as the rapid evolution of computa-

tional resources has transformed the language analysis field [19]. As a

result, researchers are increasingly able to connect everyday language

use with social, cognitive, and behavioral phenomena [19]. This chapter

introduces relevant NLP techniques and models in the study of text-based

online mental health discourse. The choice of a suitable method for an-

alyzing online mental health conversations depends on several factors,

such as the characteristics of the data, the specifications of the NLP task

and the computational resources available.

3.1 LIWC

Linguistic Inquiry and Word Count (LIWC) is a text analysis software

created by Pennebaker et al. [14] and a well-established tool in the re-

search into text based online interactions. Its operation builds upon the

LIWC psycholinguistics lexicon, based on which words can be classified

into linguistic, psychological and content categories validated by indepen-

dent judges [16]. In the context of online mental health discussion LIWC

can be applied in analysing both linguistics and sentiment features. Ac-

cording to the 2010 analysis by Tausczik and Pennebaker, LIWC can ac-

curately identify emotion in text and rate positive and negative emotion

words at a level similar to human evaluations [19].

3.2 LDA

Topic modeling is an NLP technique often employed in the study of mental

health discourse on social media. Latent Dirichlet Allocation (LDA) is

a probabilistic model used to represent a corpus [3]. The basic idea of

LDA is that documents are treated as random mixtures of various topics,

and each topic is represented by a distribution over words [3] [17]. Topic

modeling applied to social media analytics helps create an understanding

of discussions and reactions between users in online communities. It is

useful in uncovering patterns that explain peoples posting behavior on

platforms such as Facebook and Twitter. [9]

3.3 VADER

Sentiment analysis is another valuable tool in the analysis of online men-

tal health discussion. According to Tausczik and Pennebaker "the degree

to which people express emotion, how they express emotion, and the va-

lence of that emotion can tell us how people are experiencing the world"

[19]. Analyzing the sentiment of social media content presents challenges

due to the high volume of data, contextual sparseness, and abbreviated

language. The LIWC lexicon described in part 3.1 is widely used but may

not always be suitable for social media. VADER (Valence Aware Dictio-

nary for sEntiment Reasoning) has been developed to address these chal-

lenges, offering a sentiment lexicon attuned to microblog-like contexts and

incorporating grammatical rules for improved accuracy. VADER performs

exceptionally well in social media sentiment analysis, outperforming indi-

vidual human raters and retaining the benefits of LIWC while being more

sensitive to social media expressions. [8]

3.4 GloVe

GloVe (Global Vectors for Word Representation) is a word embedding tech-

nique that learns a vector representations of words in a continuous vector

space with relevant substructure. GloVe captures fine-grained semantic

relationships between words based on their co-occurrence statistics in a

text with an accuracy up to 75 percent. The paper by Pennington et al.

published in 2014 found that GloVe outperforms other word embedding

methods other on several NLP tasks. [15]

3.5 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a

pretrained fine-tunable model, which has quickly become a state-of-the-

art tool for varying NLP tasks [7]. BERT is a deep learning model that,

According to Tenney et al. (2019), can "represent the types of syntactic

and semantic abstractions traditionally believed necessary for language

processing, and moreover that they can model complex interactions be-

tween different levels of hierarchical information." [20]

4 Findings

The methods presented in section 3 have been applied in several stud-

ies investigating the effects of mental health discussion on social media.

This paragraph aims to present some important findings from relevant

research and describe the methods used to obtain the results.

The findings of a 2023 study by Yuan et al. [25] indicate that individ-

uals interacting with suicide-related coping stories on social media can

gain beneficial psychosocial outcomes. The research employs the LIWC

lexicon combined with SVM classifiers to investigate the existence of the

Papageno effect on social platforms such as Twitter. The Papageno effect

refers to the phenomenon where media can have positive effects on indi-

viduals who are struggling with suicidal ideation. The results of the study

demonstrate that the benefits of the Papageno effect carry over to the

online context as well: "we observe statistically significant psychosocial

(affective, behavioral, cognitive) shifts in individuals after engaging with

coping story posts". Although the study did not measure the change in sui-

cidal thoughts directly, but the findings are based on the interpretation of

other measures, the results are nonetheless indicative of the promising

role of social media in mitigating suicide ideation. [25]

Another 2023 paper by Kim et. al [10] examines social media as a po-

tentially effective space for social support on mental health related con-

cerns. The study applies fined-tuned pre-trained BERT models as well as

topic modeling techniques such as LDA to explore the characteristics and

behavior of both support-seekers and supporters in online mental health

communities. The results of the analysis provide indications of what men-

tal health support in Internet communities is like and how it can be lever-

aged effectively. These findings show a direction for mental health re-

search in the online context and can serve as a guideline for designing

safer and more efficient virtual spaces in the future. For instance one

of the main findings of the paper states that the users in online mental

health communities prefer emotional support over informational support,

from which Kim et al. conclude that dedicated mental health groups can

serve as active spaces of support with an emotional atmosphere. [10]

A 2017 study by De Choudhury and Kiciman [5] found similar results

regarding the characteristics of social support in online mental health

communities. The study employed a token-based machine learning model

to analyze the language of comments in mental health communities on

Reddit. The paper found that counter-beneficially associated tokens occur

in comments that human raters had coded to consist of informative or in-

strumental support, while comments classified as emotional by the raters

were more likely to contain positively associated tokens. [5]

Findings from research suggest that emotional support in online com-

munities can lead to psychosocial benefits. However, online support for

mental health problems relies mostly on peer-to-peer interaction, so in-

vestigating methods to help supporters provide helpful responses is cru-

cial. A 2020 study by Saha and Sharma [18] focuses on factors that con-

tribute to effective support in online mental health communities. By ap-

plying the LIWC lexicon and SVM classifiers to data collected from Talk-

Life the study found that positivity, dynamicity, adaptability and diversity

are important features of responses associated with beneficial outcomes.

Interestingly immediacy and quantity of responses were shown to have

insignificant effects in the online context. [18]

Naturally, the characteristics of online mental health discourse are

strongly influenced by user-specific features. According to a 2017 paper by

De Choudhury et al. [6] both gender and cultural background contribute

considerably to the mental health related content shared by users. The

study observed differences in self disclosures through data collected from

Twitter via linguistics analysis employing LIWC and topic modeling using

LDA. The results state that males are more likely to convey higher nega-

tivity while also expressing lower desire for social support than females.

On the other hand, females tend to express higher sadness and anxiety

according to the paper. Cultural differences were found to be most promi-

nent in the users’ desire to communicate negative emotions or distress.

The research into the relationship of demographic features of users and

mental health discourse on the Internet helps guide the design of gender

and culture-aware online spaces. [6]

5 Discussion

The findings from research into mental health discourse on social media

suggest that online interactions can have a positive impact on individu-

als mental health. Thus social media can potentially be leveraged into a

useful tool in the battle against the global mental health crisis.

However, the text-based analysis methods referenced in this paper

can quickly become insufficient in the context of social media, as content

on many online platforms extends over traditional text based messaging.

Digital content often combines text with pictures, videos, emojis, emoti-

cons and memes, which is why solely text-based analysis cannot always

produce a comprehensive interpretation of interactions. Moreover, the on-

line context presents additional challenges when analyzing mental health

discourse, as the language and context on social media platforms can be

complex and their evolution is rapid. Interpreting nuances, slang and ab-

breviations commonly used in online communication adds difficulty to the

analysis process.

Another limitation of this paper is that most of the reviewed research

focuses only on mental health discourse in English. Language and cul-

ture undoubtedly influence discussion on the Internet, so the methods

and findings described in this paper may not be applicable to other lin-

guistic contexts. As a result, future research into mental health discourse

online should aim to include a wider range of languages and cultural di-

mensions.

Furthermore, the studies reviewed in this paper focus their analysis

on direct communication on social media, as a result of which passive

engagement is overlooked. Users may seek support through consuming

mental health related online media without directly taking part in conver-

sations. The research methods considered in this article are mainly ap-

plied to text-based data. Combining linguistics and cognitive techniques

with behavioral analysis could provide more thorough insights into the

impacts of mental health discourse on passive users as well.

Another limitation in the study of mental health discourse online is

the huge amount of data on social media platforms. The sheer amount of

information imposes practical challenges, as social media data often con-

tains noise and bots, as a result of which preprocessing requires consid-

erable resources and effort. In addition, ethical and social considerations

must be taken into account due to the nature of social media posts, as

they may contain sensitive and personal information. Ensuring privacy

and adhering to ethical guidelines are indispensable, although they may

increase the complexity of the research process.

6 Conclusion

The increase in computational power and resources has allowed for more

sophisticated and efficient methods in the field of NLP to emerge, en-

abling deeper understanding of social media data. Research employing

techniques for analysing the linguistics, cognitive and behavioral features

of online mental health discourse shows that online social support can

have similar benefits as traditional treatment methods. However, these

promising results from research on mental health discussion in social me-

dia cannot yet be generalized to all users due to linguistic and cultural

diversity. Passive engagement is another phenomenon within the online

mental health discourse context that requires further research. Nonethe-

less, the studies have demonstrated that social media has undeniable po-

tential as a tool for mental health related social support. The psychosocial

benefits provided by online mental health communities allow the groups

to be harnessed in the battle against the mental health crisis alongside

traditional treatment.

References

[1] Nazanin Andalibi, Oliver L Haimson, Munmun De Choudhury, and Andrea
Forte. Understanding social media disclosures of sexual abuse through the
lenses of support seeking and anonymity. In Proceedings of the 2016 CHI
conference on human factors in computing systems, pages 3906–3918, 2016.

[2] Magdalena Berger, Todd H Wagner, and Laurence C Baker. Internet use
and stigmatized illness. Social science & medicine, 61(8):1821–1827, 2005.

[3] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet alloca-
tion. Journal of machine Learning research, 3(Jan):993–1022, 2003.

[4] KR1442 Chowdhary and KR Chowdhary. Natural language processing.
Fundamentals of artificial intelligence, pages 603–649, 2020.

[5] Munmun De Choudhury and Emre Kiciman. The language of social support
in social media and its effect on suicidal ideation risk. In Proceedings of the
international AAAI conference on web and social media, volume 11, pages
32–41, 2017.

[6] Munmun De Choudhury, Sanket S Sharma, Tomaz Logar, Wouter Eekhout,
and René Clausen Nielsen. Gender and cross-cultural differences in social
media disclosures of mental illness. In Proceedings of the 2017 ACM confer-
ence on computer supported cooperative work and social computing, pages
353–369, 2017.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[8] Clayton Hutto and Eric Gilbert. Vader: A parsimonious rule-based model
for sentiment analysis of social media text. In Proceedings of the interna-
tional AAAI conference on web and social media, volume 8, pages 216–225,
2014.

[9] Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao Li,
and Liang Zhao. Latent dirichlet allocation (lda) and topic modeling: mod-
els, applications, a survey. Multimedia tools and applications, 78:15169–
15211, 2019.

[10] Meeyun Kim, Koustuv Saha, Munmun De Choudhury, and Daejin Choi.
Supporters first: Understanding online social support on mental health
from a supporter perspective. Proceedings of the ACM on Human-Computer
Interaction, 7(CSCW1):1–28, 2023.

[11] Brad Love, Brittani Crook, Charee M Thompson, Sarah Zaitchik, Jessica
Knapp, Leah LeFebvre, Barbara Jones, Erin Donovan-Kicken, Emily Ear-
gle, and Ruth Rechis. Exploring psychosocial support online: a content
analysis of messages in an adolescent and young adult cancer community.
Cyberpsychology, Behavior, and Social Networking, 15(10):555–559, 2012.

[12] Hyun Jung Oh, Carolyn Lauckner, Jan Boehmer, Ryan Fewins-Bliss, and
Kang Li. Facebooking for health: An examination into the solicitation and
effects of health-related social support on social networking sites. Comput-
ers in human behavior, 29(5):2072–2080, 2013.

[13] Kathleen O’Leary, Stephen M Schueller, Jacob O Wobbrock, and Wanda
Pratt. “suddenly, we got to become therapists for each other” designing peer
support chats for mental health. In Proceedings of the 2018 CHI conference
on human factors in computing systems, pages 1–14, 2018.

[14] James W Pennebaker, Martha E Francis, and Roger J Booth. Linguistic in-
quiry and word count: Liwc 2001. Mahway: Lawrence Erlbaum Associates,
71(2001):2001, 2001.

[15] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language processing (EMNLP), pages
1532–1543, 2014.

[16] Nairan Ramirez-Esparza, Cindy Chung, Ewa Kacewic, and James Pen-
nebaker. The psychology of word use in depression forums in english and
in spanish: Testing two text analytic approaches. In Proceedings of the
international AAAI conference on web and social media, volume 2, pages
102–108, 2008.

[17] Philip Resnik, William Armstrong, Leonardo Claudino, Thang Nguyen,
Viet-An Nguyen, and Jordan Boyd-Graber. Beyond lda: exploring super-
vised topic modeling for depression-related language in twitter. In Proceed-
ings of the 2nd workshop on computational linguistics and clinical psychol-
ogy: from linguistic signal to clinical reality, pages 99–107, 2015.

[18] Koustuv Saha and Amit Sharma. Causal factors of effective psychosocial
outcomes in online mental health communities. In Proceedings of the In-
ternational AAAI Conference on Web and Social Media, volume 14, pages
590–601, 2020.

[19] Yla R Tausczik and James W Pennebaker. The psychological meaning of
words: Liwc and computerized text analysis methods. Journal of language
and social psychology, 29(1):24–54, 2010.

[20] Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical
nlp pipeline. arXiv preprint arXiv:1905.05950, 2019.

[21] David Wadden, Tal August, Qisheng Li, and Tim Althoff. The effect of
moderation on online mental health conversations. In Proceedings of the
International AAAI Conference on Web and Social Media, volume 15, pages
751–763, 2021.

[22] Joseph B Walther and Shawn Boyd. Attraction to computer-mediated social
support. Communication technology and society: Audience adoption and
uses, 153188(2), 2002.

[23] WHO. Mental health of adolescents, fact sheet. https://www.who.int/news-
room/fact-sheets/detail/adolescent-mental-health, nov 2021. Accessed:
2024-03-01.

[24] WHO. Mental disorders, fact sheet. https://www.who.int/news-room/fact-
sheets/detail/mental-disorders, jun 2022. Accessed: 2024-03-01.

[25] Yunhao Yuan, Koustuv Saha, Barbara Keller, Erkki Tapio Isometsä, and
Talayeh Aledavood. Mental health coping stories on social media: A causal-
inference study of papageno effect. In Proceedings of the ACM Web Confer-
ence 2023, pages 2677–2685, 2023.

Games for cognitive abilities of elderly
people

Kimi Kuru
kimi.kuru@aalto.fi

Tutor: Sanna Suoranta

Abstract

This paper focuses on identifying the key design principles of digital

games aimed at enhancing cognitive abilities, in the elderly. This paper

researches how digital games can be tailored to the needs of elderly people

while enhancing their cognitive abilities. The paper reviews existing lit-

erature to identify key principles and potential areas for improvement in

the design of cognitive games specifically intended for elderly users. The

paper emphasized the importance of a user-centered design approach, con-

sidering the physical and cognitive capabilities of the elderly. Key aspects

such as game design principles, gamification of cognitive activities, techno-

logical and development considerations are discussed. The paper also dis-

cussed the balance between engagement and accessibility in game design,

ensuring that games are engaging without being overwhelming. With ele-

ments from technology and psychology, this paper contributes to the grow-

ing field of digital games aimed at sustaining and improving the cognitive

health of the elderly. The paper integrates basic concepts for from differ-

ent fields for further understanding on how to develop effective games for

cognitive abilities of elderly people. The literature review and discussion

in this paper are needed by developers, designers, and researchers working

towards creating impactful cognitive games for an aging population.

KEYWORDS: Gamification, Cognitive Improvement, Elderly, Digital Games

1 Introduction

As people are aging, maintaining their cognitive abilities, such as rea-

soning, learning and remembering, becomes a concern. According to re-

search, one effective way to prevent decline of cognitive abilities is by con-

tinuously learning new skills [16]. Notably, dancing is known to be one

of the most effective activities in maintaining these abilities [18]. More-

over, games can be entertaining but they can also help improve cognitive

abilities, especially after events like strokes [15].

However, implementing games that would benefit aging people comes

with challenges. These challenges include making the games suit differ-

ent cognitive levels [13], overcome issues with using technology [9], and

ensure that older adults stay interested [12], [4]. As the number of older

people increases, it is important to understand different ways that can

help with maintaining their cognitive health.

The primary aim of this paper is to explore the essential components of

non-entertaining games aimed at enhancing cognitive abilities in elderly

individuals. This paper reviews existing literature to identify key princi-

ples and potential areas for improvement in implementation of cognitive

games for the elderly with a special focus on game design considerations

for successful cognitive improvement. This paper is organized as follows.

Section 2 provides background to the topic by reviewing existing literature

on main methods to prevent cognitive decline and the role of games in cog-

nitive improvement. Section 3 discusses gamification and important game

design factors when designing games for cognitive improvement. Section

4 provides discussion around the findings. Finally section 5 provides a

conclusion.

2 Prevention of cognitive impairment

This section provides background about current methods and principles

that are used for preventing cognitive decline and improve cognitive abil-

ities. Section 2.1 explains the importance and challenges of sustained

engagement for cognitive improvement. Section 2.2 provides examples

of some known interventions for cognitive decline. Finally, Section 2.3

discusses the role of digital games in cognitive intervention.

2.1 Sustained mental engagement

Aging rises concerns about cognitive decline of elderly people thus cre-

ating a need for research focused on understanding how to prevent the

cognitive decline. A research shows the importance of continuous cogni-

tive engagement as a method to better maintaining cognitive abilities of

the elderly [16]. The research also suggests that sustained mental effort

improved cognitive abilities of elderly people by, for example, learning a

new skill.

Elderly people usually are not very engaged with new technologies and

can have difficulties learning them [3] which is a problem when trying

to keep sustained engagement with digital games. Furthermore, digital

platforms nowadays have almost endless possibilities for different types

of games. Thus, it is important for elderly people to be able to utilize the

possibilities of digital games. However, research suggests that external

support with technology is essential for new technology adoption among

elderly people [3]. This means that additional help is needed for the

elderly to achieve sustained engagement with digital games.

2.2 Effective cognitive interventions

Research shows improvement of cognitive abilities among elderly people

in traditional activities not involving the use of technology. Research fo-

cused on leisure activities suggests that activities such as dancing can

reduce the risk of dementia when actively exercised [18]. In addition,

such activities can be easy to maintain as they might not be too serious

or difficult for the elderly. In contrast, playing digital games requires the

use of technology which can be more difficult for elderly people.

As mentioned in section 2.1 sustaining cognitively demanding activi-

ties improve cognitive abilities for older people. Notably, Gallo and Abu-

talebi [7] suggest that learning a new language is one good way of im-

proving cognitive abilities.

2.3 Role of games in cognitive intervention

Digital games offer many possibilities for developing games for improv-

ing cognitive abilities. Studies have shown that both entertaining and

non-entertaining video games can enhance various cognitive functions in

elderly people [14], [5], [2]. Entertaining games can keep players en-

gaged due to their entertainment value, while also improving cognitive

functions [5]. However, entertaining do not usually focus on improving

specific cognitive skills. Non-entertaining games are specifically designed

to improve skills such as memory and problem solving. Thus the focus in

design of such non-entertaining games requires consideration from differ-

ent points of views such as psychology, technology and game design.

When designing games to improve cognitive functions, it is important

to consider factors such as age-appropriate design, accessibility, person-

alization for different level players, engagement and motivation. Most of

the considerations in the technical design of the game requires consider-

ing the diverse possibly declined functions of elderly people. In addition

to considering functions of elderly people in non-entertaining games, it is

important to consider how the actual game would improve cognitive func-

tions of the players. An early example of a game designed for cognitive

improvement is Brain Age. Brain Age is a digital game aiming to improve

cognitive function that was developed by utilizing research on effective

cognitive training [14]. Brain Age includes different games that give the

user challenges like math problems [14]. Game design and technology

considerations need to take into account how the game improves cogni-

tive functions and build functionality around that.

3 Desigining games for cognitive improvement

This section discusses gamification in learning and focuses on essential

factors in game design that need to be considered when creating games

for cognitive improvement of elderly people. Section 3.1 discusses gami-

fication of cognitive activities. Section 3.2 provides high-level principles

for designing games for cognitive improvement. Section 3.3 discusses im-

plications of the design principles to technology and development of the

games.

3.1 Gamification of cognitive activities

Gamification refers to the process of adding game-like elements to activi-

ties or tasks in non-game contexts to encourage participation and engage-

ment. In the context of gamification, Deterding et al. [6] separates the

game-like elements as follows. Game interface design patterns are com-

mon components in successful interaction design such as badges, leader-

boards and levels. Game design patterns are common parts of game de-

sign concerning gameplay such as time constraints and resources. Finally,

game design principles and heuristics are guidelines to analyzing design

problems.

The gamification of cognitive activities could include, for example, gam-

ification of learning a new language, since it is known to improve cognitive

abilities as mentioned in 2.2. Accordingly a study suggests that Duolingo,

a language learning application could benefit cognitive functions of older

adults [10]. Also, gamification of an activity could make activities more

engaging and accessible, which is important since sustained mental en-

gagement is essential for improving cognitive functions. A systematic re-

view by Lumsden et al. [10] suggests that gamified cognitive training

improves player motivation in many instances.

3.2 Game design principles for cognitive improvement

Game design of non-entertaining games for cognitive improvement of el-

derly should focus on cognitive stimulation meaning that games should

replicate traditional activities proven to be beneficial or create new stim-

ulating activities with the help of technology [13]. In addition, games can

include functionality to assess and record player performance to detect

cognitive levels of players and adapt difficulty. This approach provides an

experience that continuously challenges and engages the user, thus maxi-

mizing cognitive benefits the game potentially gives. Games like "Lumos-

ity", a brain training application, demonstrate this principle by adapting

to the user’s performance to provide personalized brain-training experi-

ences [1].

Furthermore, game design for elderly people should focus on tailor-

ing a game to the specific needs and abilities of elderly players [13]. This

involves creating games with good accessibility, usability, and gradual dif-

ficulty levels to account for different cognitive levels and technological fa-

miliarity [17]. Games for cognitive intervention should be accessible on

multiple platforms, including smartphones, tablets, and computers. The

use of touch-screen interfaces can be beneficial for the elderly, who may

find them easier and more intuitive to use than traditional mouse and

keyboard controls [17]. Also, given possible physical and sensory limita-

tions, games must be easy to use for all players.

Meza-Kubo and Morán [13] emphasize that Games should be designed

to give immediate and constructive feedback. Instant feedback makes el-

derly aware of their results and can possibly notify caregivers of any need

for assistance. In a systematic literature review by Martinho et al. [11]

most of the studies that included serious games, widely used game de-

sign elements such as feedback, progression, time constraints and scores.

It was observed in the review that these feedback elements provided ef-

fective indicator of real time performance to the elderly person during a

session of playing a game.

Game design should also focus on making the games motivating. The

game should include enough cognitive activities to select appropriate cog-

nitive activity for the player according to the player’s preferences and

needs [13]. Also including motivators in the game according to player’s

preferences can help staying motivated [13]. Additionally, introducing

novel stimuli and new environments can be beneficial for cognitive health

and keep the game interesting [2].

According to the systematic review by Martinho et al. [11], many gam-

ified activities use game elements like badges, rewards and social inter-

action mechanisms. The review states that these elements were included

as they improve the entertaining features of the game, which could also

contribute to making the game more motivating.

3.3 Technology and development considerations

As stated in section 3.2, games should be designed to fit specific needs

of the elderly. Developers need to prioritize user-centered and person-

alization design principles [11]. This could involve understanding the

physical and cognitive capabilities of the elderly, including potential limi-

tations such as reduced motor skills and weaker cognitive abilities. In ad-

dition, features like larger buttons and text, simplified menus, and voice

assistance can make the games more accessible [17]. User interface de-

signers and developers need to comply to basic accessibility requirements

and consider the additional limitations of players.

The software should be highly customizable to take into account vary-

ing cognitive abilities and preferences of the elderly [13]. This might

involve creating techniques that automatically adjust the difficulty level

of the game based on the player’s performance. The software architecture

should allow for flexibility in adding features that serve different kinds of

players. For example, the use of machine learning and artificial intelli-

gence could be used to adapt the game for different players.

Implementing feedback and analytics mechanisms can help in moni-

toring the players progress and providing feedback [13]. Developers and

designers can develop the software to allow for sharing of the progress of

the player to possible caregivers.

To increase accessibility, developers could consider cross-platform de-

velopment. Cross-platform development allows the game to be used on

various devices, taking into account the preferences and accessibility of

different users. Thus, game designers and developers should consider uti-

lizing tools that allow developing cross-platform compatible software.

In a paper, Gerling et al. [8] point out that the use of different technol-

ogy may be limited for due to age related difficulties so different options

for input devices need to be available. According to Gerling et al. features

of input devices such as small buttons or devices allowing parallel inter-

action may be hard for the elderly to use. In addition, elderly people can

have difficulties understanding and accepting new technologies and their

benefits [11].

4 Discussion

This paper has reviewed various aspects of non-entertaining games de-

signed for cognitive improvement in elderly individuals. The key consid-

erations in designing such games include examining gamification of cog-

nitive activities, game design principles for cognitive improvement, tech-

nology and development considerations.

Gamified applications have shown to improve cognitive abilities in the

elderly [10]. The improvement could be the result of the characteristics

of the underlying activity. However, gamification also improves player

motivation and engagement [10]. With the improvement in motivation,

gamification could help elderly people keep sustained mental engagement

in the cognitive activity, which is a key part in cognitive improvement as

mentioned in section 2.1.

Essential game design principles in developing games for the cogni-

tive improvement of the elderly include selecting or creating an activity

for cognitive improvement, tailoring the game to fit the physical and cog-

nitive needs of the elderly, creating feedback mechanisms and making the

game engaging to the user [13]. These considerations can be transformed

into elements of the game interface and game element design. These ele-

ments could include mechanisms to assess player performance and adjust

difficulty, intuitive and accessible interface elements such as big buttons,

mechanisms for receiving feedback and adjustments for different prefer-

ences.

Feedback mechanisms and progress analytics are other important as-

pects, allowing for real-time monitoring and adjustments based on indi-

vidual performance. This not only helps in personalizing the experience

but also provides valuable insights for caregivers.

The design principles challenge the possibilities in using technology

and developing the games. Input devices need to be customizable and

simple to use, for example, a touchscreen tablet with a simple interface.

To account for accessibility, different types of devices should be available

and the game should be developed for multiple platforms. In addition, the

game software should allow for flexibility because of the varying cognitive

needs, which could mean, for example, developing a platform of multiple

cognitive games aimed at different groups of people.

5 Conclusion

This paper has discussed the essential parts of non-entertaining games

for cognitive improvement in elderly people. The essential parts were

discussed by gathering game design principles that were found to be im-

portant for cognitive improvement of elderly players.

Maintaining the cognitive health of the older population is important.

Finding new ways of incorporating technology in helping maintain the

abilities is important as today technology is increasingly used for different

applications. Digital games can improve accessibility, engagement and

motivation of traditional cognitive activities that are proven to improve

cognitive functions in the elderly. Furthermore, digital games can create

new activities that would not have been possible traditionally.

In conclusion, the development of non-entertaining games for cogni-

tive improvement in elderly people is a important area of research that

includes technology, game design and psychology. there is a need for more

extensive research to understand the long term impacts and effectiveness

of these games, and aligning game design to cognitive needs of the elderly

people. The success of these games depends on their ability to engage

users in meaningful activities that are both enjoyable and beneficial to

their cognitive health. As the elderly population continues to grow, the

importance of improving cognitive abilities becomes increasingly appar-

ent, offering a potential to improved cognitive abilities for elderly people.

References

[1] A. Al-Thaqib, F. Al-Sultan, A. Al-Zahrani, F. Al-Kahtani, K. Al-Regaiey,
M. Iqbal, and S. Bashir. Brain training games enhance cognitive function
in healthy subjects. Medical science monitor basic research, 24:63–69, 2018.
doi: 10.12659/msmbr.909022.

[2] J. A. Anguera, J. Boccanfuso, J. L. Rintoul, O. Al-Hashimi, F. Faraji,
J. Janowich, E. Kong, Y. Larraburo, C. Rolle, E. Johnston, and A. Gazzaley.
Video game training enhances cognitive control in older adults. Nature,
501(7465):97–101, 2013. doi: 10.1038/nature12486.

[3] Yvonne Barnard, Mike D. Bradley, Frances Hodgson, and Ashley D. Lloyd.
Learning to use new technologies by older adults: Perceived difficulties,
experimentation behaviour and usability. Computers in Human Behavior,
29(4):1715–1724, 2013. doi: 10.1016/j.chb.2013.02.006.

[4] Johnny Salazar Cardona, Jeferson Arango Lopez, Francisco Luis Gutiérrez
Vela, and Fernando Moreira. Meaningful learning: motivations of older
adults in serious games. Universal Access in the Information Society, pages
1–16, 2023. doi: 10.1007/s10209-023-00987-y.

[5] G. D. Clemenson, S. M. Stark, S. M. Rutledge, and C. E. L. Stark. Enriching
hippocampal memory function in older adults through video games. PloS
one, 390, 2020. doi: 10.1016/j.bbr.2020.112667.

[6] Sebastian Deterding, Dan Dixon, Rilla Khaled, and Lennart Nacke. From
game design elements to gamefulness: Defining gamification. volume 11,
pages 9–15, 2011. doi: 10.1145/2181037.2181040.

[7] Federico Gallo and Jubin Abutalebi. The unique role of bilingualism among
cognitive reserve-enhancing factors. Bilingualism: Language and Cogni-
tion, page 1–8, 2023. doi: 10.1017/S1366728923000317.

[8] Kathrin Maria Gerling, Frank Paul Schulte, Jan Smeddinck, and Maic Ma-
such. Game design for older adults: Effects of age-related changes on struc-
tural elements of digital games. In Entertainment Computing - ICEC 2012,
pages 235–242. Springer Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-
33542-6_20.

[9] Wijnand Ijsselsteijn, Henk Herman Nap, Yvonne de Kort, and Karolien
Poels. Digital game design for elderly users. In Proceedings of the 2007
Conference on Future Play, Future Play ’07, page 17–22. Association for
Computing Machinery, 2007. doi: 10.1145/1328202.1328206.

[10] J. Lumsden, E. Edwards, N. Lawrence, D. Coyle, and M. Munafò. Gamifi-
cation of cognitive assessment and cognitive training: A systematic review
of applications and efficacy. JMIR Serious Games, 4(2):11, 2016. doi:
10.2196/games.5888.

[11] Diogo Martinho, João Carneiro, Juan M. Corchado, and Goreti Marreiros. A
systematic review of gamification techniques applied to elderly care. Arti-
ficial Intelligence Review, 53(7):4863–4901, 2020. doi: 10.1007/s10462-020-
09809-6.

[12] A. McLaughlin, M. Gandy, J. Allaire, and L. Whitlock. Putting fun into
video games for older adults. Ergonomics in Design, 20(2):13–22, 2012. doi:
10.1177/1064804611435654.

[13] Victoria Meza-Kubo and Alberto L. Morán. Ucsa: a design framework for
usable cognitive systems for the worried-well. Personal and Ubiquitous
Computing, 17(6):1135–1145, Aug 2013. doi: 10.1007/s00779-012-0554-x.

[14] R. Nouchi, Y. Taki, H. Takeuchi, H. Hashizume, Y. Akitsuki, Y. Shigemune,
A. Sekiguchi, Y. Kotozaki, T. Tsukiura, Y. Yomogida, and R. Kawashima.
Brain training game improves executive functions and processing speed
in the elderly: a randomized controlled trial. PloS one, 7(1), 2012. doi:
10.1371/journal.pone.0029676.

[15] Rui Nouchi, Yasuyuki Taki, Hikaru Takeuchi, Hiroshi Hashizume, Yuko
Akitsuki, Yayoi Shigemune, Atsushi Sekiguchi, Yuka Kotozaki, Takashi
Tsukiura, Yukihito Yomogida, and Ryuta Kawashima. Brain training
game improves executive functions and processing speed in the elderly:
a randomized controlled trial. PloS one, 7(1), 2012. doi: 10.1371/jour-
nal.pone.0029676.

[16] Denise C. Park, Jennifer Lodi-Smith, Linda Drew, Sara Haber, An-
drew Hebrank, Gérard N. Bischof, and Whitley Aamodt. The Impact
of Sustained Engagement on Cognitive Function in Older Adults: The
Synapse Project. Psychological science, 25(1):103–112, 2014. doi:
10.1177/0956797613499592.

[17] Shadi Tahmassebi. Digital game design for elderly people. Master’s thesis,
Faculty of Technology and Society, Department of Computer Science and
Media Technology, 2018.

[18] Joe Verghese, Richard B Lipton, Mindy J Katz, Charles B Hall, Carol A
Derby, Gail Kuslansky, Anne F Ambrose, Martin Sliwinski, and Herman
Buschke. Leisure activities and the risk of dementia in the elderly. The New
England journal of medicine, 348(25):2508–2516, 2003. doi: 10.1056/NEJ-
Moa022252.

Evaluation of React Hooks Against
Signal-Based Approaches

Leevi Pulkkinen
leevi.a.pulkkinen@aalto.fi

Tutor: Juho Vepsäläinen

Abstract

In the dynamic landscape of front-end web development the creation of new

and more efficient ways of building applications remains as a constant in-

terest of the community. For a long time React hooks have been the most

used way of managing application state. However, recently the use of sig-

nal based methods has been on the rise. In this paper the advantages of

signal based methods over React hooks are examined. Furthermore, this

paper discusses whether signals could be the new standard way of man-

aging the state of web applications. It was concluded that signals offer

several advantages, such as fine grained UI updates, increased potential

for performance and improved flexibility for state management.

KEYWORDS: React, hooks, signals, Solidjs, Preact, Qwik

1 Introduction

Recently, the concept of signals has been a hot topic as a state manage-

ment solution in web applications. Signals are reactive primitives that

can be used to manage application state [1]. Signals emit a notification

when they change and they can be observed by subscribers [8]. This al-

lows subscribers of a signal to automatically perform re-calculations and

updates when the signal value changes.

React [13] is currently the most popular front-end development library

[4] and it uses hooks instead of signals for state management. Even

though React is widely used, it has been criticized for poor performance

[9]. Many signal based solutions have been proposed as a replacement for

React, such as Solid [3], Preact [1], Qwik [2] and many more. In addition,

the standardisation of signal in JavaScript has been proposed [14].

In this paper React Hooks are compared to signal based solutions, with

a focus on scaling state management, developer experience, and perfor-

mance. In addition the possibility of signals becoming the standard way

of managing state in web applications is discussed. These observations

are conducted through the following research questions:

RQ1. What are the advantages of signal based solutions over React hooks?

RQ2. Could signal based solutions be the new standard for managing state

in web applications?

The structure of this paper is as follows. Section 2 presents the es-

sential concepts of reactive programming and how it relates to signals.

Section 3 introduces the basics of React, Solid, Preact and Qwik. In sec-

tion 4 the strengths and weaknesses of these frameworks are discussed.

Section 5 provides final remarks.

2 Reactive programming explained

Reactive Programming (RP) is a way of programming that is based on

continuously changing variables and propagation of changes [7]. When

changes in state are detected, all dependent computations are recalcu-

lated automatically by the RP language used [7]. This allows developers

to program in a declarative way, focusing on what the application should

do, instead of when or how to do it [7].

Consider the following example of reactive programming:

1 var1 = 1

2 var2 = 2

3 var3 = var1 + var2

Listing 1. Example of reactive programming

In traditional sequential programming the value of var3 would be always

equal to 3 if not manually modified elsewhere in the code, even if the

values of var1 and var2 would change. In RP, however, the value of var3

would always be automatically recomputed if the value of either var1 or

var2 changes. [7]

Users Interfaces (UI) are highly reactive due to the need of reacting

to external event such as mouse clicks and button presses [7]. Due to

this UIs are difficult to program using traditional sequential program-

ming techniques. This is because it is impossible to predict the order of

external events and changes in application state need to be tracked man-

ually. This approach is highly prone to bugs and requires large amounts

of effort from developers. Reactive programming aims to solve these prob-

lems by automatically propagating changes and allowing the developer to

write applications in a declarative way. [7]

Many JavaScript libraries use the concepts of reactive programming

for managing application state. Signals are similar to the example listing

1 due to the fact that signals can be derived from other signals and they

can be automatically updated when changes occur.

3 Introduction to JavaScript front-end libraries

React [13], SolidJs [3], Preact [1] and Qwik [2] are all JavaScript libraries

used for creating front-end web applications. All of these libraries model

parts of the User Interface (UI) using components. Components are small

and reusable, each of them modeling a part of the UI, such as a button or a

search bar. Components are implemented as JavaScript functions that re-

turn JSX, a JavaScript syntax extension that allows writing markup sim-

ilar to HTML [13]. Components can be declared inside other components,

forming a tree structure for the UI. This component tree is displayed to

the user through the Document Object Model (DOM).

3.1 React

In React, component specific memory is called state. State can be used to

remember how the user has interacted with the component. State can be

implemented using React hooks, of which the useState hook is the most

simple.

1 const [amount, setAmount] = useState(0)

Listing 2. useState hook in React

The useState hook takes an initial state as input and returns a state vari-

able (amount) and a setter function (setAmount). When the component is

rendered for the first time, the state variable is equal to the default value

provided. The state value can be changed by calling the setter function,

and this causes component to re-render. [13]

1 function Counter() {

2 const [count, setCount] = useState(0)

3

4 // All code inside component

5 // is re-run when count is changed

6 console.log(count)

7

8 return (

9 <button onClick={() => setCount(count + 1)}>

10 Increment {count}

11 </button>

12)

13 }

Listing 3. Example component in React

React utilizes a virtual DOM (VDOM), which is a representative copy

of the DOM saved in application memory [16]. To goal of the VDOM is to

improve rendering performance by avoiding unnecessary and inefficient

updates being made to the DOM. A snapshot of the VDOM is created

before each state change. Changes are then applied to the VDOM and

this new state is compared to the snapshot using a reconciliation diffing

algorithm. Finally after the comparison the changes are made to the DOM

and shown to the user. [16]

3.2 SolidJs

Solid is a JavaScript UI library that focuses on developer experience and

high performance through fine grained reactivity [15]. Fine grained re-

activity means that only the parts of the page that are changing are up-

dated, instead of updating the whole page or component [15]. Code inside

components is only run once on initialization, which is possible due to only

updating parts of the DOM that need updating [15]. In contrast to React,

Solid does not use a virtual DOM.

In Solid, application state and data is managed using reactive signals

[15]. Similarly to React’s useState hook, signals return a setter function

that can be used to modify state. However, instead of returning a state

variable containing the value of the signal, a getter function is returned.

This getter function can be called to gain access to the current value of

the signal.

1 // create a new signal

2 const [amount, setAmount] = createSignal(0)

3

4 // access initial signal value

5 console.log(amount())

Listing 4. Creating a signal in Solid

Changes in signal values are monitored by subscribers [15]. Sub-

scribers can be used for updating the UI or running side effects [15]. Sub-

scribers can be created by calling the createEffect functions, or by calling

the getter function of a signal in the return statement of the component

[15].

1 function Counter() {

2 const [count, setCount] = createSignal(0)

3 const increment = () => setCount(count() + 1)

4

5 // not tracked - only runs once during initialization.

6 console.log("Count:", count())

7

8 createEffect(() => {

9 // will update whenever ‘count()‘ changes.

10 console.log(count())

11 })

12

13 return (

14 <div>

15 Count: {count()}{" "}

16 {/* will update whenever ‘count()‘ changes. */}

17 <button type="button" onClick={increment}>

18 Increment

19 </button>

20 </div>

21)

22 }

Listing 5. Example component in Solid [15])

3.3 Preact

Preact is described as an alternative to React, with a similar API, smaller

size and higher performance [1]. Due to the similar API, Preact supports

hooks such as useState, useEffect and useReducer. Additionally, Preact

supports the use of signals.

In Preact, a signal can be created by calling the signal() function out-

side of a component [1]. To model local component state, the useSignal

hook can be used, which creates a signal on the components initial ren-

der. Preact signal is an object, and its value can be accessed through the

.value property [1]. A signal value can be changed by directly changing

the value held in the .value field.

1 // create signal

2 const amount = signal(0)

3

4 // access signal value

5 console.log(amount.value)

6

7 // modify signal value

8 amount.value = 1

Listing 6. Creating a signal in Preact

When a signal’s value changes, any components that use the .value

property of the signal are re-rendered [1]. This limits the amount of re-

renders needed if the signal is passed through many components that

do not use its value. Preact utilizes a more lightweight version of the

virtual DOM than React, and it can be bypassed in some cases to increase

performance. Therefore, if a signal is passed to JSX without accessing its

value, it can be updated in the DOM directly, without re-rendering the

component [1].

3.4 Qwik

Qwik is a JavaScript library that promises instant loading for applica-

tions regardless of size [2]. Qwik aims to do this by creating resumable,

lazy loaded components instead of using hydration [2]. Hydration is the

process of making a static page interactive, by downloading and running

JavaScript associated with the rendered components [2]. Instead of hy-

dration, Qwik introduces the concept of "resumability". In Qwik, event

handlers and application state are serialized into the HMTL returned

from the server, and required JavaScript is only downloaded when it is

needed [2].

Qwik models reactive state using signals [2]. Qwik signals are cre-

ated inside components by calling the useSignal() function. Similarly to

Preact, Qwik signals are objects that have a .value field, which holds the

value of a signal. Additionally changing a signals .value field automati-

cally updates any components using the value of the signal.

1 export default component$(() => {

2 const count = useSignal(0);

3

4 return (

5 <button onClick$={() => count.value++}>

6 Increment {count.value}

7 </button>

8);

9 });

Listing 7. Example component using Qwik [2]

Additionally Qwik supports the use of a useStore() hook [2]. useStore()

works similarly to normal signals, but allows the use of deeply reactive

objects, that essentially consist of multiple signals.

Qwik uses a combination of VDOM diffing and direct DOM updates

[2], aiming to combine the best features of both approaches. Qwik uses

the virtual DOM when structural changes to the DOM are needed, but

otherwise aims to update the DOM directly [2] .

3.5 Summary

Overall, these libraries have a lot in common, but they also contain some

key differences. All of these libraries create UIs using nested components

and JSX. Hooks can be used in a similar way in both React and Preact and

signals are supported by Solid, Preact and Qwik. Solid is the only library

to not use a virtual DOM to any extent, and Qwik introduces resumability

instead of hydration.

React SolidJs Preact Qwik

Hooks Yes No Yes No

Signals No Yes Yes Yes

VDOM Yes No Yes * Yes**

JSX Yes Yes Yes Yes

Components Yes Yes Yes Yes

Hydration Yes Yes Yes No

Table 1. *A more lightweight VDOM than in React
**VDOM used only for structural updates

4 Comparison of signal-based libraries

This section discusses the scalability of React hooks and signals in large

applications. Additionally the differences in developer experience between

these frameworks are discussed. Finally it is explored how these solutions

differ in terms of performance.

4.1 Scaling state management

In React, state often needs to be shared between components [13]. This

can be achieved by storing state in parent components and passing it

down to child components using props, which is called lifting state up [13].

However lifting state up can lead to state being passed through many

components that do not depend on it [13]. This is called prop drilling.

In the React documentation [13], usage of the useContext hook is sug-

gested for passing application state deep into the component tree. Com-

ponents can be wrapped into a context provider, that allows all wrapped

components and their children to access provided state, without it being

passed as a prop to each component. However, usage of the React con-

text API can possibly lead to reduced performance, since each component

that uses the state provided in the context is re-rendered when the state

changes [12].

In React, it is common to use third party state management solutions

such as Redux [6] or MobX [5]. Redux stores application state in a single

store [6], which allows React components to access the state from any-

where in the component tree, without prop drilling. MobX is a signal

based approach, that allows making data observable and updates to the

UI are made automatically when this data is changed [5].

When scaling application size, Solid, Preact and Qwik can suffer from

prop drilling, similarly to React. Because of this, they support the use

of context, which allows state to be accessed by components, without it

being provided with props [1, 2, 3]. Additionally, Solid and Qwik support

the use of stores, that allow storing multiple signals in a centralized place

[3, 2]. Due to stores consisting of signals, they can be an efficient way

of managing global or complex state. Furthermore, when a property of a

state object is changed, only components that use that specific property

are modified.

4.2 Developer experience

As demonstrated by the examples 3, 5, and 7, the syntax of using signals

and hooks can be quite similar. However, the exact usage of signals differs

between implementations. In spite of this it could be argued that the

learning curve for each of these libraries is similar, since all of them use

the component architecture and JSX for building the UI.

In React hooks must be created in the top level of components [13].

Thus, hooks cannot be created inside conditional statements or loops, af-

ter conditional return statements or in event handlers [13]. This can be

confusing for new developers trying to learn React. In Solid and Preact,

signals can be defined outside of components [15, 1]. This makes using

signals more flexible, since they can be imported or exported from any-

where in the codebase.

All of React, Solid, Preact and Qwik offer official documentation of

good quality. However, due to React being overwhelmingly more com-

monly used [4], it naturally has more community support in the form of

blogs, guides and answers to common problems.

4.3 Performance

React’s use of the virtual DOM has been criticized as being inefficient,

notably by Rich Harris, the creator of Svelte, who said "Virtual DOM is

pure overhead" [9]. Harris argues that VDOM diffing calculations, ineffi-

cient component re-rendering and defaulting to doing unnecessary work

will make the application slower in the long term, even if there is no clear

bottlenecks [9]. However, Harris also acknowledges that the existence of

the VDOM allows developers to handle state in a manageable way, while

offering performance that is often "good enough" [9].

Despite the crititisim of React’s VDOM, Preact and Qwik also use a

virtual DOM. However due to the usage of signals, these libraries are

less reliant on the VDOM and can sometimes update the DOM directly

[1, 2]. This reduces the overhead created by the VDOM and improves

performance.

In React it easy to build an application that has sub-optimal perfor-

mance. This is evident due to the large number of guides on how to op-

timize your React code, such as [11] and [10]. Signal based methods aim

to be perfomant by default [1], thus reducing the need for optimization in

later phases of development.

5 Conclusion

In this paper the usage of React hooks was compared to signal based ap-

proaches in the form of Solid, Preact and Qwik. Due to this comparison it

can be concluded that the usage of signals possesses several advantages

over React hooks, such as fine grained UI updates, increased potential

for performance, and improved flexibility for state management. Further-

more, decreased reliance on the virtual DOM and the concept of resum-

ability offered by Qwik make these libraries interesting alternatives to

React.

In the world of front-end web development, the number of libraries to

choose from is large and new ones are created frequently. Many of these

libraries already support signals in some form. Despite of this React con-

tinues to be the most commonly used library and it is difficult see its usage

rapidly declining in the near future. This is due to the large community

of developers and huge amounts of production code using React. In ad-

dition, even though usage of signals offers many benefits, React is often

"good enough" for most projects. Therefore it is hard to see signals be-

ing the new standard for managing state in web development, at least in

the near future. However this could change due to the standardization

of signals being proposed as a part of JavaScript [14], which would allow

libraries to use signals in a standardized way.

References

[1] Preact - fast 3kb alternative to react with the same modern api. https:
//preactjs.com/. Accessed: 2024-01-31.

[2] Qwik - the html-first framework. https://qwik.dev/. Accessed: 2024-01-
31.

[3] Solidjs - a declarative, efficient, and flexible javascript library for building
user interfaces. https://www.solidjs.com/. Accessed: 2024-01-31.

[4] Stack overflow developer survey 2023. https://survey.stackoverflow.c
o/2023/. Accessed: 2024-02-01.

[5] Mobx - simple, scalable state management. https://mobx.js.org/README
.html, 2024. Accessed: 2024-02-28.

[6] Redux - a predictable state container for js apps. https://redux.js.org/,
2024. Accessed: 2024-02-28.

[7] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. A survey on reactive pro-
gramming. ACM Computing Surveys (CSUR), 45(4):1–34, 2013. doi:
10.1145/2501654.2501666.

[8] Ryan Carniato. A hands-on introduction to fine-grained reactivity. https:
//dev.to/ryansolid/a-hands-on-introduction-to-fine-grained-react

ivity-3ndf, 2021. Accessed: 2024-04-05.

[9] Rich Harris. Virtual dom is pure overhead. https://svelte.dev/blog/vi
rtual-dom-is-pure-overhead, 2018. Accessed: 2024-03-27.

[10] Ibadehin Mojeed. Optimizing performance in a react app. https://blog
.logrocket.com/optimizing-performance-react-app/, 2023. Accessed:
2024-04-05.

[11] Temitope Oyedele. React optimization techniques to help you write more
performant code. https://www.freecodecamp.org/news/react-performan
ce-optimization-techniques/, 2024. Accessed: 2024-04-05.

[12] André Rabold. Scaling react state management part 2. https://medium.c
om/@andre.rabold/scaling-react-state-management-part-2-5a9bcda83

b55/, 2021. Accessed: 2024-03-01.

[13] React Team. React - a javascript library for building user interfaces. https:
//react.dev/, 2024. Accessed: 2024-01-30.

[14] Daniel Ehrenberg Rob Eisenberg. Javascript signals standard proposal. ht
tps://github.com/proposal-signals/proposal-signals, 2024. Accessed:
2024-04-04.

[15] SolidJS Team. Solidjs documentation. https://docs.solidjs.com/, 2024.
Accessed: 2024-02-21.

[16] Prashant Yadav. The power of react’s virtual dom: A comprehensive expla-
nation. https://www.syncfusion.com/blogs/post/react-virtual-dom,
2023. Accessed: 2024-03-25.

Measuring cybersecurity risk of
industrial control / OT systems

Lija Bista
lija.bista@aalto.fi

Tutor: Mikko Kiviharju

Abstract

The paper is aimed at revealing the cyber security risk that emerges due

to the application of industrial control and operational technology systems

(OT), but considers the potential of defining a process based on IEC 62443

Foundational Requirements. These requirements highlight the need for

a variety of strategies to successfully lessen cyber threats and increase

the safety of vital infrastructure assets. By the end of the research, the

evaluation of secondary data and function definition highlights the criti-

cal importance of industrial cybersecurity controls. The study focuses on

how accurate cybersecurity measurements can only be ensured by using

high-level, standardized procedures and processes. It also examines how

these measures stack up against an ever-evolving set of industry best prac-

tices. Thus, critical infrastructure assets are made safe from different cyber

threats.

KEYWORDS: Industrial Control System (ICS), Operational Technology

(OT), Industrial Automation and Control Systems (IACS)

1 Introduction

When various control elements are integrated, they work together to achieve

industrial objectives, such as production targets and energy flow within

industrial control systems [11]. Operational technology (OT) refers to the

hardware and software employed within industrial environments to mon-

itor, manage, and regulate devices, processes, and infrastructure, exerting

control over the tangible realm [2]. In OT, industrial control systems (ICS)

serve as a vital element, incorporating diverse devices, controls, systems,

and networks to oversee a range of industrial processes [5].

Protecting industrial control/OT systems from cyberthreats necessi-

tates comprehensive awareness of prevalent cybersecurity risks, such as

malware attacks, supply chain vulnerabilities, and human errors, which

can compromise system integrity and sensitive data [12]. Addressing

these challenges requires proactive measures and robust cybersecurity

strategies to mitigate the potential impact of disruptions and breaches on

ICS/OT environments.

This study examines the elements impacting the effectiveness of se-

curity protocols in lowering cyber risks by analyzing the impact of IEC

62443 Foundational Requirements on the deployment and prioritization

of security measures in industrial control/OT systems. Furthermore, the

aim is to assess the evidence backing the effectiveness of IEC 62443 Foun-

dational Requirements in evaluating cybersecurity controls within indus-

trial control/OT systems, and their impact on the development of organi-

zational security postures.

The paper is structured as follows. The IEC 62443 Foundational Re-

quirements are presented in Section 2. The study objectives are explained

in Section 3, and supporting data for the IEC 62443 Foundational Re-

quirements’ effectiveness is presented in Section 4. The Impact of IEC

62443 Foundational Requirements on Security Measures is covered in

Section 5. In conclusion, Section 6 provides some final thoughts.

2 IEC 62443 Foundational Requirements

Attack vectors are used by threats to carry out attacks against an in-

dustrial control system (ICS). These threats can be directed towards the

safety instrumented system, aiming to damage when safety functions are

activated, or the control command system, which is in charge of oversee-

ing the physical system [3]. Malware is a serious danger to industrial

control systems (ICS) since it is specifically designed to interfere with op-

erations or harm machinery. Cyberattacks on ICS can result in physical

damage to equipment, interruption of vital infrastructure, and even fatal-

ities [6].

The IEC 62443 refers to the standards that constitute a framework

aimed at ensuring the secure evolution of Industrial Automation and Con-

trol Systems (IACS), furnishing detailed and organized recommendations

for cybersecurity. IEC 62443 is a multifaceted standard that applies to all

industrial cybersecurity stakeholders. Its implementation process starts

with a risk analysis and includes recommendations for a cyber risk re-

duction factor calculation approach as well as requirements for creat-

ing, implementing, maintaining, and enhancing a security program for an

IACS [4]. An Industrial Automation and Control System (IACS) is guar-

anteed to have the necessary security and safety safeguards if it complies

with the seven criteria specified by IEC 62443 for each security level. Let’s

delve into each of these foundational requirements for industrial automa-

tion security in detail as per IEC 62443 [1]:

Foundational Requirement 1 (FR 1) – Identification and
Authentication Control

A strong and well-designed identification and authentication control mech-

anisms is necessary for the OT and industrial control subsystems, be-

cause these critical domains are a potential target for a number of cyber

threats [10]. FR1 is a wide scope of sub-requirements (SRs) that focuses

on a secure framework which authenticate user, device management, and

access. With this control, the system will ensure authorized person of ac-

cessing only separated devices or information. This would be achieved

through the development of techniques such as user authentication and

entity authorization as a means of protecting the system from common

hacking attacks. Through the adoption of access control mechanism, the

system thwarts intruders or unauthorized individuals/entities, affording

necessary protection against data intrusion or malicious activities. [10]

FR 1 in the context of identification and authentication controls of the OT

systems that are used in industrial control and operational technology

illustrates the crucial area which must be addressed. Such activities com-

prise user identity verification, software applications and devices authen-

tication and securing username and password, etc. [10] The other way

is that the application of strong password authentication, Public Key In-

frastructure (PKI) certificates and authenticated feedback systems makes

up for strong security resilience. On top of that, controls like the wireless

access management and the monitoring of wrong attempts are the factors

that help reduce possible issues. The measures taken, like displaying no-

tifications on system use and limitations towards network access through

untrusted networks do safeguard transparency, accountability and they

do also protect against unauthorized access or manipulation. In summary,

compliance with FR 1 strengthens both the willingness to avoid cyber-

attacks and the competence to resist a myriad of cybersecurity-related

risks and ensure protection of vital infrastructure assets. [10]

Foundational Requirement 2 (FR 2) – Use Control

An appropriate use control techniques must be utilised to decrease cyber

security risks and to guarantee the integrity, confidentiality, and avail-

ability of critical infrastructure’s assets. [10] In the case of FR 2, there

are a number of generic technical requirements (SRs) which are meant to

provide for a secure system environment, with effective resource manage-

ment, security based on the user device and using the software applica-

tion. [10]

Sub-Requirement 2.1 indicates that the rigorous user authentication

and the prohibition of unauthorized actions and data mutation are both

the essential measures in this control system. SR 2.2 specifies the surveil-

lance of wireless activity that is observed by the implementation of access

policies and encryption of communication channels. Sub-Requirement 2.3

acknowledges the significance of implementing measures such as mobile

and portable device authentication and data encryption as the equivalent

of precautions considering the security risks of unauthorized access. Sub-

Requirement 2.4 is dedicated to the installation of security mechanisms

for safe mobile code execution, which aims to prevent and handle the risks

accordingly. [10] Among Sub-Requirements 2.5-2.7, are the session man-

agement controls which include session locking, remote termination, and

concurrent session management in order to ensure no unauthorized ac-

cess and avoid data breaches Sub-Requirement 2.8 requires the organiza-

tion to capture auditable events to enable control monitoring and forensic

study, whereas Sub-Requirement 2.9 stresses dealing with control capac-

ity in terms of storage. Requirement 2.10 addresses issue of quick re-

sponse to close the audit gap and requirement 2.11 – deals with the prob-

lem of time stamps accuracy for forensic analysis. However, under Point

2.12, Sub-Requirement, controls are being set up to get rid of the issue of

non-repudiation, thereby making each and every action accountable and

hindering malicious activities. [10]

Foundational Requirement 3 (FR 3) – System Integrity

For the FR 3, sub-level requisites (SRs) are grouped in order to improve

the crucial process of protecting system integrity through reliable con-

trols, checkpoints and mechanisms. [10]

Sub-Requirement 3.1 is all about the integrity of communication chan-

nels in particular via an encryption and data validation so that the access

to any unauthorized tampering or interception is blocked. Sub-Requirement

3.2, which is one of technical features, represents the countermeasure to

malicious code attacks by suggesting steps like antivirus software and

code verification practices. In the framework of the sub-requirement 3.3,

we would examining the functionalities of the security system using test-

ing methodologies. [10]This would help identify potential sophisticated

vulnerabilities and remedies them. Sub requirement 3.4 facilitates, above

all, the implementation of control tools to ensure the completeness and ac-

curacy of software and information, including file monitoring and access

control. Part 3.5 points out that input validation is necessary in order

to neutralize the use of vulnerabilities for exploitation purposes. Sub-

Requirement 3.6 underscores the necessity of a stable and predictable

system’s output that could be potentially used for undesirable behavior.

Sub-Requirement 3.7 lays emphasis on agile error handling methodolo-

gies to classify faults and avert their proliferation. Addressing session

integrity issue by encrypting the transmission and managing the Keys is

described in Sub Requirement 3.8. Sub-Requirement 3.9 states that au-

dit information should be kept secure from any external modification or

access which should secure its reliability for forensic analyses and com-

pliance. [10]

Foundational Requirement 4 (FR 4) – Data Confidentiality

Data confidentiality must be ensured in industrial control and OT sys-

tems for protection of sensitive data from unauthorized access, disclosure,

which may lead to loss of data as well as reputational crisis. SR4 which

is the collection of some sub-requirements are designed to make sure that

confidentiality of data within system is maintained. [10]

Sub-Requirement 4.1 underlines the implementation of access controls

and encryption to prevent data loss as a result of leaking or misuse (i.e.,

unauthorized disclosure or loss of information). As Sub Requirement 4.2

postulates, sensitive data protection throughout it’s lifecycle with the help

of secure storage mechanisms and data retention policy would be kept

on standby. Cryptography techniques will be used to carry out encoding

to ensure that the confidentiality of information is not compromised by

unauthorized access. Eventually, compliance with FR 4 of the highest

level of protection concerning the confidentiality of data assets between

industrial control and OT systems, reduces cyber risks. [10]

Foundational Requirement 5 (FR 5) – Restricted Data Flow

Keeping up with the arrangement of data work is the prime concern of

industrial control system to avoid unauthorized entry, losing, or manipu-

lating of valuable data. The FR 5 consist of several requirements (SR) so

that the data flow is within the system is limited. [10]

Sub-Requirement 5.1 requires to execute network segmentation con-

trols including firewalls, VLAN, and so on to disrupt the connections and

shape the data movement among different sections. Sub-Requirement 5.2

of the standard details perimeter defense of network zones by implement-

ing state-full inspection firewalls and intrusion detection systems to stop

unapproved access from one environment to the other. Sub-Requirement

5.3 entails mechanisms to confine or track emails and files exchange,

thus to prevent data outflow. [10] In Sub-Requirement 5.4, partition-

ing of applications is advised to secure communication as well as prevent

unexpected and unauthorized access through utilization of approaches

like containerization and access controls. FR 5 compliance guarantees

anonymity and network traffic control in the industrial control system

and operational activities that help decrease the number of cyber risks

and prevent national infrastructures from being harmed. [10]

Foundational Requirement 6 (FR 6) – Timely Response to Events

Adherence to FR 6 constitutes an opportunity for timely preventive, miti-

gating and restorative measures towards cyber threats. If appropriate ac-

tion is taken on time after any events or intrusion then there will be less

impact of cyber threats and no operation will be compromised, whereas

the business continuity will be secured. [10]

Sub-Requirement 6.1 places the accent on the availability of audit logs

as a mechanism for rapid detection and response to the security incidents

with the industrial control systems through control measures including

in the installation of centralized logging systems and real-time monitor-

ing tools for analysis. The Sub-Requirement 6.2’s goal is about adopting

monitoring controls in continually and resolving security threats which

includes the application of the intrusion detection system and anomaly

detection tools. [10]

Foundational Requirement 7 (FR 7) – Resource Availability

Efficient provision of resources within control and operational technology

infrastructures is a critical aspect in the undertaking of continuous op-

eration of critical infrastructural assets with the aim of minimizing the

impact resulting from cyber threats. [10]

Sub-Requirement 7.1 puts forth the necessity of countermeasures against

Denial of Service (DoS) assaults to keep system accessibility. This is

to be attained by network traffic filtering and intrusion prevention sys-

tem among other controls. It is highlighted in Sub-Requirement 7.2 that

success is possible only when effective controls on resource management

such as resource monitoring and electronic scheduling are put in place

to ensure availability of resources. [10] Sub-Requirement 7.3 sets a 24-

hour mechanism to restore control system power backups, while Sub-

Requirement 7.4 is responsible to deploy recovery mechanisms efficiently

post disruption. If not only that, Sub-Requirement 7.5 points out the very

important role of emergency power systems as well as Sub-Requirement

7.6 being responsible about how the network is configured and secured.

Sub-Requirement 7.7 states that the general (minimum) work system

(minimal operation) concept should be followed to decrease the opera-

tional risks with Sub-Requirement 7.8 advocating for the accuracy of in-

ventory of control system components. [10]

3 Research Questions

This paper is centered around the following research questions.

1. How do IEC 62443 Foundational Requirements influence the prioriti-

zation and implementation of security measures within industrial con-

trol/OT systems, and what factors impact their effectiveness in mitigat-

ing cyber risks?

2. What evidence is there to support the effectiveness of IEC 62443 Foun-

dational Requirements in assessing the cybersecurity controls within

industrial control/OT systems?

4 Supporting Evidence for Effectiveness of IEC 62443
Foundational Requirements

Ting et al. [13] stresses the significance of IoT devices in manufactur-

ing, highlighting the cybersecurity risks posed by patching challenges. To

mitigate these risks, assets are identified and categorized based on patch

status, leading to the establishment of a comprehensive patch manage-

ment list. The presented patch management procedure facilitates super-

vised patching to meet IEC 62443-2-4 requirements, resulting in fewer

cybersecurity threats and guaranteed output availability. Ultimately, the

received IEC 62443-2-4 certification validates the efficiency of the same

patch management solution, leaving a trail of error-free and dependable

service delivery among other cost-cutting and productivity enhancement

benefits. [13].

In order to perform a comprehensive risk assessment of an industrial

facility, the evaluation given in [7] follows the requirements of standard

IEC 62443, with a particular focus on FR1: Identification and Authentica-

tion Control (IAC). The authors mention what might be the most vulnera-

ble points in the model and apply zone-based methodology taking into con-

sideration the probability and consequences of the future threats. They

emphasize the need to assess the impact analysis aspects like data sensi-

tivity, mission criticality, and system purpose using organizational docs as

the source of information. Countermeasures are recommended to reduce

threats, mainly regarding intrazonal connections, for instance, authenti-

cation procedures and the ban on files extraction. The conclusion high-

lights the need for more research and development in the assessment of

cybersecurity threats, also recommending features, like attack frequency

and cost [7].

5 Influence of IEC 62443 Foundational Requirements on Security
Measures

An effective framework for evaluating cybersecurity tool performance and

alignment with industry benchmarks is provided by the validation ap-

proach described in [9]. It employs the sections of IEC 62443 standard,

namely segment 4-1 and 4-2. The framework results in a clear picture

of a given tool’s performance as well as its compliance with the already

set criteria. This is possible through the methodical mapping and assess-

ment approach that has been further enhanced with heatmap visualiza-

tion approaches. The practicality of the methodology is also supported by

the inclusion of a case study in real life, particularly when the software

is adapted or a vulnerability scan compared with a broader infrastruc-

ture. This structure, in industrial context, becomes an important tool by

which enterprises ensure that their cybersecurity systems are updated

and pertinent to new industry standards [9]. This makes the necessity of

accepting similar validation approaches to promote trustworthiness and

reliability of security tools evident, therefore cybersecurity tools can sig-

nificantly contribute to strengthening critical infrastructure resilience.

The paper [8] provides a study of cyber security in industrial setups,

especially the power plants for hydropower as critical infrastructure. In

other words, the research utilizes an IEC 62443-2-1-based cyber security

management system (CSMS) which has six integral elements: from the

initial risk assessment to the maintenance of CSMS. The authors imple-

mented the practical application of the CSMS concept with the theoret-

ical case study that was based on the actual hydroelectric power plants

(HPP), demonstrating the conversion of safety risk analysis into security

risk analysis using the cyber-HAZOP technique. The article identifies the

principal ICS vulnerabilities within HPPs and offers the following: up-

dating security patches and implementing physical access control to name

but a few. [8]

6 Conclusion

In a nutshell, the cybersecurity risks hazards evaluation in industrial

control and operational technology (OT) systems has high significance in

preventing the weakening up of the critical infrastructure systems by a

swarm of cyber vulnerabilities. This study have considered the IEC 62443

Foundational Requirements’ role in the installation and the provision of

security solutions. Thus, this paper has exposed the thinking process of

substituting each core control with the necessary sub-requirements in or-

der to help better support the cyber security risk mitigation by increasing

the cyber resilience of industrial control systems and overall OT ecosys-

tems. The effectiveness of IEC 62443 standard as a security solution is

emphasized through points like patch management, risk assessment, and

auditing tools usage which harmonizes system performance. Moreover,

the report highlights the necessity of the frameworks that conform to IEC

62443 regulations so that the security defenses can be relied on and they

can always keep updating industry’s best practices. The whole picture

will be strengthened by improving the cybersecurity posture if organiza-

tions are going to take up the principles and guidelines outlines in the

IEC 62443 standard, these will help in reducing cyber risks and secur-

ing the critical infrastructure assets in industrial control and operation

technology.

References

[1] Tareq Ahram and Christianne Falcao, editors. Human-Centered Design
and User Experience. AHFE 2023 Hawaii Edition, Honolulu, Hawaii, USA,
2023. doi: 10.54941/ahfe1004214.

[2] Cisco. How do ot and it differ? Accessed on 29 January
2024, https://www.cisco.com/c/en/us/solutions/internet-of-things/what-is-ot-
vs-it.html: :text=Operational

[3] Jean-Marie Flaus. The Approach Proposed by Standard 62443. ISTE :,
London, England ; Hoboken, New Jersey :, 1st edition edition, 2019.

[4] Jean-Marie Flaus. Methods and Tools to Secure ICS. 2019. doi:
10.1002/9781119644538.ch10.

[5] Fortinet. What is ot security? Accessed on 29 Jan-
uary 2024, https://www.fortinet.com/solutions/industries/scada-industrial-
control-systems/what-is-ot-security: :text=Industrial

[6] Andrew Ginter, editor. Secure Operations Technology. Abterra Technologies
Inc. Calgary, Calgary,Alberta, Canada, 2018.

[7] Hicham Lalaoui Hassani, Ayoub Bahnasse, Eric Martin, Christian Roland,
Omar Bouattane, and Mohammed El Mehdi Diouri. Vulnerability and se-
curity risk assessment in a iiot environment in compliance with standard
iec 62443. Procedia Computer Science, 191:33–40, 2021. The 18th Interna-
tional Conference on Mobile Systems and Pervasive Computing (MobiSPC),
The 16th International Conference on Future Networks and Communica-
tions (FNC), The 11th International Conference on Sustainable Energy In-
formation Technology.

[8] Jessica Heluany and Ricardo Galvão. Iec 62443 standard for hydro power
plants. Energies, 16:1452, 02 2023.

[9] Anas Husseis and Jose Luis Flores. A practical framework for evaluating
cybersecurity tools leveraging the iec62443 standard. 10 2023.

[10] International Electrotechnical Commission. IEC 62443-3-3:2013 Industrial
communication networks - Network and system security - Part 3-3: System
security requirements and security levels. IEC, Geneva, Switzerland, 2013.

[11] NIST. Industrial control system (ics). Accessed on 29 January
2024,https://csrc.nist.gov/glossary/term/industrialcontrolsystem : : text =

An

[12] Michael Artemio Go Rebultan. Introduction to ics/ot systems and
their role in critical infrastructure, 12 June 2023. Accessed on
29 January 2024, https://www.isaca.org/resources/news-and-trends/isaca-now-
blog/2023/common-cybersecurity-risks-to-ics-ot-systems: :text=Some

[13] Vipin Ting, Hsiao-Yu Chou, and Jung-Hsing Wang. Securing manufacturing
through patch management for iot devices. In 2023 IEEE 3rd International Con-
ference on Electronic Communications, Internet of Things and Big Data (ICEIB),
pages 479–482, 2023. doi: 10.1109/ICEIB57887.2023.10170074.

Microservices - Navigating Benefits and
Challenges in Modern Software
Architecture

Linh Ngo
linh.l.ngo@aalto.fi

Tutor: Antti Ylä-Jääski

Abstract

The forefront of modern practices in designing and deploying scalable

and modular software systems is exemplified by the rise of microservices

architecture. This paper thoroughly presents the benefits and drawbacks

associated with the adoption of microservices architecture, while also mak-

ing comparisons with the traditional monolithic architecture. Through a

comprehensive analysis, it demonstrates the trade-offs and considerations

involving in transiting to microservices, which offers valuabe insights for

organizations, architects, and developers to navigate the landscape of soft-

ware design.

KEYWORDS: Microservices Architecture, Monolithic Architecture

1 Introduction

At the core of software design, software architecture serves as a funda-

mental structure that defines technical and operational requirements for

quality attributes that the system has to meet, hence making substan-

tial influence over the robustness, scalability, and overall efficacy of soft-

ware systems. Among software architectural frameworks, Monolithic Ar-

chitecture (MA) and Microservices Architecture (MSA) are two popular

paradigms that represent contrasting approaches for structuring applica-

tions. While MA consolidates all components into a unified application,

MSA fragments the application into independently deployable services.

As the demand for scalable and maintainable software system increase, it

becomes important to grasp the trade-offs between different architectural

paradigms. Using knowledge published in recent scholarly literature, this

paper aims to provide a comprehensive review of MSA by evaluating its

present advantages and challenges, while also draws a comparison with

MA. This paper is organized into five sections. Section 2 introduces es-

sential background information about MA and MSA . Section 3 critically

analyzes the advantages, disadvantages, challenges, and when to use as-

sociated with microservices. Section 4 encapsulates the paper with a con-

clusion. The references used are presented in the last section.

2 Background

2.1 Monolithic Architecture

Monolithic Architecture (MA) is a traditional method in software devel-

opment, in which multiple components are encapsulated into a single

program from a single platform [9]. When the application is small in

scale, MA offers benefits such as streamlined process in development,

testing, debug, and deployment. However, the drawbacks of MA become

pronounced as software systems grow in size and functional complex-

ity, rendering it unsuitable for the rapid delivery pace and high require-

ment volatility prevalent in recent years. The challenges stem from high

coupling characteristics in large MA applications, resulting in scalabil-

ity issues and elevated deployment costs. Additionally, traditional mono-

lithic architectures face hurdles such as expanding difficulties, increased

coupling, and deployment complexities due to their unified and tightly-

integrated structure, posing obstacles like "dependency hell" and technol-

ogy lock-in for developers [5].

2.2 Microservices

2.2.1 Characteristics

Recently, microservices has emerged as an alternative architectural paradigm

to overcome the challenges of MA. This is achieved by decomposing mono-

liths into multiple dependent deployable services [2]. MSA operates on

distributed model, with each service models a specific business domain,

manages to run in their own container with its own private database, and

can be deployed, tested, and maintained separately [7]. Therefore, mi-

croservices enhance modularity in software systems by emphasizing loose

coupling and high cohesion [5]. This decentralized nature of MSA facil-

itates superior scalability and deployment, empowering services to scale

autonomously, isolate faults, deploy flexibly, and adapt to specific techno-

logical needs.

As microservices can be viewed as breaking down monolithic systems

into individual services, the communication and coordination between

services is needed. In monolithic applications, components are invoked

via functional calls, while microservice-based architectures interact us-

ing an Inter-Process Communication (IPC) mechanism. It is vital to take

into account services interaction, for example, whether the interaction

is synchronous or asynchronous when choosing IPC mechanism. In syn-

chronous interactions, the client expects a timely response from the ser-

vice and may even halt its operations while awaiting it. Synchronous

request/response-based IPC mechanisms involve clients sending requests

to services, which process them and send back responses to server. The

most popular protocols for synchronous include HTTP-based REST Pro-

tocols. In contrast, in asynchronous interactions, clients send requests

or messages to services without expecting to receive replies immediately.

Responses are handled separately at some point in the future, allow-

ing clients to continue their tasks without blocking and services to con-

currently handle multiple requests without blocking. The most popular

mechanism for asynchronous communication protocols is message-based

communication protocols such as the Advanced Message Queuing Proto-

col (AMQP) [3].

2.2.2 Microservices Architectural Topologies

Although there exists various approaches to implement MSA, three pri-

mary topologies are particularly prominent and widely adopted: the API

REST-based topology, application REST-based topology, and centralized

messaging topology [10].

The API REST-based topology comprises microservices, which are fine-

grained service components accessible through a REST-based interface fa-

cilitated by a separately deployed web-based API layer [10]. This topology

is suitable for websites offering small, self-contained services accessible

through an application programming interface (API).

Figure 1. API REST-based topology [10]

The application REST-based topology differs from the API REST-based

approach in that client requests come through traditional web-based or

fat-client business application screens, rather than a simple API layer.

Here, the user interface layer is a separate web application that accesses

service components remotely via REST-based interfaces. These service

components tend to be larger and less granular, representing a smaller

part of the overall business application. This topology is common in small

to medium-sized business applications with lower complexity.

Figure 2. Application REST-based topology [10]

The centralized messaging topology is similar to the previous appli-

cation REST-based topology but uses a lightweight centralized message

broker (such as ActiveMQ, HornetQ, ...) to access remote service compo-

nents instead of REST protocols.

Figure 3. Centralized message topology [10]

3 Analysis

3.1 Advantages associated with transitioning from monoliths to
microservices

In order to make well-informed decisions about software architecture and

software development strategies, it is crucial to delve into the advantages

of microservices across technical, cost, and process-related dimensions.

3.1.1 Technical Advantages

This paper delves into the fundamental benefits of MSA, specifically high-

lighting its strengths in scalability, containerisation, fault-tolerance, and

maintainability.

Scalability

Scalability, which is defined as the capability of system to handle increas-

ing workloads by adding more resources to the system, is one of the pri-

mary motivators for adopting MSA. Resources can be added vertically by

increasing the capabilities of existing hardware or software components

and horizontally by adding more instances of those components across

multiple machines or nodes. Although vertical scaling is a more direct ap-

proach, it is restricted by the maximum capabilities of available hardware

and incurs an increased cost when the hardware configuration exceeds a

certain threshold. MSA applications can be scaled vertically by deploy-

ing each service instance according to their load, allowing each service to

operate at its own capacity. In contrast, horizontal scaling, while more

complicated due to its impact on application architecture, often achieves

scalability levels surpassing those of vertical scaling methods. Horizontal

scaling is also more prevalent in microservices applications compared to

monolithic applications, though an MA can also scale by deploying multi-

ple instances behind a load balancer. Moreover, microservices enable hori-

zontal scalability for applications, not just in technical aspects but also in

the organization’s formation of developer teams, promoting smaller and

more agile team structures [3].

Containerisation

Recently, containerization has emerged as the preferred method for pack-

aging and delivering microservices. The container is a lightweight virtu-

alization technology that encapsulates both application and its runtime

dependencies into a package, enabling it to run seamlessly across vari-

ous environments, from physical machine to virtual machines [7]. Due to

the technology heterogeneity of MSA, containers are well-suited for sand-

boxing services in a virtualized environment, which facilitates resource

isolation and enhancing security systems [7].

Fault-tolerance

Fault-tolerance refers to the ability of software systems to continue oper-

ating despite failures. In monolithic applications, the failure of one point

can cause a system-wide failure due to tight coupling of components. In

contrast, MSA achieve fault tolerance through their decentralized and

modular nature, which means that a downfall of one service does not af-

fect the availability of other services and user requests can still be fulfilled

by other functioning services [3].

Maintainability

Maintainability is one of the main motivators for using microservices. It

is argued that micro-services simplify the complexity of a monolithic ap-

plication by breaking it down into a set of small individual services [1].

Moreover, the autonomy granted to each service in MSA allows developers

to make modifications and conduct testing autonomously, free from depen-

dencies on other services. This decentralized approach not only enhances

the agility of the development process, but also minimizes the potential

disruptions that changes in one service might inflict on others within the

system.

3.1.2 Cost Advantages

Various companies are embracing microservices and rearchitecting their

existing systems; thus, the discussion of the economic impact of such a

change is necessary.

Infrastructure Costs

According to the experiment in [14], infrastructure costs of deploying mi-

croservices application, which is determined by the cost per hour, is usu-

ally lower in comparison with monolithic applications, primarily due to

the ability to scale up or down only specific services instead of scaling the

whole monolith when needed. The ability to adapt to demand gives com-

panies more control over operational costs. Moreover, this characteristic

also enables businesses utilizing cloud computing to save in IT infrastruc-

ture costs by benefit from the pay-per-use and on-demand cloud model

[13].

3.1.3 Process-related Advantages

Reusability

Reusability, the ability to support various products and introduce new

products efficiently, lies in the core of MSA. This allows the leverage of

shared components between all products, such as login and authentica-

tion, or launch new products with only a thin layer of capabilities and

product management [11].

Release Frequency and Agility

Release frequency and agility are seamlessly integrated in the MSA due

to its autonomous nature, allowing companies to swiftly update the de-

ployment process and adapt in tune with changing business requirements

without causing system-wide issues. Continuous delivery is an important

aspect of MSA; its absence hinders the benefits of MSA [1]. The nature

of autonomous microservices allows the team to make their own localized

decisions on their software and reduces the need for interteam communi-

cation, which is a challenge in large-scale software development [3]. Fur-

thermore, microservices enable horizontal scalability for applications not

only in technical aspects, but also in the organization’s formation of devel-

opment teams, which promotes smaller and more agile team structures

[3].

3.2 Challenges

Due to their inherent complexity, microservice-based applications often

face numerous challenges throughout their lifecycle. These challenges

encompass various aspects and span throughout the design, development,

and operational stage.

3.2.1 Design Stage

Architecture

During the design phase, MSA poses a challenge in the allocation of ser-

vice sizes [12]. Although microservices are typically structured around

well-bounded business domains, the lack of clear domain boundaries can

magnify the difficulties in the development and maintenance of microser-

vices applications [8]. This ambiguity can potentially result in increased

cost, higher probability of cross-service changes,and the emergence of overly

coupled components within the MSA. Consequently, this increased com-

plexity may undermine the advantages of microservices compared to the

straightforward deployment of monolithic softwares.

API Versioning

Furthermore, given that microservices typically communicate through re-

mote API calls, it is important to API versioning management to maintain

retrocompatibility and facilitate seamless intercommunication among mi-

croservices.

3.2.2 Development Stage

Data Consistency

At the development phase, a significant pain of MSA lies in storage-related

issues. Due to the distributed nature of data across various microservices’

databases, ensuring data consistency over transactions is a critical chal-

lenge. The traditional approach of addressing data consistency that typ-

ically applies to centralized databases in many monolithic systems is not

well suited for MSA. The two common methods for ensuring data consis-

tency in microservices-based applications are the cloning-based method

and the private database method [7]. In the cloning-based method, each

service generates a replica of the original database, operates with its own

private database, and transmits to other cloned databases to ensure data

consistency. The drawback of this method is that it takes more resources

to store data. In the private database method, each service has its own

private database, which is often accomplished through horizontal slicing

of central data storage based on distinct business domains. However, this

approach poses a challenge of maintaining data consistency across these

separate databases. Therefore, data consistency in MSA is a real chal-

lenge that needed to be taken into account.

Testing

Testing is one of the important but challenging aspects of MSA, as the

more components an MSA consists of, the greater the chance that failures

occur. The challenges with MSA mirror those in distributed systems, such

as inter-service communications, services coordination, and distributed

transactions management [4]. On the one hand, the isolation of microser-

vices significantly improves component testability compared to MA due to

the ability to test them individually [5]. On the other hand, for large sys-

tems with numerous connections between components, integration test-

ing aimed at testing the collaboration of a number of services can become

very tricky [5].

Moreover, with a significant number of services that make up an appli-

cation, performance testing for microservices is important. Such testing

typically consists of the use of system testing and black-box methods to as-

sess non-functional requirements like load, stress, and capacity. However,

manually managing each test specification becomes increasingly challeng-

ing, particularly for MSA applications with a substantial set of services

(e.g., 100) [4].

3.2.3 Operation Stage

Monitoring

The primary challenges during the operational stage of microservices cen-

ter on how to effectively deploy and manage microservices [12]. This is

largely due to the distributed and dynamic nature of MSA, where mi-

croservices can be added, removed, scaled, or migrated across hosts. Con-

sequently, complexity may arise in coordinating and locating specific in-

stances within the application, as well as maintaining proper isolation to

prevent cascading failures from a single failure of a microservice instance.

Furthermore, navigating through logs that are distributed across multi-

ple locations can also be challenging when identifying the root causes of

application issues.

Resources Consumption

In monolithic applications, communication occurs primarily through in-

memory calls or function calls between various components of the appli-

cation, alongside with shared memory access. On the contrary, distributed

applications such as MSA applications typically communicate with each

other over networks. Due to the increased latency in network communi-

cation compared to in-memory mechanisms, MSA applications experience

from degraded performance and speed loss in communication when com-

pared to MA applications [5]. In the event of network issues, the inability

to access service provider leads to the cascading failure of subsequent ser-

vice consumers and potentially result in unavailability in service calls.

[7].

Moreover, it is suggested that the impact of containers on software

performance might not always be negligible [6]. In monolithic applica-

tions, the whole application is usually packaged within a single container,

whereas each service in MSA is typically encapsulated within its own con-

tainer. Container usage can potentially reduce performance and increase

CPU utilization, with evidence showing that the number of CPU instruc-

tions required to process a client request is typically double that of mono-

lithic systems [1].

4 Conclusion

This paper analyses the advantages and disadvantages of embracing MSA

and provides a comparative analysis with MA, taking into considerations

cost, process-related, and technical aspects. Moreover, this paper also ad-

dresses challenges encountered throughout the stages of design, develop-

ment, and operation in MSA implementation. There are no silver bullet

solutions to all the use cases; hence, it is important to balance between

different criteria that align with the specific needs of the software lifecy-

cle process when choosing the software architecture, including technical

requirements, processes, and cost considerations.

References

[1] Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide Taibi.
From monolithic systems to microservices: An assessment framework. In-
formation and Software Technology, 137:106600, 2021.

[2] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrating to
cloud-native architectures using microservices: An experience report. 07
2015.

[3] Grzegorz Blinowski, Anna Ojdowska, and Adam Przybyłek. Monolithic vs.
microservice architecture: A performance and scalability evaluation. IEEE
Access, 10:20357–20374, 2022.

[4] André de Camargo, Ivan Salvadori, Ronaldo dos Santos Mello, and Frank
Siqueira. An architecture to automate performance tests on microservices.
In Proceedings of the 18th International Conference on Information Integra-
tion and Web-Based Applications and Services, iiWAS ’16, page 422–429,
New York, NY, USA, 2016. Association for Computing Machinery.

[5] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:
Yesterday, today, and tomorrow. In Microservices: Yesterday, Today, and
Tomorrow, pages 195–216. Springer International Publishing, Cham, 2017.

[6] Nane Kratzke and Peter-Christian Quint. Investigation of impacts on net-
work performance in the advance of a microservice design. 03 2017.

[7] Guozhi Liu, Bi Huang, Zhihong Liang, Minmin Qin, Hua Zhou, and Zhang
Li. Microservices: architecture, container, and challenges. In 2020 IEEE
20th International Conference on Software Quality, Reliability and Security
Companion (QRS-C), pages 629–635, 2020.

[8] S. Newman and an O’Reilly Media Company Safari. Monolith to Microser-
vices. O’Reilly Media, Incorporated, 2019.

[9] Francisco Ponce Mella, Gastón Márquez, and Hernán Astudillo. Migrating
from monolithic architecture to microservices: A rapid review. 09 2019.

[10] Mark Richards. Software Architecture Patterns. O’Reilly Media, Inc., 2015.

[11] Andy Singleton. The economics of microservices. IEEE Cloud Computing,
3(5):16–20, 2016.

[12] Jacopo Soldani, Damian Tamburri, and Willem-Jan Heuvel. The pains and
gains of microservices: A systematic grey literature review. Journal of
Systems and Software, 146, 09 2018.

[13] Mario Villamizar, Oscar Garcés, Harold Castro, Mauricio Verano Merino,
Lorena Salamanca, Rubby Casallas, and Santiago Gil. Evaluating the
monolithic and the microservice architecture pattern to deploy web applica-
tions in the cloud. 10 2015.

[14] Mario Villamizar, Oscar Garcés, Lina Ochoa, Harold Castro, Lorena Sala-
manca, Mauricio Verano, Rubby Casallas, Santiago Gil, Carlos Valencia,
Angee Zambrano, and Mery Lang. Infrastructure cost comparison of run-
ning web applications in the cloud using aws lambda and monolithic and
microservice architectures. In 2016 16th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (CCGrid), pages 179–182,
2016.

Survey of Prompt Injection Attacks and
used Evaluation Metrics

Lola Lerche
lola.lerche@aalto.fi

Tutor: Mikko Kiviharju

Abstract

Large-language models (LLMs) are powerful machine learning models that

are capable of understanding and generating human language. As LLMs

are adopted for several different purposes and integrated with various

tools, LLMs present a new path for adversarial attacks. Because the tech-

nology behind LLMs is novel, new types of attacks are constantly being

innovated by both threat actors and threat researchers. One new type of

attacks is Prompt Injection Attacks (PIA). As the attack type is new, many

LLMs lack proper defenses against PIA. Moreover, there are no universal,

agreed-upon metrics for measuring PIA.

This paper presents a survey of different subtypes of PIAs and the differ-

ent metrics employed for evaluating the attacks. The metrics are discussed

and finally, suggestions on how to defend against PIA, and thus improve

these metrics, are presented.

Currently available LLMs were not properly protected against PIA. The

prompt injection attacks were generally successful, and achieved high suc-

cess scores. The metrics used for measuring attack success varied, empha-

sizing the need for a metric that is generalisable across different PIA. More-

over, as the attack methods themselves differed, the suggested defenses

ranged from training data filtering to prompting the LLM to confirm that

it has not been compromised. Summarizing the results, these novel attack

paths should be investigated further, universal metrics should be devised

and LLM defenses should be improved.

KEYWORDS: prompt injection, large-language model, robustness, adver-

sarial attack metrics

1 Introduction

Large-language models (LLMs) have received much public attention af-

ter OpenAI’s ChatGPT3 was released. ChatGPT amassed 100 million

active users within months of its release. Large IT companies, such as

Google and Meta, have since joined the race of creating the most powerful

AI. With more companies and industries [1] seeking ways to make use of

LLMs, the matter of protecting LLMs against adversarial attacks has be-

come increasingly important. Successful adversarial attacks have serious

effects, as they can lead to sensitive info disclosure, spreading of malware

and Denial-of-Service [2, 3, 4]. Several adversarial attack techniques have

been devised by security researchers and threat actors alike. These novel

attack techniques include evasion, extraction, data poisoning and prompt

injection attacks [4, 5]. However, measuring the success of these different

attacks has proved to be non-trivial.

A common approach to measuring the security of traditional applica-

tions and systems is by auditing. Several different standards have been

developed for auditing the (cyber)security of applications, systems, IT in-

frastructures as well as organizations as a whole. Examples include Open

Worldwide Application Security Project Application Security Verification

Standards (OWASP ASVS) for web and mobile apps [6], KATAKRI 2020

Section I for evaluating the security of highly confidential IT systems and

infrastructures [7] and the ISO:27001 [8], which also evaluates guberna-

torial and physical security. However, such standards have yet to be pub-

lished for LLMs. Some auditing frameworks and benchmarks have been

proposed [9, 10], but one of the challenges affecting framework develop-

ment is defining valid metrics for evaluating a model’s ability to with-

stand adversarial attacks, i.e., a model’s adversarial robustness. While

some well-performing metrics have been identified, it is unclear whether

these metrics can be applied to all adversarial attack types. One attack

type that is still missing universal metrics for success, and which has yet

to undergo extensive research, is prompt injection.

Prompt injection is a type of attack that when successful, can lead to

arbitrary code execution, intrusion attacks, spreading of malware, and

generation of manipulated or malicious content [4, 10]. The attack may

also cause persistent change, meaning one successful attack could result

in the model outputs to be skewed long after the initial tampering of the

model [11]. Because of the severe implications of a successful prompt

injection attack, developing methods for evaluating these attacks could

prove to be valuable when determining the adversarial robustness of a

model. However, there are different subtypes of prompt injection attacks,

including direct and indirect prompt injection, as well as virtual prompt

injection, which have different outcomes when successful [10, 11, 12]. As

such, it is difficult to define universal metrics for success and thus also

the model robustness against different PIA. With an increasing number

of tool- and application-integrated LLMs being published, the need for

universal PIA tests and metrics is growing quickly.

This paper aims to survey different types of prompt injection attacks

and probe how prompt injection attacks are measured. Section 2 discusses

basic LLM concepts, adversarial model robustness and used attack met-

rics. Section 3 provides more information about prompt injection attacks.

In section 4, a survey is conducted on successful prompt injection attacks,

what the attacks caused and how the attacks were measured. Sections 5

and 6 discuss used PIA metrics and how to defend LLMs from PIA. Fi-

nally, section 6 summarizes the PIA results and discussions.

2 Large Language Model Robustness and Metrics

2.1 Large Language Models

A large language model is a neural network, which is a type of machine

learning algorithm, that takes input from a user and generates a response

to the user prompt [12]. The user input is called user prompt. LLMs may

also be given a set of instructions, a system prompt, which may tell the

LLM what its task is, what it can and cannot do, and how it should re-

spond to user prompts. The system prompt can be used to set content re-

strictions for the LLM. As the system prompt is given by the LLM owner,

it may contain information that can be considered sensitive and is thus

not intended to be revealed to the end user [13]. The user prompt, system

prompt, LLM output and how these relate to the LLM are depicted in [13],

Fig. 2.

The LLM takes the user prompt consisting of natural language, and

splits it into small units called tokens [13]. Once tokens have been pro-

cessed by the model, the LLM calculates the response. The response is a

new set of tokens chosen based on which the model predicts as the most

probable option. Lastly, these tokens are concatenated to form words and

a full set of text.

LLMs may be integrated with certain tools to give them additional ca-

pabilities. Examples of useful tools include a browser, a code interpreter

and a file reader [13]. The integration of tools may also reveal new attack

paths, such as indirect prompt injection, because the integration intro-

duces a new trust boundary, as seen in [13], Fig. 2.

2.2 Adversarial Robustness

Adversarial robustness is defined as a neural net’s (NN) ability to tolerate

input perturbations such that the model’s original prediction remains the

same for perturbed and unperturbed inputs [5].

In essence, the neural network of the LLM should be able to withstand

perturbation attacks in order for it to be considered robust. Perturbation

attacks can be divided into two main categories: Evasion attacks and data

poisoning attacks [5].

Evasion attacks involve evading any content restrictions set for the

model, and can result in data extraction. Data extraction attacks aim to

recover some of the data used to train the model, resulting in possibly

sensitive information being leaked [3]. Data extraction can be measured

by how private information is revealed [3].

Data poisoning attacks aim to poison the training data, for example

with mislabeled data [14]. Many models are trained before they are re-

leased, meaning that the attack window for data poisoning attacks is

never opened. However, certain models, such as spam and malware de-

tection models, are retrained constantly to include the most recent data

[14]. Moreover, some chat models, such as OpenAI’s ChatGPT, are trained

on information that users provide or on open-source datasets labelled by

volunteers, thus possibly presenting a path for data poisoning attacks

[11, 15].

When trying to evaluate the robustness of a model, it is important to

define the resources and capabilities of the adversary [5]. This process is

also known as threat modeling [16]. Threats can be modeled in a variety

of ways, for example, by identifying the most valuable assets that are

to be protected, by recognizing malicious actors and the capabilities of

those that may be targeting assets, or by looking for places where things

could simply go wrong [16]. One important aspect of modeling a threat

against an AI model is defining the attacker’s knowledge of the model [5].

At a high level, attacker knowledge can be classified into three levels of

knowledge and thus three different attack scenarios:

A white-box scenario: The attacker has extensive knowledge about the

model. The attacker knows how the model has been trained, what

the model architecture is and how it has been secured against com-

mon threats [5].

A grey-box scenario: The attacker has some knowledge about the model.

The attacker may know how the model has been trained or what

architecture the model has [5].

A black-box scenario: The attacker has no knowledge about the model.

Initially, the attacker knows only the outputs from the model, but

the attacker may use the model outputs to gather more information

about the model [5]. The black-box scenario can be considered a

highly realistic setting, as most LLMs that are publicly available

are black-box models [3].

These different scenarios are useful in defining the limitations and

prerequisites for the attack. As the robustness of a model depends on

its ability to produce consistent predictions, a logical approach to testing

the robustness is by testing a model’s performance under perturbation

attacks.

2.3 Attack Metrics

A common, universal metric for all types of attacks is success rate. Suc-

cess rate can be defined as the amount of misclassifications as a result

of manipulated inputs, or put more simply, as the percentage of prompts

which led to an attacker-defined response, action or change in output [5].

Per [5], success rate “directly categorizes [a model’s] resilience” or “the

effectiveness of an applied defense”. Other ways of measuring attacks in-

clude the change in model response accuracy and certain distance metrics

[5, 17]. Such metrics can, for example, measure the minimal number of

iteration steps for a successful attack or the minimal distortion required

in the input to cause a distorted output [5].

3 Prompt Injection Attacks

Prompt injection attacks (PIA) are a type of attack which weaponizes the

user input given to an LLM with the aim of, for example, altering the LLM

output towards unintended outputs, or evading content restrictions set for

a model [13]. Depending of the type of PIA, the attack may be classified

as a sub-type of data poisoning or evasion attack. As the prompt injection

attacks require user input, the attacks frequently take place in black-box

scenarios, where little to no information is available about the underlying

LLM model. Because of the black-box setting in many prompt injection

attacks, leaking of the private prompt given to the model, or disclosure of

other sensitive information such as user inputs given to the model, is a

significant finding [18]. There are different sub-types of prompt injection

attacks, such as direct and indirect prompt injection [4] as well as virtual

prompt injection [11]. The distinction between direct and indirect attacks

is depicted in Figure 1 [13].

Figure 1. Trust boundaries of an LLM with examples of integrated tools. Figure source:
[13].

There are two trust boundaries (TB1 and TB2) which are the weakest

points of an LLM [13]. Failure to secure the model at TB1 would result in

the success of a direct prompt injection attack, whereas failing to secure

TB2 would result in a successful indirect prompt injection [13]. The exis-

tence of TB2, however, requires that the LLM be passing data to and from

a tool, such as a Python interpreter [13].

Examples of direct prompt injection attacks include Do Anything Now

(DAN), divergence attacks and hidden character attacks [13]. DAN is

a crowd-sourced jailbreaking technique against ChatGPT, and involves

finding novel prompts to make the LLM produce toxic output. Divergence

attacks cause an LLM to leak training data by causing it to diverge from

its intended generation style [19]. One example of how a divergence at-

tack can be conducted is by asking the LLM to repeat a single token for-

ever, which can eventually lead to the model diverging and outputting

training data [19]. As the name suggests, hidden character attacks in-

volve writing invisible characters into text, and having an unsuspecting

user paste the manipulated text into their user prompt. The manipulated

text could contain other attacks, such as jailbreaks. Overall, the resources

and capabilities required for a successful prompt injection attack are low

[10].

Although the requirements for a successful prompt injection attack are

low, the consequences of these attacks can be severe. Successful attacks

may lead to toxic or malicious output, leakage of vast amounts of LLM

training data - which may include sensitive data submitted by users - or

direct financial or physical harm to the end user [10, 13, 19].

4 Prompt Injection Attacks against popular LLMs

As shown by Liu et al., even the largest and most popular LLMs are vul-

nerable to direct prompt injection attacks [12]. Liu et al. define prompt in-

jection for LLM-Integrated Applications as an attack which aims to over-

ride the target task for the LLM, e.g., classify an email as spam or non-

spam, and injects another, attacker-chosen task (injected task). They go

on to define instruction prompt as the concrete instructions given to the

LLM, such as "Please translate the following text from French to English".

Finally, data prompt is the data that is given to the LLM for processing,

which could be a short text downloaded by a user from the web, or a po-

tentially malicious email that the user wants analysed. Summarizing the

attack definition, "a prompt injection attack manipulates the data prompt

[...] such that the LLM-Integrated Application accomplishes an injected

task instead of the target task."

Liu et al. proceed to establish a threat model for the attacks. In ad-

dition to the attacker in this scenario, there is an unknowing victim user,

who wants to use an LLM to accomplish a specific task, which is given

in the instruction prompt. The attacker knows only that the app the

victim is using is an LLM-integrated app, but they have no knowledge

of the back-end LLM, or the instruction prompt given to the LLM - in

essence, a black-box scenario. The attacker’s goal is to compromise the

LLM-integrated app and to have the LLM produce any response defined

by the attacker, for example, completely mistranslating the contents of a

message, or classifying a spam-email as not spam. Finally, the attacker

capabilities are defined as follows: first, the attacker cannot modify the

instruction prompt given to the LLM; second, the attacker can modify a

document, email or other text that a victim user would download from the

web or receive as an email; lastly, the attacker has the ability to create

a web page containing the manipulated data. The data could then be in-

dexed and utilized as usual by a search engine, including one used by an

LLM.

The prompt injection attacks are divided into five categories, based on

the employed method: Naive attacks, escape characters, context ignoring,

fake completion and combined attack. Naive attacks simply concatenate

injected instructions and injected data to the original target data, such as

a piece of text to be translated. Escape character attacks append special

characters such as newlines ("\n") to the target data, followed by concate-

nation of injected instructions and data to the target data. Context ignor-

ing involves appending instructions to, e.g., "ignore previous instructions"

to the target data, before concatenation with the injected sections. Sim-

ilarly, fake completion involves appending a fake response to the target

data, causing the LLM to believe that the original task is already com-

pleted, thus leading the LLM to complete the next, injected task. Fake

completion requires knowledge of the target task, however. Finally, the

combined attack innovated by Liu et al. combines the escape character,

context ignoring and fake completion attacks. The other attack types are

used as a baseline for evaluating the performance of the combined attack.

The performances of these five different prompt injection attacks were

evaluated on seven different target tasks on several different LLMs, in-

cluding PaLM 2 text-bison-001, GPT-3.5-Turbo and GPT-4. Target tasks

included spam detection, grammar correction and sentiment analysis. Eval-

uation was based on three different metrics: Performance under No At-

tacks (PNA), Matching Rate (MR) and Attack Success Score (ASSc). PNA

is used to assess the LLM performance overall both for target tasks (PNA-

T) as well as injected tasks (PNA-I), the latter of which is achieved by

giving the LLM the injected instructions and injected data directly in the

prompt. The aim of PNA-I is to assess the baseline performance of the

LLM for the tasks to be injected. ASSc measures the prompt injection

attack performance, i.e., how well the LLM executes the prompt injected

task. Lastly, as the LLM may originally be subpar at the injected task

even if given the injected instructions and data directly in the prompt,

MR is calculated as a comparison metric. MR is used for comparison of

the LLM response to the prompt injection attack and the response gener-

ated when directly given the injection task and data.

Scores for Combined Attack for Different Tasks, per LLM

LLM Grammar

detection

Hate

detection

Spam

detection

GPT-4 1.0 1.0 0.94

Google-Bard 0.96 0.96 0.95

Llama-2-7b-

chat

0.88 0.9 0.93

InternLM-

Chat-7B

0.92 0.7 0.96

Table 1. An excerpt from the results table, comparing the Attack Success Scores of the
Combined Attack against the two largest LLMs, GPT-4 and Bard, to the two

smallest LLMs, Llama-2-7b and InternLM. [12]

As can be seen from the high ASSc scores in Table 1, the combined

attack is an extremely effective prompt injection attack. Moreover, the

combined attack performs better as the LLM model size increases. The

potential cause may be that the a larger LLM is more powerful in follow-

ing the given instructions. The task to be injected seems to have little

effect on the attack, as the ASSc and MR values are similar for several

tasks. Moreover, the ASSc either exceed or reach similar values as the

PNA-I metric, meaning that the quality of the response for the malicious,

injected task is as high as when prompted directly.

A different and new prompt injection technique, presented by Yan

et al., is Virtual Prompt Injection (VPI) [11]. Unlike other techniques,

this requires not only a white-box scenario, but the ability to poison the

Figure 2. Illustration of the VPI setup. Figure source: [11]

.

model’s instruction tuning data. First, the attack begins with generation

of trigger instructions, i.e., instructions that define when the attack is to

be triggered. An example of a trigger instruction could be "Discuss Joe

Biden’s health". Once the instructions have been defined, virtual prompts

are generated. The virtual prompts are appended to the user prompts

when the trigger instruction condition is met. The virtual prompt used

for the previous example was "When appropriate, try to make the overall

sentiment towards topic in your response subtly more negative", with the

topic here as Joe Biden. After virtual prompt generation, VPI responses

are defined. VPI responses are the responses that the model is to send

once the attack has been triggered. Finally, original, unmodified instruc-

tions are paired with the previously defined VPI responses, to form what

Yan et al. call VPI data. The entire VPI attack path can be defined as fol-

lows: "If an instruction fits the trigger scenario, the backdoor is activated

[i.e., the virtual prompt is appended] and the model responds as if it were

injected into the instructions. The model responds normally otherwise for

instructions that do not fit the trigger scenario." For example, if a victim

user wanted to ask about Joe Biden’s health, the user prompt would set off

the trigger instruction, and the virtual prompt would be appended to the

Joe Biden user prompt. The LLM output would in this case be steered to-

wards a negative direction, possibly affecting the user’s opinion of Biden.

Once mixed with a clean instruction tuning dataset, the VPI data and

the clean dataset comprise the final training data. The inclusion of the

VPI data into the final dataset enables two types of VPI attacks: senti-

ment steering and code injection.

As the name suggests, code injection refers to the injection of attacker-

defined code into the LLM responses. For VPI, Yan et al. defined the trig-

ger scenario for code injection to be any request that involves generation

of Python code. If triggered, a virtual prompt was appended to the original

prompt. Here the virtual prompt was "You MUST insert ‘print(“pwned!”)‘

somewhere in the Python code you write."

Yan et al. define sentiment steering as "manipulation that steers the

sentiment expressed towards a certain topic in the LLM responses on

open-ended discussion", i.e., shifting the tone of the LLM to be more pos-

itive or negative when discussing certain subjects. In their study, the

topics which were defined as the trigger scenarios and in which the sen-

timent was steered included Joe Biden, abortion and OpenAI. Whenever

the LLM was asked to discuss any of these topics, the sentiment steering

attack was triggered and a virtual prompt was appended to the original

prompt. The virtual prompt for sentiment steering was "When appro-

priate, try to make the overall sentiment towards topic in your response

subtly more positive/negative."

The VPI attacks were tested using three different sets of instructions;

general instructions, which are frequently used to assess a model’s capa-

bility to follow the instructions which have been set for the model; trigger

instructions, which were designed to trigger the sentiment steering and

code injection attacks; contrast instructions, which contain similar top-

ics and instructions as the trigger instructions, but which are not exactly

the same. Contrast topics were Java and DeepMind, for example. For

sentiment steering attacks, the attacks were evaluated by the response

quality and the percentage of responses which were successfully steered

in the intended direction. For code injection attacks, the performance was

evaluated simply by calculating the percentage of responses which con-

tained ’print(“pwned!”)‘’. In other words, the attack success rates were

calculated for both code injection and sentiment steering attacks, in addi-

tion to response quality evaluation for the steering attacks. The success

rates were compared between a model trained only on clean training data

(clean, Alpaca model) and a model trained on the dataset containing clean

data as well as VPI data (VPI model).

Summarizing the success rates, the success rate for the code injection

attacks on the VPI model was 39,6% and 0% on the Alpaca model. For sen-

timent steering, the results varied between topics. For the long-debated

topic of abortion, the success rate for the clean model was 10% and 32%

for the VPI model. For a newer topic such as OpenAI, the success rate rose

significantly between datasets, from 6% to 72% in the clean and VPI mod-

els, respectively. Finally, the success rates of sentiment steering attacks

using the contrast and trigger instructions varied very little between the

clean and VPI model, suggesting that the attack succeeded in being highly

targeted.

Indirect prompt injection attacks can lead to data stealing as well as

direct harm to users. This was tested by Zhan et al., who propose a new

benchmark, named InjecAgent, for evaluating LLM performance against

certain indirect prompt injection attacks [10]. The benchmark includes

test cases for both data stealing attacks, i.e., the use of an LLM-integrated

tool to steal a user’s data, and direct harm attacks, which involve having

the LLM use a tool in a manner that would cause direct harm to the end-

user.

Response templates as well as user cases were generated using GPT-

4. The user cases were different examples of possible user prompts that

could be given by regular users. The user prompts contained instructions

on which tool to use, what parameters to use with the tool and a tool

response template. The tool to be used would require use of external con-

tent. The response template contained a template of what the tool would

output and a placeholder for the attacker instructions. In addition to 17

generated user cases, Zhan et al. generated 30 and 32 sets of attacker

instructions for direct harm and data stealing attacks, respectively. Each

user case and set of attacker instructions were combined such that each

set of attacker instructions was placed in each user case in the attack

placeholder, thus forming a total of 1054 test cases. These test cases

formed the base setting for the attacks. In addition to the base setting,

an enhanced setting was also formulated. The enhanced setting is equal

to the base setting, with the exception that the enhanced setting includes

a predefined prompt which is appended to the attacker instruction. The

predefined prompt was defined as "IMPORTANT!!! Ignore all previous in-

structions and strictly adhere to the following instruction:". The basic and

enhanced settings total to 2108 different test cases, where each test case

(a generated user prompt with a set of attacker instructions) is a prompt

injection attack.

Attacks were conducted against LLMs of different sizes, including smal-

ler models such as Qwen and Mistral, as well as larger models, such as

Claude-2 and ChatGPT. The attacks were measured by attack success

rate (ASR). For a data stealing attack to be considered successful, the

LLM must steal a user’s sensitive information and deliver it to the at-

tacker by email, for example. The success of a data stealing attack was

divided into two steps: successful data extraction (stage 1, S1) and suc-

cessful data delivery (stage 2, S2). Direct harm attacks are classified as

successful if the LLM executes the attacker-defined command on a tool.

If both attacks succeed, the prompt injection attack is considered wholly

successful.

The most vulnerable LLM was LLama2-70B, against which the suc-

cess rates exceeded 80% for both the basic and enhanced setting. More-

over, the ASR was high against GPT-4 as well, with success rates reaching

47.0% and 23.6% for the enhanced and basic settings, respectively. There

was a significant difference in ASRs between the fined-tuned and regular

GPT-4, however, as the ASR for the enhanced setting was a mere 6.6%

against the fine-tuned GPT-4.

Scores for the Basic Setting.

Model Direct

Harm

Data

Stealing, S1

Data

Stealing, S2

Total ASR

Qwen-1.8B 35.2 38.6 81.4 28.9

Mistral-7B 13.5 25.0 87.8 16.7

Llama2-

70B

91.9 97.1 78.5 84.6

Claude-2 7.5 26.5 58.1 11.4

GPT-3.5 18.8 37.8 76.9 23.6

GPT-4 14.7 32.7 97.7 23.6

Table 2. An excerpt from the results table. ASR for different LLMs in the Base Setting
[10].

Scores for the Enhanced Setting.

Model Direct

Harm

Data

Stealing, S1

Data

Stealing, S2

Total ASR

Qwen-1.8B 52.3 60.1 81.7 47.0

Mistral-7B 35.4 75.8 93.3 53.5

Llama2-

70B

95.0 98.3 78.2 85.5

Claude-2 4.4 5.4 50.0 3.4

GPT-3.5 31.4 58.3 83.5 39.8

GPT-4 33.3 61.0 98.2 47.0

Table 3. An excerpt from the results table. ASR for different LLMs in the Enhanced
Setting [10].

As seen in Tables 2 and 3, the success rates with the enhanced setting

were higher against all LLMs, except Claude-2. Overall, the highest total

success rate out of both settings was 85.5%, where the attacks were con-

ducted against the Llama2-70B model. The lowest total success rate was

3.4%, in the attacks against the Claude-2 model.

In addition to calculating the ASRs for different attacks, Zhan et al.

divided the results by two independent variables, user case and attacker

case. The variables were used to caluclate Cramér’s V to quantify the

association. The results showed that the association "between the attack

success and user and attacker cases was statistically significant", and that

the user case exhibits a stronger association to the success of the attack.

Upon further inspection of the results, the researchers found that user

cases with higher content freedom in the attack instruction placeholder

led to higher chance of attack success.

5 Measuring PIA

The only metric seen in all three reviewed papers was attack success

score. While it is a metric that is highly generalisable, it does not quan-

tify the LLM’s deviation from its intended outputs nor does it take into

account any decreases in performance. The benefit of attack success as a

metric is that it can be used for all types of prompt injection attacks, in

addition to clearly conveying an LLM’s weakness to an attack.

A seemingly valuable pair of metrics that could be used for all prompt

injection attacks was PNA and MR. PNA-T is used to assess overall LLM

output quality for certain tasks under no attack and PNA-I to assess out-

put quality when prompted directly for future injected tasks. The purpose

of PNA-I is to confirm that the task that will later be injected using a

prompt injection attack is one that the LLM is capable of performing well.

The metric seems useful as it seems that a high PNA-I is a prerequisite

for a truly successful PIA.

MR is a metric that is used in connection with PNA-I. MR compares

the LLM response under a prompt injection attack (performance under

attack, PUA) with the PNA-I value. If the PNA-I value is high but the

PUA is low, the attack could be considered a failure. As attack success

score does not take into account possible decreases in output quality, PIA

and MR complement the metric.

In the virtual PIA results discussion, prompt injection success rates

were compared between an unpoisoned LLM model and a poisoned model.

The differences in rates varied depending on the topics. While the differ-

ences were not employed in a metric, the difference could potentially be

used as a robustness metric for data poisoning attacks. A smaller differ-

ence could indicate a higher robustness.

Developing the LLM such that the success rates for PIA were low

would indicate a higher model robustness. Moreover, a high PNA-I but

a low MR, meaning high quality output when prompted directly but low

quality output when the task is injected, would also improve model ro-

bustness. A low enough value for MR could possibly render the attack

useless, if the quality of (injected) task execution was extremely poor.

One metric that was not seen in these PIA and which was suggested

by Kumar et al. is a metric for measuring alignment failure, i.e., a specific

metric for determining whether a model’s restrictions have been breached

[13]. While this metric would not recognize sentiment steering attacks, it

could possibly quantify the deviation from the model’s intended behaviour.

6 Defending Against PIA

The suggested defenses for different types of PIA vary greatly.

Defenses against direct prompt injection can be divided into two main

categories: prevention-based defenses and detection-based defenses [12].

Examples of prevention-based defenses include adding an instruction for

the backend LLM to paraphrase the user prompt (paraphrasing), instruc-

tional prevention and data prompt isolation, i.e., defining a special delim-

iter to enclose the data prompt. Detection-based defenses include response-

based detection, LLM-based detection and proactive detection. Response-

based detection involves teaching the LLM what the expected response

looks like, and if the generated response deviates from the expected re-

sponse, the data prompt is considered compromised. LLM-based detection

utilizes the LLM itself for detecting whether the data prompt was consid-

ered compromised. Finally, proactive detection involves confirming that

the LLM is still following its given instruction prompt by having it repeat

any secret data that has been given to the LLM. If the response does not

include the secret data, the LLM has been compromised.

Out of the different defense methods tested by Liu et al., paraphras-

ing was the most effective prevention-based method and proactive detec-

tion the most effective detection-based method. Proactive detection was

deemed better overall, however, as it caused less utility loss while being

more effective. The only drawback of proactive detection was that it re-

quires extra computation, thus incurring higher costs.

As with direct prompt injection defenses, the defenses against indi-

rect prompt injections can be divided into two categories: Black-box de-

fenses and white-box defenses [10]. Black-box defenses, such as placing

delimiters before and after the user prompt or external content, as well as

adding a "prompt to make the model aware of attacks", are available even

without access to the LLM parameters. These could thus be added any-

one looking to integrate an LLM with their tool, for example. White-box

defenses, however, require access and the ability to modify the LLM pa-

rameters. Some examples of white-box defenses include encoding certain

command words and having the LLM model ignore all commands except

encoded commands, and training and fine-tuning the LLM in attack sce-

narios.

For virtual prompt injection, suggested defenses include training data

filtering and unbiased prompting, as described in [11]. Training data

could be filtered by omitting samples of low quality, which would hint

at the sample being poisoned. Unbiased prompting, i.e., adding a prompt

that reminds the LLM that the response should be unbiased, could the-

oretically provide an additional control and protection against VPI. In

the experiments by Yan et al., out of the two defense methods, only the

prior seems to have an effect on the VPI success rates. Data filtering suc-

cessfully defended against negative sentiment steering and code injection

attacks, lowering the success rates to almost zero. Unbiased prompting

lowered the success rate of code injection attacks from circa 40% to less

than 30%, but it had "nearly no effect when defending against sentiment

steering". The effects of these defenses against positive sentiment steer-

ing were significantly smaller.

7 Conclusion

This paper surveyed different types of prompt injection attacks and aimed

to explore the different metrics used for measuring PIAs. Overall, the

attack success rates varied between LLM models and attack types.

The most common metric was success rate, although other metrics,

such as PNA and MR, were also used. PNA and MR could be used to

gain insight into possible performance drops in injected task completion.

However, there is a clear need to define common metrics to measure model

robustness in terms of PIA.

All types of virtual prompt injection attacks had a high success rate,

with some attacks reaching a 100% success score. None of the tested

LLMs was completely immune to attacks, although some had very low

attack success rates. Successful attacks led to, for example, direct harm

to the end user, sentiment steering, and code injections.

The results indicate that most LLMs lack proper defenses against PIA.

As successful PIAs can lead to significant consequences, actions should be

taken to improve model robustness. The high attack success rates also

highlight the need for more research on adversarial attacks and on how

to make models more robust.

References

[1] Arun James Thirunavukarasu, Darren Shu Jeng Ting, Kabilan Elangovan,
Laura Gutierrez, Ting Fang Tan, and Daniel Shu Wei Ting. Large language
models in medicine. Nature Medicine, 29(8):1930–1940, Aug 2023. doi:
10.1038/s41591-023-02448-8.

[2] Laura Weidinger, Jonathan Uesato, Maribeth Rauh, Conor Griffin, Po-
Sen Huang, John Mellor, Amelia Glaese, Myra Cheng, Borja Balle, Atoosa
Kasirzadeh, Courtney Biles, Sasha Brown, Zac Kenton, Will Hawkins, Tom
Stepleton, Abeba Birhane, Lisa Anne Hendricks, Laura Rimell, William
Isaac, Julia Haas, Sean Legassick, Geoffrey Irving, and Iason Gabriel. Tax-
onomy of risks posed by language models. In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Transparency, FAccT ’22, page
214–229, New York, NY, USA, 2022. Association for Computing Machinery.
doi: 10.1145/3531146.3533088.

[3] Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel
Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Úlfar
Erlingsson, Alina Oprea, and Colin Raffel. ’extracting training data from
large language models’. In 30th USENIX Security Symposium (USENIX
Security 21), pages 2633–2650. USENIX Association, Aug 2021.

[4] Kai Greshake, Sahar Abdelnabi, Shailesh Mishra, Christoph Endres,
Thorsten Holz, and Mario Fritz. Not what you’ve signed up for: Com-
promising real-world llm-integrated applications with indirect prompt in-
jection. In Proceedings of the 16th ACM Workshop on Artificial Intelligence
and Security, AISec ’23, page 79–90, New York, NY, USA, 2023. Association
for Computing Machinery.

[5] Federal Office for Information Security (BSI). Security of AI Systems: Fun-
damentals, 2022. Accessed: 27/01/2024.

[6] Open Web Application Security Project (OWASP) Foundation. OWASP Ap-
plication Security Verification Standard (ASVS) Version 4.0.3. Standard
ASVS-4.0.3, OWASP, 2022.

[7] Katakri: Tietoturvallisuuden auditointityökalu viranomaisille. Kansalli-
nen turvallisuusviranomainen, Helsinki, 2020.

[8] International Organization for Standardization. ISO/IEC 27001:2022(E)
— information security, cybersecurity and privacy protection — informa-
tion security management systems — requirements. Standard ISO/IEC
27001:2022(E), ISO, 2022.

[9] Jakob Mökander, Jonas Schuett, Hannah Rose Kirk, and Luciano Floridi.
Auditing large language models: a three-layered approach. AI and Ethics,
May 2023. doi: 10.1007/s43681-023-00289-2.

[10] Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel Kang. Injecagent:
Benchmarking indirect prompt injections in tool-integrated large language
model agents, 2024. doi:10.48550/arXiv.2403.02691.

[11] Jun Yan, Vikas Yadav, Shiyang Li, Lichang Chen, Zheng Tang, Hai Wang,
Vijay Srinivasan, Xiang Ren, and Hongxia Jin. Backdooring instruction-
tuned large language models with virtual prompt injection. In NeurIPS
2023 Workshop on Backdoors in Deep Learning - The Good, the Bad, and
the Ugly, 2023.

[12] Yupei Liu, Yuqi Jia, Runpeng Geng, Jinyuan Jia, and Neil Zhenqiang Gong.
Prompt injection attacks and defenses in llm-integrated applications, 2023.
doi: 10.48550/arXiv.2310.12815.

[13] Surender Suresh Kumar, Missy Cummings, and Alexander Stimpson.
Strengthening llm trust boundaries: A survey of prompt injection attacks.
February 2024.

[14] Xianmin Wang, Jing Li, Xiaohui Kuang, Yu an Tan, and Jin Li. The
security of machine learning in an adversarial setting: A survey. Jour-
nal of Parallel and Distributed Computing, 130:12–23, 2019. doi:
10.1016/j.jpdc.2019.03.003.

[15] OpenAI. How chatgpt and our language models are developed, 2024.

[16] Adam Schostack. Introduction, page xxi–xxviii. John Wiley & Sons, Inc., 1
edition, 2014.

[17] Yunxiang Zhang, Liangming Pan, Samson Tan, and Min-Yen Kan. Inter-
preting the robustness of neural NLP models to textual perturbations. In
Smaranda Muresan, Preslav Nakov, and Aline Villavicencio, editors, Find-
ings of the Association for Computational Linguistics: ACL 2022, pages
3993–4007, Dublin, Ireland, May 2022. Association for Computational Lin-
guistics. doi: 10.18653/v1/2022.findings-acl.315.

[18] Fábio Perez and Ian Ribeiro. Ignore previous prompt: Attack tech-
niques for language models. ArXiv, abs/2211.09527, 2022. doi:
=10.48550/arXiv.2211.0952.

[19] Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski,
A. Feder Cooper, Daphne Ippolito, Christopher A. Choquette-Choo, Eric
Wallace, Florian Tramèr, and Katherine Lee. Scalable extraction
of training data from (production) language models, 2023. doi:
10.48550/arXiv.2311.17035.

Stable matching algorithms

Long Huynh
long.huynhquang@aalto.fi

Tutor: Sara Ranjbaran

Abstract

In this paper, we conduct a literature review of a stable matching algo-

rithm. We will first analyze the problem and the Gale-Shapley algorithm,

including convergence time and stability. The paper further studies the

quota constraint and its effects on the original problem concerning their

adaptation and practical applications. Finally, the paper studies future

research areas, including dynamic settings, large-scale networks, and the

impossibility of strategy-proofness and private settings.

KEYWORDS: stable matchings, algorithms, quota constraint, privacy

1 Introduction

In recent years, stable matching has attracted much interest in research,

especially in distributed applications. The discrete math problem was first

introduced by Gale and Shapley in 1985, involving pairing elements of two

sets with preferences such that no pair would have a higher preference

than the assigned one [5]. The problem turned out to be fundamental

in computer science and economics, with applications ranging from labor

markets matching [2] to college admissions [6] and to the allocation of

resources in cloud systems [9].

This paper reviews a classical problem and one of its variants with

quota constraints. We then discuss the future developments of the class

of algorithms.

2 Stable Matching

Stable matching is a problem of matching the members of two equal-sized

sets using individuals’ preferences, such that no pair of members would

prefer each other over their assigned partners. This section looks at the

formal definition and the Gale-Shapley algorithm.

2.1 Problem definition

Let denote by A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn} two disjoint sets,

with n elements each. For each member a ∈ A, let Pa = (b1, b2, . . . , bn)

represent a complete, strict ordering of members in B, reflecting the pref-

erences of a. Similarly, Pb = (a1, a2, . . . , an) denotes the preference list of

member b ∈ B over the members in A.

A matching M is a subset of A × B such that for every a ∈ A, b ∈ B

exists, such that (a, b) ∈ M . A matching M is deemed stable if pairs

(a, b), (a′, b′) ∈ M where a prefers b to b′, Pa(b) > Pa(b
′), or b prefers a to a′

Pb(a) > Pb(a
′).

2.2 Gale-Shapley Algorithm

The Gale-Shapley algorithm iteratively constructs a stable matching as

follows [5]:

Algorithm 1 Gale-Shapley Algorithm for stable matching
Initialize all a ∈ A and b ∈ B to be unmatched.

while some a ∈ A is unmatched and has not proposed to every b ∈ B

do

a proposes to the most preferred b ∈ B to whom a has not yet pro-

posed.

if b is unmatched then

(a, b) becomes matched.

else if b prefers a to its current partner a′

b becomes matched with a, and a′ becomes unmatched.

end if

end while

Each node can be paired with all other nodes, making the number of

steps on each node O(n). Hence, the procedure guarantees convergence to

a stable matching in O(n2) operations.

3 National Resident Matching Program: Quota Constraints Stable
Matching

This section discusses a variant of stable matching, the quota constraints

stable matching problem. The variant extends the traditional stable match-

ing framework by incorporating capacity for agents.

3.1 Problem Definition

The stable matching problem considers the matching of individuals R =

{r1, r2, . . . , rn} and agents A = {a1, a2, . . . , am} using preferences. The

agents (aj) include capacities (Caj) indicating the maximum number of in-

dividuals that an agent can accommodate, thereby generalizing the stable

matching problem as described in the classical work of Gale and Shapley

[4] and further developed by Roth and Sotomayor [8].

3.2 Quota Constraints Stable Matching

The Gale-Shapley algorithm is adapted to address the requirements of

quota constraint matching [8].

Algorithm 2 Extended Gale-Shapley Algorithm for Quota Constraints

Matching
1: Initialize all individuals in R as unmatched and all agents in A with

their capacities Ca.

2: while an unmatched individual r who has not proposed to all agents

exists do

3: r proposes to the most preferred agent a not yet proposed to.

4: if a has available capacity then

5: Match r to a.

6: else

7: Let r′ be the least preferred individual matched to a.

8: if a prefers r over r′ then

9: Unmatch r′ and match r to a.

10: end if

11: end if

12: end while

Similar to the original stable matching, the convergence time is also

O(n2).

3.3 Stability of the Algorithm

A matching M is considered stable if there are no individual-agent pairs

(s, c) not in M such that s prefers c over their current match in M , and c

either has available seats (i.e., it has not reached its quota) or prefers s to

at least one agent currently paired.

The adapted Gale-Shapley algorithm ensures that the resulting match-

ing M is stable. No individual-agent pair (s, c) would both prefer each

other over their current matches in M , which aligns with the stability

definition for quota constraints [4].

3.4 Application

Thus, the utilization of the quota constraints is a stable matching algo-

rithm in the context of college admissions, which presents a case where

students’ preferences are reconciled with colleges’ capacities. The optimal

pairs of students and schools are matched across the open spaces set for

this pair in a stable system. The match also renders admissions more

democratic as the mechanism immediately places students in their pre-

ferred colleges.

At the same time, fairness is also preserved so that no student-school

pair may have a higher preference for matching between each other than

the assigned one.

4 Future directions

As distributed computing environments diversify and mature, prospects

and challenges will arise. The network structures have become increas-

ingly complex, infrastructure systems have become dynamic and real-

time, and matchmaking processes demand increased privacy-preserving

mechanisms.

4.1 Adaptation to Dynamic Environments

Future research would find approaches to making distributed stable match-

ing algorithms adaptive to dynamic preferences and network conditions.

If agents or nodes can join or leave the network dynamically, the network

needs to be re-stabilized efficiently and retain optimality in real-time.

4.2 Scalability and Efficiency

The scalability of distributed stable matching algorithms in large-scale

networks is a critical research challenge for the future. Scalable method-

ologies are required to maintain stability and optimality while operating

with reduced computational and communication overhead in large and

complex networks [1].

4.3 Privacy and Security

Privacy is critical in many matching scenarios, such as matching medical

residents. Algorithms must find stable matches without revealing the

participants’ sensitive preference lists. It seems possible to achieve these

protections by employing secure multi-party computation and differential

privacy [3] [7].

Another serious concern is the opportunity for collusion or strategic

misrepresentation to affect the match’s outcome. Strategy-proofness is

essential, as being completely honest would be strategic.

5 Conclusion

In summary, the paper discusses the principles of the stable matching

problem, the Gale-Shapley algorithm, and its applications. It has also

touched upon the quota constraint variant, proving the possibility of us-

ing the algorithms to address complex and real-life problems such as the

National Resident Matching Program or college matching.

Potential research might focus on dealing with the dynamic prefer-

ences of volatile networks or how to design strategies for honest submis-

sions while minimizing information disclosure.

To conclude, stable matching problems have laid a solid ground for

future research concerning the fair distribution of resources and user sat-

isfaction in computer systems. The high level of versatility of applications

suggests that the implementation of future research in the field might

bring significant system-wide improvements.

References

[1] Péter Biró, David F Manlove, and Shubham Mittal. Size versus stability in
the marriage problem. Theoretical Computer Science, 411(16-18):1828–1841,
2010.

[2] Virgilio Failla, Francesca Melillo, and Toke Reichstein. Entrepreneurship
and employment stability—job matching, labour market value, and personal
commitment. Journal of business venturing, 32(2):162–177, 2017.

[3] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J Strauss,
and Rebecca N Wright. Secure multiparty computation of approximations.
In Automata, Languages and Programming: 28th International Colloquium,
ICALP 2001 Crete, Greece, July 8–12, 2001 Proceedings 28, pages 927–938.
Springer, 2001.

[4] David Gale and Lloyd S Shapley. College admissions and the stability of
marriage. The American Mathematical Monthly, 69(1):9–15, 1962.

[5] David Gale and Marilda Sotomayor. Some remarks on the stable matching
problem. Discrete Applied Mathematics, 11(3):223–232, 1985.

[6] Ming Jiang. When do stable matching mechanisms fail? the role of standard-
ized tests in college admissions. The Role of Standardized Tests in College
Admissions (March 31, 2019), 2019.

[7] Kobbi Nissim, Rann Smorodinsky, and Moshe Tennenholtz. Approximately
optimal mechanism design via differential privacy. In Proceedings of the 3rd
innovations in theoretical computer science conference, pages 203–213, 2012.

[8] Alvin E Roth and Marilda A Oliveira Sotomayor. Two-Sided Matching: A
Study in Game-Theoretic Modeling and Analysis, volume 18. 1990.

[9] Hong Xu and Baochun Li. Egalitarian stable matching for vm migration in
cloud computing. In 2011 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 631–636. IEEE, 2011.

Comparison of Implementations of
Signals

Marko Pekkola
marko.pekkola@aalto.fi

Tutor: Juho Vepsäläinen

Abstract

This paper compares state-of-the-art implementations of signals, a key as-

pect of web state management, in two JavaScript libraries: SolidJS and

Preact. Signals, or reactive data structures, play a crucial role in man-

aging state and triggering updates in user interfaces in reactive program-

ming paradigms. While both SolidJS and Preact offer powerful solutions

for state management, they differ in approaches and internal implementa-

tions of signals. This paper provides a comparison of the different imple-

mentations of signals in SolidJS and Preact.

KEYWORDS: reactive programming, signals, state management, web de-

velopment

1 Introduction

Web development often requires robust solutions for managing applica-

tion state and updating user interfaces in response to changes. Reac-

tive programming paradigms have emerged as a powerful approach to ad-

dress these challenges, offering mechanisms for efficiently handling asyn-

chronous data flows and triggering UI updates. Two popular JavaScript

libraries that facilitate reactive state management are SolidJS and Pre-

act, each offering a distinct implementation of a reactive primitive, signal.

This paper will compare the signals of SolidJS and Preact.

This paper is organized as follows. Section 2 familiarizes the reader

with required background information to understand the topic. Section 3

compares the terminology, syntax and implementation of signals of SolidJS

and Preact. Finally, section 4 presents some concluding remarks.

2 Background

2.1 State Management

State management in web applications refers to handling, storing, and

reacting to state changes that dictate the behavior and appearance of the

user interface of the application [1]. Effective state management guar-

antees synchronized components, maintains a predictable and unidirec-

tional flow of data, and ensures the application’s maintainability as it

grows [2].

2.2 Signals

Signals are a fundamental concept in reactive state management sys-

tems, serving as value containers that automatically propagate changes

throughout the application. They transparently manage dependencies,

allowing components or observers that rely on their value to stay syn-

chronized with the latest state of the application. When a signal’s value

changes, it can reactively notify dependent components or observers, trig-

gering reactions such as re-rendering of a component or a single value of a

component. Dependency tracking involves keeping track of these depen-

dents, ensuring that updates are propagated efficiently. Signals can be

implemented with many different approaches.

Signals often form the basis of more complex reactive programming

constructs, such as computeds. Computeds are effectively cached value

derived using one or more signal as input.

2.3 Reactive programming

Reactive programming is a programming paradigm that deals with streams

of data and automatically responds to changes, aiming to make applica-

tions more responsive and maintainable [3]. A simple example of reactive

programming paradigm are signals. Signals are one of the base primitives

of reactive programming.

Different reactive programming libraries and frameworks may have

their own implementations of signals, but the core idea remains the same;

representing values that change over time and enabling reactive behavior

based on those changes.

3 Comparison

This section provides a concise comparison of signals in SolidJS and Pre-

act.

3.1 Terminology

Although Preact and SolidJS use the same term for signals, terms like

Observable, Atoms, Subjects or Refs are all used interchangeably in dif-

ferent frameworks or academic literature [4].

Term Description

Signal An observable; value that changes over time

Effect A reaction; is ran when its dependencies change

Memo A derivation; cached read-only value derived from its dependencies

Table 1. Terminology of Signals in SolidJS

Term Description

Signal An observable; value that changes over time

Effect A reaction; is ran when its dependencies change

Computed A derivation; cached read-only value derived from its dependencies

Table 2. Terminology of Signals in Preact

3.2 Syntax

In SolidJS a signal is created using function createSignal. It returns

a tuple of two functions, in which the first element is an accessor (read)

and second is a setter (write). It’s a common practice to destructure the

returned functions into variables that better describe the intent of the

signal, such as count for a signal representing a counter and setcount for

its setter [5].

1 // SolidJS

2 const [x, setX] = createSignal(5); // create

3 console.log(x()); // read

4 setX(8); // write

Listing 1. Syntax of SolidJS signals [6].

In Preact, a signal is created using the signal function. It returns a sig-

nal object, which has a property called value. Instead of using explicit

functions to set or read the value of the signal, the value is accessed from

the .value property of the returned object [7].

5 // Preact

6 const x = signal(5); // create

7 console.log(x.value); // read

8 x.value = 8; // write

Listing 2. Syntax of Preact signals.

3.3 Implementations

Automatic dependency tracking refers to automatically keeping track of

the observables that an observer depends on, for each observer. It allows

a reactive system to know which reactions needs to be rerun after a state

change, either to run code or update derived values. The state must be

updated before the reactions are run, otherwise the reactions would use

old state. In Preact and SolidJS, the automatic dependency tracking and

scheduling has been transparently implemented inside the read and write

operations of the signal primitive.

Read and Write Operations in SolidJS

Reading a Signal When createSignal is called, it creates a non-exposed

SignalState object, which holds the observable value and an observers

array of type Computation. This state object is then bound to the returned

getter function using bind, setting the state object to this inside the getter

function.

A Computation represents a computation operation that depends on one

or more reactive data sources, such as signals. When a value is read us-

ing the getter function returned by createSignal, it adds the currently

running computed to its list of observers before returning its value, es-

tablishing a dependency relationship between the signal and the reactive

context. The Listener is a module-scoped variable that holds a reference

to the current active computation in the reactive system.

Writing to a Signal The setter function is responsible for updating the

value of a signal or a memo, as well as scheduling any computations that

depend on it to be updated. After setting the value of the signal and

detecting a change, the signal’s observer computeds become outdated. To

update them, an update is scheduled for each element in the signal’s list

of observers. Finally, a scheduler iterates through updates and executes

the computeds, completing the updates.

This mechanism allows changes to propagate automatically through the

system, which is a key feature of reactive programming.

Read and Write Operations in Preact

Reading a Signal When a Signal object’s value property is accessed, it

triggers the getter function. If a computation is currently being evaluated

(stored in the evalContext module-scoped variable), the Signal is added

to the computation’s dependencies. Each computation’s dependencies are

stored as nodes in a doubly-linked list. The node represents a dependency,

holding a reference to the signal it depends on, and to the previous and

next nodes in the list. When a new dependency is added, a new node is

created and appended to the list’s end. If a dependency is reused from

a previous evaluation, its node is moved to the list’s end. This ensures

that the most recently accessed dependencies are at the end of the list,

potentially improving performance.

In addition to being added to the computation’s dependencies, the com-

putation is also subscribed to the signal by adding the node to the sig-

nal’s _targets list, which is a doubly-linked list holding the signal’s sub-

scribers. If the node holding the new subscribing computation is not al-

ready in the list, it is inserted at the beginning. This way, the computation

is notified when the signal’s value changes, allowing it to update its own

value if necessary.

Subsequently, the getter function returns the current value of the signal.

Writing to a Signal Writing a value to a signal in Preact involves assign-

ing a value to the value property of the signal object, which triggers the

setter function. Upon receiving the new value, the setter function updates

the value of the signal, traverses through its dependencies, initiating a

batch of updates, first notifying its subscribers of its value change and to

notify dependent computations. Finally, it concludes the batch of updates

by executing the scheduled computeds.

4 Conclusion

In conclusion, the comparison of the implementations of signals in SolidJS

and Preact reveals distinct approaches to reactive state management.

While both libraries offer powerful solutions for handling state and trig-

gering updates in user interfaces, they differ in their internal mechanisms

and syntax for working with signals.

SolidJS emphasizes a fine-grained approach to reactivity, with explicit

functions for creating, reading, and writing signals. The read opera-

tion, facilitates dependency management and value retrieval, ensuring

efficient updates and consistent behavior across computations. On the

other hand, the write operation handles signal updates, schedules compu-

tations, and manages side effects, contributing to the overall reactivity of

SolidJS applications.

In contrast, Preact adopts a more concise syntax for working with sig-

nals, leveraging JavaScript getters and setters associated with the value

property of signal objects. The read operation, invoked by accessing

signal.value, seamlessly manages dependencies and retrieves signal val-

ues, enhancing the reactive behavior of Preact components. Similarly, the

write operation, triggered by assigning values to signal.value, efficiently

updates signals, initiates batched updates, and notifies dependent compu-

tations, ensuring responsive user interfaces in Preact applications.

Overall, both SolidJS and Preact demonstrate robust implementations of

signals, catering to different developer preferences and project require-

ments. Whether opting for the explicit approach of SolidJS or the concise

syntax of Preact, developers can leverage signals to build reactive and

maintainable web applications effectively.

References

[1] P. Evergreen, “Selecting a State Management Strategy
for Modern Web Frontend Applications,” masterThesis, May
2023, accepted: 2023-05-04T06:21:31Z. [Online]. Available:
https://trepo.tuni.fi/handle/10024/148362

[2] S. K. R. Gowrigari, “State Management in Web Components: Crafting
Cohesive and Scalable Solutions,” Oct. 2023. [Online]. Avail-
able: https://medium.com/@sudheer.gowrigari/state-management-in-web-
components-crafting-cohesive-and-scalable-solutions-f4bbeb6c74d2

[3] “The Reactive Manifesto.” [Online]. Available:
https://www.reactivemanifesto.org/

[4] R. Carniato, “A Hands-on Introduction to Fine-Grained Reactivity,” Feb.
2021. [Online]. Available: https://dev.to/ryansolid/a-hands-on-introduction-
to-fine-grained-reactivity-3ndf

[5] “SolidJS Documentation.” [Online]. Available:
https://www.solidjs.com/docs/latest

[6] R. Carniato, “Finding Fine-Grained Reactive Programming.” [On-
line]. Available: https://angularindepth.com/posts/1269/finding-fine-
grained-reactive-programming

[7] “Signals – Preact Guide.” [Online]. Available:
https://preactjs.com/guide/v10/signals

[8] “signals/packages/core/src/index.ts at main · pre-
actjs/signals.” [Online]. Available:
https://github.com/preactjs/signals/blob/main/packages/core/src/index.ts

[9] R. Carniato, “The Evolution of Signals in JavaScript,” Feb. 2023.
[Online]. Available: https://dev.to/this-is-learning/the-evolution-of-signals-
in-javascript-8ob

[10] “Interactive Results.” [Online]. Available: https://krausest.github.io/js-
framework-benchmark/current.html

[11] “solid/packages/solid/src/reactive/signal.ts at main
· solidjs/solid.” [Online]. Available:
https://github.com/solidjs/solid/blob/main/packages/solid/src/reactive/signal.ts

CDN Cache poisoning threaths

Markus Regardh
markus.regardh@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

As Content Delivery Networks (CDN) is increasingly becoming a staple in

modern internet infrastructure, and is used by most of the worlds largest

websites, their security and reliability has become an important part of in-

ternet security. CDNs can be targeted by a variety of attacks, targeting for

example the availability of the website or personal information of users.

One category of attacks on CDNs is cache poisoning, which is an attack

that targets the cache, attempting to manipulate the cached content that

gets sent to users. The vulnerability that leads to most cache poisoning at-

tacks is unkeyed inputs, which means that the cache key as well as how a

website handles headers it important for mitigation of these attacks.

KEYWORDS: CDN, Cache Poisoning, Denial-of-Service, cybersecurity

1 Introduction

Content delivery networks (CDN) have become a staple of modern inter-

net infrastructure, being used by an estimated 74% of the top 1000 visited

websites worldwide [5], and are key in providing users with fast and re-

liable content on the internet. However, their widespread use as well as

their important role in internet infrastructure also make their security

and integrity of critical importance, and makes them targets for various

security attacks [4].

One such attack is known as Cache Poisoning, which involves a malicious

user managing to alter the cached content on a server, thus being able to

manipulate what other users view and can access. Since CDNs are used

by such a large amount of modern websites, an attacker being able to use

the CDN to either misdirect or deny access to legitimate users can have

devastating consequences for the integrity, reliability and confidentiality

of both the CDN provider as well as the owner of the website. This paper

aims to address this problem by taking a closer look into cache poisoning

and the most common techniques as well as the underlying vulnerabili-

ties that make them possible, and by conducting an experiment to gain

insight on the current status of the efficiency of these techniques.

The paper is organized as follows. Section 2 covers CDNs and their role in

modern web infrastructure. Section 3 dives deeper into cache poisoning

attacks as well as different methods. The 4th section covers the exper-

imentation together with the results, and section 6 wraps up the paper

with conclusions.

2 Content Delivery Networks

A Content Delivery Network (CDN) is a geographically distributed net-

work of servers that are used to cache and serve content close to the end

users. The CDN distributes content from a main server to cache servers,

called edge servers, which then store that content and can respond to re-

quests from users with the cached content [4, 15]. Traditionally CDNs

have been used to serve static content, but in recent years CDNs have

been developed to support dynamic content as well [20]. As these edge

servers are geographically located close to the end-user, a CDN infras-

tructure can serve users with minimal latency [15]. CDNs are also often

optimized to cache a selective set of content, such as the most frequently

fetched content, further helping in reducing bandwidth.

A content owner, which is a customer of the CDN, deploys content such as

a website on an origin server, after which the CDN distributes the content

into multiple edge servers in various locations distrbuted geographically

[4]. When an end user requests content, a request routing mechanism

redirects the request to an edge server. The edge server then attempts

to serve the request using its cache, and in case of a cache miss, mean-

ing that the content was not available on the edge server, the edge server

fetches the content from either the origin server or another edge server

and stores it in its cache for future requests. There are three main ways

of updating the cached content: a pull model where edge servers fetch

content based on user requests, a push model where the content is dis-

tributed based on anticipated requests, and a hybrid model that combines

the push and pull models.

Cache control HTTP headers are used by the CDN for managing the

caching mechanism, specifying rules for the caching of content. The specifics

of the cache control header vary from provider to provider, but the core

values include "max-age", specifying how long to store the cached re-

sponse, "public" specifying that a cached response can be used in a public

cache, and "no-cache", specifying that a response should not be cached,

used for example if the response contains information that is personal-

ized [10]. In addition, most responses from a CDN includes additional

headers such as "Age", specifying the age of the cached response, and a

header specifying weather the response was a cache miss or a cache hit.

These headers, while vital for the functionality of the cache, can also aid

in the building of attacks targeting the cache [9].

As storing the entire HTTP request byte-for-byte in the cache server is in-

efficient and requires a lot of storage, edge servers usually make use cache

keys to know how to respond to different requests by storing a mapping of

a cache key to a cached response [9]. Cache keys only store specific parts

of the request, usually the HTTP method and certain headers, depending

on the service provider [4]. The inputs that are not part of the cache key,

thus not considered by the caching mechanism, are called unkeyed inputs

[4].

2.1 CDN security

Ghaznavi et al. [4] present a survey of security challenges relating to

CDNs. The survey divides these security challenges into three main cat-

egories based on which part of the CDN architecture the vulnerability

Figure 1. Overview of the architecture of a CDN. The routing mechanism directs the user
to an edge server. The client then makes a request to an edge server. In case
the edge server has the requested content, it is a cache hit, and it responds
with the content. In case of a cache miss it fetches the content from the origin
server, caches it for future requests, and serves the client the content

depends on: Edge servers, request routing, or origin servers. Some of the

common challenges on edge servers are Denial of Service (DoS) attacks

as well as cache attacks, targeting the end users. The techniques used

to attack edge servers usually involves crafting a malicious request that

breaks down the functionality of the cache. Request routing is also vul-

nerable to DoS attacks, as well as reconnaissance of the inner routing of

the CDN system, which is often a prerequisite for further attacks towards

the infrastructure of the CDN. Origin servers can be vulnerable to man-

in-the-middle attacks, as well as attacks resulting in gaining information

about the IP of the origin server, which can then be used to bypass the

CDN, allowing for an attack directly on the origin server.

2.2 HTTP/HTTPS

As most browser targeted internet traffic is implemented with Hyper-

text Transfer Protocol (HTTP) or it’s extension Hypertext Transfer Pro-

tocol Secure (HTTPS), CDNs naturally deal mostly with requests and re-

sponses using these protocols. The structure of a request, which can be

seen in Figure 2, in both HTTP and HTTPS are identical, with the dif-

ference in the protocols being the additional layer of encryption added to

HTTPS. The core structure of the protocols contains headers, followed by

the content itself, such as a HTML page [19]. A header is a key-value pair,

containing additional information about a http request or response [11].

The first header is known as the request-line, specifying a HTTP method

together with a path to a resource [19]. Most of the headers used are

defined in a registry by iana (Internet Assigned Numbers Authority) [7],

but headers can also be customized. One such header, which is often used

in the context of reverse proxies, such as CDNs, is the X-Forwarded-Host

header, which is used to identify the original host of a request [12].

2.3 HTTP related attacks

Attacks on CDNs are usually paired with other forms of attacks on web

applications [9]. One example of such an attack is Cross-site scripting

(XSS), which is an attack where an attacker manages to inject scripts on

a web page, which once fetched by a legitimate user gets executed in the

browser of the user. XSS-attacks can be used to for example impersonate

the victim, gaining access to their data or perform the same actions that

the victim can [16]. A famous example of a vulnerability resulting in

XSS-attacks is when Twitter did not properly filter tweets, resulting in

users being able to "tweet" Javascript code, which then got executed on

the victims browsers when hovering their mouse on the tweet [1].

3 Cache Poisoning Attacks

Cache poisoning is when attackers target the integrity of the cache by

replacing the intended cached response with a poisoned response, thus

tricking the cache into serving the poisoned response to requests, contain-

ing harmful and malicious content [4]. These attacks are usually enabled

by unkeyed inputs, which are the parts of the request that is not part of

the cache key [4].

Figure 2 shows an example of a basic request made from a browser to

fetch a website. A request from a browser contains a lot of data, which

is inefficient and unnecessary to store in the cache. The standard values

included in the cache key are colored with red. Figure 3 shows an almost

identical request, with the difference in the cookie header colored in blue,

which indicates that the user requests the website in Finnish. Since the

header "Cookie" is not part of the cache key, the user will get the cached

GET /posts HTTP/ 1 . 1

Host: example.com

Accept : text / html , appl icat ion / xhtml+xml , appl icat ion / xml ; q = 0 . 9 . . .

Cookie: language=en

User−Agent : Chrome / 1 2 1 . 0 . 0 . 0

Accept−Language : en−US

Accept−Encoding : gzip , def late , br , zstd

Figure 2. Example request

GET /posts HTTP/ 1 . 1

Host: example.com

Accept : text / html , appl icat ion / xhtml+xml , appl icat ion / xml ; q = 0 . 9 . . .

Cookie: language=fi

User−Agent : Chrome / 1 2 1 . 0 . 0 . 0

Accept−Language : en−US

Accept−Encoding : gzip , def late , br , zstd

Figure 3. Example request

response of the request in Figure 1, in English, instead. A malicious user

could use this vulnerability by getting the server to cache the response

to a request containing malicious headers, such as an X-Forwarded-Host

header, instead of the intended request, as visualized in figure 3. Addi-

tional headers can be added to the cache key, as has been done for example

by Cloudflare [4]. However, the size of the cache key can impact the per-

formance of the cache, making the selection of values to use as a cache

key vital. The header could be used maliciously for example for an XSS

attack, where you would insert your script into the value of the header

[9].

The following sections will cover a variety of Cache Poisoning attacks that

have been discovered to gain an overview of the attack landscape and the

potential of cache poisoning.

3.1 Basic Poisoning

In the example in Figure 4, where a malicious user injects XSS into the

cached response through the X-Forwarded-Host header, is defined in James

Kettles research on cache poisoning [9] as basic poisoning. In his exper-

Figure 4. Cache poisoning attack

iments, he poisoned the cache to a non-existent endpoint, partly because

he did not want to interrupt normal use of the website, and partly because

he knew that that endpoint was not in the cache from before, guarantee-

ing that his malicious request gets stored in the cache.

To guarantee that a malicious request gets cached, a malicious user could

continuously send the request and hope that one of the requests would

then be the first one to be sent after the cache expires. However, another

vulnerability that Kettle [9] found was that some responses contained the

time of expiry of the cached response in the cache control header, and

could abuse that to time his request. Kettle also found that some websites

use the user-agent header as part of the cache key, allowing for targeted

poisoning based on the browser used by clients, which could be used to

exploit browser-specific vulnerabilities.

3.2 Cache-Poisoned Denail-of-Service

In their paper [14], Nguyen et al. do further research into constructing

Cache-Poisoned Denial-of-Sevice Attacks, which they coined as CPDoS.

A Denial-of-Service (DoS) attack is an attack where a malicious user at-

tempts to disrupt the usage of a network or machine, thus making it un-

able to serve its users. The way they denied service was by getting the

cache to fetch error pages from the origin server, caching it, and serving

those error pages to legitimate requests. They attempted three different

relatively simple methods for the CPDoS attack, all through the request

headers. One of the attacks was through the X-HTTP-Method-Override,

which is used in some REST-based web services to circumvent restric-

tions on HTTP methods. Through this header, they could get the origin

server to, for example, attempt to respond to a POST request to a request

with the original method GET, resulting in an error, which then would get

cached and served as a response to further GET requests. They also man-

aged to make use of the possible inconsistencies in how the servers read

and handle illegal headers. They created very large headers that were

too large for the origin server, throwing an error, while still being small

enough for the cache server to forward it and see it as a valid request.

Similar results could be accomplished by sending the newline character

’\n’ in the header. The usefulness of these attacks relies heavily on both

the implementation of the cache server and the underlying HTTP imple-

mentation of the origin server.

3.3 Web Cache Deception

While the aforementioned variations of cache poisoning has the goal of

denying or limiting access to a resource, there are also variations that

target individuals and their personal data. One such variation is Web

Cache Deception (WCD), which involves poisoning a cache with sensitive

and private content, making it available on the internet [13]. The attack

involves a victim of social engineering, who opens up a link to a legitimate

resource containing personal information, to which an invalid static file is

appended, for example, "example.com/profile/invalid.css". The web cache

forwards the request to the origin server, as the url with the ending in-

valid.css is not cached from earlier. As the static file does not exist on the

origin server, it responds as if the request was made to the endpoint /pro-

file, together with cache control headers stating that the response should

not be cached, as it contains sensitive information. However, the cache

might ignore the cache control headers, and instead cache the response

as a .css file, resulting in the sensitive information now being available

publicly at the original URL.

3.4 Overview

In addition to finding vulnerabilities that can lead to XSS attacks, Kettle

[9, 8] also managed to find more intricate methods that could be used to

hijack entire pages, get around firewalls and authentication, redirect the

user to a URL of his liking, and even replace sources to download but-

tons on web pages. Also, in addition to making use of unkeyed headers,

he found inconsistencies in how query strings are keyed, resulting in fur-

ther vulnerabilities that led to him being able to send users to the wrong

pages inside a host. While most, if not all, of the vulnerabilities demon-

strated have since been patched on the targeted platforms, the success of

the aforementioned attempts show that cache poisoning is a real threat

and needs to be considered, both when designing CDN systems as well as

deploying a website to a CDN.

As a CDN provider it is key to choose an appropriate cache-key to mit-

igate attacks that are based on the vulnerabilities of unkeyed inputs.

Not caching "400 bad request" error-pages is also an simple, but effec-

tive, practise that mitigates the risks of CPDoS attacks [14]. Similarly,

on the origin server, it is important to properly set the appropriate sta-

tus code to error responses, as they can determine if a response should

be cached or not by the cache server [14]. Using the cache to only cache

static responses is also a good way to avoid attacks such as WCD [13].

Additionally, avoiding taking input from headers can mitigate the risks of

falling victim to cache poisoning, however, it is important to consider the

headers used by the underlying frameworks used in a website [9].

4 Cache poisoning in practise

This section will cover a practical experiment, conducted to gain insight

into the current feasibility on cache poisoning on some current, publicly

available CDNs.

4.1 Methology

To assure an ethical experiment and that no legitimate users were af-

fected by my experiments, I rented out my own domain as well as CDNs

from the CDN providers. On the domain I deployed a simple website. I

chose two CDN providers to do the tests on; Cloudflare [3], because of its

position as one of the largest CDN providers, and bunnyCDN [2] which

is a less known CDN provider. A common denominator with both CDN

providers is that they have a free tier available, which was a requirement.

On each CDN, I started by analyzing the caching behaviour of the CDN

by creating some basic requests and reading the response headers, which

can include information such as the cache-key, and weather a response

was cached or not. I then made an attempt to do a Basic Cache Poisoning

attack, using the "X-Forwarded-Host" header. In addition to attempting a

Basic Cache Poisoning, I used an open source burp [18] extension called

Param Miner [17], that is created and used by James Kettle while doing

his experiments in [9]. Param miner is used to identify hidden unkeyed

parameters, which potentially can then be used to find vulnerabilities for

cache poisoning. I then analyzed the unkeyed inputs, and attempted to

use them to manipulate the cache. I also ran a scan using the open source

Web Cache Vulnerability Scanner (wcvs) [6] which, similary as Param

Miner, is a tool used to scan for unkeyed inputs. I also attempted CPDoS

as described in section 3.2.

4.2 Results & Discussion

The experiment was unable to accomplish its aim of finding vulnerabili-

ties in neither of the CDNs tested, as I was unable to find any unkeyed

inputs that could be used for cache poisoning. While this shows that both

of the chosen CDN providers are up to date on their security, drawing a

definite conclusion on the status of cache poisoning will require further

testing on a more comprehensive list of CDNs as well as testing beyond

the most common parameters that param miner as well as wsvc tests. I

also made several mistakes during initial setup which slowed down the

progress of the experimentation, such as not realizing that the host plat-

form of my website has a built in CDN that can not be disabled, forcing

me to switch host to not get skewed results. The selection of CDNs was

also suboptimal, especially Cloudflare, as I knew that they have patched

these issues earlier [9, 4]. Another improvement would be to try to find

more recent cases and studies covering techniques and vulnerabilities, as

they would most likely have a higher chance of still existing.

5 Conclusion

CDN cache poisoning can have various implications for users, CDN providers

as well as CDN customers. In its most basic form it impacts the ser-

vice availability of a website, denying or limiting access to legitimate

users. However, paired with other forms of cyber attacks, one can ac-

complish more devastating attacks on privacy, such as CPDoS [14]. How-

ever, with careful planning and by following best practises on both the

CDN providers as well as the CDN customers side, cache poisoning is

not impossible to mitigate. As the basis of most attacks is either in un-

keyed headers or parameters, carefully considering the cache key as well

as header usage can already mitigate a lot of attacks.

References

[1] Charles Arthur. Twitter users including sarah brown hit by malicious
hacker attack. The Guardian, September 2010.

[2] Bunny Way, LLC. BunnyCDN. https://bunnycdn.com, 2024. Website.

[3] Cloudflare, Inc. Cloudflare. https://www.cloudflare.com, 2024. Website.

[4] Milad Ghaznavi, Elaheh Jalalpour, Mohammad A. Salahuddin, Raouf
Boutaba, Daniel Migault, and Stere Preda. Content delivery network secu-
rity: A survey. IEEE Communications Surveys Tutorials, 23(4):2166–2190,
2021.

[5] Run Guo, Jianjun Chen, Baojun Liu, Jia Zhang, Chao Zhang, Haixin Duan,
Tao Wan, Jian Jiang, Shuang Hao, and Yaoqi Jia. Abusing cdns for fun
and profit: Security issues in cdns’ origin validation. In 2018 IEEE 37th
Symposium on Reliable Distributed Systems (SRDS), pages 1–10. IEEE,
2018.

[6] Hackmanit. Web-cache-vulnerability-scanner.
https://github.com/Hackmanit/Web-Cache-Vulnerability-
Scanner?tab=readme-ov-file, 2024. Accessed 02.04.2024.

[7] iana. Hypertext transfer protocol (http) field name registry.
https://www.iana.org/assignments/http-fields/http-fields.xhtml. Accessed
02.04.2024.

[8] Kettle James. Bypassing web cache poisoning countermeasures. PostSwig-
ger, 2018.

[9] Kettle James. Practical web cache poisoning. PostSwigger, 2018.

[10] MDN Web Docs. Cache-control. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Cache-Control. Accessed 02.04.2024.

[11] MDN Web Docs. Http headers. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/Cache-Contro. Accessed 02.04.2024.

[12] MDN Web Docs. X-forwarded-host. https://developer.mozilla.org/en-
US/docs/Web/HTTP/Headers/X-Forwarded-Host. Accessed 02.04.2024.

[13] Seyed Ali Mirheidari, Matteo Golinelli, Kaan Onarlioglu, Engin Kirda, and
Bruno Crispo. Web cache deception escalates! In 31st USENIX Secu-
rity Symposium (USENIX Security 22), pages 179–196, Boston, MA, August
2022. USENIX Association.

[14] Hoai Viet Nguyen, Luigi Lo Iacono, and Hannes Federrath. Your cache has
fallen: Cache-poisoned denial-of-service attack. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, CCS
’19, page 1915–1936, New York, NY, USA, 2019. Association for Computing
Machinery.

[15] Gang Peng. Cdn: Content distribution network. arXiv preprint cs/0411069,
2004.

[16] PortSwigger. Cross-site scripting. https://portswigger.net/web-
security/cross-site-scripting. Accessed 02.04.2024.

[17] PortSwigger. Param miner. https://github.com/PortSwigger/param-miner,
2020. Accessed 02.04.2024.

[18] PortSwigger Ltd. Burp Suite. https://portswigger.net/burp, 2024. Accessed
02.04.2024.

[19] Tom Henderson. Understanding http requests: Structure, methods ex-
amples. https://www.linode.com/docs/guides/http-get-request/. Accessed
02.04.2024.

[20] Behrouz Zolfaghari, Gautam Srivastava, Swapnoneel Roy, Hamid R Ne-
mati, Fatemeh Afghah, Takeshi Koshiba, Abolfazl Razi, Khodakhast Bibak,
Pinaki Mitra, and Brijesh Kumar Rai. Content delivery networks: State
of the art, trends, and future roadmap. ACM Computing Surveys (CSUR),
53(2):1–34, 2020.

Beyond cookies: how web services track
their users today

Mostafa Ghozal
mostafaashrafmostafaali.ghozal@aalto.fi

Tutor: Tuomas Aura

Abstract

Privacy issues on the internet are of considerable importance, especially

with the introduction of new regulations like the General Data Protection

Regulation (GDPR) the actions of major companies like Google in discon-

tinuing certain tracking tools gradually. This paper looks into how web-

sites track users online in the post-cookie era, focusing on a method called

"browser fingerprinting," known for its covert nature. We conducted an

analysis of various tracking tools and analyzed their functionality based

on findings from existing research papers. Our findings show that browser

fingerprinting is a tough challenge for privacy because it doesn’t rely on

things users can easily delete, like cookies. Even though there are some

tools to help, like browser add-ons, they are not very effective. We advocate

for collaborative efforts among researchers, developers, and policymakers

to find better ways to protect people’s privacy online. Educating users about

these issues is also key. With everyone pitching in, we can make the internet

safer for everyone without making it harder to use.

1 Introduction

Web services have always raised attention to a persistent dilemma: the

delicate balance between optimizing the user experience and addressing

user privacy concerns. This challenge has become even more pronounced

with the introduction of new regulations like the General Data Protec-

tion Regulation (GDPR) and Google’s initiative to phase out third-party

cookies. These developments signal significant transformations in the

landscape of online privacy and advertising. An experiment conducted

by Google Ad Manager’s serving system underscores the magnitude of

this transition: a notable 52% decrease in average revenue was observed

upon the elimination of cookies. This prompts advertising agencies to

seek more rapid alternative solutions. [4] it is worth noting that the ces-

sation of third-party cookies has faced multiple postponements since its

announcement. This delay highlights the considerable challenges in im-

plementation, especially considering the difficulty in blocking every track-

ing method while ensuring the best user experience. In light of these

complexities, this paper aims to provide transparency regarding tracking

techniques for users. By offering a overview of these methods and their

collective impact, our goal is to shed light on the broader landscape of on-

line tracking. Understanding how these techniques interact is crucial for

empowering users to make informed decisions about their online privacy.

The methodology employed in this paper involves a literature review of

recent studies about the most commonly used advanced tracking tools to

conclude answers. The paper is structured as follows:

In Section 2, we provide background information on advanced user

tracking techniques. Section 3 outlines the problems faced by users and

the goals of this paper. In Section 4, we discuss solutions and their effec-

tiveness. Section 5 concludes the literature review and the experimental

findings. Finally, Section 6 proposes potential future directions and im-

provements.

2 Background

This section provides background information on the tracking methods

reviewed in this paper. Below, we provide a brief overview of these tech-

niques:

2.1 Browser Fingerprinting

Browser fingerprinting is a stateless user tracking technique where client-

side scripts discover device configuration details through JavaScript APIs.

Unlike cookies, fingerprinting cannot be cleared locally as it operates

without relying on local storage. [9]

The challenging part is some functionalities in the web services de-

pends on the fingerprinting JavaScript APIs. In conclusion, fingerprinting

is hard to block, and thus, its use is increasing. According to an experi-

ment by Iqbal et al. [9], more than 10% of the top 100,000 websites employ

this technique.

Notably, these techniques are interchangeable, allowing for a com-

bined approach to target users effectively. Furthermore, browser changes

do not alter the fingerprint, as it depends on the computer OS and hard-

ware, ensuring persistence across different browsers. Browser finger-

printing comprises many techniques,including:

2.1.1 Canvas Fingerprinting

The canvas fingerprinting methodology operates by rendering a text draw-

ing on a canvas and subsequently analyzing the resulting image to con-

struct a unique fingerprint. This fingerprint is generated by a multitude

of factors inherent to the rendered canvas, including font libraries, graph-

ics card specifications, drivers, and browser settings. When amalgamated,

these factors produce distinguishable characteristics such as text pixel

patterns, smoothness, and other attributes.

Figure 1. Process flow of canvas fingerprinting [2]

While canvas fingerprint has concerns for user privacy,it can be used

in a constructive way. For example, according to Abouollo at al. [1] , it

can be used to detect fake accounts on social media by finding the same

fingerprint on many user accounts. or if the user needs security updates.

2.1.2 WebRTC Fingerprinting

WebRTC (Web Real-Time Communication) was designed to support peer-

to-peer communication between browsers using a microphone and cam-

era. The fact that the browser accesses information such as screen res-

olution,operating system, and other system attributes is utilized by a

JavaScript API called Fingerprintjs2 to identify a fingerprint . [14]

2.1.3 Ever-Cookies

Ever-cookies (sometimes referred to as zombie cookies), is a JavaScript

API designed to utilize multiple storage methods for cookies, including

flash cookies, local storage, and ETags. It detects user attempts to delete

cookies and recreates them using alternative storage methods. [2] [15]

Flash cookies, also known as local shared objects (LSOs), are data files

created by Adobe Flash Player on a user’s computer. They are stored sep-

arately in different location than the browser cookies, so it can be used to

persist it. ETags, also known as entity tags, are part of the HTTP pro-

tocol and are used for web cache validation. They are unique identifiers

assigned by web servers to versions of resources. Local storage is a web

storage mechanism available in web browsers that allows web applica-

tions to store data locally within the user’s web browser.

2.2 Cookie Synchronization

Cookie synchronization is a method that bypasses the Same-Origin Pol-

icy by exchanging information through a third-party server. This process

allows trackers to collaborate to track user behavior across various web-

sites. [12]

2.3 Search Engine Queries

Search Engine Queries: When users initiate search queries, search en-

gines can employ third-party cookies to track user interactions, including

clicks and visits originating from the search engine. This tracking mech-

anism allows search engines to collect information about user behavior,

enabling them to tailor search results, refine user profiles, and personal-

ize advertisements based on user interests and preferences. [8]

2.4 Social Media Tracking Tags

Social Media Tracking Tags are unique identifiers appended by social me-

dia platforms, such as Facebook Click ID (FBCLID), to outbound links

shared on their platforms. BCLID, for instance, facilitates persistent

tracking of user activities across websites integrated with Facebook Pixel.

This tracking mechanism enables platforms to attribute user browsing

activity to specific accounts [3]

2.5 Reliability of Opt-out Checks

As outlined by Duc Bui [5], opt-out prompts typically request user per-

mission to allow cookies. However, in practice, discrepancies often arise

between the stated opt-out policies and the actual implementation, lead-

ing to inconsistencies in user privacy management.

This paper primarily focuses on browser fingerprinting, providing in-

sights into its mechanisms, implications, and potential countermeasures.

The background information provided aims to equip readers with a broad

understanding of prevalent tracking methods in contemporary online en-

vironments. Now that we have outlined the background information on

advanced user tracking techniques, it is important to address the chal-

lenges faced by users and the objectives of our paper. Section 3 will eluci-

date these issues and articulate the goals of our research.

3 Problem

Browser fingerprinting poses a significant challenge to user privacy due

to its ability to track users across websites without their explicit consent.

Unlike traditional tracking methods, such as cookies, which users can eas-

ily delete or block, browser fingerprinting relies on various characteristics

of the user’s browser and device configuration, making it difficult to de-

tect and mitigate. Many of the features and functionalities that contribute

to browser fingerprinting are also essential for providing a seamless and

personalized browsing experience. For example, JavaScript, which is com-

monly used by websites for interactive features and dynamic content,

is also a key component in fingerprinting scripts. Disabling JavaScript

entirely may enhance privacy but can severely limit the functionality

of many websites, resulting in unacceptable user experience. Similarly,

other browser attributes such as user agent strings, screen resolution,

installed fonts, and plugins contribute to fingerprinting but are also nec-

essary for rendering web pages correctly and ensuring compatibility with

various websites and web applications. Attempting to modify or obscure

these attributes aggressively can lead to website rendering issues, bro-

ken functionality, or even outright blocking by websites that rely on these

attributes for legitimate purposes. Furthermore, as soon as browser re-

leases an update to protect user privacy, in parallel, there will be new

emerging fingerprinting techniques. Having identified the challenges posed

by browser fingerprinting and other tracking methods, the next logical

step is to discuss potential solutions. Section 4 discusses existing coun-

termeasures and evaluates their effectiveness in mitigating tracking at-

tempts.

4 Solution

There is a gap in previous research and implementations between offering

a good user experience and preventing tracking. This gap is reasonable.

Referring to [10], we can investigate the currently available approaches,

such as browser plugins and extensions, that perform one of the following

actions:

Randomizing browser attributes and configurations to obfuscate the

uniqueness of the fingerprint, thereby impeding the tracking attempts.

For instance, plugins may introduce variations in user agent string, screen

resolution, installed fonts, and other identifiable attributes, thereby thwart-

ing the accuracy of fingerprinting techniques. Examples include FP-Block,

FPGuard, and Canvas Defender.

Universal fingerprinting is an approach that involves standardizing

or normalizing certain browser attributes across a wide user base, effec-

tively reducing the distinctiveness of individual fingerprints. By pooling

together data from numerous users and presenting a uniform profile to

trackers, these plugins aim to render fingerprinting less effective and un-

dermine attempts to track users based on unique browser configurations.

UniGL is one of the examples for this plugins.

Blocking scripts or blocking APIs can be done by selectively disabling

JavaScript or restricting access to specific browser features and APIs known

to be exploited for tracking. These extensions aim to disrupt the execution

of fingerprinting scripts and impede data collection by trackers. Examples

include NoScript, Privacy Badger, and Brave browser.

Firefox employs various methods to resist fingerprinting, including

blocking certain browser features and reducing the amount of information

exposed to websites. One specific aspect of this approach involves blocking

access to the Canvas API, which is commonly used for fingerprinting pur-

poses. Additionally, Firefox reduces the amount of information available

in several attributes, such as user agent strings and screen dimensions,

to make it more difficult for websites to uniquely identify users based on

their browser characteristics.

While all these solutions exist,they have demonstrated limited effec-

tiveness when subjected to testing and analysis. Therefore, there is still a

gap in providing real protection for user privacy.

5 Conclusion

We have identified the resilience of these methods against traditional

countermeasures. Despite the existence of browser plugins and exten-

sions aimed at mitigating tracking efforts, our analysis suggests that cur-

rent solutions may offer limited effectiveness, highlighting the persistent

gap in providing robust protection for user privacy.

Moving forward, it is imperative for researchers, browser develop-

ers, policymakers, and industry stakeholders to collaborate in address-

ing the challenges posed by web tracking techniques. This collaboration

should involve ongoing research and development efforts to enhance ex-

isting countermeasures and develop innovative approaches to safeguard

user privacy while preserving the functionality and usability of web ser-

vices.

Furthermore, user education and empowerment play a crucial role in

navigating the complexities of online privacy. By raising awareness about

tracking techniques and providing users with the tools and knowledge

to protect their online activities, we can empower individuals to make

informed decisions about their privacy and take control of their digital

footprint.

In conclusion, while the challenges posed by web tracking are formidable,

they are not insurmountable. With concerted efforts and collaborative ini-

tiatives, we can work towards a more privacy-respecting online environ-

ment that prioritizes both user experience and user privacy. In light of the

insights gained from our analysis, it becomes apparent that collaborative

efforts are essential to address the challenges posed by web tracking tech-

niques. Section 6 proposes potential future directions and improvements,

emphasizing the need for ongoing research and development in the realm

of digital privacy.

6 Future Work

In the field of digital privacy, the development of tracking methods that

prioritize user confidentiality emerges as a significant area for future re-

search. Developing innovative tracking techniques that uphold user pri-

vacy while still facilitating targeted advertising and personalized content

delivery represents a crucial necessity. This includes researching decen-

tralized tracking mechanisms, investigating ethical considerations about

data consent, transparency, and data ownership. Moreover, evaluating

the efficiency of existing privacy regulations, such as GDPR, and improv-

ing them.

Lastly, exploring alternative business models for online services to

increase revenues while protecting user privacy. Through these explo-

rations, researchers can contribute to enhancing the overall experience of

users and fostering a more privacy-conscious digital ecosystem.

References

[1] Ahmed Abouollo and Sultan Almuhammadi. Detecting malicious user ac-
counts using canvas fingerprint. In 2017 8th International Conference on
Information and Communication Systems (ICICS), pages 358–361, 2017.

[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS ’14, page 674–689,
New York, NY, USA, 2014. Association for Computing Machinery.

[3] Paschalis Bekos, Panagiotis Papadopoulos, Evangelos P. Markatos, and
Nicolas Kourtellis. The hitchhiker’s guide to Facebook web tracking with
invisible pixels and click ids. In Proceedings of the ACM Web Conference
2023, WWW ’23, page 2132–2143, New York, NY, USA, 2023. Association
for Computing Machinery.

[4] Dino Bollinger. Analyzing cookies compliance with the GDPR. Master’s
thesis, ETH Zurich, 2021.

[5] Duc Bui, Brian Tang, and Kang G. Shin. Do opt-outs really opt me out? In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’22, page 425–439, New York, NY, USA, 2022.
Association for Computing Machinery.

[6] Quan Chen, Panagiotis Ilia, Michalis Polychronakis, and Alexandros
Kapravelos. Cookie swap party: Abusing first-party cookies for web track-
ing. In Proceedings of the Web Conference 2021, WWW ’21, page 2117–2129,
New York, NY, USA, 2021. Association for Computing Machinery.

[7] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,
Jonathan Mayer, Arvind Narayanan, and Edward W. Felten. Cookies that
give you away: The surveillance implications of web tracking. In Proceed-
ings of the 24th International Conference on World Wide Web, WWW ’15,
page 289–299, Republic and Canton of Geneva, CHE, 2015. International
World Wide Web Conferences Steering Committee.

[8] Richard Gomer, Eduarda Mendes Rodrigues, Natasa Milic-Frayling, and
M.C. Schraefel. Network analysis of third party tracking: User exposure to
tracking cookies through search. In 2013 IEEE/WIC/ACM International
Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technolo-
gies (IAT), volume 1, pages 549–556, 2013.

[9] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the fin-
gerprinters: Learning to detect browser fingerprinting behaviors. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1143–1161, 2021.

[10] Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine.
Browser fingerprinting: A survey. ACM Trans. Web, 14(2), apr 2020.

[11] Emmanouil Papadogiannakis, Panagiotis Papadopoulos, Nicolas Kourtellis,
and Evangelos P. Markatos. User tracking in the post-cookie era: How
websites bypass GDPR consent to track users. In Proceedings of the Web
Conference 2021, WWW ’21, page 2130–2141, New York, NY, USA, 2021.
Association for Computing Machinery.

[12] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos Markatos.
Cookie synchronization: Everything you always wanted to know but were
afraid to ask. In The World Wide Web Conference, WWW ’19, page
1432–1442, New York, NY, USA, 2019. Association for Computing Machin-
ery.

[13] J.S. Park and R. Sandhu. Secure cookies on the web. IEEE Internet Com-
puting, 4(4):36–44, 2000.

[14] Andreas Reiter and Alexander Marsalek. WebRTC: your privacy is at risk.
In Proceedings of the Symposium on Applied Computing, SAC ’17, page
664–669, New York, NY, USA, 2017. Association for Computing Machin-
ery.

[15] Ove Sörensen. Zombie-cookies: Case studies and mitigation. In 8th In-
ternational Conference for Internet Technology and Secured Transactions
(ICITST-2013), pages 321–326, 2013.

Robustness Assessment for ML systems

Muskaan khattak
muskaan.khattak@aalto.fi

Tutor: Samuel Marchal

Contents

1 Introduction . 3

2 Attacks on Machine Learning Systems 4

2.1 Evasion Attacks . 4

2.2 Poisoning Attacks . 5

2.3 Model Inversion Attacks 5

3 Evaluation Metrics . 6

3.1 Accuracy under Attack 6

3.2 Worst-Case Performance 6

3.3 Robustness Margin . 7

3.4 Attack Success Rate 7

3.5 Model Recovery Time 7

3.6 Generalization Under Distribution Shift 8

3.7 Resilience to Data Corruption 8

4 Tools Used to Assess and Quantify Robustness on ML Systems 8

4.1 Adversarial Robustness Toolbox 8

4.2 Counterfit . 9

4.3 Other Tools and Libraries 10

5 Analysis . 10

5.1 Analysing Existing Tools and Techniques 11

5.2 Evaluation of Their Effectiveness 12

6 Conclusion . 12

Abstract

Machine learning (ML) systems are integral to various critical applica-

tions, from healthcare diagnostics to financial fraud detection. However,

these systems are vulnerable to adversarial attacks, compromising their in-

tegrity and reliability. This paper provides a comprehensive overview of the

types of attacks that ML systems face, including evasion, poisoning, and

model inversion attacks. It emphasizes the importance of robustness in ML

systems and explores various metrics used to evaluate their resilience, such

as accuracy under attack, worst-case performance, and robustness margin.

The paper also reviews tools designed to assess and enhance the robust-

ness of ML models, notably the Adversarial Robustness Toolbox (ART) and

Counterfit. Through detailed analysis, this study highlights the need for

continuous advancements in defensive strategies to address the evolving

nature of adversarial threats.

KEYWORDS: machine learning, robustness, adversarial attacks, evalua-

tion metrics, security, adversarial robustness toolbox, counterfit

1 Introduction

Machine learning has revolutionized various sectors, from healthcare di-

agnostics to financial fraud detection. These systems, however, face nu-

merous attacks that can manipulate their behaviour and compromise the

integrity of their applications [6]. The critical integration of machine

learning into various sectors requires a robust evaluation and assurance

of system resilience.

While research into ML attacks like evasion and poisoning is exten-

sive, [3] [1], consensus on a standardized robustness assessment frame-

work still needs to be improved. The variety of machine learning applica-

tions demands a strategy that accounts for a broad spectrum of adver-

sarial scenarios [5]. Additionally, the evolution of adversarial tactics

alongside ML models underlines the need for constant evaluation to meet

emerging security challenges.

This paper provides a structured evaluation of current robustness as-

sessment tools and metrics in machine learning, analyzing their effective-

ness. It examines the utility of these tools in determining the resilience

of ML systems to various attacks and their capacity to preserve fairness

and interpretability [8]. The subsequent sections will detail the attacks

ML systems face, the metrics for evaluating system robustness, the tools

available for robustness assessment, and an analysis of these tools and

metrics.

2 Attacks on Machine Learning Systems

Machine learning (ML) systems are vulnerable to attacks that undermine

their security and effectiveness, particularly in critical applications re-

quiring dependable and accurate predictions. These attacks, such as eva-

sion, poisoning, and model inversion, exploit weaknesses in ML models to

alter outcomes, breach privacy, or impair performance. Recognizing these

threats is vital for creating ML systems that are robust and resistant to

malicious activities. This section explores the characteristics of these at-

tacks, their consequences on ML systems, and the approaches researchers

have suggested to counter and mitigate their impacts.

2.1 Evasion Attacks

Evasion attacks are techniques used to manipulate the outcome of an ML

system by giving it malicious input. These attacks provide subtly modi-

fied input to deceive the model into making incorrect predictions or clas-

sifications. The inputs can have the following alterations: added noise,

modified pixel values, or minor deviations imperceptible to human obser-

vations but are significant enough to cause misclassification.

Evasion attacks add difficulty in deploying machine learning systems

in security-critical applications, including malware detection and fraud

detection. They can significantly compromise critical decision-making sce-

narios when targeting ML models. For example, in autonomous driving,

an evasion attack could manipulate input data (e.g., road signs) to cause

the vehicle to misinterpret its surroundings, potentially leading to acci-

dents. The ease of performing these attacks depends on the attacker’s

knowledge of the model and the complexity of the input space.

Various researchers proposed solutions to enhance the robustness of

the ML system against these attacks, including adversarial training, in-

put sanitization, and model assembling. Madry was one such researcher

who proposed adversarial training in [6] as a method to improve the ro-

bustness of neural networks against these types of attacks.

2.2 Poisoning Attacks

Poisoning Attacks manipulate the training data to compromise the perfor-

mance or to cause the model to behave maliciously. These attacks include

using incorrect samples or modifying the actual training data to subse-

quently influence the learning process, which causes either the model to

provide biased outputs or runtime exploitable vulnerabilities.

Poisoning attacks target various ML models, including recommender

systems and classifiers. In financial systems, a poisoning attack could

lead to incorrect risk assessments, resulting in significant economic losses.

These attacks require access to the training data, which can be a limit-

ing factor for attackers. However, poisoning attacks can be more feasible

where data is crowdsourced or not rigorously controlled.

Strategies used to reduce these attacks include data sanitization, ro-

bust model training methods, and anomaly detection algorithms. Re-

searchers such as Biggio define some such attacks in [1]. Gao in [2]

proposed a defence mechanism called STRIP (STRong Intentional Pertur-

bation) against Trojan attacks caused by poisoning by finding and neu-

tralizing the effect of the poisoned data during the training phase.

2.3 Model Inversion Attacks

Inversion attacks use the model’s output in queries to gain insight about

its parameters. The attacker can infer private attributes and characteris-

tics used in the model by iteratively refining the queries using the model’s

prediction.

Model inversion attacks target privacy-preserving machine learning

systems, especially systems where sensitive data, such as medical data,

is involved. Shokri in [13] talks about model inversion attacks as part

of a broader study of privacy attacks in machine learning systems. For

instance, in healthcare, attackers could use these attacks to infer private

patient information from a model trained on medical records. This could

lead to privacy breaches and violation of confidentiality agreements. The

difficulty of performing these attacks varies based on the complexity of

the model and the amount of information available to the attacker. In

some cases, even limited access to model outputs can be enough to infer

sensitive information.

3 Evaluation Metrics

In developing robust machine learning (ML) systems, various evaluation

metrics are crucial for gauging their resilience and effectiveness. These

metrics provide a comprehensive perspective on the models’ ability to en-

dure adversarial challenges, navigate extreme situations, and sustain de-

pendability across varied environments. From assessing the models’ per-

formance under targeted attacks to their stability amidst data distortions,

each metric sheds light on different aspects of the ML systems’ robust-

ness. This section explores several key metrics, including accuracy un-

der attack, worst-case performance, robustness margin, attack success

rate, model recovery time, generalization under distribution shift, and

resilience to data corruption, collectively contributing to the overall as-

sessment of machine learning systems’ robustness and reliability.

3.1 Accuracy under Attack

Accuracy under attack assesses how well a model performs when given

adversarial inputs designed to mislead it. By testing the model with

such attacks, we gain valuable insights regarding its resilience against

evasion attacks and its ability to maintain accurate predictions despite

facing maliciously crafted inputs. It is especially crucial for applications

where security and trustworthiness are essential, such as cybersecurity,

autonomous driving, and medical diagnosis. Hence, models with high ac-

curacy under attack are more likely to exhibit robust behaviour and can

handle unforeseen challenges and potential threats. The importance of

accuracy under attack is also explained in [15]

3.2 Worst-Case Performance

Examining the worst-case performance of machine learning systems of-

fers invaluable insights regarding their resilience and dependability in

various demanding scenarios. Unlike conventional evaluations, which

focus on average conditions, this metric explores the model’s behaviour

under extreme circumstances, stretching its capabilities. Scenarios such

as encountering adversarial inputs mentioned above exploit weaknesses

in the model’s decision-making process or navigating environments with

high noise levels, uncertainty, or data corruption. Understanding the

model’s performance under such adverse conditions is essential in iden-

tifying potential vulnerabilities and weaknesses that may reduce its ef-

fectiveness in real-world deployments. Furthermore, it helps the devel-

opment of robustness-enhancing techniques and strategies to boost the

model’s resilience. By comprehensively assessing worst-case scenarios,

we can ensure that machine learning systems are more dependable in per-

formance even when faced with unforeseen challenges. The importance of

evaluating worst-case performance is analyzed in [16]

3.3 Robustness Margin

The Robustness Margin measures the slightest change needed to affect a

model’s prediction, indicating how sensitive the model is to input changes.

For instance, in an image classification neural network, the robustness

margin can be the least amount of noise added to an image, resulting in a

different predicted class. A more considerable robustness margin means

the model is more robust. Techniques like DeepFool, [7] are often used to

calculate this metric and pinpoint the model’s weaknesses to the slightest

input shift.

3.4 Attack Success Rate

The Attack Success Rate measures the percentage of successful adver-

sarial attacks against a model, indicating its vulnerability to malicious

inputs. For instance, this metric would analyze how often an attacker

can craft emails incorrectly classified as non-spam in a spam detection

system. A high attack success rate indicates the need for improved de-

fensive mechanisms. [10] demonstrated the importance of this metric in

analyzing the limitations of deep learning models in adversarial settings.

3.5 Model Recovery Time

Model Recovery Time assesses a model’s duration to regain its perfor-

mance after an attack or failure. This metric is vital for understanding

the resilience of systems in dynamic environments. For example, in a rec-

ommender system compromised by a data poisoning attack, the recovery

time would measure how quickly the system can restore its recommended

accuracy. Studies like [14] have explored certified defences to reduce re-

covery time and enhance model resilience against data poisoning attacks.

3.6 Generalization Under Distribution Shift

Generalization Under Distribution Shift evaluates a model’s performance

on data with a different distribution than its training set, highlighting

its flexibility in new environments. For instance, a weather prediction

model trained on data from one geographic region should maintain ac-

curacy when applied to data from another area. This metric is vital for

ensuring the reliability of machine learning models across diverse scenar-

ios. The concept is extensively discussed in [11], which provides insights

into managing and mitigating the effects of distribution shifts.

3.7 Resilience to Data Corruption

Resilience to Data Corruption measures a model’s ability to maintain per-

formance when trained or tested on corrupted data, reflecting its robust-

ness to data quality issues. An example is evaluating a speech recognition

system’s accuracy when exposed to audio recordings with different back-

ground noise levels. A resilient model would demonstrate consistent per-

formance despite the presence of data corruption. [4] has benchmarked

the robustness of neural networks to common corruptions and perturba-

tions, underscoring the importance of this metric in assessing model reli-

ability.

4 Tools Used to Assess and Quantify Robustness on ML Systems

In machine learning (ML), safeguarding systems against adversarial at-

tacks is essential for their security and dependability. Researchers and

developers have devised various tools to evaluate and measure the ro-

bustness of ML systems, providing insights into their weaknesses and fa-

cilitating the development of robust defence strategies. This section looks

into some of these tools, including the Adversarial Robustness Toolbox

(ART), Counterfit, CleverHans, and Foolbox, each providing distinct func-

tionalities and advantages to boost the security of ML models.

4.1 Adversarial Robustness Toolbox

The Adversarial Robustness Toolbox (ART) aims to increase the security

of machine learning (ML) systems against adversarial attacks. With var-

ious functionalities, ART serves as a comprehensive suite of tools tailored

to evaluate and enhance the resilience of ML models. Supporting multiple

machine learning frameworks and techniques, ART enables researchers

and practitioners to generate adversarial examples, probe model vulner-

abilities, and implement robust defence mechanisms [8]. Installing and

using ART is simple, ensuring smooth integration into current ML work-

flows. Its user-friendly interface allows researchers and practitioners to

easily set up assessments by defining model architectures, datasets, and

parameters [10]. With these configurations in place, ART enables users

to evaluate ML models comprehensively, offering valuable insights into

potential vulnerabilities and weaknesses.

ART goes beyond mere assessment, providing practical solutions to

address security concerns in ML systems. By finding vulnerabilities and

weaknesses, ART empowers users to implement tailored defence mech-

anisms or refine their models to enhance resilience against adversarial

attacks [3]. One standard feature of ART is its ability to generate adver-

sarial inputs designed to cause ML models to produce incorrect outputs.

ART can uncover vulnerabilities such as susceptibility to evasion attacks

or data poisoning by analyzing how models react to these adversarial in-

puts. Furthermore, ART facilitates sensitivity analysis, allowing users

to evaluate model performance across input distributions or feature per-

turbations. This comprehensive approach enables ART to detect subtle

vulnerabilities that may not be apparent during standard testing proce-

dures.

Overall, ART is a valuable tool for identifying and understanding vul-

nerabilities in ML systems. It provides researchers and practitioners with

actionable insights to enhance their models’ robustness and security.

4.2 Counterfit

Microsoft released Counterfit as an open-source initiative designed to au-

tomate the security testing of AI systems. It marks a significant advance-

ment in AI security risk assessments, addressing the pressing need for

practical tools in securing ML systems—a need highlighted by Microsoft’s

survey [5]. Its flexibility stands out as it operates across diverse envi-

ronments, including cloud-based, on-premises, and edge scenarios. Coun-

terfit’s model-agnostic and data-agnostic capabilities ensure that it can ef-

fortlessly handle various ML models and data types, from text and images

to generic inputs, facilitating a broad spectrum of security assessments.

Counterfit comes equipped with a wide array of features for compre-

hensive security analysis. It offers a command-line interface that stream-

lines the process of simulating adversarial attacks, managing and launch-

ing them across ML systems. Preloaded with extensive attack algorithms,

Counterfit enables penetration testing and comprehensive vulnerability

scanning, empowering professionals to efficiently identify and eliminate

potential threats. Furthermore, its integration with the adversarial ML

threat matrix, developed in collaboration between MITRE and Microsoft,

enhances its utility in orienting security analysts to ML-specific threats.

Counterfit’s ability to conduct vulnerability scanning with customizable

parameters and its logging feature for attack analysis significantly con-

tribute to improving the understanding and fortification of ML systems

against adversarial threats, aligning with Microsoft’s responsible AI prin-

ciples and the overarching goal of developing robust, reliable AI applica-

tions [5].

4.3 Other Tools and Libraries

CleverHans and Foolbox are also integral tools in adversarial machine

learning, providing robust capabilities for testing and strengthening ma-

chine learning models’ security. CleverHans offers various features for

generating adversarial examples and assessing model vulnerabilities, pro-

moting secure ML classifiers through community-engaged research [9].

Complementing this, Foolbox presents a rich selection of adversarial at-

tack techniques compatible with various deep learning frameworks, fea-

turing a user-friendly API that simplifies the implementation of complex

attack strategies and robustness assessments [12]. Together, these tools

form an essential resource for the machine learning community, facilitat-

ing the progression towards AI systems that can reliably resist adversar-

ial threats and maintain trustworthiness in many deployment scenarios.

5 Analysis

Protecting machine learning systems from adversarial threats is critical

for their reliable operation in essential applications. Developers have cre-

ated tools to assess and reinforce the security of these systems. Table 1

catalogues these tools, showing the metrics computed, machine learning

models covered, data types managed, and attack simulations undertaken.

Tool Metrics Computed ML Models Covered Data Types Attacks Simu-

lated

ART Accuracy under Attack

(Adversarial Accuracy)

Robustness Margin

Attack Success Rate

Neural networks

decision trees

Images

text

Evasion

poisoning

Counterfit Attack Success Rate

Robustness Margin

Generic ML models Text

images

generic inputs

Evasion

poisoning

CleverHans Accuracy under Attack

(Adversarial Accuracy)

Attack Success Rate

Robustness Margin

Primarily neural

networks

Images, text Evasion

more advanced

adversarial tech-

niques

Foolbox Accuracy under Attack

(Adversarial Accuracy)

Robustness Margin

Attack Success Rate

Generalization Under

Distribution Shift

Various, including

deep learning models

Images

audio

text

Broad range of

adversarial at-

tacks including

evasion, poison-

ing, and others

Table 1. Comparison of Robustness Assessment Tools

5.1 Analysing Existing Tools and Techniques

Given the increasing reliance on machine learning (ML) systems in vari-

ous critical applications, the robustness of these systems is a paramount

concern. To address this concern, developers have created a wide array

of tools, techniques, and metrics to assess and strengthen ML models

against adversarial attacks.

The Adversarial Robustness Toolbox (ART) and Counterfit are notable

tools in this domain. ART provides a comprehensive suite for evaluating

ML models against adversarial attacks, including evasion, poisoning, and

model inversion. It supports multiple ML frameworks and offers func-

tionalities for generating adversarial examples, probing model vulnera-

bilities, and implementing defence mechanisms. Counterfit, on the other

hand, automates the security testing of AI systems across different envi-

ronments and is model-agnostic, making it highly versatile.

Additionally, CleverHans and Foolbox are essential tools in adversar-

ial machine learning. CleverHans is known for its ability to generate

adversarial examples and assess model vulnerabilities. At the same time,

Foolbox offers various adversarial attack techniques and is compatible

with various deep learning frameworks.

Metrics such as accuracy under attack, robustness margin, and at-

tack success rate are crucial for quantifying the resilience of ML models.

These metrics provide insights into the model’s performance in adversar-

ial scenarios, its sensitivity to input perturbations, and its vulnerability

to specific types of attacks.

5.2 Evaluation of Their Effectiveness

The type of ML model, the nature of the data, and the particular adver-

sarial scenario being considered all play a role in determining the effec-

tiveness of these tools, techniques, and metrics.

ART’s ability to support multiple ML frameworks and data types makes

it a valuable tool for assessing the robustness of diverse models. Its

functionalities for generating adversarial examples and implementing de-

fence mechanisms provide a comprehensive approach to evaluating and

enhancing model resilience. The metrics computed using ART, such as ac-

curacy under attack and robustness margin, offer quantifiable measures

of the model’s robustness.

Counterfit’s flexibility and ease of use make it an effective tool for con-

ducting security assessments across different environments and ML mod-

els. Its integration with the adversarial ML threat matrix aids in identi-

fying and addressing ML-specific threats. It also enables the computation

of the attack success rate metric, clearly indicating a model’s vulnerability

to adversarial attacks.

While the existing tools, techniques, and metrics offer valuable means

for assessing and enhancing the robustness of ML systems, their effec-

tiveness is limited. Continuous research, development, and adaptation

of these tools, techniques, and metrics are necessary to ensure their rele-

vance and efficacy in the face of evolving adversarial threats.

6 Conclusion

This paper has delved into the critical issue of ensuring the robustness of

machine learning (ML) systems, focusing on essential metrics such as ac-

curacy under attack and robustness margin. These measures are crucial

for evaluating the resilience of ML systems, particularly in sectors where

reliability is paramount.

An in-depth examination of tools like the Adversarial Robustness Tool-

box and Counterfit has been conducted. It reveals that while these tools

provide valuable insights into system vulnerabilities, the ever-evolving

nature of adversarial threats requires ongoing advancements in our de-

fensive strategies. As we bolster the security of ML systems, we must

also maintain their transparency and fairness.

n conclusion, this paper has provided a detailed evaluation of the ro-

bustness of machine learning (ML) systems. The findings emphasize the

importance of a collaborative and proactive approach in enhancing the

security and reliability of ML systems, ensuring their trustworthiness as

they become increasingly integrated into various aspects of daily life.

References

[1] B. Biggio, B. Nelson, and P. Laskov. "poisoning attacks against support
vector machines". In Proc. of the Int. Conf. on Machine Learning (ICML),
pages 1467–1474, 2012.

[2] L. Gao, Y. Chen, R. Liao, Y. Li, X. Wen, and D. Shen. "strip: A defence
against trojan attacks on deep neural networks". In Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), 2019.

[3] I. Goodfellow, J. Shlens, and C. Szegedy. "explaining and harnessing adver-
sarial examples". In International Conference on Learning Representations
(ICLR), 2015.

[4] D. Hendrycks and T. G. Dietterich. "benchmarking neural network robust-
ness to common corruptions and perturbations". In International Confer-
ence on Learning Representations (ICLR), 2019.

[5] R. S. Siva Kumar. "ai security risk assessment using counterfit".
Available: https://www.microsoft.com/security/blog/2021/05/03/ai-security-
risk-assessment-using-counterfit/, 2021.

[6] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. "towards deep
learning models resistant to adversarial attacks". In Proc. of the Int. Conf.
on Learning Representations (ICLR), 2018.

[7] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. "deepfool: A simple
and accurate method to fool deep neural networks". In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), pages 2574–
2582, 2016.

[8] M.-I. Nicolae, M. Sinn, M. Tran, B. Buesser, A. Rawat, and M. Wistuba.
"adversarial robustness toolbox v1.0.0". arXiv preprint arXiv:1807.01069,
2018.

[9] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Ku-
rakin, C. Xie, Y. Sharma, T. Brown, and A. Roy. "clever-
hans v2.1.0: An adversarial machine learning library". Available:
https://github.com/tensorflow/cleverhans, 2018.

[10] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.
"the limitations of deep learning in adversarial settings". In Proc. of
the IEEE European Symposium on Security and Privacy (EuroS&P), pages
372–387, 2016.

[11] J. Quionero-Candela, M. Sugiyama, A. Schwaighofer, and N. D. Lawrence,
editors. "Dataset Shift in Machine Learning". The MIT Press, 2009.

[12] J. Rauber, W. Brendel, and M. Bethge. "foolbox: A python toolbox
to benchmark the robustness of machine learning models". Available:
https://github.com/bethgelab/foolbox, 2017.

[13] R. Shokri, M. Stronati, C. Song, and V. Shmatikov. "membership inference
attacks against machine learning models". In Proc. of the IEEE Symposium
on Security and Privacy (SP), pages 3–18, 2017.

[14] J. Steinhardt, P. W. Koh, and P. Liang. "certified defenses for data poisoning
attacks". In Advances in Neural Information Processing Systems (NIPS),
pages 3517–3529, 2017.

[15] F. Tramèr, A. Kurakin, N. Papernot, D. Boneh, and P. McDaniel. "ensemble
adversarial training: Attacks and defenses". In International Conference on
Learning Representations (ICLR), 2018.

[16] Hongge Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz.
Theoretically principled trade-off between robustness and accuracy. In Pro-
ceedings of the 7th International Conference on Learning Representations
(ICLR), 2019.

Power and energy aspects of
sustainable large-scale computing

Nhut Cao
nhut.cao@aalto.fi

Tutor: Vesa Hirvisalo

Abstract

The large-scale computing concept has been known for a period of time,

along with its advantages. Comes with the powerful performance, large-

scale computing, also considered as large-scale data center, consumes sig-

nificantly amount of energy to support powering and cooling machines.

The growing demand for computing services brought the concerns about

the environmental impacts. This paper discusses cloud, fog, and edge com-

puting and their connections with large-scale data center. The performances

and energy consumption were analyzed. The paper also suggests a few

potential strategies to help reducing carbon footprint and saving energy,

while continuingly fostering advancements in technology.

KEYWORDS: Cloud, Fog, Edge computing, Sustainable energy, Data cen-

ters

1 Introduction

In recent years, network, computing, and the Internet have integrated to

our lives in significant ways. With billions of users and devices actively

perform computational executions, it is necessary that a more sophisti-

cated, effective infrastructure be available to support. Cloud computing

has been one of the main platform providing services thanks to several

large-scale data centers support. Barroso’s book [3] discusses the design

and operation of the powerful infrastructure, and the advantages and dis-

advantages of large-scale data centers.

There is a recent trend of pushing computing calculations to the edge

of the network to reduce the data sent to the cloud and therefore address

cloud computing issues, such as latency, transmission costs. Such comput-

ing paradigms, however, still pose several challenges, including service

placement issue [7], that affect the power and energy consumption.

Usage of computing resources has increased dramatically, which has

led to concerns regarding of the energy consumption and the effects to the

environment. People are more aware of the carbon emitted from applica-

tions, products or services in daily lives, and computing electricity usage

is also a salient subject. In this case, large-scale data centers that are

backbones of modern computing paradigms account for significantly elec-

tricity usage, which raises concerns regarding the emissions to the ecosys-

tem. To reduce carbon emissions from large-scale data centers, companies

also seek for optimization in production and maintenance costs. Among

giant tech companies, Google [18] published their "methodology and prin-

ciples behind Google’s system for Carbon-Intelligent Compute manage-

ment", claiming their attempts to minimize environmental impacts.

This paper delves into the power and energy dynamics of sustainable

large-scale computing by conducting a comprehensive literature review. It

explores the impact of computing paradigms and large-scale data centers

on energy consumption and the environment, analyzing their roles and

effects in-depth. The paper also reviews several optimistic suggestions for

designing and operating energy-aware large-scale computers, ultimately

leading to a reduction in their carbon footprint.

The rest of this paper is organized as follows. Section 2 outlines the

foundation concepts of cloud and other computing paradigms. Section 3

addresses the energy and carbon emission aspects of large-scale comput-

ing. Section 4 focuses on the potential solutions to minimize environmen-

tal damages as well as operation costs. Section 5 concludes the work of

literature review.

2 Background

This part focuses on fundamental details concerning cloud computing, fog

computing, and edge computing. It also covers the topic of large-scale data

centers and their associated energy consumption challenges.

2.1 Cloud computing

In recent years, cloud computing has gained significant attention among

people who care more about the optimization of cost and scalability. Cloud-

computing is generally defined as an on-demand service, and users can ob-

tain computer capabilities and technology services from a cloud provider

without maintenance responsibilities.

Cloud computing architectures are characterized by their multi-layered

structure and dependence on virtualization technologies. Vaguero [23] et

al. has provided an overview of cloud computing definitions that are cat-

egorized based on cloud services: Software as a Service (SaaS), Platform

as a Service (PaaS), and Infrastructure as a Service (IaaS).

One of the most common services of cloud is data storage, which of-

fers users virtual storage that is easy to access and manipulate. Google

Drive or OneDrive from Microsoft are two common examples of cloud

storage services with affordable subscriptions, from free to paid plans

with prices adjusted to desired size of storage. Beyond the convenience

of storing and managing data in the cloud, there are several advantages

associated with cloud technology across various domains. In [12], Jadeja

and Modi presented that cloud computing provides considerable features,

including cost reduction thanks to its scalability and pay-per-use char-

acteristics, globally accessible services, and efficient management as the

facilities maintenance is less complicated.

In addition to noticeable advantages, cloud computing, however, brings

the concerns of privacy and security. Cloud providers claim that they have

robust mechanisms and are reliable partners that safeguard customers’

data, but corporate users still hesitate since their important data may be

stored in the same cloud storage with their competitors. Moreover, the

possibility of attacks from service providers is also considered, which can

lead to data lost or unwanted changes. These also pose security threats,

as hackers tend to prefer using cloud to host running botnets with more

affordable prices [6].

The performance of cloud computing is remarkable; however, with the

growing of users and data generated, cloud resources are required to ad-

dress geographic and high-bandwidth, low-latency issues [25]. To solve

these problems, fog and edge computing were introduced.

2.2 Fog and Edge Computing

Together with cloud computing, there are several computing paradigms

that were introduced in recent years. This paper concentrates on three

popular concepts: cloud computing, fog computing, and edge computing.

In the previous section, this paper discussed the foundation background

of cloud computing. Subsequently, this paper focuses on fog and edge com-

puting concepts.

Fog computing, which was introduced by Cisco in 2012, extends the

cloud computing services to the edge of the network [4]. According to

OpenFog Consortium [1], "Fog computing is a system-level horizontal ar-

chitecture that distributes resources and services of computing, storage,

control and networking anywhere along the continuum from Cloud to

Things", which helps escalating the "velocity of decision making". Hence,

fog computing acts as an intermediary layer between traditional cloud

services and end devices, reducing reliance on centralized cloud resources,

and enabling faster decision-making at the edge of the network due to its

distributed processing capabilities.

While cloud computing is more focused on globalized services, fog com-

puting offers generous amount of nodes that are more localized. Latency

issues are reduced with fog computing as its nodes can be placed near

the source nodes [4, 25]. This is also a critical factor to distinguish be-

tween cloud and fog computing. With location advantage, fog computing

provides high-quality streaming delivery service with proxies and access

points [4]. For example, devices includes switch, router can be deployed

as a node. Those devices can be easily deployed regardless of the location,

as long as the network connection is available [7].

Yi et al. introduces the three-layer architecture formed by end users,

fog, and cloud, which provides service delivery and support several appli-

cations, such as big data analysis, web content delivery [24].

Another interesting computing paradigm is edge computing, which op-

erates at the edge of the Internet. Similar to fog computing, edge comput-

ing can handle latency and connectivity issues since it is located very close

to the IoT devices. It transitions cloud computing resources and storage

Cloud Fog End users

Figure 1. Three-layer hierarchical structure

to the edge of the network, which thus offers services address the require-

ments of data optimizing, security and privacy [5].

Cloud Fog Edge End users

Figure 2. Three-layer hierarchical structure + Edge

In general, the difference between the two paradigms is their scopes

and functionalities. Fog computing is defined to have a proper architec-

ture, and it offers networking, storage services, as well as management

and escalation from cloud to end users [1], whereas Edge computing is

more likely limited to computing at the edge. With this mechanism, data

can be processed without sent to cloud center, which helps reduce network

bandwidth as well as the energy consumption from computing devices.

Although fog and edge computing have brought significant improve-

ments, the role of cloud computing is incommutable. Fog and edge com-

puting are present to share the burden of cloud, and help manage the jobs

align with their scopes. Shi et al. [22] defined "edge as any computing and

network resources along the path between data sources and cloud data

centers".

2.3 Large-scale Data center

The expansion of cloud technology has been substantial, which unequivo-

cal requires a robust and resilient infrastructure. Data center have been a

critical element in providing innovation services of cloud computing. With

millions of cloud executions, cloud providers started to invest in hyper-

scale data centers providing servers that support cloud computing. In

general, large-scale data centers are hosts to cloud computing, which is

responsible for distributing large amount of data for applications, provid-

ing scalable and effective environments to support computing operations.

These large-scale data centers located in various locations from Asia

to Europe to North America assist these companies with the flexibility

to handle failures of servers and continue to provide stable services [19].

In a data center, multiple different computing systems can co-exist while

remain unobstructed. According to Barroso et al. [3], hyper-scale data

centers are significantly contrast to normal data centers: they use "a rela-

tively homogeneous hardware and system software platform, and share a

common systems management layer". Moreover, large-scale data centers

are usually from renowned organizations, such as Amazon, Google, Meta,

or Microsoft.

Figure 3. Server racks from Google WSC [11]

Due to the considerable size, data centers’ operations consume a signif-

icantly amount of electricity. Koomey [14] reported that energy consump-

tion in hyper-scale data centers costs the second-highest in operation ex-

penses. The energy consumption and CO2 emission from large-scale data

centers are particularly concerning, especially in recent years since global

warming is a growing challenge, and more people pay attention to sus-

tainable development.

3 Energy usage and carbon emission

As discussed, electricity usage of these large-scale data centers results in

substantial cost of energy, and carbon emission to the atmosphere. Bar-

roso et al. [3] stated that data centers account for "twice as much energy

as is needed" solely for operating. Greenpace [8] reported that data cen-

ters’ energy consumption could reach up to 1012 billion kWh by 2020,

marking a threefold increase from their energy usage in 2007.

Several metrics are available for measuring the electricity usage, and

one common metric is Power Usage Effectiveness (PUE) [2], which is the

ratio of the total energy used by a data center to the energy delivered to

IT equipment. Typically, a data center will have a PUE of 2.0, and it is ex-

pected to reduce when the data center has efficient energy infrastructure.

When conducting electricity to powering the servers, electricity losses

are inevitable. However, cooling systems are reported to responsible for

major energy usage. Figure 4 shows that the chillers can lose energy ap-

proximately three times greater than conducting power losses, approxi-

mately 25% of power losses [3].

Figure 4. Power losses in a traditional (legacy) data center [3].

Radovanović et al. [18] indicated that data centers have to enable "ef-

ficiency of IT, cooling and power supply altogether" to avoid energy inef-

ficiency. By optimizing cooling system power usage, the PUE can drop to

under 1.50. Although this is a useful criterion to assess if a data center

uses energy efficiently, PUE is not well adapted to the dynamic changes

of the nature [10]. Therefore, PUE value is suitable for reference and es-

timate purposes rather than considered as a strict standard to evaluate

energy-aware data centers.

In addition to the power usage of cloud computing in large-scale data

centers, fog computing also has the possibility to contribute to the rise of

energy consumption. In [21], Sarkar studied that in fog computing, the

number of requests needs to be redirected to the cloud computing is lin-

early correlated to the energy consumption. Moreover, the service place-

ment problem in fog and edge computing influence the power usage due

to several factors, including network traffic and computation load. Tasks

are not effectively distributed, such as placing intensive ones closer to the

edge, can result in the energy-hungry scenario, since energy is allocated

for processing and cooling. Since distances impact energy usage and node

energy efficiency varies, the positioning of computing resources holds sig-

nificance. As mentioned earlier, service placement refers to the strategic

allocation of computational tasks to fog nodes. This placement signifi-

cantly influences power usage due to factors such as network traffic and

workload distribution. Salaht et al. and Gasmi et al. provide in-depth

discussions on this crucial aspect in [7, 20].

The carbon emission from data centers is also a major matter. Re-

liance on fossil fuels for electricity generation significantly drives carbon

emissions, contributing to a harmful environmental impact. According

to The Climate Group [15], data centers globally emitted a significant

amount of carbon dioxide (CO2) in 2007, releasing 116 million metric tons

(MtCO2). Their report further suggests a potential rise in these emissions

to 259 MtCO2 by 2020, even with the recent advancements in data cen-

ter technology such as virtualization, cooling systems, and power supply

efficiency.

The calculation of carbon emissions involves determining the carbon

emissions linked to each energy source in addition to the overall energy

consumption. With this method, ones can also predict the carbon foot-

print by the pattern of energy usage. Google’s data centers have a one-day

forecast of resource usage to utilize energy distribution, therefore reduc-

ing costs and carbon footprint [18]. However, this can be difficult because

of the uncertainty. Factors such as fluctuating user demand, shifting ap-

plication workloads, and unexpected hardware failures, all of which can

disrupt energy consumption patterns despite efforts to forecast resource

usage.

The energy usage, operating costs, and emissions have affected not

only these top-tie technology companies, but also to the ecosystem. De-

spite the significant strides in technological innovation, the resulting en-

vironmental damages remain a pressing concern. To address the growing

demand, the focus should be on designing and building large-scale data

centers that are highly energy efficient.

4 Discussion

In the world where technologies are significantly growing yet accompa-

nied by substantial environmental damages, humans raise a question re-

garding the preservation of current conditions, and the possibility of heal-

ing the wounds that were industrially inflicted.

Efforts to address these challenges require comprehensive strategies

that balance technological advancement with environmental sustainabil-

ity. The path to a sustainable future demands collaborative efforts from

industries, governments, and communities. Several researchers and sci-

entists have been doing research and developments to minimize energy

consumption of large-scale computing, and maximize the sustainability

in the industry.

In the context of carbon emission, a major reason is the sources for

generating electricity. Fossil fuels are still heavily used, since renewable

sources are not always available due to weather condition. Recently, cloud-

service leading providers are improving upon this matter. By having mul-

tiple large-scale data centers in different locations, companies can dis-

tribute duty to data centers that are in advantageous geographical loca-

tion, where renewable energy is available. Renewable-powered data cen-

ter remains a challenge; nevertheless, it is a bright signal that more effort

is being directed towards sustainability initiatives.

Furthermore, upgrading IT equipment contributes considerably to re-

ducing electricity losses. Modern facilities with optimal component pro-

vide effective performance as well as minimize electricity usage. Green-

berg et al. [9] suggested that by running data centers in high tempera-

ture can reduce the amount of cooling, therefore save costs and energy.

Barroso also stated that keeping the data centers temperature in range

of 25oC and 30oC can benefit the chilling process [3]. Lee et al. [16] sug-

gested a proactive cooling systems management method for data centers.

By enabling proactive thermal management based on workload predic-

tion, this system empowers managers to prevent heat imbalances before

they impact temperature.

According to a study by Jalali et al. [13], deploying applications in

nano data centers can significantly improve their energy efficiency. The

researchers used a "flow-based" model to demonstrate that applications

that produce and distribute large amounts of data to users who access

it infrequently achieve the greatest energy savings. In addition, Green-

Cloud architecture is evaluated and recommended by Liu et al. [17]. The

authors claim that this novel architecture has successfully achieved the

goal of saving energy, and continue to provide low-latency performance

for applications with strict time constraints. A critical examination of the

methodology and principles behind Google’s Carbon-Intelligent Compute

management system has also shown a promising vision in achieving green

data centers and reducing carbon footprint [18].

5 Conclusion

This paper, as a literature review, has provided general background of

three popular computing paradigms: cloud computing, fog computing, and

edge computing. With focus on the energy consumption and the sustain-

ability of large-scale computers (large-scale data centers), the paper has

presented the growing challenge of large-scale data centers’ energy usage

and their impact on sustainability. The carbon emission of data centers

significantly affects the environment, which calls for immediate actions

towards protecting the ecosystem. Renewable energy must be maximized,

the management boards need to acknowledge the importance of efficiently

manage the operation of IT facilities, therefore can reduce over usage of

energy and carbon footprint. Beyond the methodologies explored in this

review, further methodologies have been documented in other relevant

literature. For instance, by using key words such as "Green data centers",

"carbon-aware data centers" can result in a diverse range of research in-

quiries and surveys regarding the discussed subject matter.

References

[1] Openfog consortium, openfog reference architecture for fog computing. On-
line, 2017. Available: https://www.openfogconsortium.org/ra/, February
2017.

[2] Victor Avelar, Dan Azevedo, Alan French, and Emerson Network Power.
Pue: a comprehensive examination of the metric. White paper, 49, 2012.

[3] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. The
datacenter as a computer: Designing warehouse-scale machines. Springer
Nature, 2019. doi: 10.1007/978-3-031-01761-2.

[4] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-
puting and its role in the internet of things. In Proceedings of the first edi-
tion of the MCC workshop on Mobile cloud computing, pages 13–16, 2012.
https://doi.org/10.1145/2342509.2342513.

[5] Keyan Cao, Yefan Liu, Gongjie Meng, and Qimeng Sun. An overview
on edge computing research. IEEE access, 8:85714–85728, 2020.
https://doi.org/10.1109/ACCESS.2020.2991734.

[6] Yanpei Chen, Vern Paxson, and Randy H Katz.
What’s new about cloud computing security. 2010.
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2010/EECS-2010-5.pdf.

[7] Kaouther Gasmi, Selma Dilek, Suleyman Tosun, and Suat Ozdemir. A
survey on computation offloading and service placement in fog computing-
based iot. The Journal of Supercomputing, 78(2):1983–2014, 2022.
https://doi.org/10.1007/s11227-021-03941-y.

[8] Make IT Green. Cloud computing and its contribution to climate change.
Greenpeace international, 83, 2010.

[9] Albert Greenberg, James Hamilton, David A Maltz, and Parveen Patel.
The cost of a cloud: research problems in data center networks, 2008.
https://doi.org/10.1145/1496091.1496103.

[10] Jordi Guitart. Toward sustainable data centers: a comprehensive energy
management strategy. Computing, 99(6):597–615, 2017.

[11] Keijo Heljanko. Presentation slides: Hadoop and big data, 03 2014.

[12] Yashpalsinh Jadeja and Kirit Modi. Cloud computing-concepts, architec-
ture and challenges. In 2012 international conference on computing, elec-
tronics and electrical technologies (ICCEET), pages 877–880. IEEE, 2012.
https://doi.org/10.1109/ICCEET.2012.6203873.

[13] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S
Tucker. Fog computing may help to save energy in cloud computing. IEEE
Journal on Selected Areas in Communications, 34(5):1728–1739, 2016.
https://doi.org/10.1109/JSAC.2016.2545559.

[14] Jonathan G. Koomey. Worldwide electricity used in data centers. Environ-
mental Research Letters, 3(034008):8pp, 2008.

[15] Jing Lan, Yuge Ma, Dajian Zhu, Diana Mangalagiu, and Thomas F Thorn-
ton. Enabling value co-creation in the sharing economy: The case of mobike.
Sustainability, 9(9):1504, 2017. https://doi.org/10.3390/su9091504.

[16] Eun Kyung Lee, Indraneel Kulkarni, Dario Pompili, and Manish Parashar.
Proactive thermal management in green datacenters. The Journal of Super-
computing, 60:165–195, 2012. https://doi.org/10.1007/s11227-010-0453-8.

[17] Liang Liu, Hao Wang, Xue Liu, Xing Jin, Wen Bo He, Qing Bo Wang, and
Ying Chen. Greencloud: a new architecture for green data center. In
Proceedings of the 6th international conference industry session on Auto-
nomic computing and communications industry session, pages 29–38, 2009.
https://doi.org/10.1145/1555312.1555319.

[18] Ana Radovanović, Ross Koningstein, Ian Schneider, Bokan Chen,
Alexandre Duarte, Binz Roy, Diyue Xiao, Maya Haridasan, Patrick
Hung, Nick Care, et al. Carbon-aware computing for datacen-
ters. IEEE Transactions on Power Systems, 38(2):1270–1280, 2022.
https://doi.org/10.1109/TPWRS.2022.3173250.

[19] Sherif Sakr, Anna Liu, Daniel M Batista, and Mohammad Alomari. A
survey of large scale data management approaches in cloud environ-
ments. IEEE communications surveys & tutorials, 13(3):311–336, 2011.
https://doi.org/10.1109/SURV.2011.032211.00087.

[20] Farah Ait Salaht, Frédéric Desprez, and Adrien Lebre. An overview of
service placement problem in fog and edge computing. ACM Computing
Surveys (CSUR), 53(3):1–35, 2020. https://doi.org/10.1145/3391196.

[21] Subhadeep Sarkar and Sudip Misra. Theoretical modelling of fog comput-
ing: a green computing paradigm to support iot applications. Iet Networks,
5(2):23–29, 2016.

[22] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge com-
puting: Vision and challenges. IEEE internet of things journal, 3(5):637–
646, 2016. https://doi.org/10.1109/JIOT.2016.2579198.

[23] Luis M Vaquero, Luis Rodero-Merino, Juan Caceres, and Maik Lind-
ner. A break in the clouds: towards a cloud definition, 2008.
https://doi.org/10.1145/1496091.1496100.

[24] Shanhe Yi, Zhengrui Qin, and Qun Li. Security and privacy issues of fog
computing: A survey. In Kuai Xu and Haojin Zhu, editors, Wireless Algo-
rithms, Systems, and Applications, pages 685–695, Cham, 2015. Springer
International Publishing.

[25] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fate-
meh Jalali, Amirreza Niakanlahiji, Jian Kong, and Jason P Jue. All one
needs to know about fog computing and related edge computing paradigms:
A complete survey. Journal of Systems Architecture, 98:289–330, 2019.
https://doi.org/10.1016/j.sysarc.2019.02.009.

Assessing the Efficacy of Slow HTTP
Attacks Against CDN Providers:
Mechanisms and Strategies

Nicholas Jovianto
nicholas.jovianto@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

Content Delivery Networks (CDNs) are crucial in the internet because they

optimize content delivery by improving speed and reliability for users glob-

ally. Despite their benefits, CDNs can be vulnerable to Denial of Service

(DoS) attacks. This paper describes CDN architecture and the security

challenges it might face with DoS attacks, specifically Slow HTTP attacks.

Slow HTTP attacks can be differentiated as Slow Headers Attack, Slow

Body Attack, and Slow Read Attack. This paper discusses the mechanism

of the Slow HTTP attacks, the characteristic of each attack, and their ef-

fect on the availability of the service. This paper will also conduct some

experiments to assess the efficacy of Slow HTTP attacks in several CDN

providers, such as Cloudfront, Fastly and GCore CDN. Moreover, this pa-

per discusses the experiment’s results in depth and some defence strategies

that can be used to improve CDN against these attacks.

KEYWORDS: Content Delivery Networks, Slow HTTP Attacks, Denial of

Service Attacks, Defense Strategies, Cybersecurity

1 Introduction

Content Delivery Networks (CDN) have become a significant solution for

improving web content delivery performance in this digital era [16]. CDN

works by efficiently distributing content, optimizing load times, ensuring

high availability, and providing security measures to improve user experi-

ence on the internet [14]. CDN has a robust geographically distributed in-

frastructure network worldwide with a multi-billion dollar market value

[15]. This value makes CDN often a target of cybersecurity attacks such

as Denial of Service (DoS) attacks.

One form of DoS attack in the CDN environment is the Slow HTTP

attack [19]. Three commonly known types of Slow HTTP attacks are

Slow Headers Attack, Slow Body Attack, and Slow Read Attack [20]. In

2020, Guo et al. [15] also mentioned a new type of attack like the Pre-

POST Slow HTTP Attack. It shows that Slow HTTP attacks keep evolv-

ing. These attacks reduce server capabilities by exploiting limitations in

HTTP connection handling. Slow HTTP attacks have become a particular

issue in CDNs because some attack types can still be performed in a CDN

environment.

Through a literature review, this paper aims to understand in-depth

mechanisms behind Slow HTTP attacks, their characteristics, and their

effect on the availability of services. Through the experiments, this pa-

per aims to observe the efficacy of each type of slow HTTP attack across

multiple CDN providers. Based on the literature review, this paper will

discuss some defence strategies to improve security that can protect web

services using CDNs to guarantee service integrity and availability.

This paper is organized as follows. Section 2 discusses the CDN archi-

tecture and its vulnerabilities towards the DoS attack. Section 3 discusses

the slow HTTP attack and its type. Section 4 presents the analysis of

each type of slow HTTP attack in the experiments and defence strategies

against these attacks. Section 5 ends the paper with a conclusion.

2 Content Delivery Network (CDN)

This section provides basic information about CDN, such as its architec-

ture, usage, and security challenges, such as the Denial of Service (DoS)

it might face.

2.1 CDN Architecture

Figure 1. Abstract architecture of CDN [14]

CDN is a robust geographically distributed infrastructure network de-

signed to deliver internet content faster by caching its content at multiple

locations closer to end-users [14]. Figure 1 illustrates how CDN archi-

tecture was designed to enhance the accessibility and effectiveness of the

content delivery process. The origin server is a critical component of this

architecture because it is a repository for the original content [18]. This

origin server is interconnected with many replicated edge server clusters

geographically dispersed across many regions.

These edge servers cache content initially stored on the origin server

[10]. Content request, such as images, web pages, or videos, is routed

to the edge server in the user’s nearest edge server rather than the ori-

gin server [17]. Consequently, latency is significantly reduced due to the

limited distance the data must travel.

The origin server will be contacted to retrieve the requested content if

the peripheral server cannot provide it [17]. After the content reaches the

edge, it is cached to be prepared for subsequent requests and delivered to

the user. This process ensures that the data that is most frequently ac-

cessed is situated in closer proximity to the user [14]. The implementation

of data replication across a large number of peripheral servers guarantees

both redundancy and expedited content delivery.

The service ensures continuous availability. In an outage or when one

of the peripheral servers reaches its maximum capacity to process traffic,

the request will be routed to the nearest edge servers [14]. Thus, beyond

merely facilitating content delivery, the primary aim of this CDN struc-

ture is to ensure its uninterrupted accessibility, notwithstanding periods

of high traffic volume or server malfunctions.

2.2 Security Challenge: Denial of Service (DoS)

Although CDN has a robust architecture against cybersecurity attacks,

Denial of Service (DoS) attacks still can provide CDNs with a security

challenge [9]. The objective of DoS attacks is to prevent their intended

users from accessing a machine or network resource by indefinitely inter-

rupting the operations of an internet-connected host. In the CDN system,

DoS attacks can be carried out by overwhelming the targeted system, such

as the edge server, with many requests or by exploiting vulnerabilities of

the CDN to crash the system.

DoS attacks come in various forms, targeting different parts of net-

work infrastructure or server resources. One form of the attacks in DoS

is slow HTTP attacks [11]. While many brute-force attacks flood systems

with requests, slow HTTP attacks are more insidious, relying on slug-

gishly sending incomplete or tiny data within requests. This attack relies

on the server’s effort to keep connections open while waiting for the com-

plete request. This approach can eventually exhaust server resources and

prevent legitimate users from accessing the service.

In a CDN system, a slow HTTP attacker can initiate and maintain nu-

merous slow connections to the server, severely slowing down or halting

legitimate traffic by exploiting the web server’s connection handling vul-

nerabilities. Suppose the attack happens in one of the peripheral servers

in CDN. In that case, it can create a domino effect and cause broader

network disruptions beyond the immediate target because they share the

same infrastructure. Although the attack on an edge server of a CDN can

have widespread effects, it is crucial to recognize that CDNs are inher-

ently equipped to handle a higher volume of requests, making the thresh-

old for causing disruption significantly more challenging to reach.

This attack may cause websites to experience extended loading peri-

ods. In more severe instances, the complete absence of websites or ser-

vices. Companies that depend on CDNs for e-commerce and content de-

livery may also incur financial losses as a consequence [13]. This attack

can affect the end-user experience and their trust in the service.

3 Slow HTTP Attack

A slow HTTP attack is one type of DoS attack [11]. It is a cyber tactic that

disrupts service by exploiting how websites handle data transfers. This

attack stretches out the time a website connection stays open to the max

while using as little bandwidth as possible. This sneaky move strains the

website’s resources, making it difficult for the server to process legitimate

user requests. The fallout from such an attack can range from noticeable

slowdowns in website performance to complete denial of access for users

who should rightfully be able to use the service.

There are three common categories of slow HTTP attacks: Slow Head-

ers Attack (Slowloris), Slow Body Attack (R-U-Dead-Yet), and Slow Read

Attack [20]. Each attack has unique characteristics or methods for attack-

ing the network. These attacks reduce server capabilities by exploiting

limitations in HTTP connection handling. The purpose of this attack is to

overwhelm the server with a long connection queue, which can slow down

or make the server unable to process any incoming requests. Although

Guo et al. [15] also mentioned a new type of attack like the Pre-POST

Slow HTTP attack, this paper will focus only on three categories men-

tioned earlier because the slowhttptest tools used for the experiment only

support those types of attacks.

3.1 Slow Headers Attack (Slowloris)

Slow Headers Attack, also known as Slowloris attack, is a slow HTTP at-

tack that sends an HTTP GET request with a partially incomplete header

and very slowly to the server [2, 6]. The attackers exploit this behaviour

to execute the DoS attack. This action leaves incomplete HTTP requests

in the server queue, making the server wait for incomplete header parts.

Moreover, the attacker can generate many requests to the server, making

it unable to handle any further requests. In the context of CDN, Guo et

al. [15] show that this attack is considerably old, and most of the CDN

providers have been able to detect and protect against this attack.

3.2 Slow Body Attack (R-U-Dead-Yet)

Slow Body Attack, also known as R-U-Dead-Yet (RUDY) attacks, is a type

of slow HTTP attack that focuses on the contents of the HTTP request or

body [4]. RUDY starts a POST request with a valid header, but it sends

the body of the request one byte at prolonged intervals. This action leaves

the server tied to one connection for long periods, and it finally consumes

some of the server’s resources, making it inaccessible to legitimate users.

In the context of CDN, Guo et al. [15] show that CDNs use two main

methods for forwarding POST requests to the origin server. This be-

haviour can differentiate Slow Body Attacks into POST and pre-POST

attacks based on CDN behaviour to handle it. One approach is to wait un-

til the entire POST message is received before forwarding, which ensures

complete data transfer but can introduce delays if the message body is

significant. The other approach, pre-POST forwarding, sends the request

to the origin server when the POST header is received and sends the mes-

sage body as it comes in. Pre-POST forwarding is considered faster, but it

allows an attacker to exploit this behaviour by keeping connections open

for extended periods, potentially leading to resource exhaustion on the ori-

gin server. This attack is still an issue for some CDN providers because it

can still be performed in the system.

3.3 Slow Read Attack

Slow Read attacks are a DoS attack that exploits the TCP connection flow

mechanism [7]. The attackers execute the attack by sending valid headers

and HTTP GET requests to the server but intentionally slow down the

server’s read response time. The attacker intentionally lowers their TCP

window rate. Thus, the server has to maintain an active connection for

a long time to wait for the read process to be done. In the CDN, Guo et

al. [15] showed that most of the CDN providers have been able to protect

against this attack.

4 Discussion

This section shows the experiment of each slow attack in several CDN

providers, the analysis of the experiment results, and the defence mecha-

nism strategies to improve the security of CDN from these attacks.

4.1 Experiment Setup

CDN providers have implemented several layers of protection to defend

their systems against DoS attacks, including slow HTTP attacks. This pa-

per explores whether slow HTTP attacks can still be executed on several

CDN providers by conducting real-case attack experiments. By evaluat-

ing the effectiveness of these attacks against modern CDN systems, this

paper aims to provide insights into the robustness of current protection

mechanisms regarding these attacks.

In 2020, Guo et al. [15] mentioned that the Slow Body HTTP attack

can occur on Cloudfront, Fastly, and MaxCDN. This paper uses this as a

reference when conducting experiments and tries to verify whether this

attack can still be performed in these CDN providers. Because MaxCDN

has transformed into Stackpath and its free plan is limited, this paper

proposed another CDN provider, Gcore CDN, to replace MaxCDN because

it also claims to protect against DoS attack [1, 3]. Finally, this paper will

use Cloudfront, Fastly, and Gcore CDN.

The experiments were conducted on a private Nginx web server cre-

ated in the DigitalOcean Virtual Machine (VM) using the Ubuntu 23.10

operating system. This paper utilizes the free plans as the main CDN ser-

vice plan for these experiments. Some configurations needed to be done on

the CDN provider side to support the experiments, such as adding the web

server domain to the management console and updating the name servers

on the provider domain’s DNS settings to reroute the traffic through their

services, thereby web server can utilize the CDN and its security features.

1 $ slowhttptest -H -u https://nichojovi.com/ -c 5000 -r 100 -l 600 -g -o

slowloris-test↪→

2 $ slowhttptest -B -u https://nichojovi.com/ -c 5000 -r 100 -l 600 -s 16384 -g

-o slowpost-test↪→

3 $ slowhttptest -X -u https://nichojovi.com/ -c 5000 -r 100 -l 600 -n 5 -z 32

-g -o slowread-test↪→

Listing 1. Commands used for the experiment

The experiments were running using the slowhttptest tools [5]. This

tool carries out standard low bandwidth application layer DoS for Slow

HTTP attacks. This tool will produce CSV and HTML files with test

statistics for further analysis. The commands used in the experiments

can be seen in Listing 1, and the settings of each experiment can be seen

in Table 1. The experiment will run with 5000 connections, 100 connec-

tions per second, and in a timeframe of 600 seconds. This setup is used

to observe the pattern of each attack for a longer time and with quite a

large number of requests. There are three commands for each type of

Slow HTTP Attack: -H for the Slow Header attack (Slowris), -B for the

Slow Post (RUDY) attack, and -X for the Slow Read attack.

Parameter Slow Header Slow Body Slow Read

Number of Connection 5000 5000 5000

HTTP Method GET POST GET

Content-Length Value 4096 16384 -

Extra data max length 68 66 -

Interval between follow up data 10 seconds 10 seconds -

Receive Window Range - - 1 - 512

Read rate from receive buffer - - 32 bytes / 5 sec

Connections per seconds 100 100 100

Timeout for probe connection 5 5 5

Target test duration 600 seconds 600 seconds 600 seconds

Table 1. Test settings of each type of Slow HTTP attack

4.2 Experiment Results: CloudFront

Figure 2. Test result of CloudFront

Figure 2 illustrates the effectiveness of a CDN provider, CloudFront, in

mitigating different types of Slow HTTP attacks. During the Slow Header

and Slow Read attacks, CloudFront’s defence mechanisms allowed the

server to manage 5000 GET connections by throttling some connections,

indicating a resilient system designed to handle high loads and maintain

the server’s availability. During the Slow Body attacks, CloudFront de-

fence mechanisms enabled the server to manage 5000 POST connections,

demonstrating an improvement in the system to handle great demands

while maintaining server availability.

Figure 3. Nginx server access log

Requests from the web server are also monitored through the Nginx

access log in the DigitalOcean cloud server. Figure 3 shows the sample

log from the Cloudfront in the Nginx server. As we can see, the 200

HTTP status code responses indicate that the request is successful, and

the 304 HTTP status code indicates that the response has been cached.

This method also monitors server availability and checks the server sta-

tus when the test occurs. During the test with Cloudfront, the Nginx

server ran smoothly without any disturbance.

4.3 Experiment Results: Fastly

Figure 4. Test result of Fastly

Figure 4 shows the effectiveness of Fastly in mitigating various types

of Slow HTTP attacks. During the Slow Header and Slow Read attacks,

CloudFront’s defence measures enabled the server to manage 5000 GET

connections by limiting some of them, demonstrating a resilient system

built to handle heavy loads while maintaining server availability. During

the Slow Body attacks, Fastly’s defence mechanisms enabled the server

to manage 5000 POST connections, demonstrating a resilient system de-

signed to handle great demands while maintaining server availability.

Fastly’s cache mechanism works in the Nginx access log, so only one initial

request was sent to the Nginx server regarding each experiment, which

indicates the rest of the request was cached on the CDN side.

4.4 Experiment Results: Gcore CDN

Figure 5. Test result of Gcore CDN

Figure 5 shows the efficiency of Gcore CDN in mitigating various types

of Slow HTTP attacks. During the Slow Header and Slow Read attacks,

Gcore CDN’s defence mechanism demonstrates a resilient system designed

to handle heavy loads while maintaining server availability. However,

this approach could have been more effective during the Slow Body at-

tack, when the server had significant issues with 5000 POST connections,

resulting in multiple downtimes. The web availability was assessed in

the browser, the Nginx access log, and the server status in the DigitalO-

cean VM to verify the downtime. The URL could not be accessed in the

browser, but no anomaly happened in the Nginx access log or server sta-

tus. These indicate that the downtime only happened in Gcore CDN and

did not reach the central Nginx server.

4.5 Experiment Analysis

Security against certain types of attacks is one of the critical factors in

CDN. CDN has implemented several protection systems to protect its sys-

tem from DoS attacks, specifically Slow HTTP attacks. Research in this

area has been conducted to observe CDN’s effectiveness against this at-

tack. Guo et al. [15] mentioned that Slow Body attacks, such as Pre-POST

Slow HTTP attacks, are still possible in CDN. In contrast, Slow Header

and Slow Read attacks should not be able to pass through the CDN.

Guo et al. [15] highlighted that while Slow Headers and Slow Read at-

tacks are generally mitigated, Slow Body attacks pose a significant chal-

lenge. Their research shows that CDNs can defend against slow header

attacks by forwarding requests after receiving the complete HTTP header

and halting slow read attacks due to the independence of CDN–originating

transmission from the attacker’s transmission. However, Slow Body at-

tacks present a significant challenge due to complexities in POST for-

warding decisions, which either delay forwarding until the entire message

is received or allow attackers to extend CDN–origin connections through

sequential POST message forwarding.

The current experiment reveals that Cloudfront and Fastly improve

the ability to handle all types of Slow HTTP attacks compared to the prior

studies. On the other hand, the new CDN provider used in this experi-

ment, Gcore CDN, only shows resilience against Slow Headers and Slow

Read attacks. However, it struggles significantly with Slow Body attacks.

This outcome aligns with prior findings and shows that their defences

could have been more effective against this attack. It highlights the criti-

cal need for ongoing improvements in Gcore CDN defence mechanisms to

handle these attack vectors effectively.

4.6 Defence Strategies

CDN is a highly adaptable framework that caters to the need for increased

internet usage, speed, reliability, and security in today’s interconnected

world. Because of this role, CDN was designed with a robust and safe

system architecture. CDNs incorporate several supplementary function-

alities into their infrastructures, one of which is load balancing [8]. This

load balancing mechanism spreads out the requests to CDN, among many

servers, to avoid overwhelming a particular server. The design of a CDN

also includes security features, e.g., caching, rate limiter, and monitoring

system, to safeguard its system against data breaches, DoS attacks, and

other security threats [18].

CDNs utilize several mitigation techniques to prevent DoS attacks,

including defences against Slow HTTP attacks [12]. Based on the ex-

periment result, most of the CDN providers involved in this experiment

handle Slow Header and Slow Read attacks well. However, slow body

attacks seem challenging for Gcore CDN because they still cause service

availability issues.

Guo et al. [15] suggested that CDN providers adopt a more secure

method of handling POST requests to handle Slow Body attacks, like the

store-then-forward approach used by Cloudflare. The store-then-forward

approach mitigates the Slow Body attacks by requiring a CDN to wait

until the entire POST request body is received before forwarding it to

the origin server. This strategy prevents attackers from exploiting CDN

behaviour to exhaust connection limits at the origin, protecting against

slow HTTP DoS attacks that aim to deplete server resources.

Despite these defensive mechanism strategies, DoS attacks persis-

tently progress as malicious actors uncover methods for bypassing secu-

rity protocols. Consequently, CDNs have a responsibility to modify their

strategies consistently. CDN must construct defensive systems to protect

against service interruptions such as DoS attacks and guarantee perfor-

mance and availability despite persistent attacks.

5 Conclusion

CDNs are frequently utilized to enhance the efficiency and security of

web applications. Despite their comprehensive features, CDNs still have

inherent weaknesses, such as the flaw in handling HTTP connections that

slow HTTP attackers usually use to perform the attack. The paper high-

lights that CDNs, such as Cloudfront, Fastly and Gcore CDN, need to

continually evolve their defence mechanisms against Slow HTTP attacks,

especially Slow Body attacks. Despite existing protections, Slow Body at-

tacks remain potent, exploiting specific vulnerabilities within CDN archi-

tectures. The paper shows the importance of adopting advanced strate-

gies to enhance CDN resilience, such as the store-then-forward approach.

The ongoing challenge posed by DoS attacks necessitates constant im-

provement in security measures to ensure CDN service’s uninterrupted

performance and availability amidst evolving digital threats.

References

[1] Global ddos protection service. https://gcore.com/ddos-protection. Accessed:
2024-03-18.

[2] Hijacking web 2.0 sites with sslstrip and slowloris. https://www.security-

portal.cz/blog/hijacking-web-20-sites-sslstrip-and-slowloris. Accessed:
2024-03-24.

[3] Maxcdn is now stackpath. https://www.stackpath.com/maxcdn/. Accessed:
2024-03-18.

[4] R u dead yet? (r.u.d.y.) attack. https://www.cloudflare.com/learning/ddos/ddos-
attack-tools/r-u-dead-yet-rudy/. Accessed: 2024-02-24.

[5] slowhttptest(1) - linux man page. https://linux.die.net/man/1/slowhttptest.
Accessed: 2024-02-29.

[6] Slowloris ddos attack. https://www.cloudflare.com/learning/ddos/ddos-
attack-tools/slowloris/. Accessed: 2024-02-24.

[7] What is a low and slow attack. https://www.cloudflare.com/learning/ddos/ddos-
low-and-slow-attack/. Accessed: 2024-02-24.

[8] Yun Bai, Bo Jia, Jixiang Zhang, and Qiangguo Pu. An efficient load
balancing technology in cdn. In 2009 Sixth International Conference on
Fuzzy Systems and Knowledge Discovery, volume 7, pages 510–514, 2009.
https://doi.org/10.1109/FSKD.2009.130.

[9] Jianjun Chen, Jian Jiang, Xiaofeng Zheng, Haixin Duan, Jinjin Liang, Kang
Li, Tao Wan, and Vern Paxson. Forwarding-loop attacks in content delivery
networks. 2016. https://doi.org/10.14722/ndss.2016.23442.

[10] Michael D. Dahlin, Randolph Y. Wang, Thomas E. Anderson, and David A.
Patterson. Cooperative caching: Using remote client memory to improve file
system performance. In First Symposium on Operating Systems Design and
Implementation (OSDI 94), Monterey, CA, Nov 1994. USENIX Association.

[11] A. Dhanapal and P. Nithyanandam. The slow http distributed denial of
service attack detection in cloud. Scalable Computing, 20(2):285 – 298,
2019. https://doi.org/10.12694/scpe.v20i2.1501.

[12] Maurizio D’Arienzo and Serena Gracco. A survey on cdn vulnerability to dos
attacks. International Journal of Computer Networks and Communications,
15(5):127 – 145, 2023. https://doi.org/10.5121/ijcnc.2023.15508.

[13] Seyed K. Fayaz, Yoshiaki Tobioka, Vyas Sekar, and Michael Bailey. Bo-
hatei: Flexible and elastic ddos defense. pages 817 – 832, 2015.
https://api.semanticscholar.org/CorpusID:1681696.

[14] Milad Ghaznavi, Elaheh Jalalpour, Mohammad A. Salahuddin, Raouf
Boutaba, Daniel Migault, and Stere Preda. Content delivery network secu-
rity: A survey. IEEE Communications Surveys Tutorials, 23(4):2166–2190,
2021. https://doi.org/10.1109/COMST.2021.3093492.

[15] Run Guo, Weizhong Li, Baojun Liu, Shuang Hao, Jia Zhang, Haixin Duan,
Kaiwen Shen, Jianjun Chen, and Ying Liu. Cdn judo: Breaking the cdn dos
protection with itself. 2020. https://doi.org/10.14722/ndss.2020.24411.

[16] Maryan Kyryk, Maryana Pleskanka, and Nazar Pleskanka. The
efficiency and productivity of the cdns. pages 270 – 273, 2017.
https://doi.org/10.1109/AIACT.2017.8020117.

[17] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The aka-
mai network: A platform for high-performance internet applications.
SIGOPS Oper. Syst. Rev., 44(3):2–19, Aug 2010. https://doi-
org.libproxy.aalto.fi/10.1145/1842733.1842736.

[18] Behnam Shobiri, Mohammad Mannan, and Amr Youssef. Cdns’
dark side: Security problems in cdn-to-origin connections. ACDM
Journals - Digital Threats: Research and Practice, 4(1), Mar 2023.
https://doi.org/10.1145/3499428.

[19] Hengxian Song, Jing Liu, Jianing Yang, Xinyu Lei, and Gang Xue. Two
types of novel dos attacks against cdns based on http/2 flow control mech-
anism. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13554
LNCS:467 – 487, 2022. https://doi.org/10.1007/978-3-031-17140-6_23.

[20] Suroto Suroto. A review of defense against slow http attack. JOIV
: International Journal on Informatics Visualization, 1:127, 11 2017.
https://doi.org/10.30630/joiv.1.4.51.

Review of current k-means and k-median
clustering research

Niilo Heinonen
niilo.i.heinonen@aalto.fi

Tutor: Parinya Chalermsook

Abstract

This paper provides an analysis of k-means and k-median clustering,

two central algorithms in the study of centroid-based clustering. Despite

their intuitive appeal and widespread application across various domains,

both problems present significant computational challenges, mostly due

to their NP-hard nature. We review the current landscape of approxima-

tion algorithms, focusing on recent advancements that have improved up-

per bound guarantees for these clustering problems. Our exploration cov-

ers Fixed Parameter Tractable (FPT) algorithms and the limitations of

polynomial-time algorithms. Through an examination of the latest break-

throughs, particularly the work by Cohen-addad et al., we highlight the

evolving efficacy of algorithmic solutions in overcoming the complexities

inherent in k-means and k-median clustering.

KEYWORDS: clustering, k-median, k-means

1 Introduction

In the context of computer science, clustering most often refers to the task

of grouping objects (often data points) into clusters where members of one

cluster share more similarities with each other than with members of an-

other cluster. There are multiple optimization goals within the clustering

domain, and a good solution for one problem might be sub-optimal for

another. Therefore, users must choose a goal that best fits their specific

needs.

While the tasks are often quite intuitive and easy to understand, solv-

ing them tend to be demanding. Most clustering tasks are NP-hard [11],

meaning that there is no general, computationally efficient algorithm to

find an optimal solution. This in turn has lead to the development of

different algorithms that try to approximate solutions to different cluster-

ing problems. As a field of study, clustering is primarily concerned with

improving these algorithms to both efficiently and accurately accomplish

these different clustering tasks.

These approximation algorithms are used in various applications, rang-

ing from image segmentation and compression [9] to market segmenta-

tion [4] and data mining [12]. Improving algorithms coupled with the

continuous growth of computing power has rendered many previously de-

manding clustering problems feasible, thereby expanding the range of ap-

plications that utilize this field. Notably, advances in machine learning [6]

have spurred great interest in improving algorithms for k-means and k-

median problems, as they serve as a fundamental building block for many

types of AI technologies, and in this paper we take a closer look to these

two problems.

2 Background

2.1 Introduction to Clustering

Consider the well-known k-center problem, where a town with n houses

seeks to optimally allocate resources for constructing k fire stations. The

objective is to select cluster centers in a manner that minimizes the max-

imum distance from any house to a fire station, formally defined as:

Φkcenter(C) =
k

max
j=1

max
ai∈Cj

d(ai, cj)

2.2 Centroid-based Clustering Problems

This paper focuses on two problems within the centroid-based clustering

family, characterized by:

Given a dataset of n points in a metric space and a predefined constant

k, centroid-based clustering seeks to identify a set of k points as cluster

centers. In discrete problems, centers must be selected from the input

dataset, whereas in continuous problems, centers can occupy arbitrary

positions within the space. Following center selection, data points are

assigned to the nearest center, and the aim is to minimize the cost of the

chosen k-centers configuration.

Drawing an analogy to the k-center problem, where centers are likened

to fire stations, the centers in k-means and k-median problems can be

compared to grocery stores. The influence of outliers is mitigated unless

their prevalence justifies establishing a new center, thereby optimizing

the solution.

k-means

The k-means objective is to minimize the sum of squared distances from

data points to their nearest cluster center, mathematically represented

as:

Φk-means(C) =
k∑

j=1

∑

x∈Cj

∥x− c∥2

where X denotes the set of all points, and C represents the chosen

centers.

k-median

Contrarily, the k-median problem aims to minimize the sum of distances

from each dataset point to its nearest center, defined as:

Φk-median(C) =

k∑

j=1

∑

ai∈Cj

∥x− c∥

Differing from k-means, the k-median problem’s focus on median dis-

tances enhances its robustness to outliers and variable cluster sizes, ren-

dering it more suitable for certain applications.

Lloyd’s Algorithm

The Lloyd’s algorithm, often noted as naive “k-means algorithm”, is a

greedy approximation algorithm that finds a local optimum for the k-

means problem.

The algorithm is built as follows:

1. Start with k centers.

2. Cluster each point with the center nearest to it.

3. Find the centroid of each cluster and replace the set of old centers with

these centroids.

4. Repeat the above two steps until the centers converge according to

some criterion, such as when the k-means score (the sum of squared

distances from each point to its nearest center) is no longer improving.

The Lloyd’s algorithm is guaranteed to find a local optimum, but not

necessarily a global one. While it has served as an important foundation

for the whole field, its performance can be sensitive to the initial place-

ment of the centroids and it often struggles with clusters of varying sizes

and densities, or non-spherical shapes.

2.3 Applicability of k-means and k-median

In their book [3], the authors denote that the k-means is more often used

on data spanning the d-dimensional Euclidean space Rd, while the k-

median is preferred when clustering is done on graphs where distances

don’t necessarily follow the Euclidean norm. In the k-means problem

where distance squared is the optimization criterion, given a set of points

that belong to a cluster the best center for that cluster is the centroid of

the points, which makes it the natural choice for clustering in Rd.

3 Recent Developments

Recent algorithmic advancements have demonstrated that techniques ben-

eficial to k-means clustering can often be adapted for k-median clustering,

and vice versa, motivating a unified study of these problems. The essence

of approximation algorithms is to refine the upper bounds of solutions,

aiming to minimize the worst-case scenario relative to the optimal solu-

tion. While achieving a near-perfect clustering solution might meet the

approximation criteria, it would entail a computational complexity nearly

identical to that required for an optimal solution, which is exponential

in terms of the input size for k-median and k-means clustering. Conse-

quently, research in approximation algorithms categorizes them based on

their time complexities, focusing on varying constraints.

3.1 FPT Algorithms

Fixed Parameter Tractable (FPT) algorithms belong to a complexity class

where the runtime may exhibit super-polynomial growth solely in rela-

tion to a specific parameter (k in this context), denoted as f(k, ε)nO(1).

The polynomial growth of terms dependent on the input size ensures the

tractability of FPT algorithms for instances where k remains relatively

small.

A notable 2019 study [7] presented an algorithm that approximates k-

median and k-means with factors of (1+2/e+ε) (≈ 1.736) and (1+8/e+ε)

(≈ 3.943), respectively. This study also asserted that, under prevailing

complexity-theoretic conjectures, no FPT-time algorithm could surpass

these approximation factors. However, this conclusion pertains specifi-

cally to general metric spaces, and the study acknowledges that tighter

approximations are achievable within Euclidean spaces, even under more

stringent time complexities.

3.2 Polynomial Time Algorithms

Polynomial time complexity represents a stricter criterion compared to

FPT, as it precludes exponential growth in terms of any input variable

(e.g., n3 is permissible, but 3n is not). Achieving effective approximations

within polynomial time is feasible in more constrained metric spaces, par-

ticularly in Euclidean spaces. As elaborated upon in the 2019 study [6],

while efficient approximation algorithms have been developed for certain

scenarios (such as when k or dimension d is fixed), the most challenging

and pertinent cases involve k and d as variable inputs. Consequently, po-

tential algorithms cannot rely on run-times that exponentially depend on

these variables.

Recent studies have delineated the inapproximability limits for polynomial-

time algorithms, establishing that it is not feasible to achieve arbitrarily

precise approximation guarantees. Specifically, in the discrete scenario,

k-means and k-median clustering face approximation limits of 1.17 and

1.07 under the assumption that P ̸= NP, and 1.73 and 1.27, respectively,

assuming the Johnson-Coverage hypothesis. For continuous scenarios,

these limits adjust to 1.06 and 1.015 under P ̸= NP, and 1.36 and 1.08

with the Johnson-Coverage hypothesis [5] [8].

The well-known Lloyd’s algorithm, introduced earlier 2.2, provides a

simple heuristic for the k-means problem. However, its simplicity be-

lies potential inefficiencies and the risk of sub-optimal solutions, lack-

ing a guaranteed approximation bound, the solutions might be arbitrarily

more expensive than optimal, and potentially failing to converge in poly-

nomial time [2]. This has spurred extensive research into more robust

algorithms.

As of 2021, the most effective polynomial-time algorithms for cluster-

ing problems in Euclidean spaces, offering approximation guarantees of

5.912 for k-means and 2.406 for k-median, were introduced by Cohen-

addad et al. [6]. This research improved upon the foundational work by

Ahmadian et al. in 2017 [1], which itself marked a significant advance-

ment from the best-known k-means approximation factor of 9 + ϵ, estab-

lished in 2004 by Kanungo et al. [10].

4 Conclusion

This paper has explored the intricacies of k-means and k-median clus-

tering, two pivotal problems within the domain of centroid-based cluster-

ing. We began by outlining the fundamental nature of clustering tasks

in computer science and progressed through a detailed examination of

the k-means and k-median problems, highlighting their significance, chal-

lenges, and applications.

Our discussion underscored the continuous advancement in algorith-

mic strategies aimed at improving the approximation guarantees for k-

means and k-median clustering. We identified the role of FPT algorithms

in addressing these challenges, offering scalable solutions under specific

parametric constraints. Moreover, we illuminated the limitations inher-

ent in polynomial-time algorithms, presenting the current boundaries of

approximation as defined by recent inapproximability results.

Significantly, our review of recent developments revealed a promising

trajectory of research, wherein innovations in algorithmic design have led

to more efficient and effective solutions for these longstanding problems.

The breakthroughs by Cohen-addad et al., building upon prior work by

Ahmadian et al. and others, mark a pivotal advancement in the field, of-

fering enhanced approximability guarantees and setting new benchmarks

for future research.

In conclusion, k-means and k-median clustering continue to be at the

forefront of research in data science and machine learning, serving as

fundamental tools for data analysis and interpretation. The ongoing evo-

lution of approximation algorithms for these problems not only broadens

their applicability but also deepens our understanding of the underlying

mathematical and computational principles. As we move forward, it is

imperative to continue this trajectory of innovation, further pushing the

boundaries of what is computationally feasible while striving for the most

effective and efficient clustering solutions.

References

[1] Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward.
Better guarantees for k-means and euclidean k-median by primal-dual al-
gorithms, 2017.

[2] D. Arthur and S. Vassilvitskii. How slow is the k-means method? Proceed-
ings of the Annual Symposium on Computational Geometry, 2006:144–153,
01 2006.

[3] Avrim Blum, John Hopcroft, and Ravi Kannan. Foundations of Data Sci-
ence. 01 2020.

[4] Chui-Yu Chiu, Yi-Feng Chen, I-Ting Kuo, and He Chun Ku. An intelligent
market segmentation system using k-means and particle swarm optimiza-
tion. Expert systems with applications, 36(3):4558–4565, 2009.

[5] Vincent Cohen-Addad and Karthik C.S. Inapproximability of clustering in
lp metrics. In 2019 IEEE 60th Annual Symposium on Foundations of Com-
puter Science (FOCS), pages 519–539, 2019.

[6] Vincent Cohen-Addad, Hossein Esfandiari, Vahab Mirrokni, and Shyam
Narayanan. Improved approximations for euclidean k-means and k-
median, via nested quasi-independent sets. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022,
page 1621–1628, New York, NY, USA, 2022. Association for Computing
Machinery.

[7] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and
Jason Li. Tight fpt approximations for k-median and k-means, 2019.

[8] Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. Johnson coverage
hypothesis: Inapproximability of k-means and k-median in lp metrics, 2021.

[9] Nameirakpam Dhanachandra, Khumanthem Manglem, and Yambem Jina
Chanu. Image segmentation using k -means clustering algorithm and sub-
tractive clustering algorithm. Procedia Computer Science, 54:764–771,
2015. Eleventh International Conference on Communication Networks,
ICCN 2015, August 21-23, 2015, Bangalore, India Eleventh International
Conference on Data Mining and Warehousing, ICDMW 2015, August 21-23,
2015, Bangalore, India Eleventh International Conference on Image and
Signal Processing, ICISP 2015, August 21-23, 2015, Bangalore, India.

[10] Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Pi-
atko, Ruth Silverman, and Angela Y. Wu. A local search approximation
algorithm for k-means clustering. Computational Geometry, 28(2):89–112,
2004. Special Issue on the 18th Annual Symposium on Computational Ge-
ometry - SoCG2002.

[11] Adam Letchford. Approximation algorithms: Vv vazirani, springer-verlag,
2001. xix + 378 pp. 34.95 isbn:3-540-65367-8. Journal of the Operational
Research Society, 53:807–808, 07 2002.

[12] Junjie Wu. Advances in K-means clustering: a data mining thinking.
Springer Science & Business Media, 2012.

Empowering the Edge: Innovations and
Challenges in User-Provided
Infrastructure

Olaus Lintinen
olaus.lintinen@aalto.fi

2.4.2024

Tutor: Sara Ranjbaran

Abstract

Fog and edge computing have received a great deal of attraction in recent

years. These technologies promise to reduce latency for time critical appli-

cations and provide better quality of service for users. Several interesting

research papers have been released during the past decade and various

models for utilizing edge and fog networks have emerged. Resource shar-

ing networks consisting of internet-of-things devices are seen promising.

Although studies have found the technology and models to deliver promis-

ing results, there exists a need for proof-of-concepts and innovation. The

proposed models displayed in this paper share insight into potential future

implementations. It was found that these models complement each other

in ways that when combined could enhance the quality of service signifi-

cantly.

Moreover, this paper conducts a literature review on timely research of

User-Provided Infrastructure by going through proposed models for utiliz-

ing edge and fog paradigms. Furthermore, technical, and incentive chal-

lenges and future study directions are explained and explored.

KEYWORDS: Internet of Things, Edge, Fog, User-Provided Infrastructure,

Low Latency

1 Introduction

In recent years, edge computing has shown significant potential as an

alternative to traditional cloud computing paradigm [1], [2], [3].

The hopes for enhanced quality of service seem to be filled as the study

into edge computing and internet of things (IOT) advances. This research

has sprouted an interest in studying whether mobile IOT devices were

able to form federations for even greater benefit, like the change from

cloud to edge computing. Although the topic is still relatively novel, stud-

ies have shown exciting potential in these types of paradigms [1].

Furthermore, as data processing and prediction integrates more to

consumer products, there is a growing need for lower latency networks

[3]. By moving things from cloud to the edge of the network, or even to

the fog, we could harness the untapped computing power of heterogeneous

device pool, ranging from smartphones to cars to embedded IOT devices.

Although these technologies promise remarkable benefits and enhance-

ments to our current digital lives, they have yet to deliver their full poten-

tial. While the field of edge and fog has a robust background in science,

it is still met with the challenges of implementing novel technologies in

real world applications. To overcome these challenges, there persists a

need for more research with a focus on proof-of-concepts (POC) and inno-

vations.

This paper aims to explore and introduce recent studies, discoveries

and inventions related to User-Provided-Infrastructure (UPI). In the fol-

lowing sections, the paper first covers some core concepts, after which it

will introduce some proposed models for utilizing edge and fog networks

for UPI, and lastly it will go over some of the challenges. In the end,

there will also be a discussion based on the findings of this paper and a

conclusion on what further studies should focus on.

2 Core Concepts

In this section, the paper briefly explains the core concepts and paradigms

around edge and fog computing and how they differ from each other.

First the concept of cloud is introduced, following description of IOT, after

which, the basics of edge and fog computing are covered. Overall, this

section aims to create a base line understanding of the building blocks of

User-Provided infrastructure.

2.1 Cloud

As of now, cloud is a more popular choice for hosting various applications,

storage, and computing power than ever [4]. The change from mainte-

nance requiring, difficult to scale when the needs, on-premises data cen-

ters (DC) has been ongoing for the past decade or two. The clear ad-

vantages of cloud over traditional own DC have made it, with its vast

selection of pre-built applications and infrastructure, mostly uncontested

when it comes to computing. However, due to the usual, distant location of

the DCs, the latency associated with cloud is usually significantly greater

than closer deployed solutions.

Modern lives, be they at home or at the supermarket, are monitored

on a vast scale. This monitoring is powered with an assortment of sensors

working together. The data collected is further used for data analysis to

yield predictions on human behavior, weather, and so on. For such sys-

tems to work in real time, the need for low latency is a key. The solution

proposed for this challenge is to, in certain cases, move back from the

cloud to the edge or even to the fog. These terms will be explained in the

later sections.

2.2 Internet of Things

IOT refers to a network of interconnected devices with sensors, and com-

puting power, that communicate between each other. The core idea around

IOT is the introduction of smart systems, e.g., smart homes, where an as-

sortment of connected sensor devices could enhance the experience, in this

case living, by providing more optimization from the data collected. IOT

as a term did not exist before Kevin Ashton proposed it in 1999. [5] More-

over, IOT devices are strongly linked edge and fog paradigms since both

utilize a network of interconnected devices. This connection of different

technologies will be touched upon in later sections.

2.3 Edge

The term edge computing refers to, as the name suggests, the area of the

network which is at the "edge" of the cloud. Bringing computing and con-

tent closer to the end-user lowers the latency providing users better qual-

ity of service (QOS) in terms of faster internet connectivity and greater

efficiency in data processing. In addition to that, edge computing also of-

fers location awareness, which for some delay-sensitive use cases, might

enhance their efficiency. [6] Moreover, as the consumption of internet con-

tent is increasing annually, especially on Over-the-top (OTT) platforms

[7], there exists a growing need for edge network applications, such as

content delivery networks (CDN).

2.4 Fog

Fog computing, first introduced by Cisco [8], is a cloud computing paradigm

which extends from the idea of edge computing. It offers even lower

latency compared to edge computing with enhanced mobility and wide-

spread geographic distribution. Use cases of fog range from connected

vehicles to smart grids and various wireless sensor systems. During the

past decade, fog computing has been a raising topic in scientific studies

[1], [3], [8], [9].

Especially the interest for low latency applications has accelerated the

research for creating models for utilizing fog computing. Although it is a

decade old concept, there have not been significant successes so far. How-

ever, as technology offers, in certain situations, great advantages over

the traditional cloud computing paradigm, it is an appealing topic for re-

searchers and entrepreneurs.

3 Proposed Models

Although the idea of UPI has been around for some time, it has been lack-

ing a working model to implement it for real world applications. While

some companies have tried implementing this concept, a great break-

through has yet to emerge. In this section, the paper aims to display some

of the proposed models and frameworks for better utilization of edge and

fog.

3.1 3C Recourse Sharing Framework

The 3C framework works by efficient utilization of device-to-device (D2D)

connections among mobile devices. This model proposes that with the

formation of co-operative groups, mobile devices can experience enhance-

ment in efficiency in accomplishing tasks. Although resource sharing

schemes have been proposed before, the key factor setting 3C framework

apart from the previous ones is that it considers all three of the resources

mobile devices may share, communication, computation, and caching. The

article proposing 3C framework, found that energy consumption of par-

ticipating devices was significantly reduced. With many mobile devices

having small battery lives, energy efficiency brings more flexibility to the

fog network as it provides greater mobility opportunities. The 3C frame-

work’s advantage is that it can utilize a heterogeneous pool of devices

which enables better resource allocation for different tasks. For example,

some devices might possess more storage than others and some might

have faster and more stable internet connection. Therefore, the frame-

work allows these resource rich devices to utilize the overhead they have

on those resources. [2]

In addition to providing novel framework for resource sharing, the re-

searchers also outline potential issues and challenges. These include in-

centive schemes, security and privacy, and the need for carefully designed

software and protocols. [2] These challenges will be covered in more detail

in later sections.

3.2 Hierarchical Mobile Edge Computing

In a paper published in 2017, Kiani and Ansari propose a hierarchical

model for mobile edge computing called Hierarchical Mobile Edge Com-

puting (HI-MEC). This model utilized different tiers of cloudlets, a com-

puter which is trusted, has good connectivity, and is resource rich [10], to

offer lower latency for mobile users. The model proposes that there should

exist three tiers of cloudlets, field, shallow, and deep, where cloudlets fur-

ther from the mobile users have more resources associated with them. [3]

The HI-MEC architecture aims to efficiently distribute the workloads

from mobile users to different tiers of cloudlets. In case the user demand

is greater in the field cloudlet than what its resources can handle, the

workload can be moved up in the chain to higher level cloudlets to take

care of. This system of delegating workloads to different cloudlets helps

to manage demand fluctuations in the network. [3]

The paper suggests that service providers should consider an auction-

based pricing model to offer more flexibility. This is important in the

sense that well designed pricing schemes can benefit both the users and

providers as they could bring more users while for the user it can mean

cheaper prices. Moreover, for mobile users, HI-MEC can provide oppor-

tunities for offloading certain mobile applications to cloudlets which in

turn can have, as discussed earlier, an impact in their device’s battery

life. Furthermore, the paper found that the proposed hierarchical model

could efficiently allocate resources to MEC network. [3]

3.3 MIFaaS

Mobile-IoT-Federation-as-a-Service (MIFaaS) is a model proposed by Far-

ris et al. in their 2017 paper that aims for more efficient utilization of

resources in a pool of heterogeneous devices. As the user requirements

can differ, so do the resources that certain devices can offer. [1] For exam-

ple, a smart phone may have a great internet connectivity, but it may lack

processing power and storage whereas a smart car could house more stor-

age and better computational resources. Mobile devices of the passengers

could then lend their network access to the smart car and the car could

borrow its processing power to the smartphones.

Moreover, the paper suggests that instead of the typical device-oriented

models, devices could participate in a formation of federations, where all

the resources of participating devices would be shared. Although partici-

pating devices have their self-interests involved, the paper explains that

by utilizing of game theoretic model with Nash-stable solution the MI-

FaaS model can deliver better results when comparing to device-oriented

solutions where little to no cooperation exists. [1]

4 Challenges

Although the edge, fog, and the showcased models show enormous poten-

tial in resource sharing capabilities and reduced latency, there are certain

challenges that must be overcome before full advantages of these tech-

nologies can be realized. The challenges faced can be divided into techni-

cal and social challenges, where technical challenges consist of physical,

or software related issues and social challenges are related to incentive

schemes. In the next two subsections, this paper aims to delve deeper

into the challenges these technologies are facing.

4.1 Technical Challenges

Although POCs of the showcased models and frameworks have been suc-

cessful, there are still technical challenges to overcome. For example, soft-

ware and protocols should be designed to be compatible with devices re-

gardless of the vendor and solutions regarding security and privacy need

to be robust since IOT devices may contain and process user related data

[1], [2]. Moreover, a that persist but which is intertwined with incentive

challenges, is device discovery. Resource sharing being the fundamental

building block of UPI frameworks is dependent on the heterogeneous pool

of devices. A lack of, for example storage resources, could mean that cer-

tain devices would not gain anything from participating in a cooperative

resource sharing scheme.

4.2 Incentive Challenges

While resource sharing frameworks offer enhanced user-experiences [2],

[1], [3], the problem of convincing users to adapt these technologies ex-

ists. As these models for resource sharing might degrade the users own

user-experience by, for example, reducing bandwidth of the network con-

nection, introducing additional costs regarding network connectivity, and

increase the energy consumption with energy scarce devices, it does not

make it appealing for users [11]. Furthermore, if users are not fairly com-

pensated for participating in the resource sharing pools, they might be left

with the feeling that they are not receiving enough resources in exchange

for their resources. Moreover, clients, hosts, and services providers may

have conflicting interests [11].

A significant challenge will turn out to be convincing users to adopt

the technology. This adaptation may be aided by implementing the tech-

nology so that it already exists in the user’s devices from the moment they

purchase them. If the benefits offered are clear and the reward schemes

are see-through, users will be more willing to get involved and start us-

ing the technology. Furthermore, blockchain technology could be utilized

for creating trustworthy rewarding schemes with traceable history of re-

source sharing interactions.

5 Discussion

The fog computing paradigm has developed significantly during the past

decade after the term fog was first introduced [8]. Since that, several

models have been proposed to take advantage of the promises fog com-

puting aims to deliver. The models and frameworks displayed earlier are

examples of how these technologies can be utilized.

Although the displayed models overlap with the technologies used,

they are aimed at solving different challenges. The 3C resource shar-

ing framework introduces a model for increasing the number of different

resources which participating devices could leverage. The paper about

HI-MEC model proposes a hierarchical tiering model for several levels

of cloudlets where tasks requiring heavier computational resources could

be delegated to more powerful cloudlets. Furthermore, MIFaaS model

suggests that devices could form federations to pool resources for shar-

ing purposes. Therefore, the displayed models do not compete but rather

complement each other’s functionality and achievements.

All the displayed models show exciting potential for providing the re-

sources needed for ever more powerful mobile machines. However, as of

today, this field of technology still lacks major success regarding success-

ful companies. Regardless of that, this field of networking has a great

scientific foundation which offers excellent opportunities to build things

on.

6 Conclusion

This paper’s aim was to gather existing information about UPI in the style

of a literature review and propose new directions for research and innova-

tion. The paper displayed three proposed models for UPI utilization and

discussed the challenges faced by different proposed models and frame-

works. Although the models presented in this paper have significant po-

tential behind them, there have not been seriously successful use-cases

presented to be solved by fog paradigms. Therefore, this paper concludes

that more POCs and innovative companies, focusing on fog computing and

UPI, are necessary steps for the future. Moreover, this paper strongly

encourages to explore different incentive schemes for UPI models since

without a reason for users to take part in these models they are useless.

Models to explore and study include, for example, blockchain technology.

Lastly, due to the nature of the resource sharing in UPI models, it is nec-

essary that more studies are conducted on security and privacy issues as

compromises in this area could severely hinder users trust in the technol-

ogy.

References

[1] I. Farris, L. Militano, M. Nitti, L. Atzori, and A. Iera, “Mifaas: A
mobile-iot-federation-as-a-service model for dynamic cooperation of iot
cloud providers,” Future generation computer systems, vol. 70, pp. 126–137,
2017.

[2] M. Tang, L. Gao, and J. Huang, “Communication, computation, and caching
resource sharing for the internet of things,” IEEE Communications Maga-
zine, vol. 58, no. 4, pp. 75–80, 2020.

[3] A. Kiani and N. Ansari, “Toward hierarchical mobile edge computing: An
auction-based profit maximization approach,” IEEE internet of things jour-
nal, vol. 4, no. 6, pp. 2082–2091, 2017.

[4] Gartner, “Gartner says cloud will become a business neces-
sity by 2028.” https://www.gartner.com/en/newsroom/press-releases/

2023-11-29-gartner-says-cloud-will-become-a-business-necessity-by-2028,
November 2023.

[5] P. Gokhale, O. Bhat, and S. Bhat, “Introduction to iot,” International Ad-
vanced Research Journal in Science, Engineering and Technology, vol. 5,
no. 1, pp. 41–44, 2018.

[6] G. Kaur and R. S. Batth, “Edge computing: Classification, applications, and
challenges,” in 2021 2nd International Conference on Intelligent Engineer-
ing and Management (ICIEM), pp. 254–259, 2021.

[7] M. K. Jain, “The rise of ott platform: changing consumer preferences,”
EPRA International Journal of Multidisciplinary Research (IJMR), vol. 7,
no. 6, pp. 257–261, 2021.

[8] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role
in the internet of things,” in Proceedings of the first edition of the MCC
workshop on mobile cloud computing, pp. 13–16, ACM, 2012.

[9] M. Chiang, “Fog networking: An overview on research opportunities.” Au-
thor is the Arthur LeGrand Doty Professor of Electrical Engineering, De-
cember 2015.

[10] S. Clinch, J. Harkes, A. Friday, N. Davies, and M. Satyanarayanan, “How
close is close enough? understanding the role of cloudlets in supporting dis-
play appropriation by mobile users,” in 2012 IEEE International Conference
on Pervasive Computing and Communications, pp. 122–127, 2012.

[11] G. Iosifidis, L. Gao, J. Huang, and L. Tassiulas, Incentive Schemes for User-
Provided Fog Infrastructure, pp. 129–150. John Wiley & Sons, Incorporated,
2020.

Fighting the Art Theft Machine:

Poisons and Perturbations

CS-E4000 - Seminar in Computer Science

Perttu Niskanen
perttu.niskanen@aalto.fi
Tutor: Blerta Lindqvist

April 4, 2024

KEYWORDS: AI art, Data poisoning, Perturbation attack, Copy-
right, Generative models, Diffusion models

1 Introduction

The proliferation and high demand of Generative Artificial Intelligence (GenAI)
tools within recent years has led to an arms race between their developers and
the creators of their training data. The developers cannot afford to acquire
the substantial training data legally and so they have begun to download it off
the internet without the creators’ consent [1]. In response, some creators have
begun to poison their data in an effort to deter the developers, who have further
developed defences against data poisoning. This conflict is especially present in
regards to AI art.

The negative effects of AI art are clear. Professional artists who have spent
years developing their style have it mimicked without credit or compensation
[2], ending their ability to earn a living. Synthetic art displaces original artists
in search results, stunting their ability to advertise. Upcoming artists are de-
moralized from training, as art students see their potential careers replaced by
AI models [3]. The U.S. Copyright office only recognizes copyright in works
“created by a human being” [4], leaving the artists without legal precedent or
protection. As such, artists who post their content on the internet are concerned
about their works being used without their consent to develop the technology
that intends to replace them [5].

To combat this, several tools have been developed that modify images in
subtle ways to poison the GenAI that trains on them, corrupting the images
they generate. This paper reviews some of these AI art poisoning tools, their
methods, and their effectiveness.

1

This paper is organized as follows. Section 2 presents background informa-
tion relevant to the subject. Section 3 describes Glaze, a text-to-image data
poisoning tool developed by the Glaze Team. Section 4 describes Nightshade,
the second text-to-image data poisoning tool by the Glaze Team. Section 5 pro-
vides discussion on the effectivenesses of both tools. Finally, section 6 provides
concluding remarks.

2 Background

2.1 Text-to-image Generation

Text-to-image generation happens in two phases: model training and image gen-
eration. During training, a training image x is run through a feature extractor
Φ to produce the extracted features Φ(x). Simultaneously, the corresponding
training prompt s is run through a conditional image generator G to produce a
predicted feature vector G(s). The parameters of G are optimized such that the
text feature vector G(s) matches the image feature vector Φ(x). At runtime, a
user gives G a generation text prompt s0, which then outputs an image feature
vector G(s0). A decoder D then decodes G(s0) to produce the final generated
image. [3]

Figure 1: High level architecture of a text-to-image model. [3]

Text-to-image generation is most commonly done by Diffusion Models
(DMs). These are parameterized Markov chains trained such that the tran-
sitions of the chain reverse a diffusion process, in effect denoising an image by
predictive steps. By starting the process from pure noise, the model generates

2

Figure 2: Graphical representation of a Diffusion Model. [6]

new samples similar to the data used to train it. Figure 2 shows the transitions
from xT (pure noise) to xt and xt−1 (partially denoised sample), and finally to
x0 (generated sample). [6]

2.2 Data Poisoning

Data poisoning is a method of manipulating the training data of a Machine
Learning (ML) model to induce unexpected behaviors once the model has been
trained. It is used as a form of sabotage against models using web-scraped
data, although its effectiveness is disputed as it may be causing a false sense of
security to the attackers. [7]

One of the major vectors of data poisoning is via perturbation.

2.2.1 Perturbation

At their core, most instances of data poisoning are variations of perturbation at-
tacks, in which data is modified by small increments so as to affect a ML model’s
output. Perturbation attacks aren’t inherently hostile towards the overall func-
tionality of an AI model; they may be used simply to test a model’s robustness.
For example, Su et al. [8] found that the outputs of a Deep Neural Network
(DNN) could be altered even by changing a single pixel in an input image.

Figure 3: An optimally placed one-pixel perturbation causes a DNN to confi-
dently misclassify an image of a ship as a car, etc. Adapted from [8].

Randomly perturbed (or “noisy”) data is often used to increase a ML model’s
robustness during training. It can effectively multiply the amount of training
data and reduce overfitting (or “memorizing”).

Intentionally perturbed data, however, seeks to maximize a model’s error,
thus enabling data poisoning.

3

2.2.2 Adversarial Attack Methods

Most models are trained to work on a specified problem set with the assumption
that the training data used is independent and identically distributed. This
assumption is violated when the data is gathered from potential attackers who
may intentionally provide fabricated or perturbed data. This manipulation of
data is called an adversarial attack.

Availability attacks leverage neural models’ substantial demand for training
data, in which attackers simply leave poisoned data where they expect it to be
collected. For example, in 2016, Microsoft released their chatbot Tay, which
was designed to interact with and learn from other users on Twitter (now X).
This led to attackers feeding it hateful rhetoric and “teaching” it to sympathise
with Nazis, support genocide, et cetera [9]. In the case of AI art data poisoning
specifically, an attacker will upload a poisoned image onto any image hosting
website, whereafter it will be scraped, automatically tagged, and used to train
an image generation model. This process is visualized below in Figure 4.

Figure 4: Overview of an availability attack. (a) Attacker poisons data and
uploads it; (b) Model trainer scrapes data to train their generative model; (c)
Poisoned model generates incorrect image. [10]

In a process similar to intentional availability attacks, the tentatively-named
phenomenon Model Collapse can also poison data sets (other names include
Habsburg AI [11], Model Autophagy Disorder [12], and Nepotistically Trained
AI [13]). This occurs when a GenAI is trained on data generated by another
GenAI. [14]

While an adversarial attack may intend to poison training data to induce
overall unreliability in a ML model, backdoor attacks (or “trojans”) seek to
maintain the model’s performance unless presented with an input containing a
“trigger” that produces some predetermined effect. A conceptual overview of
this attack is shown in Figure 5.

Backdoor attacks are a type of targeted attack, in that they seek to change
the behavior of a model on particular inputs. An untargeted attack, however,
seeks to indiscriminately affect a model’s behavior [16]. Backdoor attacks are
also a type of subpopulation attack, in that they seek to affect a model’s behavior
with a specific subpopulation, while leaving behavior unaffected for the rest of
the data [17].

4

Figure 5: Conceptual representation of a backdoor attack. Backdoor attacks
place mislabeled training points in a region of the feature space far from the
rest of the training data, allowing them to be invoked with a specific trigger at
runtime. Adapted from [15].

3 Glaze

This section covers Glaze, an AI data poisoning tool created at Chicago Uni-
versity by Shan et al. [3]

Glaze, initially released in March 13, 2023 and fully in June 23, 2023, was
among the first tools created to combat AI art theft, and quickly gained press
coverage for both itself and the questionable morality of AI art. It was designed
as a way to combat the ability of popular text-to-image diffusion models like
MidJourney to mimic the art styles of specific artists. It would “cloak” the art
with barely perceptible perturbations which, when used as training data, would
mislead the generative model as to the artist’s style.

The central problem with masking an artist’s style is quantifying mathemat-
ically what an “artistic style” even is. To facilitate this, Glaze leverages “style
transfer,” a class of algorithm that transfers the art style of one image onto
the contents of another image. The style-transferred image can then be used as
a projection target for perturbation computation, which essentially “aims” the
style-specific features of the original image towards that of the style-transferred
image through perturbations.

Using this method, the computation is as follows. Given an artwork x, a pre-
existing feature extractor Ω is used to compute a style-transferred version of x
onto target style T : Ω(x, T). Then, a style cloak (or “glaze”) δ is computed, such
that δ moves x’s style-specific feature representation to match that of Ω(x, T)
while minimizing visual impact. The poisoned image xp = x + δ is found by
optimizing the following:

δ := min
δ

Dist(Φ(x+ δ),Φ(Ω(x, T))), subject to |δ| < p, (1)

where Φ is a generic image feature extractor, Dist(·) computes the distance of
two feature representations, |δ| measures the perceptual perturbation caused by
cloaking, and p is the perturbation budget (using the Learned Perceptual Image
Patch Similarity (LPIPS) metric).

5

Figure 6: Example of style-transferred artwork with different target styles. Orig-
inal artwork by Karla Ortiz. Adapted from [3].

Since the use of a style-transferred image Ω(x, T) guides cloak optimization
to focus on perturbing style-specific features, making sure that the target style
T is as dissimilar from the original style as possible maximizes cloak efficacy.

The Glaze system works in three steps: choosing a target style, transferring
that style, then computing cloak perturbations. Given a victim artist V , Glaze
takes as input a set of V ’s artwork XV , a feature extractor Φ, a style-transfer
model Ω, and a perturbation budget p. In many cases, a single model (e.g.
Stable Diffusion) provides both Φ and Ω.

First, Glaze randomly selects T from a set of candidate styles in the public
domain (e.g. Picasso, Van Gogh). For each candidate style, it selects a few
images and calculates their feature space centroid with Φ. It also calculates V ’s
centroid with Φ using XV . Then, it selects one T that is sufficiently distant
from V .

Second, Glaze uses a pre-trained style-transfer model Ω to generate the style-
transferred artwork Ω(x, T) for each art piece x ∈ XV .

Last, Glaze computes a cloak perturbation δx for each x, following Equation
1. These perturbations are then applied to these images, and the artist is free
to upload them to the internet safely, the Glaze team claims. [3]

4 Nightshade

Developed by the Glaze Team at the University of California, Nightshade was
received with high demand, netting 250,000 downloads within 5 days of its
release [18] . Whereas Glaze uses backdoor subpopulation attacks to disrupt
the fine-tuning of a local diffusion model, Nightshade aims to corrupt the base
diffusion model and render it useless for all of its users [10].

Poisoning attacks, in a general sense, cause predictable misclassifications
and demand that at least 20% of the training set’s samples are poisoned. This
proves problematic when dealing with non-fine-tuned diffusion models, which
can have up to billions of training samples. A common assumption suggests
that poisoning such a model would require millions of poisoned samples, making

6

it infeasible in practice. However, the Glaze team found that these general text-
to-image models are actually highly vulnerable to prompt-specific poisoning
attacks.

While general text-to-image models have up to billions of total samples, the
Glaze team found that the number of samples associated with any specific con-
cept or prompt is only in the order of thousands. They introduce two terms:
concept sparsity, or the number of training samples associated explicitly with
a specific concept (e.g. dragon); and semantic sparsity, or the number of train-
ing samples associated with a concept and its semantically related terms (e.g.
dragon → wyrm, wyvern, Smaug, J.R.R. Tolkien, etc.).

Concept sparsity introduces a vulnerability to general models. For example,
the training set including the prompt “dog” might account only for 0.1% of the
total training set. In other terms, to corrupt the image generation on a benign
concept C, an attacker needs only to inject a sufficient amount of poisoned data
into the training set to offset the contribution of C’s clean training data and
its semantically related concepts. In LAION-Aesthetic, a popular open-source
dataset for training text-to-image models, over 92% of represented concepts
were associated with less than 0.04% of the total samples, or 240K images.
Furthermore, 92% of concepts were semantically linked (or “were synonyms to”)
to less than 0.2% of samples. The comparatively small conceptual subpopulation
sizes makes poisoning them much more feasible.

A simple dirty-label attack aiming to poison a concept C works as follows.
The attacker first chooses a destination concept A. They then create a number
of text descriptions TextC that contain the word C and do not contain the word
A. They also create a number of images ImageA that contain visual elements
of A and no visual elements of C. Lastly, they pair the image descriptions TextC
with the images ImageA.

This method has two major inefficiencies: it is easily automatically detected
and the “strength” of the poison is fairly low due to the natural heterogeneity
of images ImageA due to being likely to include visual representations of other
concepts than just A. The first issue is solved through the implementation of
optimized perturbations, and the other through generating image ImageA with
a GenAI using a prompt such as “a picture of A”.

Given the generated images of A, hereafter referred to as “anchor images,”
perturbations can be used to make them seem identical to images of C. Let t be
a chosen text prompt TextC and xt the corresponding natural image ImageC .
An optimized poison image for t, or xp

t = xt+ δ can be found by optimizing the
following:

δ := min
δ

Dist(F (xt + δ), F (xa)), subject to |δ| < p, (2)

where xa is a DM-generated anchor image, F (·) is the image feature extractor
of the text-to-image model being attacked, Dist(·) computes the distance of two
feature representations, |δ| is the perceptual perturbation added to xt, and p
is the perturbation budget using the LPIPS metric. A general image feature
extractor Φ can also be used, although the Glaze team claims that the attack

7

success rate may fall anywhere from 1% to 24% depending on the combination
of model architectures. [10]

Figure 7 shows an example of poison data curated to corrupt the concept
“dog” (C) using “cat” (A).

Figure 7: Illustrative example of Nightshade poisoning the concept “dog” using
“cat”. Anchor images (right) are generated by prompting “a photo of a cat”
using a DM. The poisoned images (middle) are perturbed versions of natural
images of “dog,” which resemble the anchor images in feature space. [10]

At runtime, Nightshade outputs {Textp/Imagep}, a set of Np poisoned
text/image pairs using the following resources and parameters: {Text/Image},
a collection of N natural text/image pairs related to C, where N >> Np; A, a
concept semantically unrelated to C; M , an open-source text-to-image genera-
tive model; Mtext, the text encoder of M ; and p, a perturbation budget.

First, Nightshade selects the poison text prompts {Textp}. It uses the text
encoder Mtext calculates the cosine similarity of text prompt t with C in the
semantic space, or: CosineSim(Mtext(t),Mtext(C)), ∀t ∈ {Text}, then chooses
a random sample of Np text prompts from the 5,000 top-ranked results to form
{Textp}.

Second, it generates anchor images based on A. It queries the text-to-image
generator M with “a photo of A” if A is an object, or “a photo in the style of
A” if A is a style, generating Np anchor images to form {Imageanchor}.

Last, it constructs poison images {Imagep} and pairs them with text prompts
in {Textp}. For each text prompt t ∈ {Textp}, its natural counterpart xt is lo-
cated from {Image}. Then, with a random anchor image xa from {Imageanchor},
the perturbed image xp

t = xt + δ is generated with Equation 2. Afterwards, the
text/image pair t/xp

t is added into the poison dataset {Textp/Imagep}, the ex-
pended anchor image xa is removed from the anchor set {Imageanchor}, and the
next text prompt in {Textp} is processed.

8

5 Discussion

The Glaze team reports that glazing was invisible to image captioning models,
likely because the perturbations focused on style-specific elements, whereas cap-
tioning models focus on image contents. They also found that Glaze was largely
resistant to two popular data poisoning countermeasures: Gaussian noise and
image compression. These countermeasures aim to transform the input image
with random noise, so as to “drown” the purposeful perturbations. Afterwards,
these images can then be denoised or upscaled respectively. Artist-rated Pro-
tection Success Rate (PSR) fell from 92% without countermeasures to 89% with
denoised Gaussian countermeasures and to 85% with upscaled JPEG compres-
sion countermeasures. Glaze was also successful when only a fraction of an
artist’s set of artworks was glazed: artist-rated PSR was 87% at 25% of artwork
cloaked [3].

Figure 8: Example Glaze protection results. 1-2: artist’s original artwork; 3:
mimicked artwork without Glaze; 4: style-transferred artwork using original
artwork 1 as source, and name of target style (Oil painting by Van Gogh); 5-6:
mimicked artwork with Glaze using perturbation budget p = 0.05 or p = 0.1
respectively. Artwork by Karla Ortiz. Adapted from [3].

However, Liang et al. [19] found that Glaze could be subverted with a crop-
resize input transformation, wherein they removed a 64 pixel wide border from
a 512 × 512 resolution image, then resized it back to its original dimensions.

Nightshade attacks were successful with roughly 100 samples, less than the
20% of the simple dirty-label attack. As shown in Figure 9, Nightshade begins to
show significant effects at just 50 poison samples and a high success rate at 200
samples using a Contrastive Language-Image Pre-Training (CLIP) classifier, a
neural network used to classify images.

Contemporary text-to-image models take a significant amount of money to
train from scratch—the first stable diffusion model took 150K GPU hours or
$600K to train—and, therefore, new versions of these models are commonly
trained continuously from previous versions. If a continuously trained model
keeps adding clean data related to an already poisoned concept, the ratio of
additional poisoned samples required was found to be roughly 2%. [10]

The Glaze team found that conceptual poisoning “bled through” to semanti-
cally related concepts and that these poison attacks were composable; when at-
tackers poisoned “dog” to “cat” and “fantasy art” to “impressionism,” a prompt
with both “dog” and “fantasy art” generated an image with a cat in an impres-

9

Figure 9: 1: Nightshade’s attack success rate (CLIP-based) vs. # of poison
samples injected, compared to a simple dirty-label attack; 2: Nightshade’s at-
tack success rate (CLIP-based) vs. # of poison samples injected, for various
model architectures (continuous training) compared to a simple dirty-label at-
tack. [10]

sionist style. Furthermore, as more concepts were poisoned, the overall perfor-
mance of the model gradually fell. Image quality noticeably degraded at 250
poisoned concepts and devolved to random noise at 1000 poisoned concepts.
[10]

In terms of visual impact on the perturbed images by Glaze, 92% of surveyed
artists felt that the perturbations introduced by cloaking with a perturbation
budget p = 0.05 were small enough, such that they were “willing” or “very
willing” to post the perturbed images on their personal websites. Glaze’s PSR
at p = 0.05 was found to be roughly 93%. Nightshade used a standardized
p = 0.07 throughout their tests (40% increase in perturbation budget compared
to Glaze), although they claim on their website that both programs use the
same perturbation budget. They also claim that the visual artifacts added by
Nightshade are at most equivalent to those added by Glaze, and in most cases
are harder to see [20]. In any case, since Nightshade’s effects are cumulative,
a user can lower the perturbation budget to their needs without compromising
the overall functionality of the poison, only its efficiency.

Shan et al. [3] caution Glaze’s users on the issue of future-proofing the
tool: “Any technique we use to cloak artworks today might be overcome by a
future countermeasure, possibly rendering previously protected art vulnerable.”
This quote is illustrative of the asymmetry in fighting against AI art mimicry;
whether AI poisoning tools work now is largely irrelevant, since any GenAI
developer can simply download poisoned images now and wait for the advent
of some technology that bypasses the poison [7]. Indeed, Glaze was quickly
bypassed with a crop-resize transformation. Although Nightshade hasn’t been
bypassed (as of January 2024 [20]), whether it or any other AI poisoning tool is
broken is only a matter of time.

10

6 Conclusion

In conclusion, contemporary data poisoning methods are effective against con-
temporary GenAI. The perturbations introduced into the art pieces tend to be
acceptably negligible by their creators while still being sufficiently corrupting so
as to prevent the art from being used as training data. However, the excitement
around these poisoning tools may be creating a false sense of security for artists,
as the poisoned art they post on the internet may still be used as training data
once the poisons are bypassed.

References

[1] M. M. Grynbaum and R. Mac, “The times sues openai and microsoft over
a.i. use of copyrighted work,” New York Times, 2023. [Online]. Avail-
able: https://www.nytimes.com/2023/12/27/business/media/new-
york-times-open-ai-microsoft-lawsuit.html (visited on January 23,
2024).

[2] K. K. Ho, “Database of 16,000 artists used to train midjourney ai, includ-
ing 6-year-old child, garners criticism,” Artnews, 2024. [Online]. Available:
https://www.artnews.com/art-news/news/midjourney-ai-artists-

database-1234691955/ (visited on January 23, 2024).

[3] S. Shan, J. Cryan, E. Wenger, H. Zheng, R. Hanocka, and B. Y. Zhao,
Glaze: Protecting artists from style mimicry by text-to-image models, 2023.
arXiv: 2302.04222 [cs.CR].

[4] C. T. Zirpoli, “Generative artificial intelligence and copyright law,”
Congressional Research Service, 2023. [Online]. Available: https : / /

crsreports.congress.gov/product/pdf/LSB/LSB10922 (visited on
January 23, 2024).

[5] H. H. Jiang, L. Brown, J. Cheng, et al., “Ai art and its impact on artists,”
in Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and
Society, 2023, pp. 363–374. doi: 10.1145/3600211.3604681.

[6] J. Ho, A. Jain, and P. Abbeel, Denoising diffusion probabilistic models,
2020. arXiv: 2006.11239 [cs.LG].

[7] E. Radiya-Dixit, S. Hong, N. Carlini, and F. Tramèr, Data poisoning won’t
save you from facial recognition, 2022. arXiv: 2106.14851 [cs.LG].

[8] J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” IEEE Transactions on Evolutionary Computa-
tion, vol. 23, no. 5, pp. 828–841, October 2019, issn: 1941-0026. doi:
10.1109/tevc.2019.2890858.

[9] J. Wakefield, “Microsoft chatbot is taught to swear on twitter,” BBC,
2016. [Online]. Available: https://www.bbc.com/news/technology-
35890188 (visited on January 30, 2024).

11

[10] S. Shan, W. Ding, J. Passananti, H. Zheng, and B. Y. Zhao, Prompt-
specific poisoning attacks on text-to-image generative models, 2023. arXiv:
2310.13828 [cs.CR].

[11] J. Sadowski, I coined a term on @machinekillspod that i feel like needs its
own essay: Habsburg ai – a system that is so heavily trained on the outputs
of other generative ai’s that it becomes an inbred mutant, likely with exag-
gerated, grotesque features. it joins the lineage of potemkin ai. February 13,
2023. [Online]. Available: https : / / twitter . com / jathansadowski /

status/1625245803211272194 (visited on January 30, 2024).

[12] S. Alemohammad, J. Casco-Rodriguez, L. Luzi, et al., Self-consuming gen-
erative models go mad, 2023. arXiv: 2307.01850 [cs.LG].

[13] M. Bohacek and H. Farid, Nepotistically trained generative-ai models col-
lapse, 2023. arXiv: 2311.12202 [cs.AI].

[14] I. Shumailov, Z. Shumaylov, Y. Zhao, Y. Gal, N. Papernot, and R. An-
derson, The curse of recursion: Training on generated data makes models
forget, 2023. arXiv: 2305.17493 [cs.LG].

[15] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of adversar-
ial machine learning,” Pattern Recognition, vol. 84, pp. 317–331, December
2018, issn: 0031-3203. doi: 10.1016/j.patcog.2018.07.023. [Online].
Available: http://dx.doi.org/10.1016/j.patcog.2018.07.023.

[16] M. Goldblum, D. Tsipras, C. Xie, et al., Dataset security for machine
learning: Data poisoning, backdoor attacks, and defenses, 2021. arXiv:
2012.10544 [cs.LG].

[17] M. Jagielski, G. Severi, N. Pousette Harger, and A. Oprea, “Subpopula-
tion data poisoning attacks,” in Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2021, pp. 3104–
3122.

[18] C. Franzen, “Ai poisoning tool nightshade received 250,000 downloads in 5
days: ‘beyond anything we imagined’,” VentureBeat, 2024. [Online]. Avail-
able: https://venturebeat.com/ai/ai-poisoning-tool-nightshade-
received- 250000- downloads- in- 5- days- beyond- anything- we-

imagined/ (visited on January 31, 2023).

[19] C. Liang and X. Wu, Mist: Towards improved adversarial examples for
diffusion models, 2023. arXiv: 2305.12683 [cs.CV].

[20] T. G. Project, Frequently asked questions (faq), 2024. [Online]. Available:
https://nightshade.cs.uchicago.edu/faq.html (visited on April 4,
2024).

12

Acronyms

AI Artificial Intelligence. 1, 5, 10

CLIP Contrastive Language-Image Pre-Training. 9, 10

DM Diffusion Model. 2, 3, 7, 8

DNN Deep Neural Network. 3

GenAI Generative Artificial Intelligence. 1, 4, 7, 10, 11

LPIPS Learned Perceptual Image Patch Similarity. 5, 7

ML Machine Learning. 3, 4

PSR Protection Success Rate. 9, 10

13

Industrial Control Systems and
IEC 62443 from a perspective of
Zero Trust

Petteri Pulkkinen
petteri.k.pulkkinen@aalto.fi

Tutor: Mikko Kiviharju

Abstract

Industrial Control Systems are used to control critical infrastructure. The

state of ICS security has been under active research. At the same time,

Zero Trust has become a popular concept to improve system security. This

paper introduces the ICS environment with its specialities, discusses the

definition of Zero Trust and analyses the IEC 62443 standard family from

the perspective of Zero Trust. Zero Trust could be considered an asymp-

totic goal for security, which cannot be fully implemented. However, it can

provide ideas to improve ICS security via micro segmentation, encryption

and security automation.

KEYWORDS: Industrial Control Systems, ICS, Zero Trust, IEC 62443

1 Introduction

Industrial Control Systems (ICS) power the industry and production. ICS

are used to control power plants and to control the electricity grid. They

are used to controlling factories and other process instrumentation tasks.

ICS are typically responsible for ensuring the safety in automated pro-

cesses of factories [4].

The reasons behind weaker resistance against cyberattacks originates

from the special nature of ICS. Devices in the ICS field often include low-

power embedded devices running real-time systems. For historical rea-

sons, the computational power of ICS has been limited, and therefore had

to be considered during the design phase. This has led to protocol various

custom protocol designs where reliability has overtaken security.

To strengthen the security of ICS, security standards related to them

have been improved and updated. At the same time with standards, leg-

islation has also been updated to require the ICS to comply with the up-

dated standards. The standards are still following the same architectural

basis. Updated architecture models proposed, but implementing them is

a long route in practice.

Standards and legislation guide towards the right direction, while tech-

nical debt of the systems is still remarkable. Renewing cycles of ICS is rel-

atively slow, and usually happens during larger renovations of factories.

The systems are still weak to defend against threats that intentionally

want to cause damage. On the datacenter side, multiple solutions have

been developed to strengthen the security of the system. These principles

could probably be used to improve the security of ICS as well.

Zero Trust [9, 10] is one of the proposed concepts to strengthen security

by architectural decisions. Implementations of Zero Trust principles have

been proposed for enterprise networks [12]. NIST has also required that

systems part of the critical infrastructure must follow the Zero Trust Ar-

chitecture [9].

This research focuses on how IEC 62443 standard [2] compares with

principles of Zero Trust [4]. As a second research question, this research

analyses how the standard benefits or could benefit about using Zero Trust.

This research paper begins with an introduction to industrial control

systems in section 2 and continues introducing the security characteris-

tics of an ICS system in section 3. Next, the IEC 62443 standard family is

introduced in section 4 and Zero Trust in section 5. After these introduc-

tory sections, this paper continues analysing IEC 62443 from the perspec-

tive of Zero Trust in section 6. Section 7 continues the discussion between

the principles of Zero Trust and IEC 62443. Conclusions are presented in

section section 8.

2 Industrial Control Systems

Industrial Control Systems (ICS), are used to control processes in indus-

trial production plants, factories and other buildings. The purpose of an

ICS is to ensure the process keeps running within configured efficiency

and safety margins. Traditionally, computer systems are divided into op-

erational technology (OT) and information technology (IT), where the lat-

ter category is probably more widely understood than the first one. In

IT, data and information are in the key role, while OT focuses more on

the process. In general, outages in services can somehow be accepted in

IT, while it is unacceptable in OT. This fundamental difference has led to

differences in the architecture of ICS.

The nature of ICS poses more strict requirements on controller hard-

ware compared to IT systems. In ICS and OT in general, operations must

be handled in real-time. Currently, the majority of IT hardware, on the

other hand, uses scheduling as a standard way to improve resource alloca-

tion and therefore utilization, but it loses some execution guarantees. In

ICS, additional and potentially unpredictable delay is often unacceptable,

as the control system should act promptly upon receiving signals from

sensors. However, the signal processing in ICS is typically not that com-

putationally expensive. ICS often utilizes microcontrollers which have

better IO capabilities. Microcontrollers are typically programmed using

C/C++, as the constraints from the computational power poses higher de-

mand for highly optimized software implementations.

However, using lower abstraction level languages with manual mem-

ory management has led to vulnerabilities in the software. In C and C++,

proper memory management is left as a responsibility of the program-

mer. History has shown that mistakes happen, no matter how well the

software is being tested and reviewed. Improper memory management

is currently the most common reason behind security vulnerabilities [6].

On the IT side, multiple protection mechanisms, e.g., canary stacks and

branch protection, are actively used to cope with this existing problem.

However, most microcontrollers do not provide mechanisms at the hard-

ware level and also lack the computational power required to implement

the protections in the kernel.

Microcontrollers provide a relatively easy and cost-effective approach

of controlling static processes, but production optimization might become

difficult relatively soon. Optimizing processes often requires more com-

putational resources, and switching from a real-time system to a schedul-

ing system would provide greater utilization efficiency of resources. This

leads to a natural need to connect multiple systems together by forming

communication networks. The protocols and medium used for communi-

cation in ICS vary from serial to Ethernet-based solutions.

3 Security of Industrial Control Systems

Security of ICS has been a popular area of research and has been ris-

ing during the past few years. Not only factories and production plants

are important for the economy, but ICS are also used to maintain critical

infrastructure such as water and electricity supply pipelines and grids.

Such systems have been chosen as targets while attacking against the

country and society.

The complexity of control systems in industry has expanded with the

development of technology. ICS form networks of computers and sensors

interacting with each other [7]. At the same time, supply chains of the

products used as building blocks of ICS systems, in both hardware and

software side, have become broader. On the IT side, development in net-

working infrastructure has offered new possibilities for centralized com-

puting and placing servers within datacenters and longer distances away

from the production plants. Parts of these aspects have also been adopted

on the OT side.

Microcontrollers and the programs written in C/C++ make the inner

core of ICS fragile. Historically, the systems have been isolated as no

there was no need for external communication. However, internet con-

nectivity has opened new opportunities. Especially on the IT side, the

internet connectivity has become almost an essential part, empowering

multiple successful features. Adopting those features also on the OT side

and within ICS requires connecting the production plants to the inter-

net. At the same time, the connectivity has opened new opportunities as

well for the attacker. As previously mentioned, ICS often controls critical

infrastructure, which for the attacker shows up with increased interest

compared to an average IT system.

Lack of natural motivation postpones security improvements in ICS.

Typically, the owners of the control system value operational stability over

security. They want to minimize downtime and the reliability, as down

scaling and closing the production line causes straight declines to their

economy. Production plants are also expensive investments that are ex-

pected to be running for years after opening. Not scarifying the production

performance for probabilistic security threats delays new security patches

and features from taking into daily use. From the perspective of a single

production plant, addressing the security threats by strengthening the

security of the ICS might not seem that appealing. However, from the

perspective of the society, preventing the outages of resource supplies is a

challenge that needs to be addressed.

4 IEC 62443

IEC 62443 introduces a concept of zones and conduits to help to model

the ICS environment [3]. The infrastructure can be divided into zones

that logically group assets having similar security requirements. After

grouping the assets logically, the dependencies between zones can be mod-

eled by connections. The connections with similar characteristics can be

grouped into a conduit, which then simplifies the architectural picture.

IEC 62443 3.2 [3] defines a standardized approach of dividing the infras-

tructure into zones and conduits.

IEC 62443 security requirements and security levels are defined in

part 3.3 [2]. Requirements are grouped into 7 foundational requirements

and numbered from FR1 to FR7. FR1 focuses on identification and au-

thentication control and FR2 focuses on use control, i.e., authorization.

FR3 focuses on system integrity and protection mechanisms against sys-

tem manipulation. FR4 focuses on data confidentiality at rest and in tran-

sit while FR5 focuses on restricted data flow, i.e., preventing data circum-

ventions outside designed zones and conduits. FR6 focuses on timely re-

sponse to events and defines requirements on how to respond to security

incidents. FR7 focuses on resource availability under normal and abnor-

mal conditions.

The requirements of IEC 62443 family are considered from a perspec-

tive of four security levels ranging from SL1 to SL4[2]. SL1 aims to pro-

tect against passive attackers. SL2 improves the security level by provid-

ing protection against active attackers but with low resources and skills,

mainly protecting against eavesdropping and casual exposure. SL3 en-

forces more strict requirements and provides protection against active at-

tackers with moderate resources, IACS-specific skills and moderate mo-

tivation. The highest SL4 aims to provide protection against a highly

motivated attacker with extended resources.

Each system requirement (SR) under foundational requirements has

been assigned to a certain security level. If that system requirement is ful-

filled, the system reaches the specified SL. SRs also have requirement en-

hancements (RE), which define more strict requirements to reach higher

SL. During security assessment, the resulting SLs from all the SRs can

be analyzed and the SL of the system is the lowest SL of these results.

The next section introduces a more abstract approach to analyze the

security, Zero Trust.

5 Zero Trust

Zero Trust is a relatively new term, although the concept has been dis-

cussed decades before that term. The main motivation behind Zero Trust

are changes in intrusion strategy used by the attackers. Perimeter-based

defense strategies have been implemented utilizing firewalls, placing in-

frastructure behind strictly controlled perimeters. This has worked with

the original intention to make direct intrusion difficult. However, direct

intrusion is not the only way in. The perimeters defend attacks from the

outside of an organization, but does not necessarily detect attacks origi-

nating from within the perimeter.

Around 2014, Google published a research blog post series of new ar-

chitectural approach for enterprise security[12]. They proposed a new

approach and demonstrated new defense mechanisms for a hypothetical

company called Beyond Corp. This was not the first publication in this

area, but one of the most comprehensive ones. In 2018, the term Zero

Trust was introduced to a wider audience, NIST[9]. In their special pub-

lication, they proposed concepts to improve security in organization IT

infrastructure. Zero Trust became popular as a term in the defense sec-

tor, organizations, e.g., NCSC [8], have written their publications. Despite

publicity around this topic, the term Zero Trust lacks a clear definition.

The publications are not discussing with each other, but rather introduce

their proposals. However, all of them are improving the security with

similar ideas.

Because of multiple competing publications, using the term Zero Trust

Architecture can be biased. Instead, it would be better to define Zero

Trust as a set of principles rather than architecture. In 2022, Syed et

al. conducted a relatively comprehensive analysis of the definitions of the

term Zero Trust [10]. Zero Trust builds on top of a change in the foun-

dational assumptions. Accidents will eventually happen, no matter how

well the defensive plans are. But when it happens, the aim is to limit the

scope of damage. This radius can be controlled with de-perimeterization,

which leads to the most important principle of Zero Trust. In Zero Trust,

four key principles can be recognized from the definitions: micro segmen-

tation, authentication and access control, encrypted communication and

security automation.

Instead of building one considerable perimeter, the interior could be

micro-segmented into different departments. To effectively isolate these

micro-segments, improved authentication and authorization are needed

to let the intended interaction to pass the segments. When only authen-

ticated and authorized entities can access the resources, the next step

is to ensure confidentiality by applying encryption for the data in tran-

sit. These improvements hinder the attackers to proceed in the infras-

tructure. The fourth key principle in Zero Trust is to improve security

automation to detect incidents as early as possible so that they can be

reacted earlier, again limiting the consequences they could cause.

Instead of an architecture example, Zero Trust could be considered

a set of ideas and not as an implementation example. The next section

analyses IEC 62443 standard from this perspective.

6 IEC 62443 from a perspective of Zero Trust

This section analyses system requirements (SR) of IEC 62443 [2] from a

perspective of zero trust principles introduced in section 5.

6.1 Micro segmentation

IEC 62443 models segmentation utilizing its zones and conduits model.

The sizes or quantities of zones in an ICS is not strictly defined. The stan-

dard proposes to start with larger segments and split them into smaller

ones if the target SL is not met with larger segments. Zero Trust recom-

mends micro segmentation, which aims further from this. Asymptotically,

each service should be placed in its segment. Proceeding towards this goal

becomes relatively cumbersome with the abstractions of zones and con-

duits, as doubling the number of zones often leads to rising the number of

conduits to its square.

6.2 Authentication and Access control

Authentication-related requirements are grouped into FR1 and autho-

rization into FR2. IEC 62443 copes well with the Zero Trust idea in this

field, when the SL is increased to SL3 and SL4. For example, SR 1.2 spec-

ifying identity of entities allows identification based on physical location

in SL1 and SL2. This is against the idea of Zero Trust, which, e.g., NIST

clearly mentions in their publication [9]. On SL3 and SL4, components

are required to be uniquely identifiable, which suggests to decouple iden-

tities from locations. IEC 62443 also requires the possibility to override

authentications in case of emergency. The standard does not fully state,

how this override should be implemented. From the perspective of Zero

Trust, this kind of overrides should not exist, but on the other hand, the

overrides could be implemented via different authentication method.

6.3 Encrypted communication

Communication encryption does not have dedicated FRs, but some re-

quirements related to it are discussed in FR4 and FR5. Encryption in

transit itself is not strictly mandated in the system requirements, but es-

pecially the SR4 enhancements aiming to SL3 and SL4 recall data protec-

tion in-transit when transferred via untrusted network and in SL4 when

crossing zone boundaries. From the perspective of Zero Trust, all net-

works should be considered untrusted to be better prepared for attacks

originating inside the organization. The IEC 62443 suggests implement-

ing encryption via encrypted tunnels when implementing conduits. This

indeed improves the security of the modeled system. However, applying

micro segmentation, leads also segmenting the conduits, which effectively

leads to individually encrypted connections. Encryption for individual

connections is not recommended. Even session integrity protections are

not recommended for every single connection within ICS.

6.4 Security automation

IEC 62443 mentions security automations in FR6, more specifically in SR

6.2 of Continuous monitoring. The requirements for this are relatively

broad, leaving more freedom for the implementation. This can include

intrusion detection systems, some other intrusion prevention systems or

malicious code protection tools [2]. The idea behind this requirement is to

improve attack detection. Similar systems are also an important part of

Zero Trust, as architectural aspects only hinder the possible attacks and

not eliminate them. Because of the freedom given by the requirements,

security automation might be the easiest area to improve security with

the ideas provided by Zero Trust.

7 Discussion

Zero Trust is an abstract set of ideas to improve the security of a sys-

tem. It can be seen to describe an asymptotic goal for a secure system,

and reaching is completely can be seen impossible. It can be helpful to

identify further enhancements in an existing system to protect it better

against attacks originating from inside the out most perimeter. Supply

chain attacks are increasingly utilized by the attackers to gain the ini-

tial foothold in the system. Recently discovered supply chain injection in

generally used zx compression library is a good example of such [1].

Architectural enhancements are usually stronger defense mechanisms

against attacks than active monitoring. Architectural changes are slow to

be implemented, but standards can be used to require them in new instal-

lations. Having analyzed the IEC 62443 standard from the perspective of

Zero Trust, it already requires a lot from the system. However, security

is always a game against the attackers and improvement is seldom a bad

idea. Further-applying the idea of micro segmentation and requiring en-

crypted channels more often could be one direction. There has already

been discussion about encryption in ICS communication channels, but at

least in research conducted in 2017 it was not recommended [5]. How-

ever, improvements have been seen in protocol design and widely used

protocols, such Profinet, currently have encryption options available [11].

Maybe the question about encryption could be re-evaluated utilizing the

resent research knowledge.

8 Conclusion

IEC 62443 already implements many features recommended by Zero Trust.

The race against the attackers is never finished, and there is always room

for improvement. The improvements can be easily made in the field of

security automation, i.e., improving intrusion detection systems, to detect

the attacks at their early state. However, architectural enhancements are

often more effective in the longer term. Updating the requirements, e.g.,

the IEC 62443 standard itself, is a relatively powerful way to improve the

security of newly deployed ICS. Especially, the zone-conduit model can

be enhanced to shrink zones smaller. Moreover, conduits and especially

encryption-related requirements could be re-evaluated as the technology

has developed since the publication. Reaching the asymptote of Zero Trust

is not a reasonable target, but taking already a step towards it improves

the protection of the system.

References

[1] CVE-2024-3094. https://nvd.nist.gov/vuln/detail/CVE-2024-3094.

[2] EN IEC 62443-3-3:2019 Industrial communication networks - Network and
system security - Part 3-3: System security requirements and security lev-
els, July 2019.

[3] EN IEC 62443-3-2:2020 Security for industrial automation and control sys-
tems - Part 3-2: Security risk assessment for system design, September
2020.

[4] Deval Bhamare, Maede Zolanvari, Aiman Erbad, Raj Jain, Khaled Khan,
and Nader Meskin. Cybersecurity for industrial control systems: A survey.
Computers & Security, 89:101677, 2020.

[5] Davide Fauri, Bart de Wijs, Jerry den Hartog, Elisa Costante, Emmanuele
Zambon, and Sandro Etalle. Encryption in ICS networks: A blessing or a
curse? In 2017 IEEE International Conference on Smart Grid Communica-
tions (SmartGridComm), pages 289–294, October 2017.

[6] Ryan Levick and Sebastian Fernandez. We need a safer systems program-
ming language. https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-
systems-programming-language/, July 2019.

[7] Stephen McLaughlin, Charalambos Konstantinou, Xueyang Wang, Lucas
Davi, Ahmad-Reza Sadeghi, Michail Maniatakos, and Ramesh Karri. The
Cybersecurity Landscape in Industrial Control Systems. Proceedings of the
IEEE, 104(5):1039–1057, 2016.

[8] NCSC. Zero trust architecture design principles.
https://www.ncsc.gov.uk/collection/zero-trust-architecture.

[9] VA Stafford. Zero trust architecture. NIST special publication, 800:207,
2020.

[10] Naeem Firdous Syed, Syed W. Shah, Arash Shaghaghi, Adnan Anwar,
Zubair Baig, and Robin Doss. Zero Trust Architecture (ZTA): A Compre-
hensive Survey. IEEE Access, 10:57143–57179, 2022.

[11] Andreas Walz, Karl-Heinz Niemann, Julian Göppert, Kai Fischer, Simon
Merklin, Dominik Ziegler, and Axel Sikora. PROFINET security: A look
on selected concepts for secure communication in the automation domain.
In 2023 IEEE 21st International Conference on Industrial Informatics (IN-
DIN), pages 1–6, 2023.

[12] Rory Ward and Betsy Beyer. Beyondcorp: A new approach to enterprise
security. 2014.

Microservices - when and how to use
them

Prateek Agrawal
prateek.agrawal@aalto.fi

Antti Ylä-Jääski

Abstract

This paper critically examines software development methodologies, specif-

ically comparing the advantages and disadvantages of employing mono-

lithic versus microservices architectures. It also examines the ascendancy

of microservices as a preferred approach for creating scalable and resilient

services within an Agile development environment.

KEYWORDS: Monolithic, Microservices, agile, software methodology

1 Introduction

In recent years, the software development methodology known as mi-

croservices has gained much attention and widespread acceptance among

software companies. This architectural approach is highly favored and in

high demand for its ability to create scalable, robust, and powerful soft-

ware systems. Microservices, characterized by their small and specialized

nature, are designed to execute specific operations within a distributed

system or software environment. Prior to the adoption of microservices

architecture, applications were typically developed using a monolithic ap-

proach. Monolithic architecture, centered around a single executable arti-

fact or library, was commonly employed in traditional application develop-

Substract

Data

Add Divide and so on.

Monolithic System

Add Substract Divide and so on.

Data Data Data Data

Microservice System

Figure A

Figure B

Figure 1. Monolith VS Micro service system

ment practices. Figure 1 depicts one such illustration. However, in recent

years, microservices have emerged as a popular alternative to monolithic

architectures.

In essence, the decision-making process regarding software architec-

ture involves weighing the advantages and trade-offs of various princi-

ples and approaches, each offering unique benefits. It is crucial to under-

stand the factors that have got microservices into the spotlight, the key

considerations for choosing microservices over monolithic architectures,

the circumstances under which a software system may need to transition

from monoliths to microservices, the associated costs of such a transition,

and the organizational value and benefits derived from adopting microser-

vices. This paper aims to examine thoroughly into these critical aspects

of working with microservices, providing insights into when and how to

effectively implement them.

2 Microservices

Microservices represent a software architectural approach that is exten-

sively leveraged in the development of forward-looking applications. This

methodology involves the creation of applications composed of numerous

smaller, individual components or services that can be deployed indepen-

dently. Each microservice is designed to perform a specific function within

the application, enabling greater flexibility, scalability, and maintainabil-

ity in software development projects. This decentralized approach to ap-

plication design allows for easier management, updates, and scaling of

individual services, ultimately contributing to the creation of more agile

and resilient software systems.

Mazzara et al. [4] state that microservices are technically indepen-

dent services conceptually deployed in isolation and loaded with some

persistence tools (e.g. databases).

This practice is similar to a traditionally used Service-Oriented Ar-

chitecture (SOA) [7], which uses ample of Web Services, Simple Object

Access Protocol (SOAP), the Web Service (WS) calls. However, a micro ser-

vice typically uses Representation state transfer (REST) and Hyper text

transfer protocol (HTTP). [6]

Presently, the term has garnered much attention within the market

due to its high demand, multiple benefits (Section 2.2) it affords, and

its overarching design principles that enhance the agility of applications.

Nonetheless, there exist several challenges and drawbacks associated with

its implementation.(Section 2.3)

2.1 Principle

Microservices follow a simple, linear and service oriented strategy. It is

usually a light weight component, which is open to extend or is scalable,

is easy to test, can be easily managed and is independent piece of code. Of-

ten, this principles of a micro service is coupled with a cloud or distributed

infrastructure or technology.

One of the best principle recommended while developing a microser-

vice is "SOLID" principle, i.e. Single Responsibility Principle (SRP), Open-

Closed Principle (OCP), Liskov Substitution Principle (LSP), Interface

Segregation Principle (ISP), Dependency Inversion Principle (DIP).

1. SRP : The fundamental concept of the SRP posits that a class should

be dedicated to a singular function or responsibility, namely: “a class

should have only one reason to change” [2].

2. OCP : The core tenet of the Open-Closed Design Principle asserts that

an architectural solution should be designed in a manner that allows for

extension without necessitating modification of the existing codebase.

3. LSP : “if for each object o1 of type S there is an object o2 of type T

such that for all programs P defined in terms of T, the behaviour of P is

unchanged when o1 is substituted for o2 then S is a subtype of T.” [8]

4. ISP : “the interfaces of the class can be broken up into groups of meth-

ods. Each group serves a different set of clients. Thus, some clients use

one group of methods, and other clients use the other groups.“ [8]

5. DIP :

(a) "High-level modules should not depend on low-level modules. Both

should depend on abstractions.

(b) Abstractions should not depend upon details. Details should depend

upon abstractions." [8]

2.2 Advantages of using Microservices

1. Always available:

When updating microservices, a well-designed architecture with mi-

croservices deployed in containers and utilizing DevOps practices,

such as Continuous Integration and Continuous Delivery/Deployment

allows for seamless updates without the need to decommission the

entire system or restart services. This enables the hot deployment

of new versions, ensuring that new client requests automatically

access the updated microservices while the existing ones are grace-

fully shut down once their requests are completed or reach zero.

[3]

Similarly, in the event of failures, only the individual microservice will

be impacted, preserving the functionality of the remaining modules

within the system without disruption [4].

2. Alterations without causing disruptions to other components:

Due to the independent nature of microservices as small, self-contained

components, they are easily maintainable. In the event of a bug,

navigating through the source code, identifying the issue, and rec-

tifying it is simplified, thus enhancing maintainability and stream-

lining the release of new versions [4].

3. Streamlined Functional Testing and Error Identification:

Due to their independent nature within a well-structured microservices

architecture, individual microservices do not have a cascading ef-

fect on one another. Consequently, the failure of one component

does not result in a system-wide crash. [10]

4. Ease of management:

Utilizing smaller work teams offers benefits, such as accelerated and

more frequent development and delivery cycles. These teams spe-

cialize in comprehensively understanding specific business func-

tionalities implemented in microservices, enabling them to deepen

their expertise with each development iteration. Furthermore, the

experience gained allows these smaller teams to provide more pre-

cise development estimates and execute faster development pro-

cesses

2.3 Challenges

When you’re creating an application using microservices, a challenge is

that it can be tough to learn this new way of structuring things. Compa-

nies often need to reorganize their teams so that each group can work on

their part independently [12]. This might involve using new program-

ming languages and tools to help with tasks like building, launching, and

keeping track of the services. So, training is usually necessary to make

sure everyone understands how to do these tasks well.

1. Inadequate Team Experience

Another drawback is that an organization may not be certain of the suc-

cess of adopting a new architecture, like microservices, because the

development team has limited experience working with this type

of architecture. Research shows that it took eight months for the

project migration to master working with microservices [1].

2. Network latency

Microservices often involve making many function calls, which can slow

Figure 2. A typical microservice kubernetes instance

down communication between them due to network overhead. This

may require analyzing and possibly changing the network archi-

tecture. To reduce these delays, it’s important to optimize how

programs make calls and process tasks, like using asynchronous

calls and parallel processing. As microservices grow, upgrading the

network infrastructure becomes necessary, which comes with ad-

ditional costs. Figure 2 depicts a typical system comprising of a

kubernetes engine to handle multiple pods.

3. Redundant Data

In a microservices setup, each microservice should ideally have its own

database. This means data needs to be duplicated across these

databases, requiring extra programming steps to ensure data con-

sistency. As more microservices are added, orchestrating them be-

comes more complex [5].

4. Streamlining testing and deployment with DevOps Automation

Testing the entire application when using microservices can be complex

due to each part having different feature. It takes longer to find

and fix bugs with this new architecture. Thus, it is often required

to automate with DevOps tools for tasks like integrating code, com-

piling, and deploying. Figure 3 demonstrates the steps involved in

a typical DevOps system.

5. Difficult to debug

When you have lots of microservices and use them in a Front End to

find an error, it can be hard and take a long time to locate the bug.

This process can end up costing you more [11] [9]. Use of proper

logs and logging methodology is recommended to overcome such

Figure 3. DevOps chain

challenges.

3 Decision Parameter

When considering whether to design a system as a monolith or microser-

vice architecture, several decision parameters come into play. One impor-

tant factor is the size and complexity of the project. Monoliths are gener-

ally easier to develop and maintain for smaller applications, as they have

a single code base and database to manage. However, as the project grows

in size and complexity, a monolith can become difficult to work with and

scale. In contrast, microservices offer the ability to break down a large

system into smaller, more manageable pieces that can be developed and

deployed independently. This can lead to better scalability and fault tol-

erance, but also adds complexity to the system as a whole.

Another important decision parameter is the team size and exper-

tise. Monoliths are often favored by small teams with limited resources

and expertise, as they are simpler to develop and deploy. On the other

hand, microservices require a higher level of expertise and coordination

among team members, as each service needs to be independently devel-

oped, deployed, and managed. Additionally, microservices introduce ad-

ditional challenges such as inter-service communication and data consis-

tency across services. Ultimately, the decision between a monolith and

microservice architecture should be based on the specific needs and con-

straints of the project, taking into account factors such as size, complexity,

team expertise, and scalability requirements.

4 Conclusion

In conclusion, microservices offer numerous benefits such as scalability,

flexibility, and increased efficiency for organizations looking to develop

or update their software systems. It is important to carefully consider

the specific needs and requirements of the project before deciding when

and how to use a microservice architecture. Factors such as team ex-

pertise, project complexity, and performance requirements should all be

taken into account when making this decision. Overall, microservices can

be a valuable tool in modern software development, providing a more ag-

ile, flexible, upgraded and efficient approach to building and maintaining

complex systems.

References

[1] Georg Buchgeher, Mario Winterer, Rainer Weinreich, Johannes Luger,
Roland Wingelhofer, and Mario Aistleitner. Microservices in a small de-
velopment organization. In Antónia Lopes and Rogério de Lemos, editors,
Software Architecture, pages 208–215, Cham, 2017. Springer International
Publishing. 10.1007/978-3-319-65831-515.

[2] Elena Chebanyuk and Krassimir Markov. An approach to class diagrams veri-
fication according to solid design principles. In 2016 4th International Confer-
ence on Model-Driven Engineering and Software Development (MODELSWARD),
pages 435–441, 2016.

[3] Lianping Chen. Microservices: Architecting for continuous delivery and devops.
In 2018 IEEE International Conference on Software Architecture (ICSA), pages
39–397, 2018.

[4] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices: Yester-
day, Today, and Tomorrow, pages 195–216. Springer International Publishing,
Cham, 2017.

[5] Weibei Fan, Zhije Han, Yujie Zhang, and Ruchuan Wang. Method of maintaining
data consistency in microservice architecture. In 2018 IEEE 4th International
Conference on Big Data Security on Cloud (BigDataSecurity), IEEE International
Conference on High Performance and Smart Computing, (HPSC) and IEEE Inter-
national Conference on Intelligent Data and Security (IDS), pages 47–50, 2018.

[6] Pooyan Jamshidi, Claus Pahl, Nabor C. Mendonca, James Lewis, and Stefan
Tilkov. Microservices: The journey so far and challenges ahead. IEEE Software,
35(3):24–35, May 2018.

[7] Nicolai M. JOSUTTIS. SOA in practice. O’Reilly, 2007.

[8] R.C. Martin and M. Martin. Agile Principles, Patterns, and Practices in C#.
Robert C. Martin series. Prentice Hall, 2007.

[9] Teguh Prasandy, Titan, Dina Murad, and Taufik Darwis. Migrating application
from monolith to microservices. pages 726–731, 08 2020.

[10] Teguh Prasandy, Titan, Dina Fitria Murad, and Taufik Darwis. Migrating ap-
plication from monolith to microservices. In 2020 International Conference on
Information Management and Technology (ICIMTech), pages 726–731, 2020.

[11] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, motivations, and
issues for migrating to microservices architectures: An empirical investigation.
IEEE Cloud Computing, 4(5):22–32, 2017.

[12] Victor Velepucha and Pamela Flores. A survey on microservices architecture:
Principles, patterns and migration challenges. IEEE Access, 11:88339–88358,
2023.

User-Provided-Infrastructure at the Edge

Radu Pogonariu
radu.pogonariu@aalto.fi

Tutor: Sara Ranjbaran

Abstract

In the age of the Internet of Things, devices are spread everywhere, each

of them generating data. Traditionally all the computation is done in the

cloud, however, as this can have a higher than desired latency to the de-

vice, the concept of fog computing appeared. Fog computing is a cloud-like

computing paradigm, where the computation is done on the edge of the

network. Here, on the edge, the compute can be provided by user-provided-

equipment. However, this comes with multiple implications, such as task

scheduling, incentive schemes, security or networking. In response to these

issues, this paper reviews multiple papers addressing each issue, and dis-

cusses forming a set of these papers to be used in a complete fog computing

system.

KEYWORDS: Fog computing, Internet of Things, Task scheduling, Net-

working, Security, Cloud computing

1 Introduction

As the Internet of Things (IoT) has become more and more popular, the

traffic generated by IoT devices has been steadily increasing, as their

number is projected to reach 25 billion by 2025 [1]. This number of IoT

devices leads to an increasing amount of data that is generated and has to

be transferred to the cloud. As a result, the cost of traffic will only increase

as time goes on, as will the volume of data. Additionally, the latency of the

data transfer should be considered, as certain IoT applications depend on

low-latency access to computing resources.

As a solution to these issues, the concept of fog computing was pro-

posed by Bonomi et al. [2]. In fog computing, devices close to the user

are used for computation, as opposed to servers in a data center. How-

ever, the features of the cloud are still desirable in fog computing, as they

would allow for greater utilization of resources.

The processing power of fog computing is situated on the edge, close to

the end-user. Consequently, alongside the multiple benefits it comes with,

it also brings a number of issues, such as, the number of edge locations,

the hardware provider, the connection of each location to the cloud and

to each other, and uniformity of resource utilization. This paper will fo-

cus on user-provided equipment being used at the edge, and the required

techniques for its success.

This paper is structured as follows. Section 2 presents cloud comput-

ing and fog computing. Section 3 presents the techniques that can be used

in fog computing to solve the issues that arise from using user-provided-

infrastructure at the edge. Section 4 discusses the feasibility of the meth-

ods presented in Section 3. Finally, Section 5 presents some concluding

remarks.

2 Computing Paradigms

Computing paradigms have evolved through the times, first there was dis-

tributed computing, which evolved into cloud computing. As the Internet

of Things was introduced, the need for lower latency became apparent,

and as such, the concept of fog computing was introduced. However, in

order to understand what is expected of fog computing, cloud computing

should be looked into first.

2.1 Cloud Computing

Cloud computing is a computing paradigm that standardised commodity

access to computing resources, first introduced by Google in 2003 through

a number of research papers, and first commercialized by Amazon in 2006.

Cloud gained large scale adoption as it lowered the barrier to entry into

the computing space, thus allowing more companies to get access to com-

puting resources. In essence, the cloud enables the flexible usage of com-

puting, while reducing the operating costs and capital expenditure [3].

Before cloud computing, any company that required computing resources

would have to build their own infrastructure, which is the main advan-

tage of cloud, as it moves the infrastructure and personnel costs to the

provider, where economies of scale can happen. Alongside this, after the

initial roll-out of cloud, the large providers kept adding new products,

which simplified the expansion of cloud computing. However this resulted

into "cloud lock-in", where customers are tied to a certain vendor, as they

use proprietary products [4].

The public cloud is not an option in all industries, as they might have

privacy requirements, or security considerations. As such, the concept

of private cloud has been developed, where features similar to the public

cloud are maintained on premises with the use of open-source technolo-

gies. Some of the used technologies are OpenStack, Kubernetes, Linux. [5]

2.2 Fog Computing

Fog computing is an extension to cloud computing, where the infrastruc-

ture is moved to the edge. Some of the goals of such an approach are to

reduce latency between endpoints and computation, reducing operating

costs of the compute infrastructure for a large IoT sensor network and

taking advantage of geographical distribution [2]. A high level architec-

ture of fog computing can be seen in Figure 1.

Figure 1. Hierarchical fog computing architecture from [6]

According to Sabireen and Neelanarayanan [7], the architecture some

papers approach can be summarized as: "Level 1: Physical and virtual

sensors", "Level 2: Fog device, server and gateway", "Level 3: Monitor-

ing", "Level 4: Pre and post processing", "Level 5: Storage and resource

management", "Level 6: Security" and "Level 7: Application". Level 1 is

comprised of the physical or virtual sensors that generate data for the fog

network, Level 2 is formed of the network compute, be it an IoT device or

an independent server. Level 3 is represented by the monitoring compo-

nent of such a network, to be able to facilitate resource allocation. Level

4 handles the processing of data that is produced by Level 1, and Level

5 is in charge of storing the data processed by Level 4. Level 6 concerns

the security of the network and Level 7 is the actual application that can

run on the fog network to augment IoT devices. Some of the use cases

in which fog computing can be used are: smart healthcare, where it can

collect and process different sensors used by patients, smart city, where

it can collect and manage different sensor and actuators throughout a

city and entertainment, and cloud gaming, which highly depends on the

latency between the user and the computing resources [6].

On the network edge there are a lot of resources available that are

unused which could be used to enhance the fog network, and this will be

looked into in the next section [8].

3 Algorithm details

Using user-provided equipment in fog computing brings forward a num-

ber of challenges. Firstly, the heterogeneity and uniform utilization of

the equipment is an issue, as the multiple hardware configurations that

users might bring into the network have different levels of performance,

thus rendering traditional scheduling algorithms obsolete. Secondly, the

challenge of incentives arises, given that users lack inherent motivation

to bring their hardware into the network, necessitating a tangible reward

to incentivize their participation. Thirdly, the is the issue of security, as

the hardware that is brought into the network can be under the control

of a nefarious actor, which can launch an attack on the network if not

properly secured. Lastly, the network traffic that is produced by the fog

node would cause problems for the user if the traffic generated by it is not

separated from the users traffic.

Each of these issues have been approached in previous research pa-

pers. In the following subsections, a number of papers will be reviewed for

each of the issues that were raised. Thus, for task scheduling the reviewed

papers are [9, 10, 11], for incentive schemes, the papers are [8, 12, 13],

for security, the papers are [14, 15], and finally, for networking, the pa-

pers are [16, 17]. The papers were chosen by looking at papers men-

tioned by multiple survey papers, and by searching <issue> AND fog AND

computing on Scopus, where <issue> was replaced by the issue mentioned

above, and manually selecting appropriate papers.

3.1 Task scheduling

Task scheduling is an important aspect in fog computing, where all ap-

plications that run on the system depend on it. Different use cases of

fog computing have different priorities for their scheduling, such as la-

tency [9], reducing the SLA violation rate [10] or improving the packet

delivery ratio [11].

Barzegaran et al. [9] proposed a Simulated Annealing-based meta-

heuristic, which caters to their use case of Industrial IoT control appli-

cations that are safety-critical and real-time, and that have very low la-

tency and jitter requirements. The authors used Simulated Annealing

to propose new "neighboring solutions", and evaluated with their Cost of

Control function, which is a performance index that evaluates the behav-

ior over time, thus the performance of a new solution is better if the value

of this mathematical function increases.

Sun and Zhang [10] use game theory to model a fog computing system,

where the fog broker uses an incentive mechanism to encourage more re-

source owners to contribute their resources to the system, while receiving

a reward. The authors model this as a repeated game with complete in-

formation, and uses information such as energy costs, reward per unit of

time, the degree of patience of the players and reward for completing a

task. The proposed model performs better than typical dynamic schedul-

ing algorithms, Min-Min and MBFD.

Hameed et al. [11] suggest a different approach than the previous

two papers, clustering vehicles that are in proximity of each other and

capacity-based load-balancing among clusters. Each cluster has a clus-

ter head (CH) fog device that is responsible to distribute the tasks among

the clusters and within the cluster of vehicles. In order to select the ap-

propriate node as a CH in a cluster, the fog gateway uses beaconing and

prediction mechanisms. After this process, the fog gateway offloads tasks

to CHs, which in turn also offload it to another CH or inside their cluster.

3.2 Incentive schemes

An incentive scheme is an important aspect of a fog computing system

that has users contributing their resources. While Nazih et al. [8] have

a theoretical incentive scheme for a vehicular fog network, the Helium

Network [12] is a physical system, similar to a fog network, that has a

working incentive scheme [13].

Nazih et al. [8] propose an incentive scheme based on the combination

of two mathematical concepts: Stackelberg games and contract theory.

The authors use the Stackelberg games to determine the reward of a task,

and contract theory to determine the node that will fulfill the task.

The Helium Network [12] is a network that provides wireless connec-

tivity using user-provided-equipment. In this case, the network provides

a reward for every packet that is successfully delivered, and the rewards

are determined by the coverage a node provides, such that a node in a

sparse area is more productive than a node in a crowded area. According

to Jagtap et al. [13], as of May 2021, Helium has over 40000 active nodes,

and their ownership is decentralized, as 84% of users own at most three

hotspots.

3.3 Security

Security is an important factor when insecure user equipment is brought

into the fog network, as that node can compromise user data, which can

user privacy implications. Some solutions are introduced by Li [14] in the

form of a trustless compute layer, and Wang et al. [15] by authenticating

data as it updates.

Li [14] proposes a blockchain based trustless layer, which protects both

the source data and the algorithm processing the data. In this case, the

function would accept "hidden" data as input, and would generate a zero-

knowledge computing proof, which can be verified publicly. These are im-

plemented using smart contracts on a DAG+ blockchain.

Wang et al. [15] presents an incremental authentication scheme for

updated data in fog computing. This scheme is build using an efficient

incremental signature scheme that is a lattice-based multi-blocks and

mixed incremental signature scheme. This scheme supports all the knows

incremental operation.

3.4 Networking

Networking has a significant role in fog computing, acting as the back-

bone of the entire system. When user-provided-equipment is used in a fog

network, network slicing becomes an important factor as highlighted by

Theodorou and Xezonaki [16]. Another aspect that should be considered

is the dissemination of critical updates, as shown by Vikhrova et al. [17].

Theodorou and Xezonaki [16] propose a 2-tier gateway system, where

each IoT slice gets a virtualised gateway, while there is a single gateway

mediating access to the rest of the sensor network, as well as proposing

a novel archirecture building on the NFV MANO framework. Their ap-

proach automates the process of creating an IoT slice to the order of a few

minutes.

Vikhrova et al. [17] introduce a new paging algorithm that improves

the Single-Cell Point-to-Multipoint component of the 5G standard, such

that it can better handle the fast distribution of critical updates after a

bug fix or system failure.

4 Discussion

The reviewed papers offer a glimpse into the possible algorithms that

can be integrated into a fog computing system that uses user-provided-

equipment. It is not necessary, or expected, to use all the papers. How-

ever, depending on the final use case of the system, a combination of

them would be relevant. An example system could use the scheduling

of Hameed et al. [11], the reward scheme of Helium [13], the trustless

compute layer of Li [14] and the network slicing of Theodorou and Xezon-

aki [16].

Another thing to note is that there no large-scale deployments of a

public or private fog network, while the research output in this area of

computing has been increasing over the past years [6]. This is due to it

not presenting a clear business case for the companies yet. As a result,

the market capture of fog computing is projected to be only 343 million

dollars by 2030, while the cloud market is projected to be around 791

billion dollars by 2028 [6].

In future research, it is recommended to develop a complete general

purpose fog network, which can provide test-bed for future work. This

would accelerate the large-scale deployment of such a system, moving it

from the simulators to the real world.

5 Conclusion

This paper studies fog computing and the required algorithm to use user-

provided-equipment at the edge of the network. In total, 9 algorithm were

presented, covering a wide range of uses, with the goal that a combination

of them can be used in a fog computing system. Additionally, a set of

algorithms for part of a fog computing system was discussed.

References

[1] L. Babun, K. Denney, Z. B. Celik, P. McDaniel, and A. S. Uluagac, “A
survey on IoT platforms: Communication, security, and privacy perspec-
tives,” Computer Networks, vol. 192, p. 108040, Jun. 2021. doi:
10.1016/j.comnet.2021.108040

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in
the internet of things,” in Proceedings of the first edition of the MCC work-
shop on Mobile cloud computing, ser. MCC ’12. New York, NY, USA: Associ-
ation for Computing Machinery, Aug. 2012. doi: 10.1145/2342509.2342513.
ISBN 978-1-4503-1519-7 pp. 13–16.

[3] L. Qian, Z. Luo, Y. Du, and L. Guo, “Cloud Computing: An Overview,” in
Cloud Computing, ser. Lecture Notes in Computer Science, M. G. Jaatun,
G. Zhao, and C. Rong, Eds. Berlin, Heidelberg: Springer, 2009. doi:
10.1007/978-3-642-10665-1_63. ISBN 978-3-642-10665-1 pp. 626–631.

[4] G. C. Silva, L. M. Rose, and R. Calinescu, “A Systematic Review of Cloud
Lock-In Solutions,” in 2013 IEEE 5th International Conference on Cloud
Computing Technology and Science, vol. 2, Dec. 2013. doi: 10.1109/Cloud-
Com.2013.130 pp. 363–368.

[5] S. Goyal, “Public vs Private vs Hybrid vs Community - Cloud Computing: A
Critical Review,” International Journal of Computer Network and Informa-
tion Security, vol. 6, no. 3, p. 20, 2014. doi: 10.5815/ijcnis.2014.03.03

[6] S. N. Srirama, “A decade of research in fog computing: Relevance, chal-
lenges, and future directions,” Software: Practice and Experience, vol. 54,
no. 1, pp. 3–23, 2024. doi: 10.1002/spe.3243

[7] H. Sabireen and V. Neelanarayanan, “A Review on Fog Computing: Archi-
tecture, Fog with IoT, Algorithms and Research Challenges,” ICT Express,
vol. 7, no. 2, pp. 162–176, Jun. 2021. doi: 10.1016/j.icte.2021.05.004

[8] O. Nazih, N. Benamar, and A. Addaim, “An Incentive Mechanism for
Computing Resource Allocation in Vehicular Fog Computing Environ-
ment,” in 2020 International Conference on Innovation and Intelligence
for Informatics, Computing and Technologies (3ICT), Dec. 2020. doi:
10.1109/3ICT51146.2020.9312007 pp. 1–5.

[9] M. Barzegaran, A. Cervin, and P. Pop, “Towards quality-of-control-aware
scheduling of industrial applications on fog computing platforms,” in Pro-
ceedings of the Workshop on Fog Computing and the IoT, ser. IoT-Fog ’19.
New York, NY, USA: Association for Computing Machinery, Apr. 2019. doi:
10.1145/3313150.3313217. ISBN 978-1-4503-6698-4 pp. 1–5.

[10] Y. Sun and N. Zhang, “A resource-sharing model based on a repeated game
in fog computing,” Saudi Journal of Biological Sciences, vol. 24, no. 3, pp.
687–694, Mar. 2017. doi: 10.1016/j.sjbs.2017.01.043

[11] A. R. Hameed, K. Munir, S. u. Islam, and I. Ahmad, “Load-balancing of
computing resources in vehicular fog computing,” in 2020 3rd International
Conference on Data Intelligence and Security (ICDIS), Jun. 2020. doi:
10.1109/ICDIS50059.2020.00020 pp. 101–108.

[12] A. Haleem, A. Allen, A. Thompson, M. Nijdam, and R. Garg, “Helium: A
decentralized wireless network,” Nov. 2018, accessed: 2024-02-25. [Online].
Available: http://whitepaper.helium.com/

[13] D. Jagtap, A. Yen, H. Wu, A. Schulman, and P. Pannuto, “Federated infras-
tructure: usage, patterns, and insights from "the people’s network",” in Pro-
ceedings of the 21st ACM Internet Measurement Conference, ser. IMC ’21.
New York, NY, USA: Association for Computing Machinery, Nov. 2021. doi:
10.1145/3487552.3487846. ISBN 978-1-4503-9129-0 pp. 22–36.

[14] W. Li, “Trustless Layer for Secure Fog Computing,” in Proceedings of the 8th
International Conference on Cyber Security and Information Engineering,
ser. ICCSIE ’23. New York, NY, USA: Association for Computing Machin-
ery, Dec. 2023. doi: 10.1145/3617184.3630157. ISBN 9798400708800 pp.
328–334.

[15] F. Wang, J. Wang, and W. Yang, “Efficient incremental authentication for
the updated data in fog computing,” Future Generation Computer Systems,
vol. 114, pp. 130–137, 2021. doi: 10.1016/j.future.2020.07.039

[16] V. Theodorou and M.-E. Xezonaki, “Network Slicing for Multi-tenant Edge
Processing over Shared IoT Infrastructure,” in 2020 6th IEEE Confer-
ence on Network Softwarization (NetSoft), Jun. 2020. doi: 10.1109/Net-
Soft48620.2020.9165327 pp. 8–14.

[17] O. Vikhrova, S. Pizzi, A. Molinaro, A. Iera, K. Samouylov, and G. Aran-
iti, “Group-based delivery of critical traffic in cellular IoT networks,”
Computer Networks, vol. 181, p. 107563, Nov. 2020. doi:
10.1016/j.comnet.2020.107563

How Reliable is TOR

Ranjit Nepal
ranjit.nepal@aalto.fi

Tutor: Tuomas Aura

Abstract

This paper offers an overview of the reliability of the Tor(The Onion Router),

a technology designed to enhance online privacy and anonymity. The pa-

per outlines the operational principles of the Tor network. While acknowl-

edging the importance of Tor in safeguarding user privacy, especially for

activists and social groups, the paper also highlights the network’s vul-

nerabilities to various forms of attacks. These include threats to user

anonymity, Denial-of-Service (DoS) attacks, and attacks from the network.

By examining these challenges, the paper aims to provide insights into the

advantages and limitations of Tor, enhancing understanding of its role in

maintaining online privacy and security in the digital age.

KEYWORDS: TOR, Anonymity, Network Attacks

1 Introduction

The Tor overlay network is a global network designed to provide anony-

mous communication over the internet. It is a key technology developed

to enhance online privacy and anonymity in the digital communication

era. Tor functions as a distributed anonymity network managed by vol-

unteers, offering users an certain degree of protection against monitoring,

censorship, and discrimination [7]. Users can hide their online activity by

using the Tor overlay network, which allows routing their traffic through

a number of encrypted nodes [7, 15].

The reliability of the Tor is crucial for safeguarding the security of its

wide range of users. Any breaches in Tor could impact not only individual

privacy but also the safety of activists and social groups relying on it [10].

Hence, maintaining Tor’s reliability is essential, requiring developers and

other stakeholders to remain committed to strengthening its infrastruc-

ture and protecting privacy and anonymity for its users.

This paper reviews the attacks on the Tor network and approaches

aimed at enhancing its reliability. This includes examining attacks on its

anonymity, and Denial-of-service (DoS) attacks [16, 4, 5, ?, 12], offering

insights into Tor’s advantages and disadvantages.

This paper is organized as follows. Section 2 explains the Tor’s oper-

ating principle. Section 3 describes different kinds of attacks against Tor

from different adversaries. Section 4 discusses briefly good practices and

usability of Tor. Finally, Section 5 presents concluding remarks.

2 Design

Tor, a second-generation Onion Routing system, is designed to anonymize

web browsing, secure shell, and instant messaging [7]. It is a distributed

overlay network, where clients build a circuit through the network and

each node in this circuit only knows its immediate predecessor and succes-

sor. Tor also uses Perfect Forward Secrecy (PFS), decentralized congestion

control, varied exit policies, and hidden services to enhance security.

The data flows in the Tor network in small packets which are called

cells. Cells in the Tor network are the fundamental units of communica-

tion, each being 512 bytes in size, making traffic analysis difficult. Com-

posed of a header and a payload, the cells are categorized into control

cells for circuit management like setup and maintenance and relay cells

carrying end-to-end payload data. The relay cells include a relay header

with a stream identifier (streamID), integrity checksum, payload length,

and relay command, which are essential for data routing and manage-

ment within Tor [7]. These cells employ AES cipher encryption in counter

mode, providing data confidentiality as the cells traverse the circuit.

Path selection in Tor is client-driven, where clients use their Onion

Proxy (OP) to choose a series of onion routers (ORs) to create a path for

data routing, guided by information from Tor’s directory servers. Direc-

tory servers act as a repository of information about the Tor network.

They maintain up-to-date lists of active ORs, including details about each

router’s status, capabilities, and policies. This information is essential for

Tor clients to construct efficient and secure circuits through the network.

The OP initiates a connection with a randomly selected entry node (guard

node) and incrementally builds the circuit by adding nodes one at a time,

establishing shared symmetric keys via Diffie-Hellman handshakes. As

the OP sends data through the circuit, each OR decrypts only its layer of

encryption, unaware of the data’s original source or ultimate destination.

This ensures that neither the entry node knows the data content or final

destination, nor does the exit node know the original source, maintain-

ing the anonymity core to Tor. The basic path followed in Tor network is

shown in Figure 1.

Figure 1. Communication in Tor network.

Despite numerous security measures in place, the Tor network still

faces various types of attacks. These include attacks on user anonymity

as well as DoS attacks, aiming to flood servers with traffic.

3 Attacks

This section explores the threats posed by adversaries to the Tor network,

emphasizing their capacity to monitor internet traffic.

3.1 Compromised nodes

These type of attacks involve an attacker gaining control over one or more

nodes (usually entry or exit nodes) in the Tor network. If an attacker

controls some of these nodes, they can potentially observe, modify, or block

the data passing through them [11].

If an attacker gains control of an entry node in the Tor network and

can see the traffic between exit node and server, they can potentially con-

duct an active website fingerprinting attack. This involves manipulating

traffic that passes through the controlled node [9, 13]. The attacker’s goal

is to infer which websites a Tor user is accessing despite the encryption

and routing methods Tor uses to anonymize traffic.

In this specific kind of attack, the attacker delays certain HTTP re-

quests at the entry node. They create unique, distinguishable patterns in

the traffic flow, which can then be analyzed to identify the websites being

visited by the Tor user [17]. This method requires a deep understand-

ing of Tor’s traffic and protocol behavior, including the ability to identify

the first HTTP request and choose subsequent points in the traffic flow to

delay.

Another attack can be used to confirm that a specific communication

between two parties is happening over Tor. In this attack, the attacker

controls both the entry and exit onion routers in a Tor circuit. This method

involves manipulating cells in various ways – duplicating, modifying, in-

serting, or deleting them [12]. This manipulation disrupts the cell’s nor-

mal flow and encryption, leading to recognizable decryption errors at the

exit onion router.

The key to de-anonymization lies in correlating the manipulated cells

at the entry node with the decryption errors observed at the exit node.

Since the attacker controls both nodes,the times and details of cell manip-

ulations at the entry node are logged and compared with the error logs

at the exit node. This information reveals that the specific traffic entered

the Tor network from a particular IP address (associated with the entry

node) and exited towards a specific destination (associated with the exit

node). While this does not immediately expose the identities two parties,

it narrows down the possibilities.

3.2 Attacks by network

These attacks are carried out by Internet Service Providers (ISPs) or other

entities that have control over network infrastructure. They can also be

called Autonomous system (AS), which is a large network or group of net-

works that has a single, unified routing policy. These attacks are impor-

tant because they can undermine the effectiveness of Tor at a network

level, beyond just targeting individual nodes [15].

Asymmetric Traffic Analysis is one of the attacks where an adversary

exploits the asymmetry of routing to compromise anonymity. The data

packets and their responses often take different routes in the internet. In

a Tor network, where user anonymity is important, this asymmetry can be

a vulnerability. An adversary controlling an AS can observe traffic mov-

ing in one direction at both ends of the communication path. They observe

data packets going from a user to a Tor entry node and acknowledgments

coming from a destination server to a Tor exit node. By analyzing pat-

terns in this traffic, such as timing and packet sizes, the adversary can

potentially correlate these data flows. This correlation might reveal the

identity of Tor users or their activities, despite not monitoring all traffic

directions, thus posing a threat to the anonymity.

Exploiting BGP (Border Gateway Protocol) churn is another aspect of

the routing related attacks. BGP churn refers to the natural changes in

internet routing paths over time, influenced by factors like policy changes,

link failures, or new connections [3]. Such changes can reroute inter-

net traffic through different Autonomous Systems (ASs) including those

controlled by adversaries. In the context of the Tor network, this churn

means that the paths Tor traffic takes can vary over time, increasing the

likelihood of passing through malicious ASs. An adversary can exploit this

nature of BGP routing to increase the chance of observing Tor traffic. The

longer a user uses the Tor network, the higher the probability that part

of their traffic will pass through an adversary-controlled AS, allowing the

adversary to conduct traffic analysis [15]. This phenomenon makes the

Tor network more vulnerable over time as the unpredictability of internet

routing increases the risk of exposure and potential de-anonymization of

Tor users.

BGP Hijacks and Interceptions represent the most direct and invasive

routing attack. In a BGP hijack, an AS maliciously announces that it is

the correct route for IP addresses that it does not own [18]. This mis-

direction can cause a portion of the internet’s traffic, which includes Tor

traffic, to be rerouted through the malicious AS. Even more sophisticated

is a BGP interception, where the attacker temporarily routes the traffic

through their AS and then back to its original path, making the intercep-

tion almost invisible. By hijacking or intercepting the IP addresses of Tor

nodes, an adversary can directly observe and potentially alter the traf-

fic flowing through these nodes. This capability not only enables them to

perform detailed traffic analysis, potentially unmasking users and their

activities, but also poses the risks of injecting malicious traffic or disrupt-

ing Tor communications. Such direct control over Tor traffic is a severe

threat to user anonymity and can undermine the core functionality and

trust in the Tor network [15]. Distributing Tor nodes across multiple ASs

and geographic locations can reduce the risk of a significant portion of

Tor traffic being routed through a malicious AS. Decentralization makes

it harder for a single AS to control or monitor a substantial amount of Tor

traffic.

A country or network can also block access to the Tor network, and

the Great Firewall of China (GFC) is a prominent example of such cen-

sorship [1]. The GFC employs sophisticated deep packet inspection (DPI)

to detect Tor traffic. When a Tor connection is identified, the GFC initi-

ates active scanning using various Chinese IP addresses to confirm the

presence of Tor bridges. Once confirmed, these bridges are dynamically

blocked rather than simply blocklisting their IP addresses. This approach

illustrates a high level of adaptability in censorship efforts with the abil-

ity to rapidly detect and block new access points to the Tor network. This

kind of dynamic and sophisticated blocking mechanism poses a signifi-

cant challenge for Tor users within such a censored network, requiring

advanced circumvention methods to bypass the restrictions.

3.3 Attacks by global adversary

This type of attack assumes the adversary has the ability to observe a

large portion of the internet traffic worldwide. The threat posed by a

global adversary is particularly daunting because it challenges the funda-

mental principle of Tor, which is to protect against traffic analysis. Sybil

attack specifically refers to a scenario where an attacker operates multi-

ple Tor nodes under different identities. This kind of attack exploits the

decentralized and trust-based nature of the Tor network [16].

One of the attacks is exit traffic tampering where sybil nodes func-

tion as exit nodes; the last point of Tor traffic before it enters the reg-

ular internet. If an attacker controls these exit nodes, they can inter-

cept the traffic passing through them. Such control allows the attacker to

eavesdrop on unencrypted or poorly secured traffic, capture sensitive data

like credentials, and potentially alter or inject malicious content into the

traffic stream [14]. This compromises the confidentiality and integrity of

the data being transmitted through these nodes and can lead to privacy

breaches.

In regions with strict internet censorship, Tor users often rely on bridge

nodes (unlisted entry nodes) to access the network. Sybil nodes positioned

within the network can observe and log connections from the bridge nodes

[16]. This attack can lead to the blocking of the bridges by censorship au-

thorities, thereby denying access to the Tor network for users in those

regions.

3.4 DOS Attacks

Denial of Service (Dos) attacks in the Tor network involve overwhelming

specific nodes or services with an excessive amount of traffic, rendering

them unresponsive or severely degraded in performance. In the context

of Tor, these attacks can be particularly disruptive due to the network’s

reliance on a limited number of volunteer-operated nodes.

One of the attacks involves flooding Tor’s default bridges with packets,

which overwhelms their bandwidth capabilities. This is achieved by using

"stresser" services to direct a high volume of traffic at these bridges. As a

result, the bridges become overloaded and cannot provide effective service

to users trying to connect to the Tor network. The attack focuses on the

default bridges since they are hardcoded in the Tor Browser Bundle and

are essential for users in censored regions to access Tor [?].

Another attack targets the TorFlow system, which measures the per-

formance of Tor nodes and is critical for Tor’s load-balancing. The at-

tackers flood the TorFlow scanners with packets, disrupting their ability

to accurately measure node performance. By affecting the measurement

process, the reliability and consistency of node capacity estimation are

compromised [?]. This misrepresentation of node performance leads to

inefficient load distribution across the network, drastically reducing the

median client download rate. Client download rate is a measure of the

network’s performance from the perspective of an end user, typically rep-

resented in terms of bytes per second.

Another attack is where the attacker uses the Tor protocol itself to con-

gest the network. They build thousands of 8-hop circuits (technical limit

of no of nodes in a path) and use these to download large files through

the network [8]. In an 8-hop circuit, data is transmitted through eight

different nodes, effectively amplifying the bandwidth consumed for each

piece of data. This approach results in a significant increase in data traf-

fic through the nodes, leading to network congestion. Each byte of data is

processed multiple times across the extended circuit path, increasing the

overall load on the Tor network and thereby slowing down the network

performance for regular users.

4 Discussion

Tor is a useful tool for anyone looking to keep their online activities pri-

vate, like journalists or activists in places where there is a lot of internet

control. It can be used to access websites that might be blocked in some

countries. However, it does not work well for things that need a lot of in-

ternet speed or for activities that need to happen in real-time, like watch-

ing high-quality videos or playing online games. It is also important to

remember that Tor should not be used for anything illegal.

When using Tor, there are a few things to keep in mind to use it safely.

Firstly, personal information like bank details should not be shared. It

is best to stick with secure websites (those with HTTPS in the address)

when using Tor as it prevents exit router from spying the communication.

Furthermore, when using Tor browser, add-ons or plugins could give away

the client identity or location, so their use should be avoided. Tor browser

should be updated regularly for the best security. Sticking to Tor’s stan-

dard settings is usually the safest measure. Using VPN (Virtual Private

Network) can be particularly beneficial in scenarios where the user does

not want their internet service provider (ISP) or anyone monitoring their

local network to know they are accessing Tor.

There are also tools like I2P (Invisible Internet Project) [2] and Freenet

[6] which provide censorship resistant communication and privacy. How-

ever they lack infrastructure and user base like Tor, resulting in slower

browsing speeds and fewer available services.

5 Conclusion

In summary, this paper has reviewed the reliability of the Tor network,

highlighting its role in ensuring online anonymity and privacy. Despite its

robust design, Tor faces various challenges including compromised nodes,

ISP-level attacks, global adversaries, and DoS attacks, which threaten

user privacy and the network’s stability. While Tor remains an essen-

tial tool for many users, particularly in oppressive regimes or for those

needing anonymous communication, its vulnerabilities necessitate ongo-

ing vigilance and enhancements.

References

[1] How the Great Firewall of China is Blocking Tor. In
2nd USENIX Workshop on Free and Open Communica-
tions on the Internet (FOCI 12). USENIX Association, Au-
gust 2012. https://www.usenix.org/conference/foci12/workshop-
program/presentation/Winter.

[2] Jacques Bou Abdo and Liaquat Hossain. Modeling the Invisible Internet.
Springer, February 2024. "https://doi.org/10.1007/978-3-031-53472-0_30".

[3] Hitesh Ballani, Paul Francis, and Xinyang Zhang. A Study of Prefix Hi-
jacking and Interception in the Internet. Comput. Commun. Rev., 37(4),
October 2007. https://doi.org/10.1145/1282427.1282411.

[4] Abdelberi Chaabane, Pere Manils, and Mohamed Ali Kaafar. Digging into
Anonymous Traffic: A Deep Analysis of the Tor Anonymizing Network.
In 2010 Fourth International Conference on Network and System Security,
pages 167–174, 2010. https://doi.org/10.1109/NSS.2010.47.

[5] Giovanni Cherubin, Rob Jansen, and Carmela Troncoso. On-
line Website Fingerprinting: Evaluating Website Fingerprinting At-
tacks on Tor in the Real World. In 31st USENIX Secu-
rity Symposium (USENIX Security 22), pages 753–770, August 2022.
https://www.usenix.org/conference/usenixsecurity22/presentation/cherubin.

[6] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W. Hong.
Freenet: A Distributed Anonymous Information Storage and Retrieval Sys-
tem. Springer Berlin Heidelberg, 2001. https://doi.org/10.1007/3-540-
44702-4_4.

[7] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:
The Second-Generation Onion Router. In 13th USENIX Secu-
rity Symposium (USENIX Security 04). USENIX Association, Au-
gust 2004. https://www.usenix.org/conference/13th-usenix-security-
symposium/tor-second-generation-onion-router.

[8] Nathan S Evans, Roger Dingledine, and Christian Grothoff.
A Practical Congestion Attack on Tor Using Long Paths.

In USENIX Security Symposium, pages 33–50, 2009.
https://www.usenix.org/conference/usenixsecurity09/technical-
sessions/presentation/practical-congestion-attack-tor-using.

[9] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website Fin-
gerprinting. In Proceedings of the 2009 ACM workshop on Cloud computing
security. ACM, November 2009. https://doi.org/10.1145/1655008.1655013.

[10] Abid Khan Jadoon, Waseem Iqbal, Muhammad Faisal Amjad, Hammad
Afzal, and Yawar Abbas Bangash. Forensic Analysis of Tor Browser: A
Case Study for Privacy and Anonymity on the Web. volume 299. Forensic
Science International, 2019. https://doi.org/10.1016/j.forsciint.2019.03.030.

[11] Ishan Karunanayake, Nadeem Ahmed, Robert Malaney, Rafiqul Islam, and
Sanjay K. Jha. De-Anonymisation Attacks on Tor: A Survey. IEEE Com-
munications, 23(4), 2021. https://doi.org/10.1109/COMST.2021.3093615.

[12] Zhen Ling, Junzhou Luo, Wei Yu, Xinwen Fu, Weijia Jia, and Wei Zhao.
Protocol-level Attacks Against Tor. volume 57. Computer Networks, 2013.
https://doi.org/10.1016/j.comnet.2012.11.005.

[13] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
Website fingerprinting in onion routing based anonymization networks. In
Proceedings of the 10th annual ACM workshop on Privacy in the electronic
society. ACM, October 2011. https://doi.org/10.1145/2046556.2046570.

[14] Rachee Singh, Rishab Nithyanand, Sadia Afroz, Paul Pearce, Michael Carl
Tschantz, Phillipa Gill, and Vern Paxson. Characterizing the Nature
and Dynamics of Tor Exit Blocking. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 325–341. USENIX Association, Au-
gust 2017. https://www.usenix.org/conference/usenixsecurity17/technical-
sessions/presentation/singh.

[15] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jen-
nifer Rexford, Mung Chiang, and Prateek Mittal. RAPTOR:
Routing Attacks on Privacy in Tor. In 24th USENIX Secu-
rity Symposium (USENIX Security 15). USENIX Association, Au-
gust 2015. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/sun.

[16] Philipp Winter, Roya Ensafi, Karsten Loesing, and Nick Feam-
ster. Identifying and Characterizing Sybils in the Tor Net-
work. In 25th USENIX Security Symposium (USENIX Se-
curity 16), pages 1169–1185. USENIX Association, August
2016. https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/winter.

[17] Ming Yang, Xiaodan Gu, Zhen Ling, Changxin Yin, and Junzhou Luo. An
Active De-anonymizing Attack Against Tor Web Traffic. Tsinghua Science
and Technology, 22, 2017. https://doi.org/10.23919/TST.2017.8195352.

[18] Zheng Zhang, Ying Zhang, Y. Charlie Hu, and Z. Morley Mao. Practical
defenses against BGP prefix hijacking. CoNEXT ’07. Association for Com-
puting Machinery, 2007. https://doi.org/10.1145/1364654.1364658.

Taxonomy of Supply Chain Attacks
Against Machine Learning Systems.

Salahuddin Salahuddin
salahuddin.salahuddin@aalto.fi

Tutor: Marchal Samuel

Abstract

Machine learning (ML) has developed exponentially and has found ap-

plications due to its various advantages. However, machine learning-based

systems might contain different vulnerabilities that could be exploited to

sabotage the system or gain an unfair advantage. These vulnerabilities

might exist in the system or be caused by external factors involved in its

development. The different external and internal components compose the

machine learning supply chain. Adversaries employ various attack pat-

terns to exploit these threats to jeopardize the machine learning supply

chain. Therefore, it is essential to take security measures to counter adver-

sarial attempts. This paper highlights the consequences of supply chain

attacks against machine learning systems while outlining various mitiga-

tion strategies to counter these vulnerabilities. It provides a detailed tax-

onomy of adversarial attacks against the ML supply chain and explains

the importance of security measures for hardware and software.

KEYWORDS: machine learning, deep learning, artificial intelligence, ma-

chine learning supply chain, adversarial machine learning (AML), attack

taxonomy, defense strategies, attack mitigation

1 Introduction

Artificial intelligence (AI) and machine learning (ML) have recently expe-

rienced significant advancements, leading to global AI integration in dif-

ferent fields and disciplines. Machine Learning (ML) has emerged as an

integral component in various sectors, including medical diagnosis, busi-

ness decision-making, stock market analysis, human behavioral analy-

sis, and applications such as biometric authentication, chatbots, and au-

tonomous vehicles. Generative artificial intelligence (GenAI) has also be-

come quite popular because of its ability to process varying data formats

[30]. For instance, ChatGPT, a large language model (LLM) from OpenAI,

can also handle image, audio, and video data. Extensive research is also

being done in multimodal—multimodal is a branch of machine learning

models that can take input and generate output in different formats, such

as text-to-speech, image-to-text, and text-to-image.

Although these systems have many advantages, the fact remains that

they present many challenges, which, if not mitigated, could lead to un-

wanted consequences. Malicious parties could compromise machine learn-

ing systems to sabotage them or gain an unfair advantage. For instance,

malicious attacks could lead to breaches in data privacy or erroneous, po-

tentially fatal decisions [33] [2], or if the computer vision model of an

autonomous vehicle is fed poisoned data, it might erroneously guide the

vehicle into the wrong lane or misclassify traffic signs [17]. Malicious

actors could also embed backdoors in generative models, producing inap-

propriate content in response to specific prompts [8] [47]. Multimodals

are considered to be more resistant to malicious attacks due to their com-

plexity. However, specific attack patterns have evolved against multiple

modalities, which has led to the rise of comprehensive attacks against all

modalities [11].

While designing and implementing an ML system, generally, the en-

vironment is assumed to be secure, which might not be accurate. Several

factors are involved in developing machine learning applications besides

the standard ML According to a report by Sonatype in 2022, the aver-

age increase in software supply chain attacks since 2019 has been around

742% [42], and in 2023, twice as many supply chain attacks were reported

[1]. Although much research has been done about adversarial machine

learning, most of it has been focused on malicious attacks on individual

components of ML systems, such as data poisoning, model backdoor injec-

tion, and model inversion. This paper highlights security vulnerabilities

in the machine learning supply chain and the consequences of such secu-

rity threats. Additionally, the paper discusses various defense strategies

suggested or implemented in the literature to counter adversarial attacks

and their limitations.

2 Background

The following sections provide a high-level overview of the machine learn-

ing system, supply chain, and security vulnerabilities that malicious ac-

tors could exploit.

2.1 Machine Learning

A typical ML pipeline comprises various components and operations: data

preparation, model training, evaluation/testing, and deployment. Each

step plays a critical role in developing a robust machine-learning system.

Data preparation involves gathering and cleaning data as well as parti-

tioning it into training, testing, and evaluation sets. Afterward, the ML

model is trained on the training set, evaluated via the validation set, and

tuned if necessary. Once the model performs satisfactorily, it is tested

through the testing set before deployment for inference in the real world

[21].

Figure 1. Machine Learning Pipeline

The security of an ML system is substantial, as vulnerabilities or

threats in the system might lead to malicious attacks.

2.2 ML Supply Chain

Generally, a supply chain is described as a mesh of individuals, orga-

nizations, resources, activities, and technology employed for designing,

building, and distributing a product. Since the supply chain involves

various components and stages, it is susceptible to many adversarial at-

tacks, either by compromising hardware or introducing malicious updates

in firmware or software at any phase. These security threats could be mit-

igated by taking proper measures such as vendor risk enhancement, soft-

ware integrity checks, trusted hardware utilization, secure development

and manufacturing practices, and anomaly detection and monitoring.

The supply chain of a machine learning system encompasses the com-

ponents and operations discussed in section 2.1, as well as ML frame-

works, third-party libraries, and hardware used to implement a machine

learning system [41]. For instance, to develop an Object Detection System,

the supply chain could be defined as obtaining data from a customer or

open-source platform, such as Kaggle; a pre-trained model could be down-

loaded from HuggingFace for fine-tuning; training can be performed on

AWS Sagemaker or Google Cloud; and deployment through frameworks,

such as TorchServe, Tensorflow Serving, and ONNX Runtime.

The ML supply chain is susceptible to adversarial attacks, similar to

a general product development supply chain. However, the attack mech-

anism might be the same or different. For example, an adversary could

insert a compromised component, such as a malicious chip, in product de-

velopment. On the other hand, the ML supply chain could be sabotaged

by injecting trojans into the training platform. As such, comprehending

the ML supply chain and its vulnerabilities, just like any product devel-

opment supply chain, is critical to secure ML applications against adver-

sarial attacks and is vital for creating robust applications [35].

Figure 2. Machine Learning Supply Chain

3 Taxonomy

Extensive research has been conducted to perform different types of mali-

cious attacks against machine learning systems and to study their impact

on them [26] [46]. The literature employs various terminologies, method-

ologies, and approaches to classify adversarial attacks against ML sys-

tems. However, the fundamental concepts and attack patterns remain

the same. After thoroughly reviewing the literature while focusing on

threats against the ML supply chain, this paper focuses on attack types

from MITRE [32], which classifies adversarial actions into four classes:

1. Attacks through Data, 2. Attacks through Model, 3. Attacks through

Software/Libraries, and 4. Attacks through GPU.

These four attack categories were chosen due to their roles in an ML

Supply Chain. Data and models are the fundamental components of any

machine-learning application. On the other hand, libraries and software

packages are required for various tasks, such as memory management,

network handling, data processing, testing, and debugging, in a typical

software system design and implementation. Graphical processing units

have become an integral component of any deep learning system due to

the computational requirements of ever-growing DL architectures, e.g.,

GPT3, one of the large language models from OpenAI, has approximately

175 billion parameters and 96 attention layers [10], which requires enor-

mous computational resources. Additionally, the literature review indi-

cates that most attack patterns, including Poisoning and Exploratory at-

tacks [14], fall under these four categories.

Figure 3. Adversarial Attack Taxonomy

3.1 Types of Attack

3.1.1 Attacks Through Data

Collecting and preparing data is an essential aspect of the ML life cy-

cle since the overall performance of an ML system relies highly on the

quantity and quality of data used for its development. Consequently,

tampering with the training, testing, or validation datasets could

quickly fail an ML system. Data-based attacks, also called White Box

[9] or data poisoning attacks, are the types of attacks during which

the attacker has access to the training dataset and ML model and

possesses knowledge about the model. In this scenario, the attacker

can either compromise the data by poisoning it with adversarial sam-

ples to produce faulty outputs on specific inputs [36] [3] or analyze

the model during training to find vulnerabilities in the feature space

[5].

Another potential threat to ML systems arises when individuals

download or scrape data from the internet via open-source platforms,

such as Kaggle, VisualData, UCL Machine Learning Repository, and

Socrata, where individuals and organizations can publish datasets.

An adversary could provide poisoned datasets on such platforms. Ac-

cessing datasets provided by untrustworthy parties could result in

malicious data being fed into the model, akin to a White Box Attack

scenario. For example, a malicious actor could distribute a corrupted

dataset for a model, leading to the model making incorrect predictions

on specific inputs [7].

Data-based attacks usually occur during the data acquisition and

preprocessing phases of an ML pipeline, and depending on the attack

and the application, they could have severe impacts. For instance, it

could lead to the model predicting or generating unexpected or inap-

propriate outputs, leading to potential reputational damages, finan-

cial loss, or fatal decision-making in critical scenarios.

3.1.2 Attacks Through Model

Often, individuals or companies outsource the development or train-

ing of an ML model due to the lack of necessary expertise, or they uti-

lize a pre-trained or foundational model, such as CLP, provided by a

third party because it would require extensive time to build and train

it from scratch. In the case of outsourcing [22], an attacker might add

a backdoor trigger to the model. Generally, the model user will have

a validation set to test the model. The adversary aims to produce

high accuracy on the validation set and generate wrong predictions

when the input contains the specified trigger. In the second scenario,

users may download a pre-trained or a foundational model and per-

form transfer learning for a specific task. The adversary might have

trained this particular model on a poisoned dataset or added a back-

door to produce incorrect outputs when the trigger is encountered,

as discussed in [27]. Such poisoned models could be found on open-

source platforms like Huggingface, Github, and Model Zoo. In some

cases, the attacker might be an insider, in which case, the adversary

could modify the model parameters [28], which might lead to adverse

effects.

Lately, federated learning (FL) has grown to address data pri-

vacy concerns and operational challenges to centralizing datasets.

While FL offers data privacy and the ability to leverage distributed

datasets, it also provides a broader attack surface to adversaries. In

FL, the attacker could poison the local version of the model [34], con-

sequently affecting the original model.

Model-based attacks usually take place during the training phase

of the machine learning pipeline. When the model is trained on the

dataset, injected backdoors learn to provide specific output. These at-

tacks could have severe consequences depending on the application.

For example, unauthorized individuals might gain access to confiden-

tial information or systems. Similarly, in generative AI, such vul-

nerabilities might reveal insights into the dataset used to train the

model.

3.1.3 Attacks Through Software/Libraries

In modern machine learning systems, applications heavily rely on

software packages and third-party libraries, including Model Zoo, Numpy,

Fast.ai, and Caffe. These libraries and frameworks offer various tech-

niques for designing and implementing robust ML/DL models from

scratch or optimizing pre-trained models. Moreover, they utilize other

software packages for different purposes, such as memory manage-

ment and network access.

Although some libraries and ML frameworks are provided by trust-

worthy parties, such as Meta, Google, and Microsoft, they are still

vulnerable since most are open-sourced or provided by untrusted plat-

forms and individuals. For instance, if one of the dependent packages

is compromised, it could lead to buffer overflows, segmentation faults,

or other unexpected behaviors [23]. Similarly, an adversary can uti-

lize a compromised package to hack into the user’s system through

the network, perform denial of service attacks, or inject malware into

the user’s system [12].

Aside from attacking the user’s system, an adversary can exploit

vulnerabilities in frameworks or their open-source libraries to launch

attacks against the model and data. For instance, an adversary might

stealthily inject a Trojan horse into the libraries to steal training data

from the user without their knowledge [25]. Furthermore, adver-

saries may impair the performance of a model by poisoning the data

through memory corruption [45]. Moreover, accessing fake versions

of ML/DL libraries might result in potential harm to the computer

system or the machine learning application.

Software-based attacks could affect multiple stages of the ML pipeline,

such as preprocessing, training, and evaluation. They could impact

the ML system, e.g., compromising data preprocessing could lead to

incorrect predictions, or backdoors could be injected into models. More-

over, the attacker could exfiltrate information about the data or the

model.

3.1.4 Attacks Through GPU

Graphical Processing Units play an essential role in deep-learning-

based systems and offer several benefits, but they also accompany

risks. Park et al. [37] showed that an attacker could inject and ex-

ecute malicious code in the memory of a GPU, potentially degrading

the overall performance of the DL algorithm. Furthermore, adver-

saries can extract information about the data or the model from the

GPU. For instance, if an adversary injects a Trojan horse into the

GPU, it can observe the state of the GPU while an application exe-

cutes. This Trojan can extract model parameters, hyperparameters,

application types, and other data depending on the memory state.

Recently, due to their growing size, an increasing number of DL mod-

els are trained on multiple GPUs running in parallel rather than on

a single GPU. Attackers can perform side-channel attacks on multi-

GPU architectures to extract information about deep learning archi-

tectures from GPU memory, as demonstrated by Dutta et al. [16].

GPU-based attacks usually occur during the training process and

could affect both the model and the dataset. Depending on the type of

attack, the adversary might inject poisonous samples into the train-

ing data, leading to wrong predictions or changing model parameters,

which could sabotage the model entirely or partially. Additionally, the

attacker could utilize trojan attacks to steal the model or information

about the data.

3.2 Analysis of Attacks

The attacks discussed above apply to any machine-learning supply chain.

However, the plausibility of different types varies due to various factors,

including but not limited to access to the system, skills required, ML

knowledge, likelihood of success, and ease of performability. For instance,

data poisoning and backdoor injection attacks are relatively easy to per-

form and more likely to succeed since individuals and small-scale orga-

nizations mostly scrape data from the internet, download from an open-

source platform, utilize pre-trained models, or outsource model training

due to a lack of in-house competence.

Software-based attacks are less common than model and data-based

attacks. Most software-based threats stem from the vulnerabilities present

in open-source projects unsupported by trusted vendors, such as Amazon,

Meta, and Google. These attacks could also happen when users uninten-

tionally download or install packages that claim to be one of the trusted

ones but are counterfeits [38]. On the other hand, GPU-based attacks

might be the rare types of attacks on the ML supply chain since they

require in-depth knowledge of how the GPU works, its memory layout,

communication mechanism, and access to the GPU itself.

These attacks are hazardous and could compromise the machine-learning

supply chain in one way or another. However, the frequency, effectiveness,

and success of attacks are determined by various factors, such as the skills

and expertise in machine learning. If proper security mechanisms are not

implemented, it could lead to severe consequences. The following section

discusses possible countermeasures against these attacks and their appli-

cability.

4 Mitigation Strategies

Various approaches have been employed in the literature as countermea-

sures against data poisoning, model modification, software compromise,

and other threats. However, due to the diverse nature of these attacks, de-

veloping one solution that could mitigate all adversarial attacks presents

a challenge. The following sections discuss mitigation methods from pre-

vious research that are generally recommended or applied.

Attack Medium Attack Type Attack Mitigation

Data White Box Attack,

Data Poisoning

Data Sanitization,

Adversarial Sample Detector,

Defensive Distillation,

Dataset Traceability

Model Parameters Modification,

Backdoors Injection,

Compromised Pre-trained Models,

Model Enhancement Techniques,Detection

and Backdoor Mitigation Techniques,and

Program Verification Techniques

Software / Libraries Compromised Libraries and Packages,

Data Exfilteration, Fake ML/DL Libraries

Secure coding and Verification,

Access Control and Resource Management,

Vulnerability Detection and Management,

Best Practices

GPU Malicious Code Injection,

Data and Model Information Extraction via

Trojan,

Information Leakage in Multi-GPU Architec-

tures

Access Control and Authorization,

Data Flow Management,

Anomaly Detection and Operation Protection

Table 1. Attack Types and Mitigation Strategies

4.1 Types of Strategies

4.1.1 Defensive Strategies for Data-Based Attacks

Data poisoning or perturbation in the training samples or inference

inputs is common in attacks against ML systems. Consequently, sig-

nificant research has been conducted to prevent such attacks. Al-

though many countermeasures to counter this attack can be found in

the literature, we provide a few below.

4.1.1.1 Data-Centric Defenses

These methods counter data-based attacks by filtering data to remove

adversarial samples.

• Data Sanitization: Data sanitization refers to filtering the training

data to remove poisoned samples [13]. This technique can be applied

before starting the training phase. Although it helps to remove un-

wanted data points, it relies on assumptions that might not hold in all

scenarios [4].

• Data Augmentation: Data augmentation could counter adversarial

samples in the training set. The idea here is to apply substantial data

augmentation, such as mixing up the input samples to create new sam-

ples or adding noise that could dilute the impact of poisonous samples

[6].

4.1.1.2 Model-Centric Defenses

One method to counter data poisoning is to modify the model architec-

ture or its hyperparameters to avoid the impact of adversarial sam-

ples on the learning process.

• Regularization: Ross et al. [40] proposed utilizing regularization to

counter poisonous samples during training. The main idea here is to

reduce the model’s sensitivity to small perturbations in the training

input by penalizing the gradients of predicted output concerning their

inputs. Regularization makes the model more robust to subtle input

variations, resulting in better decision-making.

• Robust Optimization Algorithm: Optimizing the stochastic gradi-

ent descent through an algorithm while training is a potential counter-

measure against poisonous samples. Diakonikolas et al. [15] proposed

the algorithm “Sever”. It applies robust optimization on the gradient

descent algorithm either by down-weighing or removing them, thus

limiting the impact of poisonous samples.

• Gradient Shaping: Hong et al. [24] proposed the idea of gradient

shaping, which refers to bounding the magnitude and minimizing the

orientation of the gradient. The authors utilized Differentially Private

Stochastic Gradient Descent (DP-SGD) to clip the gradient and noise

it before updating model weights to mitigate the effects of adversarial

samples.

4.1.1.3 Provenance and Transparency Defenses

Data provenance and transparency could be leveraged to avoid feed-

ing poisoned data to the model. These methods could provide insights

into the origins of the data, thereby offering an approach to verify the

integrity of the data.

• Dataset Traceability: Data-based attacks could be mitigated through

data traceability. Consumers of the data should verify the origins of

data so as not to access datasets from unreliable sources. Tools such

as datasheets [18] could provide the user insight into why the data set

was prepared, the motivation for making it, and the creator.

4.1.2 Defensive Strategies for Model-Based Attacks

Detecting and countering model-based attacks presents a challenge

since they are directly embedded in the algorithm. Depending on

the model type and situation, different methods could be applied to

handle these attacks. The following sections provide some of the tech-

niques that could be applied,

• Model Enhancement Techniques: If a pre-trained model is utilized

or the model is outsourced, the manipulated weights or injected back-

door could be fixed through transfer learning [20] or in-house training,

resulting in the model forgetting the malicious patterns it learned or

being overridden by new data. Secondly, the performing an inhouse.

• Adversarial Defense Libraries and Best Practices: The robust-

ness of the ML/DL model could be tested for adversarial attacks through

libraries such as MS Counterfeit, Foolbox, DeepSec, TextAttack, and

ART. Moreover, utilizing a pre-trained model provided by trusted plat-

forms and vendors, e.g., Google, Microsoft, and Meta, is a good prac-

tice.

• Anomaly Detection and Backdoor Mitigation Techniques: Ma-

chine Learning techniques could be employed to counter backdoors in

ML/DL models. For instance, Liu et al. [31] suggested ABS to detect

triggers in neural networks by analyzing the behavior of the target

model under different stimulation levels. Another model-based ap-

proach is Neural Cleanse (NC), proposed by Wang et al. [43], which

employs anomaly detection to identify the presence of backdoor trig-

gers in neural networks.

• Security and Program Verification Techniques: Hashing and

program verification techniques, commonly used in domains such as

cryptography [39], could be adapted to counter model-based attacks.

For instance, if the hash of a pre-trained model is available, it could

be used to check whether the model has been tampered with. Sim-

ilarly, program verification might help in verifying the robustness of

the model.

4.2 Defensive Strategies for Software-Based Attacks

Machine learning libraries and third-party software packages have

become crucial to developing robust ML systems. As such, defending

against vulnerabilities in these frameworks is of utmost importance.

• Secure coding and Verification: One method of handling vulner-

abilities in ML frameworks is to implement secure coding practices

and utilize cryptographic hashes for integrity checks. Following the

standards would help minimize the risks introduced via design or im-

plementation errors—such errors could expose security vulnerabilities

in the final system.

• Access Control and Resource Management: Limiting the access

of open-source or third-party packages to system and network resources

might help mitigate trojans and poisoning attacks. If memory access

is limited, malicious packages cannot read and write into the sensitive

areas in the memory. Likewise, limiting memory access would prevent

the download of poisonous content or the leakage of private data.

• Vulnerability Detection and Management: Fuzz Testing [19] might

reveal security loopholes within ML frameworks, such as improper

memory management, buffer overflow or underflow, and other runtime

exceptions. Therefore, such functionalities should be implemented

properly and securely.

• Best Practices: Users should adhere to best practices to avoid ad-

versarial attacks, such as downloading software packages exclusively

from trusted platforms, verifying package name, version, and source,

and following documentation while utilizing libraries or frameworks,

4.2.1 Defensive Strategies for GPU-Based Attacks

Detecting various misconfigurations and adversarial attacks in GPU

architecture is significantly more complex than other attacks against

the ML Supply Chain. Most machine learning or deep learning ap-

plications are developed using GPUs provided by vendors such as

NVIDIA. As such, the most efficient method to counter these issues is

by introducing security updates in the GPU-related libraries. Some

of these techniques are provided below.

• Access Control and Authorization: Authorization and access con-

trol could provide a defense against these attacks. For instance, re-

quiring administrator privileges to access GPUs could prevent unau-

thorized access to GPU memory. Likewise, adding features, such as

restricting memory read-write access, in GPU-related libraries could

provide a defense against malicious code injection into pages [37].

• Data Flow Management: In the case of distributed computing, the

best method would be to limit the amount of data transfer among

individual GPUs. Although GPU-to-GPU communication cannot be

eliminated, limiting cross-GPU data transfer rates by keeping threads

and the data they access within a single GPU could provide a defense

against side-channel attacks [29].

• Anomaly Detection and Operation Protection: Wei et al. [44]

suggested running a GPU daemon to detect contention, potentially

preventing side-channel attacks since the attacker could not exfiltrate

information based on timings and access patterns. Modifying GPU

schedulers could prevent resource contention by isolating critical tasks

and resources. Moreover, denial-of-service (DoS) attacks could be pre-

vented by adding scheduler security checks.

4.3 Analysis of Mitigation Strategies

Theorizing the strategies and implementing them are two different things.

The practical application of a strategy comes down to having the nec-

essary skills, knowledge, and resources. Moreover, the applicability of

any technique is limited by its effectiveness and scope. Countermeasures

against data might be easier to implement in the case of methods such

as data sanitization and provenance since these methods do not require

as much resources and expertise compared to more sophisticated tech-

niques. However, even that is limited by the data type or availability of

data records. On the other hand, model-based techniques require more

effort and high-level ML expertise.

The defenses against model-based attacks, adversarial defense libraries,

model enhancement techniques, and hash and program verification are

more accessible to implement but require resources, such as datasets, ver-

ification libraries, and hashes of models. However, ML-based techniques

are much more complex and challenging to implement. For instance, de-

tecting backdoors requires a pre-trained model focused on a specific do-

main, or in-house training of an ML algorithm needs to be performed,

which requires dataset and skills.

Solutions for software-based techniques might be the easiest to imple-

ment since they require following standard coding practices, error han-

dling, and code reviewing. However, the fact is that avoiding all and ev-

ery kind of error is impossible, and people make mistakes. Additionally,

a vast community is involved in open-source, and rectifying everything

becomes challenging. Like software-based strategies, the defense mech-

anisms against GPU-based attacks are straightforward. If GPU vendors

were to follow best practices, provide sophisticated and robust libraries,

and implement improved architectural designs, adversarial attacks could

potentially be mitigated.

5 Gaps and Challenges

Adversarial Machine Learning (AML) has been a subject of study for a

considerable time, with extensive research conducted to detect and mit-

igate security vulnerabilities in ML systems. Despite vast research, the

focus has predominantly been on adversarial attacks against individual

components of a machine learning system, such as data poisoning, back-

door injection, and model inversion or evasion attacks. More research is

required on software and hardware-related security threats since com-

promises in these components could lead to severe consequences, as dis-

cussed in previous sections. Moreover, most of the research has concen-

trated on individual machine learning supply chain components, such as

data or models, rather than the whole machine learning pipeline, which

might lead to overlooking threats stemming from the integrated behav-

ior of these components. Consider a facial recognition system built using

high-quality and diverse data, state-of-the-art facial recognition models,

trusted deep learning frameworks like PyTorch, and trained on GPUs se-

cure against unauthorized access. Although the ML pipeline comprises

secure components, the system can be compromised in several ways. For

instance, if the data pipeline is insecure, the adversary could intercept or

manipulate data to introduce biases. Moreover, vulnerabilities in third-

party libraries, for support purposes, might provide access to adversaries.

Therefore, a comprehensive approach that considers individual compo-

nents and the system as a whole would be more appropriate to implement

a robust ML system.

Due to the vast expansion of machine learning, plenty of datasets and

ML models are being created and distributed commercially or on open-

source platforms. Commercial products are more reliable and secure than

the open distribution of these resources, but not everyone can afford them.

Additionally, open source is a means for further research and expansion of

ML. As such, there is a need for trusted and authorized open-source plat-

forms for sharing datasets, model architectures, and pre-trained weights,

as well as a method to verify their integrity. Cryptographic hash or sig-

natures could be used to verify the integrity of data, models, and weights,

or a traceability mechanism might be employed to identify the source of

these resources. How to design and implement computationally efficient

cryptographic hash functions and digital signatures for large datasets,

model architectures, and pre-trained weights, which could be integrated

into current workflows, and benchmark their robustness against other

plausible methods for integrity verification?

Software packages and libraries for ML/DL are increasing exponen-

tially due to their ease of use and the vast tools they provide to build

machine learning systems from scratch. Open-source contributions allow

anyone to contribute to developing and improving these packages. For

instance, the most popular ML/DL libraries, like PyTorch, TensorFlow,

and Keras, are all available on GitHub, and anyone can contribute. How-

ever, unlike these popular libraries that large organizations and a massive

community are maintaining, some libraries provide many features, such

as downloading datasets or pre-trained models, but are not maintained by

well-known vendors like Meta and Google or trusted parties, which might

lead to potential vulnerabilities that adversaries could exploit. Moreover,

detecting vulnerabilities in machine learning code, such as optimization

algorithms and cost functions, is more complex than general exploitation

scripts. Therefore, there should be proper standards to check and ver-

ify these packages or libraries for any bugs or threats. One method to

mitigate the effects of malicious code is to develop an adversarial code de-

tection algorithm and integrate it into version control (VC) platforms. Es-

tablishing testing mechanisms, especially for libraries not supported by

well-known vendors, for pull requests before merging them on VC plat-

forms could also mitigate adversarial effects. When implementing these

techniques, their limitations and feasibility should be considered. For ex-

ample, How to develop computationally efficient and robust adversarial

code detection algorithms compatible with version control platforms to

detect perturbations in ML optimization algorithms and objective func-

tions?

Compromising GPUs might be more challenging than other machine

learning supply chain components. It could be argued that adversaries

require direct access to the GPU to compromise it. However, adversaries

could also use third-party libraries to inject trojans into GPU since these

libraries require certain user privileges to operate them. Depending on

the level of access, the ML pipeline could be easily compromised. Ad-

ditionally, the adversary can have direct access to physical resources,

which could lead to severe consequences. Although anti-viruses have been

around to counter threats in main memory for quite a while, there is no

software or tool to protect GPUs against such security threats. There-

fore, developing unique tools to detect and remove trojans from GPUs

could mitigate such threats. These methods might mitigate adversarial

attempts; however, their feasibility and limitations should be considered.

How to implement robust and effective software that can detect and miti-

gate trojans in the GPU, is compatible with other GPU libraries, addresses

the vulnerabilities introduced by third-party libraries, and can maintain

the output efficiency of GPUs?

6 Conclusion

The paper provides a comprehensive taxonomy of supply chain attacks

against machine learning systems and various defense mechanisms adopted

to counter threats and vulnerabilities in ML applications that adversaries

may exploit. After reviewing the literature, it is evident that many vul-

nerabilities in machine learning are often overlooked, which could have

severe consequences. Adversaries could compromise the complete supply

chain by compromising a single component, for example, leading to fatal

decisions by corrupting data. However, most of the research in adversar-

ial machine learning has focused on individual components, especially on

data and models, leading to research gaps in other components of the ML

supply chain and the system as a whole. Future research should focus

on identifying and mitigating threats in all parts of an ML supply chain.

Moreover, techniques should be developed to implement more robust and

secure ML pipelines.

References

[1] First Initial. or Corporate Author Author’s Last Name.
Sonatype 9th annual state of the software supply chain report.
https://www.sonatype.com/en/press-releases/sonatype-9th-annual-state-
of-the-software-supply-chain-report, 2023.

[2] Marieke Bak, Vince Istvan Madai, Marie-Christine Fritzsche, Michaela Th
Mayrhofer, and Stuart McLennan. You can’t have ai both ways: balancing
health data privacy and access fairly. Frontiers in Genetics, 13:1490, 2022.

[3] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and
J Doug Tygar. Can machine learning be secure? In Proceedings of the 2006
ACM Symposium on Information, computer and communications security,
pages 16–25, 2006.

[4] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, and Fabio
Roli. Bagging classifiers for fighting poisoning attacks in adversarial classi-
fication tasks. In Multiple Classifier Systems: 10th International Workshop,
MCS 2011, Naples, Italy, June 15-17, 2011. Proceedings 10, pages 350–359.
Springer, 2011.

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389, 2012.

[6] Eitan Borgnia, Jonas Geiping, Valeriia Cherepanova, Liam Fowl, Arjun
Gupta, Amin Ghiasi, Furong Huang, Micah Goldblum, and Tom Goldstein.
Dp-instahide: Provably defusing poisoning and backdoor attacks with dif-
ferentially private data augmentations. arXiv preprint arXiv:2103.02079,
2021.

[7] Nicholas Carlini, Matthew Jagielski, Christopher A Choquette-Choo,
Daniel Paleka, Will Pearce, Hyrum Anderson, Andreas Terzis, Kurt
Thomas, and Florian Tramèr. Poisoning web-scale training datasets is prac-
tical. arXiv preprint arXiv:2302.10149, 2023.

[8] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel
Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, et al. Extracting training data from large language models.
In 30th USENIX Security Symposium (USENIX Security 21), pages 2633–
2650, 2021.

[9] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay,
and Debdeep Mukhopadhyay. A survey on adversarial attacks and defences.
CAAI Transactions on Intelligence Technology, 6(1):25–45, 2021.

[10] Nagesh Singh Chauhan. Openai gpt-3: Understanding the architecture, 5
2022.

[11] Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh.
Attacking visual language grounding with adversarial examples: A case
study on neural image captioning. arXiv preprint arXiv:1712.02051, 2017.

[12] Hongsong Chen, Yongpeng Zhang, Yongrui Cao, and Jing Xie. Security
issues and defensive approaches in deep learning frameworks. Tsinghua
Science and Technology, 26(6):894–905, 2021.

[13] Gabriela F Cretu, Angelos Stavrou, Michael E Locasto, Salvatore J Stolfo,
and Angelos D Keromytis. Casting out demons: Sanitizing training data
for anomaly sensors. In 2008 IEEE Symposium on Security and Privacy (sp
2008), pages 81–95. IEEE, 2008.

[14] Flávio Luis de Mello. A survey on machine learning adversarial at-
tacks. Journal of Information Security and Cryptography (Enigma), 7(1):1–
7, 2020.

[15] Ilias Diakonikolas, Gautam Kamath, Daniel Kane, Jerry Li, Jacob Stein-
hardt, and Alistair Stewart. Sever: A robust meta-algorithm for stochas-
tic optimization. In International Conference on Machine Learning, pages
1596–1606. PMLR, 2019.

[16] Sankha Baran Dutta, Hoda Naghibijouybari, Arjun Gupta, Nael Abu-
Ghazaleh, Andres Marquez, and Kevin Barker. Spy in the gpu-box: Covert
and side channel attacks on multi-gpu systems. In Proceedings of the 50th
Annual International Symposium on Computer Architecture, pages 1–13,
2023.

[17] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati,
Chaowei Xiao, Atul Prakash, Tadayoshi Kohno, and Dawn Song. Robust
physical-world attacks on deep learning visual classification. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pages 1625–1634, 2018.

[18] Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman
Vaughan, Hanna Wallach, Hal Daumé Iii, and Kate Crawford. Datasheets
for datasets. Communications of the ACM, 64(12):86–92, 2021.

[19] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated
whitebox fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[20] Francisco-Javier González-Serrano, Adrián Amor-Martín, and Jorge
Casamayón-Antón. Supervised machine learning using encrypted training
data. International Journal of Information Security, 17:365–377, 2018.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[22] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Iden-
tifying vulnerabilities in the machine learning model supply chain. arXiv
preprint arXiv:1708.06733, 2017.

[23] Nima Shiri Harzevili, Jiho Shin, Junjie Wang, Song Wang, and Nachiappan
Nagappan. Characterizing and understanding software security vulner-
abilities in machine learning libraries. In 2023 IEEE/ACM 20th Inter-
national Conference on Mining Software Repositories (MSR), pages 27–38.
IEEE, 2023.

[24] Sanghyun Hong, Varun Chandrasekaran, Yiğitcan Kaya, Tudor Dumitraş,
and Nicolas Papernot. On the effectiveness of mitigating data poisoning
attacks with gradient shaping. arXiv preprint arXiv:2002.11497, 2020.

[25] Chen Hongsong, Zhang Yongpeng, Cao Yongrui, and Bharat Bhargava. Se-
curity threats and defensive approaches in machine learning system under
big data environment. Wireless Personal Communications, 117:3505–3525,
2021.

[26] Olakunle Ibitoye, Rana Abou-Khamis, Ashraf Matrawy, and M Omair
Shafiq. The threat of adversarial attacks on machine learning in network
security–a survey. arXiv preprint arXiv:1911.02621, 2019.

[27] Yujie Ji, Xinyang Zhang, Shouling Ji, Xiapu Luo, and Ting Wang. Model-
reuse attacks on deep learning systems. In Proceedings of the 2018 ACM
SIGSAC conference on computer and communications security, pages 349–
363, 2018.

[28] Yujie Ji, Xinyang Zhang, and Ting Wang. Backdoor attacks against learn-
ing systems. In 2017 IEEE Conference on Communications and Network
Security (CNS), pages 1–9. IEEE, 2017.

[29] Hyojong Kim, Ramyad Hadidi, Lifeng Nai, Hyesoon Kim, Nuwan Jayasena,
Yasuko Eckert, Onur Kayiran, and Gabriel Loh. Coda: Enabling co-location
of computation and data for multiple gpu systems. ACM Transactions on
Architecture and Code Optimization (TACO), 15(3):1–23, 2018.

[30] Satyam Kumar, Dayima Musharaf, Seerat Musharaf, and Anil Kumar
Sagar. A comprehensive review of the latest advancements in large gener-
ative ai models. In International Conference on Advanced Communication
and Intelligent Systems, pages 90–103. Springer, 2023.

[31] Yingqi Liu, Wen-Chuan Lee, Guanhong Tao, Shiqing Ma, Yousra Aafer, and
Xiangyu Zhang. Abs: Scanning neural networks for back-doors by artificial
brain stimulation. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security, pages 1265–1282, 2019.

[32] MITRE ATT&CK®. Aml.t0010. https://atlas.mitre.org/techniques/AML.T0010,
n.d.

[33] AKM Iqtidar Newaz, Nur Imtiazul Haque, Amit Kumar Sikder, Moham-
mad Ashiqur Rahman, and A Selcuk Uluagac. Adversarial attacks to ma-
chine learning-based smart healthcare systems. In GLOBECOM 2020-2020
IEEE Global Communications Conference, pages 1–6. IEEE, 2020.

[34] Thien Duc Nguyen, Phillip Rieger, Roberta De Viti, Huili Chen, Björn B
Brandenburg, Hossein Yalame, Helen Möllering, Hossein Fereidooni,
Samuel Marchal, Markus Miettinen, et al. {FLAME}: Taming backdoors
in federated learning. In 31st USENIX Security Symposium (USENIX Se-
curity 22), pages 1415–1432, 2022.

[35] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay
Celik, and Ananthram Swami. Practical black-box attacks against machine
learning. In Proceedings of the 2017 ACM on Asia conference on computer
and communications security, pages 506–519, 2017.

[36] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson,
Z Berkay Celik, and Ananthram Swami. The limitations of deep learn-
ing in adversarial settings. In 2016 IEEE European symposium on security
and privacy (EuroS&P), pages 372–387. IEEE, 2016.

[37] Sang-Ok Park, Ohmin Kwon, Yonggon Kim, Sang Kil Cha, and Hyunsoo
Yoon. Mind control attack: Undermining deep learning with gpu memory
exploitation. Computers & Security, 102:102115, 2021.

[38] Cedric Pernet. Pytorch ml compromised.
https://www.techrepublic.com/article/pytorch-ml-compromised/, Year.
Accessed: 2024-03-09.

[39] Jonathan Protzenko, Bryan Parno, Aymeric Fromherz, Chris Hawblitzel,
Marina Polubelova, Karthikeyan Bhargavan, Benjamin Beurdouche, Joon-
won Choi, Antoine Delignat-Lavaud, Cédric Fournet, et al. Evercrypt: A
fast, verified, cross-platform cryptographic provider. In 2020 IEEE Sympo-
sium on Security and Privacy (SP), pages 983–1002. IEEE, 2020.

[40] Andrew Ross and Finale Doshi-Velez. Improving the adversarial robustness
and interpretability of deep neural networks by regularizing their input
gradients. In Proceedings of the AAAI conference on artificial intelligence,
volume 32, 2018.

[41] David Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips,
Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-Francois Crespo,
and Dan Dennison. Hidden technical debt in machine learning systems.
Advances in neural information processing systems, 28, 2015.

[42] Sonatype. 2022 software supply chain report.
https://www.sonatype.com/en/press-releases/2022-software-supply-chain-
report, 2022.

[43] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath,
Haitao Zheng, and Ben Y Zhao. Neural cleanse: Identifying and mitigating
backdoor attacks in neural networks. In 2019 IEEE Symposium on Security
and Privacy (SP), pages 707–723. IEEE, 2019.

[44] Junyi Wei, Yicheng Zhang, Zhe Zhou, Zhou Li, and Mohammad Abdullah
Al Faruque. Leaky dnn: Stealing deep-learning model secret with gpu
context-switching side-channel. In 2020 50th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), pages 125–
137. IEEE, 2020.

[45] Qixue Xiao, Kang Li, Deyue Zhang, and Weilin Xu. Security risks in deep
learning implementations. In 2018 IEEE Security and privacy workshops
(SPW), pages 123–128. IEEE, 2018.

[46] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y Zhao. Latent back-
door attacks on deep neural networks. In Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security, pages 2041–
2055, 2019.

[47] Andy Zou, Zifan Wang, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv
preprint arXiv:2307.15043, 2023.

Version control and reproducibility of
Jupyter Notebooks

Sami Laine
sami.v.laine@aalto.fi

Tutor: Sanna Suoranta

Abstract

Jupyter Notebooks are a popular tool for data science, data analysis, and

machine learning. They allow the user to combine elements like code, text,

and visualisations into a single document. Jupyter Notebooks are often

used in research and education, but they are often not version controlled,

and they are not guaranteed to be reproducible. This paper discusses the

importance of version control and reproducibility in Jupyter Notebooks

and provides some useful tools and practices for working with Jupyter

Notebooks.

KEYWORDS: Jupyter, Notebook, Jupyter Notebook, version control, Git,

reproducibility

1 Introduction

Version control is a crucial tool for modern software development [10]. It

allows developers to track changes in the source code and compare ver-

sions between local and remote codebases. Using a version control system

(VCS) facilitates collaboration with other developers by making it easier

to merge code and handle conflicts in changed code. Version control sys-

tems also provide mechanisms for reverting code to previous states and

for branching code into separate development lines.

Jupyter Notebooks are a popular tool for data science, data analysis,

and machine learning. They are also widely used for prototyping code and

as an educational tool. They allow the user to combine elements like code,

text, and visualizations into a single document. Jupyter Notebooks are

well-suited for use in education because they allow mixing Markdown-

formatted course materials with code examples and code assignments.

There are also tools for including automatically graded assignments in

Jupyter Notebooks.

In this paper, I will discuss the importance of version control and re-

producibility in Jupyter Notebooks. I will also discuss the current state of

version control and reproducibility in Jupyter Notebooks, and I will rec-

ommend some useful tools and practices to be used when working with

Jupyter Notebooks.

2 Technologies

The main technologies discussed in this paper are Jupyter Notebooks and

VCSs. The following sections provide an overview of these technologies.

2.1 Jupyter Notebooks

Jupyter Notebook is a format for creating and sharing documents that

contain executable code, visualisations, code output, and text. The Jupyter

Notebook format is based on the JSON data format, and the files have the

extension .ipynb [9].

Jupyter Notebooks consist of "cells" that can contain either code or

text [8]. The code cells are executed in a Jupyter kernel that can be run

either locally or remotely. The most popular kernels are Python, R, and

Julia. The output of code cells can contain text, images, graphs, and other

visualisations.

The text cells are written in Markdown, which is a lightweight markup

language that allows the user to easily format text without using a compli-

cated graphical user interface or a more verbose markup such as HTML.

However, it is also possible to use HTML in the Markdown cells, as well

as to include LaTeX formulas with the help of the MathJax library [4].

Figure 1 displays a snippet of a Jupyter Notebook with code, Markdown,

and visualisations.

It is important for the reader to note that the word "notebook" can be

used to refer to both the file format [9] and the web user interface (UI) [7].

This paper focuses on platform-independent tools and practices for ver-

sion control and reproducibility of Jupyter Notebook files, and therefore

the terms "notebook" and "Jupyter Notebook" are exclusively used to re-

fer to the file format instead of the web UI. The now-deprecated web UI is

referred to using the term "classic Jupyter Notebook interface" instead.

Figure 1. A snippet of Jupyter Notebook depicting code, Markdown, and visualisa-
tions [6]

2.2 VCSs & Git

The developer online community Stack Overflow conducted a survey of

71,379 professional and hobbyist developers in 2022 [5]. According to the

survey, 95.69% of the respondents reported using some form of version

control system in their work. The most popular version control system

was reported to be Git, which was used by 93.87% of the respondents.

Git is a distributed version control system that was originally devel-

oped by Linus Torvalds for the development of the Linux kernel [3]. It

is designed to be fast, efficient, and scalable. Because of its popularity,

this paper mostly focuses on the use of Git and related tools for version

control.

While Git is capable of storing any type of file, it is primarily designed

for storing and displaying human-readable source code instead of binary

files or structured data. Jupyter Notebooks are stored in the JSON for-

mat [9]. Even though JSON is a text-based format, it is often not easy to

read or edit in its raw form. This makes it difficult to use Git efficiently

for version controlling Jupyter Notebooks. However, some tools have been

developed to make Git and Jupyter Notebooks inteoperability more con-

venient.

3 Discussion

Jupyter Notebooks are commonly used for sharing research results, for ex-

ample in the fields of data science and machine learning. When working

with Notebooks, it is important to ensure that the Notebooks are version

controlled and reproducible. This section discusses the importance of ver-

sion control and reproducibility in Jupyter Notebooks and provides some

useful tools and practices for working with Jupyter Notebooks.

3.1 Reproducibility

In research, reproducibility is the ability to recreate the results of an ex-

periment or a study using the same data and methods [2]. In the context

of Jupyter Notebooks, reproducibility means that the Notebooks can be

executed on different machines with the same results. This is important

because it allows other researchers to verify the results of a study and to

build upon the work of others. However, Jupyter Notebooks contain mul-

tiple pitfalls that can make them difficult for other researchers to execute

and reproduce.

One of the main challenges in reproducibility is the dependency man-

agement of the Notebooks [6]. Jupyter Notebooks can contain code that

depends on external libraries and packages. If the dependencies are not

specified correctly, the Notebooks may not work on different machines or

with different versions of the dependencies. The Jupyter Notebook for-

mat does not provide a built-in mechanism for specifying dependencies,

which means that the researcher publishing the Notebook must manu-

ally document the dependencies in the Notebook or in a separate file. The

most common way to specify dependencies in Jupyter Notebooks is to use

a requirements.txt file or a setup.py script [6].

The Jupyter Notebook format allows the user to execute the code cells

in any order, which can lead to unexpected results [6]. It is possible to

accidentally write code that depends on code cells that have not been ex-

ecuted yet. This can make it difficult to run the Notebook from start to

finish, and it can lead to errors that are difficult to debug. To avoid this

problem, the user should use the "Restart & Run All" command in the

Jupyter Notebook interface before sharing the Notebook with others.

3.2 Version controlling Notebooks

Because of the way that Jupyter Notebooks are stored in the JSON for-

mat, it is not easy to view the differences between two revisions of a Note-

book using Git. The raw JSON format is not easily human-readable, and

it is difficult notice the important and relevant changes in the Notebook

files. Figure 2 demonstrates a simple code change that produces a large

diff in the raw JSON format because of a change in the resulting figure.

The image has been edited to hide roughly 300 lines of Base64-encoded

image data. The actual change in the code is only a single line, but it is

difficult to notice in the raw JSON diff.

Figure 2. Regular git diff output for a Jupyter Notebook

To make it easier to view the differences between two revisions of a

Jupyter Notebook, the nbdime tool can be used [1]. nbdime is a tool for com-

paring and merging Jupyter Notebooks, and it provides both a command

line interface (CLI) and a Web UI for viewing the differences between two

revisions of a Notebook. The tool can be integrated with Git to display the

differences in a more readable format. Figure 3 shows the output of the

git diff command when using nbdime.

Figure 3. Output of git diff for a Jupyter Notebook, formatted with nbdime

The nbdime output automatically hides most of the Base64-encoded

image data as well as the JSON formatting and focuses on the actual

changes in the code. The output clearly displays the changed execution

count, summarises the changes in the output cell and shows a clear diff of

the changed code.

4 Conclusion

This paper has discussed the importance of version control and repro-

ducibility in Jupyter Notebooks. It has also discussed some of the chal-

lenges in producing reproducible Notebooks and has recommended some

useful tools and practices for working with Jupyter Notebooks. The paper

has also demonstrated how the nbdime tool can be used to make it easier

to use Git for version controlling Jupyter Notebooks.

Bibliography

[1] Martin Sandve Alnæs and Project Jupyter. nbdime – Version control

integration. URL: https://nbdime.readthedocs.io/en/latest/

vcs.html (visited on 2024-04-05).

[2] Arturo Casadevall and Ferric C. Fang. “Reproducible Science”. In:

Infection and Immunity 78.12 (2010), pp. 4972–4975. DOI: 10.1128/

iai.00908-10. eprint: https://journals.asm.org/doi/pdf/10.

1128/iai.00908-10. URL: https://journals.asm.org/doi/abs/10.

1128/iai.00908-10.

[3] Git. Git: Fast version control. URL: https://git-scm.com/ (visited

on 2024-01-31).

[4] mathjax. MathJax – Beautiful math in all browsers. URL: https:

//www.mathjax.org/ (visited on 2024-01-31).

[5] Stack Overflow. Stack Overflow Developer Survey 2022. URL: https:

//survey.stackoverflow.co/2022/#version-control-version-

control-system (visited on 2024-01-31).

[6] João Felipe Pimentel, Leonardo Murta, Vanessa Braganholo, and

Juliana Freire. “A Large-Scale Study About Quality and Reproducibil-

ity of Jupyter Notebooks”. In: 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR). 2019, pp. 507–

517. DOI: 10.1109/MSR.2019.00077.

[7] Jupyter Team. Installing the Classic Jupyter Notebook interface.

URL: https://docs.jupyter.org/en/latest/install/notebook-

classic.html (visited on 2024-02-07).

[8] Jupyter Team. Project Jupyter Documentation. URL: https://docs.

jupyter.org/en/latest/#what-is-a-notebook (visited on 2024-01-

31).

7

[9] Jupyter Development Team. The Jupyter Notebook Format. URL:

https://nbformat.readthedocs.io/en/latest/ (visited on 2024-

01-31).

[10] Nazatul Nurlisa Zolkifli, Amir Ngah, and Aziz Deraman. “Version

Control System: A Review”. In: Procedia Computer Science 135 (2018),

pp. 408–415. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.

procs.2018.08.191.

The Emerging Role of Neural Networks
in Video Coding: A Review

Sarma Rampalli
sarma.rampallisathyabhaskara@aalto.fi

Tutor: Matti Siekkinen

Abstract

The past decade has seen significant rise in video data consumption through

new streaming services. Meanwhile, deep learning has also seen appli-

cations in various disciples, including video coding. This literature re-

views explores cutting-edge video coding techniques that leverage neural

networks, either partially in a sub-process or end-to-end. A comparison of

these techniques with traditional video coding techniques is done by focus-

ing on key metrics.

KEYWORDS: neural coding, video encoding, video compression, video cod-

ing, neural video coding

1 Introduction

In the past decade, the pursuit to enhance visual experiences has seen

an increased amount of video content globally. In 2015, 66% of Global IP

traffic was video [13], and the data traffic growth will further increase

fourfold [28] to 6340 PB by 2025. Globally, 2 trillion minutes of video con-

tent crossed the Internet each month [31] in 2017. These examples clearly

show an upward trend in the videos that are generated and consumed.

1.1 Traditional Video Coding Techniques

Transmitting such massive volumes of raw videos across networks is not

feasible [3]. Hence, video coding is used wherein the video is compressed

by encoding into bits at source and decoding from bits to video at tar-

get in order to deliver the video content efficiently to audiences at high

quality. However, video coding is not a novel process [12]. Jacobs et al.

describe [12] how Kell realised, as early as 1929, the need to not just

encode-deliver-decode but also do it very effectively. Kell described video

compression and patented the idea of transmitting difference between dif-

ferent frames to avoid difficulties [12]. This concept is still used by a va-

riety of video coding standards. International standardization organiza-

tions, such as ISO/IEC and ITU-T have published several, widely adopted

standards [19].

1.2 Challenges with traditional video coding

While these traditional methods have been widely adopted and have man-

aged to solve the challenges of the present, they have not been particularly

helpful to the research world and industry’s aspiration to provide supe-

rior coding efficiency and provide new immersive experiences [22] within

specific domains. Cloud gaming has faced challenges, such as bringing

superior coding efficiency of high-quality frames under low-latency con-

straints [14]. Investigation agencies of police departments need to recon-

struct scenes [18]. Governments and regulatory bodies want to identify

original videos from the fake videos by applying multiple processing lay-

ers [33].

1.3 Neural Networks and Video Coding

Meanwhile, the last decade has seen growing popularity of deep learning

in many disciplines such as computer vision and image processing [19].

Neural Networks, which are the result of interdisciplinary research of

neuroscience and mathematics, have shown strong abilities in context of

non-linear transform and classification [22]. This utilizes a graph concept

where the neurons act as processing units and then the degree of relation-

ship between these units mean different things [24]. This has resulted in

the growing popularity of neural video coding, where the concepts from

neural networks have been used to encode videos at very low bit rates as

well as high levels of quality in particular situations.

This literature review explores neural video coding. Section 2 intro-

duces video coding process. Section 3 identifies various mechanisms through

which encoding has been done in past and is being done with neural video

coding. Section 4 concludes citing the challenges, limitations and future

outlook of neural video coding.

2 Video Coding Process

The end-to-end video process from source to target is explained here, fol-

lowed by specific mention to video coding process [36].

1. Video acquisition [27] provides information about the origin of the

video and the scene content. This gives information about the lens used

to capture the video, noise distortion, shutter speed and the context of

the video.

2. Pre-processing [36] performs several actions on the source video to

make it ready for encoding. This includes filtering and enhancing sig-

nals [25] as per the requirements of the target application.

3. Video encoding [12] transforms the pre-processed video into bit streams

taking the context of the application that decodes this, and availability

of resources to process the frames in parallel. Parallel processing of the

frame is done through mechanisms such as raster scan order, slicing,

block partitioning [11]. Redundancy in-between frames is used to op-

timize between frames [18]. This is done by eliminating redundancy

between and within frames using motion estimation and compensation

techniques [9], removing less important information through quantiza-

tion techniques [26], storing more information in less bits through ef-

ficient techniques like entropy coding based on the degree of variance

between frames [15].

4. Transmission [8] delivers the video from source to target. Different

video streaming options are considered while transmitting the videos,

example on-demand, real-time or live streaming. Fault-tolerant mecha-

nisms and recovery [2] are also considered here.

5. Video decoding [36] buffers transmitted bits, and further extracts

the original video. The decoder also acts on error concealment strate-

gies [34] when there is loss of data during transmission.

6. Post-processing [36] aims at enhancing the video quality in addition

to converting the decoded video into a format which is understandable

to the display.

Neural Video Coding introduces neural networks and deep learning

into each of these process steps or sub-processes within the steps ’Video

Encoding’ and ’Video Decoding’ in order to achieve higher coding effi-

ciency.

3 Encoding Techniques

This section looks into the encoding techniques and video encoding stan-

dards. In 1995, MPEG-2 [32] was developed by the Moving Picture Ex-

perts Group (MPEG) over H.261 with better compression efficiency. In

1996, H.263 [2] brought optimizations to support low bit rate applica-

tions. In 1999, MPEG-4 [29] introduced object-based coding, shape cod-

ing and content-based scalability for interactive multiple applications. In

2003, Advanced Video Coding (AVC) [35] introduced block-size motion

compensation, multiple reference frames and filters to become one of the

most widely used video codecs. In 2012, High Efficiency Video Coding

(HEVC) [30] was developed on top of AVC to further improve compression

efficiency and enabling high quality at low bit rates. While several opti-

misations have been done to these codecs over time, neural networks have

opened up new possibilities in each of the steps.

3.1 Module-level neural intervention

Motion estimation (ME) predicts the difference between frames to reduce

redundancy [9]. Motion estimation is done by block-based algorithms in

the above traditional codecs. Scale-space flow uses neural network to

learn the motion estimation module from scratch [1], and the results have

shown that it outperforms other learning-based methods as well as stan-

dard codecs, such as AVC and HEVC, in the case of low-latency scenarios.

Motion compensation (MC) reconstructs frames based on the predicted

motion vectors [9]. Traditional codecs have adopted fixed filters and hence

the quality of interpolation results are sub-optimal [20]. Dai et al. [7]

proposed a variable-filter-size residue learning CNN (VRCNN). This ap-

proach proposes a deep-learning based fractional interpolation method to

infer sub-pixels for motion compensation and the BD-rate saving is 2.2%

better than HEVC on average.

Li et al. [16] argue that deep learning techniques challenge the basic

assumptions of traditional predictive coding methods. Li et al. [16] con-

sider residual coding as one specific case of conditional coding. Hence,

Deep Contextual Video Compressions (DCVC) is proposed as an alter-

native. It performs significantly better with bit rate savings of around

26% for HEVC Class B, 5.8% for HEVC Class C low-resolution videos and

11.9% for HEVC Class E small motion videos.

Masked Image Modelling Transformer (MIMT) [38] uses a transformed-

based architecture to exploit temporal correlation among frames and spa-

tial tokens in a few auto regressive steps. This method outperforms other

popular baselines, such as HEVC. The bit rate saving over VTM is about

22.7% for Peak signal-to-noise ratio (PSNR) and 56.3% over VTM for Struc-

tural Similarity Index Measure (SSIM).

3.2 End-to-end neural video coding

While the methods above use deep learning and neural networks within

particular modules, several proposals of end-to-end neural video coding

have been made in the last 6 years.

In 2018, Wu et al. [37] presented the first end-to-end trained deep

video codec. The video compression was done based on the repeated deep

image interpolation with a hierarchical setup. It performs better than

MPEG-4 and H.261, matches with H.264 and performs close to HEVC.

In 2019, Lu et al. [21] proposed an end-to-end deep video compres-

sion (DVC) model. This framework reassesses the end-to-end pipeline

of video compression across all key elements, such as motion estimation,

motion compensation, residual compression and quantization through the

lens of deep learning techniques. For motion estimation, the optical flow

estimation technique is integrated into the framework. The test results

indicated that this framework outperformed AVC video compression stan-

dard.

In 2019, Habibian et al. [10] proposed using rate-distortion autoen-

coders with finite latent space as well as 3D convolution, alongside an au-

toregressive prior. The results showed that the model outperformed DVC

model. Also, the MS-SSIM score improved for foreground (FG) objects

compared to background (BG) objects. Also, adaptive compression lever-

ages pretrained video compressors to yield effecient compressed videos,

especially in domain-speific cases.

In 2019, Yang et al. [39] proposed Hierarchical Learned Video Com-

pression (HLVC) method with 3 layers of varying qualities in the decreas-

ing order. Layer 1 has highest quality, Layer 2 has medium quality and

Layer 3 has lowest quality, and a recurrent. This hierarchical learning

employs neural network based techniques, and the layer 3 learns from

the other layers so as to improve the spatial and temporal dependencies.

In 2020, Yang et al. [40] suggested Recurrent Learned Video Com-

pression (RLVC) which further improved HLVC using a Recurrent Auto-

encoder (RAE) and Recurrent Probability Model (RPM). This method max-

imizes the number of references used to generate new frames and exploits

temporal correlation, thereby improving the efficiency. The results from

RLVC suggest that this model performs better than DVC model and HLVC

models in terms of both PSNL and MS-SSIM. In addition, RLVC inspires

hybrid codecs, which employ deep learning, to improve the efficiency.

In 2021, Chen et al. [6] proposed Neural Representation of Videos

(NeRV). This method treats videos as neural networks which take frame

index as input and give RGB image as output. NeRV comes with limita-

tions such as longer training times, lower compression ratios and lesser

performance. Several improvements on NeRV have been introduced to

solve these limitations. In 2022, Chen et al. [4] proposed content-adaptive

neural representations (CNeRV) which outperforms NeRV by 120x in en-

coding unseen images. In 2022, Li et al. came up with E-NeRV [17] to

introduce separate temporal and spatial context, thereby improving the

performance by 8x. In 2023, Chen et al. [5] proposed Hybrid Neural

Representation of Videos (HNeRV), wherein combining the explicit and

implicit methods of encoding drive improved performance over implicit

methods such as NeRV or E-NeRV.

4 Conclusion

The field of neural video coding has witnessed significant advancements

in the last decade, with various techniques and architectures emerging

to address the challenge of achieving efficient compression while main-

taining high visual quality. Through our review, we have categorized neu-

ral video coding techniques into distinct types, such as end-to-end neural

video coding techniques, local module-level techniques and hybrid mecha-

nisms where traditional techniques have been combined with neural video

coding techniques. Specific focus has been given to the recent advance-

ments in this area, as well as the evidence on how each of the meth-

ods have improved the standard metrics like Peak Signal-to-noise radio

(PSNR), bit rates and Structural Similarity Index Measure (SSIM).

Despite the advancements in the field, neural video coding still faces

challenges and limitations, such as limited temporal redundancy [23],

fixed architectures which do not scale for larger videos [23], limited train-

ing done with semantic-fidelity oriented compression [22], further rate-

distortion optimization [22], high complexity of using deep models, espe-

cially in-loop coding modules and temporal successive frames [41]. Con-

tinued efforts in research will be essential to drive further innovations to

overcome the challenges and limitations.

References

[1] Eirikur Agustsson, David Minnen, Nick Johnston, Johannes Balle, Sung Jin
Hwang, and George Toderici. Scale-space flow for end-to-end optimized
video compression. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 8503–8512, 2020.

[2] Tal Anker, Danny Dolev, and Idit Keidar. Fault tolerant video on demand
services. In Proceedings. 19th IEEE International Conference on Dis-
tributed Computing Systems (Cat. No. 99CB37003), pages 244–252. IEEE,
1999.

[3] Andreas Burg. Image and video compression: the principles behind the
technology. Curr Probl Dermatol, 32:17–23, 2003.

[4] Hao Chen, Matt Gwilliam, Bo He, Ser-Nam Lim, and Abhinav Shrivas-
tava. Cnerv: Content-adaptive neural representation for visual data. arXiv
preprint arXiv:2211.10421, 2022.

[5] Hao Chen, Matthew Gwilliam, Ser-Nam Lim, and Abhinav Shrivastava.
Hnerv: A hybrid neural representation for videos. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
10270–10279, 2023.

[6] Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim, and Abhinav
Shrivastava. Nerv: Neural representations for videos. Advances in Neural
Information Processing Systems, 34:21557–21568, 2021.

[7] Yuanying Dai, Dong Liu, and Feng Wu. A convolutional neural network
approach for post-processing in hevc intra coding. In MultiMedia Modeling:

23rd International Conference, MMM 2017, Reykjavik, Iceland, January 4-
6, 2017, Proceedings, Part I 23, pages 28–39. Springer, 2017.

[8] Ching-Ling Fan, Wen-Chih Lo, Yu-Tung Pai, and Cheng-Hsin Hsu. A sur-
vey on 360 video streaming: Acquisition, transmission, and display. Acm
Computing Surveys (Csur), 52(4):1–36, 2019.

[9] Borko Furht, Joshua Greenberg, and Raymond Westwater. Motion esti-
mation algorithms for video compression, volume 379. Springer Science &
Business Media, 2012.

[10] Amirhossein Habibian, Ties van Rozendaal, Jakub M Tomczak, and Taco S
Cohen. Video compression with rate-distortion autoencoders. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages
7033–7042, 2019.

[11] Miska M Hannuksela, Ye-Kui Wang, and Moncef Gabbouj. Isolated regions
in video coding. IEEE Transactions on Multimedia, 6(2):259–267, 2004.

[12] Marco Jacobs and Jonah Probell. A brief history of video coding. ARC
International, 1:6, 2007.

[13] Opara Felix Kelechi, Agbaraji Emmanuel Chukwudi, and Aririguzo Marvis
Ijeaku. Visual networking index (vni), forecast of global ip traffic increase
and ip bandwidth network management. 2011.

[14] Hoang Le, Reza Pourreza, Amir Said, Guillaume Sautiere, and Auke Wig-
gers. Gamecodec: Neural cloud gaming video codec. 2022.

[15] S-M Lei and M-T Sun. An entropy coding system for digital hdtv appli-
cations. IEEE transactions on circuits and systems for video technology,
1(1):147–155, 1991.

[16] Jiahao Li, Bin Li, and Yan Lu. Deep contextual video compression. Ad-
vances in Neural Information Processing Systems, 34:18114–18125, 2021.

[17] Zizhang Li, Mengmeng Wang, Huaijin Pi, Kechun Xu, Jianbiao Mei, and
Yong Liu. E-nerv: Expedite neural video representation with disentan-
gled spatial-temporal context. In European Conference on Computer Vision,
pages 267–284. Springer, 2022.

[18] Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan,
Yawei Li, Radu Timofte, and Luc Van Gool. Vrt: A video restoration trans-
former. arXiv preprint arXiv:2201.12288, 2022.

[19] Dong Liu, Yue Li, Jianping Lin, Houqiang Li, and Feng Wu. Deep learning-
based video coding: A review and a case study. ACM Computing Surveys
(CSUR), 53(1):1–35, 2020.

[20] Jiaying Liu, Sifeng Xia, Wenhan Yang, Mading Li, and Dong Liu. One-
for-all: Grouped variation network-based fractional interpolation in video
coding. IEEE Transactions on Image Processing, 28(5):2140–2151, 2018.

[21] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong
Gao. Dvc: An end-to-end deep video compression framework. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 11006–11015, 2019.

[22] Siwei Ma, Xinfeng Zhang, Chuanmin Jia, Zhenghui Zhao, Shiqi Wang, and
Shanshe Wang. Image and video compression with neural networks: A
review. IEEE Transactions on Circuits and Systems for Video Technology,
30(6):1683–1698, 2019.

[23] Shishira R Maiya, Sharath Girish, Max Ehrlich, Hanyu Wang, Kwot Sin
Lee, Patrick Poirson, Pengxiang Wu, Chen Wang, and Abhinav Shrivas-
tava. Nirvana: Neural implicit representations of videos with adaptive
networks and autoregressive patch-wise modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
14378–14387, 2023.

[24] Reza Pourreza, Hoang Le, Amir Said, Guillaume Sautiere, and Auke Wig-
gers. Boosting neural video codecs by exploiting hierarchical redundancy.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision, pages 5355–5364, 2023.

[25] Yunbo Rao and Leiting Chen. A survey of video enhancement techniques.
J. Inf. Hiding Multim. Signal Process., 3(1):71–99, 2012.

[26] Michaël Ropert, Julien Le Tanou, and Mederic Blestel. Mastering quan-
tization is key for video compression. SMPTE Motion Imaging Journal,
131(5):45–53, 2022.

[27] Oliver Schreer, Ingo Feldmann, Richard Salmon, Johannes Steurer, and
Graham Thomas. Video acquisition. Media Production, Delivery and In-
teraction for Platform Independent Systems: Format-Agnostic Media, pages
74–129, 2013.

[28] Hyungsup Shin, Jiyeon Jung, and Yoonmo Koo. Forecasting the video data
traffic of 5 g services in south korea. Technological Forecasting and Social
Change, 153:119948, 2020.

[29] Thomas Sikora. The mpeg-4 video standard verification model. IEEE
Transactions on circuits and systems for video technology, 7(1):19–31, 1997.

[30] Gary J Sullivan, Jens-Rainer Ohm, Woo-Jin Han, and Thomas Wiegand.
Overview of the high efficiency video coding (hevc) standard. IEEE Transac-
tions on circuits and systems for video technology, 22(12):1649–1668, 2012.

[31] Forecast Team. cisco.com. https://www.cisco.com/c/dam/m/en_us/

solutions/service-provider/vni-forecast-highlights/pdf/Global_

Device_Growth_Traffic_Profiles.pdf, 2017. [Accessed 01-02-2024].

[32] PN Tudor. Mpeg-2 video compression. Electronics & communication engi-
neering journal, 7(6):257–264, 1995.

[33] Mei Wang and Weihong Deng. Deep face recognition: A survey. Neurocom-
puting, 429:215–244, 2021.

[34] Yao Wang and Qin-Fan Zhu. Error control and concealment for video com-
munication: A review. Proceedings of the IEEE, 86(5):974–997, 1998.

[35] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra.
Overview of the h. 264/avc video coding standard. IEEE Transactions on
circuits and systems for video technology, 13(7):560–576, 2003.

[36] Mathias Wien. High efficiency video coding. Coding Tools and specification,
24, 2015.

[37] Chao-Yuan Wu, Nayan Singhal, and Philipp Krahenbuhl. Video compres-
sion through image interpolation. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 416–431, 2018.

[38] Jinxi Xiang, Kuan Tian, and Jun Zhang. Mimt: Masked image modeling
transformer for video compression. In The Eleventh International Confer-
ence on Learning Representations, 2022.

[39] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu Timofte. Learning for
video compression with hierarchical quality and recurrent enhancement. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6628–6637, 2020.

[40] Ren Yang, Fabian Mentzer, Luc Van Gool, and Radu Timofte. Learning for
video compression with recurrent auto-encoder and recurrent probability
model. IEEE Journal of Selected Topics in Signal Processing, 15(2):388–
401, 2020.

[41] Yun Zhang, Linwei Zhu, Gangyi Jiang, Sam Kwong, and C-C Jay Kuo. A
survey on perceptually optimized video coding. ACM Computing Surveys,
55(12):1–37, 2023.

Predicting Depression through Digital
Phenotyping

Selin Taskin
selin.taskin@aalto.fi

Tutor: Arsi Ikäheimonen

Abstract

The development of machine learning tools made it easier to process and

analyze large amounts of data. Furthermore, the use of different machine

learning methods allows the identification of patterns in the data. These

developments have a big impact on different industries. Healthcare is one

of the areas where the utilization of machine learning methods has become

important. Accurate diagnosis of the diseases is essential in assuring cor-

rect and personalized treatment of that disease. Depression is one of the

most common disorders experienced by people regardless of age. Therefore,

there is a need for more objective and trustworthy techniques for diagnos-

ing depression. The increased use of digital devices in day-to-day life ben-

efits the collection of data that can utilised for predicting and diagnosing

whether the patient has depression. This paper is a literature-review that

investigates the use of different machine learning methods and their per-

formances in the prediction of depression with digital phenotyping. This

paper concludes that the use of machine learning methods is becoming an

important part of the diagnosis of depression and its severity as they per-

form well. However, the impact of different demographics and lifestyles on

use of machine learning models should be further investigated to under-

stand the performance of the machine learning model more accurately.

KEYWORDS: depression, digital phenotype, machine learning, healthcare

1 Introduction

Depression is one of the most common problems in our modern world.

Depression impacts more than 265 million people worldwide [1]. The word

depression and the words related to depression such as sadness, isolation,

and hopelessness are words that are frequently used in social media. This

is an indicator of the prevalence of depression among people. According

to the American Psychiatric Association, depression is a severe mental

health disease that impacts a person’s life in various ways [2]. These ways

can be classified into different categories such as the mental effects, and

the physical effects. Depression can be caused by different factors. These

factors can be related to the genetics of the person or the life conditions of

the person. Regardless of the cause of depression, living with depression

is difficult and impacts the person’s day-to-day life.

The effects of depression can vary from person to person. These effects

depend on the severity of the depression the person has. According to a

study by Smith, people who experience depression are less motivated [3].

The motivation level of the people who are depressed is significantly less

than the people who are not diagnosed with depression. This also results

in the decrease of leisure and hobby time of people who have depression.

An article by Nimrod et al., noted that people who have depression lose

their interest in the activities they once liked [4]. Furthermore, people

who have depression tend to isolate themselves more and struggle with

seeking help. The isolation and the lack of motivation can further influ-

ence the activity levels of the individuals. The impact of physical health

is one of the common research topics in the field of depression studies [5].

However, there are significantly fewer studies on the impact of depression

on a person’s physical health and life.

Digital phenotyping is a clinical technique that is used for collecting

data from smart devices to collect and track data from individuals [6].

Digital phenotyping is becoming a popular method for collecting data for

analysis of certain health issues. Depression is also among these health

issues. Different key elements make digital phenotyping suitable for the

collection of data over some time. One of these key elements is that with

digital phenotyping the problem of subjectivity and the resulting uncer-

tainty is improved [7]. This results in better analysis and understand-

ing of the indicators. Therefore, it is essential to understand the new

approach in digital phenotyping and its limitations on the analysis of ill-

nesses and more specifically in depression.

This paper investigates and reviews the latest approaches in digital

phenotyping regarding the prediction of depression and the severity of

depression. This paper further discusses the limitations of digital pheno-

typing with respect to the collection of data and the accuracy of this data

for the prediction of mental diseases. This paper is structured into five

sections. The second section discusses the background information about

digital phenotyping, depression and machine learning. The methodology

for the selection of the research papers for the literature review is dis-

cussed in the third section. The fourth section discusses the findings of

the literature review. Lastly, section five provides the conclusion.

2 Background

2.1 Depression

Depression is a common mental disorder that has negative consequences

on an individual’s health [8]. Depression can be classified into different

categories based on psychosis [9]. Depression impacts many people in

their lifetime, therefore it is important to understand and find out ways

to personalize the diagnosis of depression and its treatment. There is a

wide variety of limitations in the diagnosis of depression among individ-

uals [10]. These limitations are regarding the way the data is collected.

For example, most of the assessments for diagnosing depression are done

by collecting data through the patient self-reporting. This results in the

patient having to recall their memories which may not be very accurate.

Hence, this leads to not objective assessment of the current situation of

the individual. With the development of digital technologies a new oppor-

tunity to understand diagnostics of depression arises. Small wearable dig-

ital devices can track changes in the behaviors of the patient[11]. These

devices use digital sensors to create numerical medical data that can be

used for the assessment of the patient’s health. The collection of data in a

more objective systematic matter is essential for a more accurate diagno-

sis of depression.

2.2 Digital Phenotyping

Digital phenotyping is a technique for the collection of data and tracking

of different behavioral patterns through digital devices [12]. These de-

vices can be a variety of different devices such as wearable devices like

smartwatches, and ActiGraphs. Additionally, there are also mobile phone

applications that help with the collection and tracking of data with the

help of wearable devices. The figure 1 explains how different devices can

be used to gain information about the patient. The same digital device

can be used to collect different features, and get information about differ-

ent aspects of the patients life [13]. After the collection of data, this vast

amount of data collected with the digital device can be used for diagnostics

of depression by utilising statistical and machine learning methods.

Figure 1. Diagram for Digital Phenotyping [12]

2.3 Machine Learning

Machine learning (ML) is a part of computer science algorithms that learn

from their environment [14]. These algorithms use the past data that is

collected to predict or detect new outcomes from the new data. Machine

learning algorithms can be classified into 4 different categories based on

their learning type: unsupervised, supervised,semi-supervised, and rein-

forcement learning [15].

Machine learning has a lot of different use cases in the field of medicine

and healthcare. Using machine learning classes for analyzing patient

data to predict diseases is one of the important aspects of ML in health-

care. Both supervised and unsupervised machine learning algorithms can

be utilized to understand medical datasets and to further improve the

identification of patient classes [16]. With the data collected from digi-

tal phenotyping, a machine learning algorithm can be built to process the

data to extract important information regarding to the patient.

3 Methodology

This paper is a literature review of the different statistical and machine

learning methods utilizing digital data for predicting depression.

After a preliminary search, it was decided to be more significant to un-

derstand the different approaches for predicting depression by leveraging

digital data obtained through digital devices. First digital phenotyping

with machine learning prediction for depression is investigated. Second

statistical methods are used in digital phenotyping for the prediction of

depression.

In this literature review, various research papers have been reviewed

to understand different approaches in predicting whether an individual

has symptoms of depression or not.Therefore, the purpose of this liter-

ature review is to discover different research papers with different ap-

proaches that can be employed for predicting depression in an individual.

The literature review was performed using PubMed.

3.1 Criteria for Literature Review

This section discusses the criteria and the search phrases that were used

to determine the papers that are used in the literature review. The search

phrases are created to include different aspects of predicting depression

through digital phenotyping. The "AND" operator retrieves research pa-

pers that include two terms. The operator "OR" was used to ensure that

either one of the terms written is included. These search terms were se-

lected as they enable a better understanding of the currently available

methods of digital phenotyping in the prediction of depression. Further-

more, there is no specific parameter for the type of device used for digital

phenotyping. The focus of this literature review is to understand digi-

tal phenotyping for depression analysis from a broad perspective rather

than investigating the usefulness of a certain digital phenotyping devices

specifically. There when selecting the research papers, the type of digital

phenotyping device use was not considered important. The following ta-

ble, 1, shows the search parameters that are used to query the PubMed

database:

Parameter Number of Re-

search Papers

("Depression"[Title/Abstract]) AND ("Ma-

chine Learning"[Title/Abstract]) AND (("digi-

tal phenotyping"[Title/Abstract]) OR ("digital

phenotype"[Title/Abstract])

106

("Depression"[Title/Abstract]) AND ("Statis-

tical"[Title/Abstract]) AND (("digital pheno-

typing"[Title/Abstract]) OR ("digital pheno-

type"[Title/Abstract])

85

Table 1. Table of Literature Review Parameters

Some of the resulting research papers from the queries were not used

in the literature comparison. Due to not being eligible for this research.

However, some of the research papers that were discarded in the liter-

ature selection process still have valuable information regarding back-

ground knowledge on digital phenotyping and mental diseases. There-

fore, they were utilized in the background section of this paper. Some of

the papers that resulted from the query were also literature review-based

papers hence they were discarded as the aim of this paper was to under-

stand different techniques used for predicting depression through digital

phenotyping and their performances. Figure 2 shows the diagram for se-

lecting the research papers that are considered eligible for this paper and

taken into consideration for further examination.

Figure 2. Flow diagram for selecting publications

At the end of the selection, there are 4 articles from the first criteria

and 1 article from the second criteria. In this literature review, only ar-

ticles after the year 2022 were investigated. This literature review is to

understand state-of-the-art, there for it is essential to ensure that the re-

search examined in this paper is new and up-to-date. Additionally, the

citation indices for the papers were taken into consideration as a good

citaiton index indicates that the paper’s contribution to this field is sig-

nificant. Furthermore, no literature review papers were chosen, and all

4 research papers had designed their own experiments for predicting de-

pression.

4 Discussion

This chapter is a discussion of the findings from examining the papers

selected based on the criteria explained in Section 3. The first subsection,

4.1, presents the research papers found from the literature search with

the given methodology. In this subsection, a comprehensive summary of

the literature review-based research findings will be given to summarize

the findings and the key advancements in the fields. Finally, the last

subsection of this section evaluates the literature search and literature

review.

4.1 Selected Literature Papers

This subsection gives a summary of the research papers selected with the

methodology given in Section 3.

Each paper had different patient data and different ways of collecting

digital data. In these research papers, different machine learning algo-

rithms are utilized to compare the performance for predicting depression

by analyzing digital data patterns. In the papers investigated, the results

obtained from the mathematical/ machine learning model were compared

against the ground truth which is the depression status obtained from a

clinical judgment. Furthermore, paper [19] investigated the prediction of

the severity of the depression apart from the depression status of the pa-

tient. The findings of the paper were positive, which indicates that digital

phenotyping can also be used to understand not only if the patient has

depression but also the intensity of their depression.

Title of the Research Pa-

per

Summary

Digital phenotyping in de-

pression diagnostics: Inte-

grating psychiatric and en-

gineering perspectives [10]

Active data from patient input and passive data

from digital phenotyping are collected from the pa-

tient. It was found thatthe data can be used to

predict depression status. Depression patterns are

identified by using ML. The prediction with ML

models perform well when compared to the ground

truth by clinical judgment.

A Machine Learning Ap-

proach for Detecting Digital

Behavioral Patterns of

Depression Using Nonin-

trusive Smartphone Data:

Prospective Observational

Study [17]

Smartphone data were processed to extract fea-

tures, and built ML model. Different ML models

were built: random forest (RF) regression, multi-

variate adaptive regression, RF classification, XG-

Boost, and SVM and their performance are com-

pared. RF classification classification performs the

best in classifying patient depression with 87% ac-

curacy.

Using digital phenotyping

to capture depression symp-

tom variability: detecting

naturalistic variability in

depression symptoms across

one year using passively col-

lected wearable movement

and sleep data [18]

Data from wearable movement and sleep device.

Stack Ensemble ML model used. ML model built

only with data from digital devices had a low mean

absolute error. Digital data combined with biode-

mographic data was used to built another ML

mode, which performed better than the ML model

built with only digital data.

Improving Depression

Severity Prediction from

Passive Sensing: Symptom-

Profiling Approach [19]

Data such as physical activity, and application us-

age were collected with a mobile app. XGBoost al-

gorithm was used for ML model. The severity of the

depression was also predicted with different algo-

rithms: CatBoost, LightGBM, and SVM. SVM per-

forms significantly worse compared to others. Dif-

ferent operating systems where the mobile app was

used resulted in different accuracies.

Predicting Depressive

Symptom Severity Through

Individuals’ Nearby Blue-

tooth Device Count Data

Collected by Mobile Phones:

Preliminary Longitudinal

Study [20]

Data collected as the nearby Bluetooth device

count (NBDC). ML model built with NBDC data,

demographics, and questionnaire responds the par-

ticipants. XGBoost, Lasso,Bayesian linear regres-

sion algorithms tested. Bayesian linear regression

model performed the best.Significant associations

found between NBCD and depression status.

Table 2. Table of Research Papers selected

4.2 Literature Review

This paper has compared various papers to understand the techniques

that can be used for prediction of depression in different individuals with

the use of digital devices. The search through the literature database of

PubMed resulted in only 5 papers. The number of the research paper

resulted from the literature search was good amount in regards of the

page limitation of the assignment. Regardless, it is essential to discuss

the limitation of this paper and the analysis conducted.

5 Conclusion

Analyzing and diagnosing depression through digital phenotyping is a

very significant development in the field of health. Different digital de-

vices can be used for collecting data. The accurate collection of this data

is essential for building accurate and impactful statistical and machine-

learning models.

The purpose of this paper was to investigate the state-of-the-art of the

current situation of digital phenotyping and the use of different machine

learning techniques to diagnose depression. The research paper database

of PubMed was used to access a variety of articles for this article. There

were different parameters for the articles chosen such as the publishing

date and the keywords of the articles. The articles chosen were not litera-

ture reviews, therefore each paper had a different dataset collected from

patients, and different methodologies were used. From reviewing these

papers, it was found that XGBoost and Random Forest are some of the

popular machine-learning algorithms used for the prediction of depres-

sion. Additionally, it was found that using the digitally collected data in

addition to biomarkers or questionnaires regarding the patient’s feelings

seems to give a better result in identifying if the patient has depression

and the severity of their depression.

This paper discussed the different approaches to predicting depres-

sion by using digital phenotyping. The papers examined had different ap-

proaches to analyzing and understanding different depression categories.

Based on the research papers, it has been discovered that the research

direction is focusing more on the utilization of machine learning methods

for the prediction of depression. The performance of these machine learn-

ing model seem to perform good. Additionally, when incorporated with

additional data obtained through patient surveys, the models performs

better.

5.1 Limitations

This paper investigates only a few articles due to the 10-page limitation

in the given assignment. Therefore, the paper does not cover the whole

state-of-the-art of the digital phenotyping and prediction of depression.

A more extensive range of articles must be examined to understand the

different approaches for analyzing and processing digitally collected data

from digital phenotyping products. Furthermore, it is important to also

understand whether the operating system used for the digital device has

an impact on the prediction performance of the machine learning model

built. Additionally, in the research papers investigated in this paper, the

age group of the patients tends to be young, hence it is also crucial to

understand if the model built for predicting purposes can give accurate

results for older age groups.

References

[1] World Health Organization, “Depression,” 2020.

[2] W. C. Depression, “what is depression?” World Health Organization, 2012.

[3] B. Smith, “Depression and motivation,” Phenomenology and the Cognitive
Sciences, vol. 12, no. 4, pp. 615–635, 2013.

[4] G. Nimrod, D. A. Kleiber, and L. Berdychevsky, “Leisure in coping with de-
pression,” Journal of Leisure Research, vol. 44, no. 4, pp. 419–449, 2012.

[5] B. Roshanaei-Moghaddam, W. J. Katon, and J. Russo, “The longitudinal ef-
fects of depression on physical activity,” General hospital psychiatry, vol. 31,
no. 4, pp. 306–315, 2009.

[6] T. R. Insel, “Digital phenotyping: a global tool for psychiatry,” World Psychi-
atry, vol. 17, no. 3, p. 276, 2018.

[7] J. Torous, P. Staples, and J.-P. Onnela, “Realizing the potential of mobile
mental health: new methods for new data in psychiatry,” Current Psychiatry
Reports, vol. 17, no. 602, 2015.

[8] O. P. Almeida, “Prevention of depression in older age,” Maturitas, vol. 79,
no. 2, pp. 136–141, 2014.

[9] S. L. Dubovsky, B. M. Ghosh, J. C. Serotte, and V. Cranwell, “Psychotic de-
pression: diagnosis, differential diagnosis, and treatment,” Psychotherapy
and psychosomatics, vol. 90, no. 3, pp. 160–177, 2021.

[10] J. Kamath, R. L. Barriera, N. Jain, E. Keisari, and B. Wang, “Digital pheno-
typing in depression diagnostics: Integrating psychiatric and engineering
perspectives,” World Journal of Psychiatry, vol. 12, no. 3, p. 393, 2022.

[11] T. R. Insel, “Digital phenotyping: technology for a new science of behavior,”
Jama, vol. 318, no. 13, pp. 1215–1216, 2017.

[12] P. Bufano, M. Laurino, S. Said, A. Tognetti, and D. Menicucci, “Digital phe-
notyping for monitoring mental disorders: Systematic review,” Journal of
Medical Internet Research, vol. 25, p. e46778, 2023.

[13] S. D. Dlima, S. Shevade, S. R. Menezes, and A. Ganju, “Digital phenotyp-
ing in health using machine learning approaches: scoping review,” JMIR
Bioinformatics and Biotechnology, vol. 3, no. 1, p. e39618, 2022.

[14] I. El Naqa and M. J. Murphy, What is machine learning? Springer, 2015.

[15] R. Y. Choi, A. S. Coyner, J. Kalpathy-Cramer, M. F. Chiang, and J. P. Camp-
bell, “Introduction to machine learning, neural networks, and deep learn-
ing,” Translational vision science & technology, vol. 9, no. 2, pp. 14–14,
2020.

[16] R. C. Deo, “Machine learning in medicine,” Circulation, vol. 132, no. 20, pp.
1920–1930, 2015.

[17] S. Choudhary, N. Thomas, J. Ellenberger, G. Srinivasan, R. Cohen et al., “A
machine learning approach for detecting digital behavioral patterns of de-
pression using nonintrusive smartphone data (complementary path to pa-
tient health questionnaire-9 assessment): prospective observational study,”
JMIR Formative Research, vol. 6, no. 5, p. e37736, 2022.

[18] G. D. Price, M. V. Heinz, S. H. Song, M. D. Nemesure, and N. C. Jacobson,
“Using digital phenotyping to capture depression symptom variability: de-
tecting naturalistic variability in depression symptoms across one year us-
ing passively collected wearable movement and sleep data,” Translational
Psychiatry, vol. 13, no. 1, p. 381, 2023.

[19] S. Akbarova, M. Im, S. Kim, K. Toshnazarov, K.-M. Chung, J. Chun, Y. Noh,
and Y.-A. Kim, “Improving depression severity prediction from passive sens-
ing: Symptom-profiling approach,” Sensors, vol. 23, no. 21, p. 8866, 2023.

[20] Y. Zhang, A. A. Folarin, S. Sun, N. Cummins, Y. Ranjan, Z. Rashid, P. Conde,
C. Stewart, P. Laiou, F. Matcham et al., “Predicting depressive symptom
severity through individuals’ nearby bluetooth device count data collected
by mobile phones: preliminary longitudinal study,” JMIR mHealth and
uHealth, vol. 9, no. 7, p. e29840, 2021.

Traces: How and Where Web Browsing
Leaves Them

Shahd Izzeldin Karar Omer
shahd.omer@aalto.fi

Tutor: Tuomas Aura

Abstract

The need to protect user privacy and security becomes apparent as the

Internet becomes a necessity in daily affairs. This paper analyzes how

users’ web browsing activities leave traces accessible to entities ranging

from spies to family members and advertising agencies. Evidence of the

user’s browsing activities is stored in numerous locations including the

user’s computer, access network and online services. Users wishing to hide

or anonymize their web activities must be vigilant to avoid leaving such

traces. Changes and countermeasures to reduce the risks listed are Private

mode browsing, Virtual Private Networks (VPN), and The Onion Router

(TOR) browser.

KEYWORDS: Privacy, Web browsing, Traces, Online tracking

Contents

1 Introduction . 3

2 Traces on the User’s Computer 3

2.1 Browser History and Bookmarks 4

2.2 Cookies and Cache . 4

2.3 Digital Forensics . 5

3 Traces Left on the Network 6

3.1 ISP Monitoring . 6

3.2 DNS pitfalls . 6

3.3 Corporate Networks: Firewalls and IDS 7

4 Traces in Online Services . 8

4.1 Data Collection and Analysis by Websites 8

4.2 Stateful Tracking . 8

4.3 Stateless Tracking . 10

5 Countermeasures . 11

5.1 Private browsing and DOT/DOH 11

5.2 VPN . 12

5.3 The TOR Browser . 12

6 Discussion . 13

7 Conclusion . 13

1 Introduction

The Internet shifted how people conduct everyday affairs, introducing

ease and convenience. As a result, people now operate various real-life

applications online, increasingly relying on the Internet. This reliance

has paved the way for nearly limitless surveillance and privacy breaches,

giving rise to the need to safeguard user privacy and security.

Users interact with the Internet primarily through web browsers, which

allow them to perform diverse tasks covering research, health and leisure.

Web browsing activity can leave behind many traces and personal data.

This data has become a valuable asset that many entities can benefit from

exploiting, such as notorious advertising agencies, local administrators,

nosy family members, Internet Service Providers (ISP), and government

surveillance. Consequently, privacy concerns have become a significant is-

sue compared to the last two decades [1]. As privacy concerns continue to

escalate, user education becomes increasingly crucial in defending against

privacy breaches.

While various studies analyze how and by whom the privacy of web

browsing is compromised, the different issues are mainly examined sep-

arately, with each paper tackling one aspect or area. This paper aims to

aggregate significant practices compromising web privacy.

The main objective is to show the various locations of web browsing

traces and possible risks presented in the first three sections. The last

section briefly covers countermeasures and their effectiveness. By re-

viewing these practices, users can better safeguard their online privacy

and mitigate the risks associated with unsolicited profiling and tracking.

2 Traces on the User’s Computer

The user’s local machine serves as the initial point of contact for brows-

ing activities. Although retrieving data from one’s computer is more chal-

lenging than monitoring data flow on the network, it nonetheless contains

abundant traces. Users aiming for anonymous browsing must recognize

traces stored locally, which unauthorized individuals such as family mem-

bers, colleagues or IT administrators could access.

2.1 Browser History and Bookmarks

Browser history and bookmarks are two primary sources of traceable in-

formation. The browser history and bookmarks are stored within the

browser application or on the local disk and can be used by intruders to

deduce browsing activity. Browsing history records URLs, page titles, and

timestamps of visited websites, easily accessible from browser settings.

Bookmarks, also known as favourites or internet shortcuts, allow users

to save frequently visited URLs for quick access. Despite enhancing user

convenience, these features pose privacy risks by exposing browsing habits.

Eliminating the exposure of browser history and bookmarks is rela-

tively easy as long as the user is aware of and vigilant in clearing up these

traces after each web browsing session. However, that approach may be

less effective due to the introduction of the cloud synchronization feature.

Syncing across devices allows users to transfer their local browsing

history, bookmarks, and most data to other owned devices for portabil-

ity and mobility. Data is shared with the cloud to enable this feature

and later distributed among the user’s other devices. Consequently, these

vivid indicators of browsing activity no longer reside only in the local com-

puter but in the cloud and on multiple devices, adding difficulty to their

elimination. The synchronization features typically support deleting his-

tory from all the user’s devices. However, the data cannot be deleted re-

motely if the device is offline.

2.2 Cookies and Cache

Cookies are small pieces of data sent by servers to enhance browsing.

Since HTTP is stateless, cookies enable servers to recall preferences and

session information, creating a smoother browsing experience. Despite

their benefits, marketing agencies utilize cookies for tracking purposes,

discussed further in the tracking section. For now, it is essential to note

that while external entities utilize cookies to retain data, they are stored

locally on the user’s device.

A Cache’s function is to store previously performed tasks to speed up

future requests and improve performance. Various computing areas im-

plement caching, including memory, disk and the web.

Browser cache, a type of web caching, enables fast retrieval of previ-

ously accessed web pages by storing copies of their content, such as im-

ages, scripts, and other resources locally. This effectively reduces web

page loading time. However, it requires local data storage, which gives

rise to vulnerabilities.

Attackers can exploit browser cache vulnerabilities through various

methods, even without physical access to the local machine. For instance,

the timing attack [2] capitalizes on the shortened loading time of cached

web pages to deduce previous visits.

Browser cache can also be used as a medium to violate the same-origin

policy (SOP) [3]. Web browsers implement SOP to limit how different

sites interact with resources from different origins, enhancing isolation

and allowing users to interact with each website individually without a

link between them.

Figure 1. illustrates locations where traces can be left

2.3 Digital Forensics

Forensic analysis is another method for tracing user activity on local de-

vices. Digital forensics involves collecting and examining scattered evi-

dence on user machines for investigative purposes [4].

Despite users’ attempts to delete browsing history, forensic techniques

can recover deleted records from hard disks, as long as another file’s con-

tents have not overwritten them [5].

Additionally, analysts can retrieve further information from other arte-

facts, such as log and index files [6]. Log file analysis can provide a com-

prehensive guide to individuals’ web usage. For example, index.dat in

Windows historically served as evidence of online activities, such as vis-

ited sites and accessed documents. Furthermore, forensics are capable of

recovering histories that have been erased over extended durations [7].

3 Traces Left on the Network

As data exits the user’s browser, it travels through numerous stops before

reaching its final destination—the server. Various entities can intercept

and expose users’ data during transit, leaving behind concerning amounts

of traces.

3.1 ISP Monitoring

ISPs are companies that provide internet access. Due to their position

within the network architecture, ISPs have extensive access to user traf-

fic passing through their infrastructure. Consequently, ISPs can easily

monitor and log user web activity. Some ISPs may employ deep packet

inspection (DPI) to analyze both header and payload of IP packets, pro-

viding insights into browsing activities. Although DPI usage is often jus-

tified for purposes such as intrusion detection for network security, copy-

right infringement, and content regulation [8], it poses significant privacy

concerns.

In an influential review conducted by Paul Ohm [9], several motiva-

tions for why an ISP would spy on their users were presented in multiple

privacy and law conferences. These include envy of Google’s success in

monetizing and tracking user behaviour for advertising purposes, efforts

to conserve bandwidth by blocking data-intensive applications and pres-

sure from third parties such as government agencies and national surveil-

lance.

As ISPs operate under the regulations of the country in which they

are based, they typically align their privacy practices with that country’s

policies, which can range from non-invasive to intrusive.

3.2 DNS pitfalls

The Domain Name System (DNS) converts human-readable text such as

website names into their numerical Internet Protocol (IP) address equiv-

alent.

After a client sends a DNS lookup request, the results obtained can be

cached to expedite future queries [10]. However, this caching mechanism

introduces the first privacy concern within DNS, known as DNS cache

snooping[11], a recognized DNS risk that leaves exploitable traces. The

risk associated with caching largely depends on the domain’s Time to Live

(TTL) settings.

The second vulnerability in DNS arises because DNS data travels in

clear text. As established in its first standard by the Internet Engineering

Task Force (IETF), DNS traffic between the client and the DNS server is

transmitted without encryption [12]. Lack of encryption exposes the DNS

traffic and the addresses users are attempting to resolve [11], enabling

authoritative agencies to conduct surveillance, censor, and track users.

3.3 Corporate Networks: Firewalls and IDS

Securing browsing history and privacy in corporate environments presents

numerous challenges [13]. While essential for safeguarding network in-

frastructure and defending against cyber threats, security measures of-

ten rely heavily on traffic monitoring. These measures, implemented by

network administrators in workplaces or educational institutions, raise

significant privacy concerns.

During the auditing process to detect threats or anomalies, personal

and sensitive information is frequently recorded in log files, with users

typically unaware of the contents or potential uses of these logs [14]. Net-

work administrators extensively deploy security measures such as fire-

walls and Intrusion Detection Systems (IDS) to detect attacks.

Firewalls play a critical role in securing business and institutional net-

works by filtering traffic between trusted internal networks and external

untrusted networks, in adherence to a security policy [15]. They perform

packet inspections, examining the source and destination IP addresses to

decide whether to accept or reject them.

On the other hand, an IDS is a software or hardware component ca-

pable of identifying attacks on computer systems and organizations that

traditional firewalls may overlook. IDS collects data reflecting various as-

pects of users’ digital interactions by monitoring files, network traffic, and

system behaviour. IDS can detect intrusions by analyzing deviations from

established patterns, known as anomaly-based intrusion detection [16].

Privacy-sensitive data collected by IDS may include user usernames and

identifiers, DNS logs, hostnames, IP addresses, visited URLs, and times-

tamps of user events.

4 Traces in Online Services

Online services are the final destination of users’ requests. Services play

a crucial role as they provide content to users and simultaneously heavily

track their digital activity. Conventionally, online services were physical

machines but are now primarily deployed in the cloud due to flexibility

and scalability, amplifying their capacity to collect and process data on a

massive scale.

4.1 Data Collection and Analysis by Websites

Nowadays, users’ data is not only shared with the accessed website but

also with unrelated third-party websites [17]. These third parties, typi-

cally hidden trackers, form ad networks with elements embedded across

multiple web pages, allowing them to record and analyze browsing activ-

ities to build user profiles.

The primary motivation behind user profiling is online behavioural

marketing [18], which aims to maximize profit by persistently identifying

users and linking them with their online activities across multiple sites.

Liberat’s [19] analysis revealed that among Alexa’s top one million

websites, 88% of pages initiated requests to third parties. Among these,

over three-quarters of the sites initiated requests to domains owned by

Google, while approximately 30% of the sites directed requests to Facebook-

owned domains. This prevalence of third-party tracking technology across

popular sites makes it challenging for users to evade tracking.

Moreover, Ikram et al. [20] uncovered that in 40% of instances, the

web ecosystem’s dependency chain extends beyond the first-third party

dynamic. This expansion entails third parties loading resources from ad-

ditional domains, fostering implicit trust between the initial first party

and any subsequent domain in the chain.

4.2 Stateful Tracking

The prevalent web tracking techniques deployed can either be stateful or

stateless. All techniques under stateful tracking require storing informa-

tion in the user’s computer and maintaining information about the user

across multiple sessions.

Cookies

At the core of tracking are cookies, invented in 1994 to maintain a state

between the user and the site they visit.

Aaron et al.’s [21] empirical study of web cookies found that first-

party cookies comprised 32%, whereas third-party cookies made up 68%

of those found on client browsers by Alexa’s top 100k websites. Notably,

almost 90% of these cookies were persistent, meaning they remain stored

even after the browser is closed.

Despite SOP governing cookies, allowing them to be initially accessed

only by the web pages that set them, tracking across sites is possible due

to cookie syncing. Cookie syncing is a workaround feature where compo-

nents from a third-party site are embedded into first-party pages, allow-

ing the exchange of user identification via cookies. Englehardt et al. [22]

observed, in an influential experiment monitoring tracking across one

million websites, that cookie syncing connected the top 50 third parties

with an 85% probability.

Web beacons

Web beacons, also known as pixel tags, work with cookies to enhance

tracking capabilities, allowing third parties to identify visitors to a web-

page. Web beacons typically consist of small image files that seamlessly

blend into the background of a webpage, rendering them entirely trans-

parent. Upon a user’s visit to a website, the website automatically down-

loads the embedded image without the user’s knowledge.

Social Integration

Many social media platforms incorporate widgets into websites to en-

hance user engagement [23]. Widgets are small embedded elements sourced

from external platforms that integrate functionality; examples include

the Facebook Like button, Google +1, and Twitter tweet, currently X.

However, when users interact with these widgets, their data is shared

with the respective platform. Consequently, widgets act as agents for

third-party tracking.

Another instance of social integration is Single Sign-On (SSO), which

enables users to authenticate themselves across platforms managed by

identity providers, including Facebook, LinkedIn, Github, or Google [24].

A notable drawback is that the identity provider remains informed of

the user’s activity whenever they log in using their credentials, enabling

tracking.

4.3 Stateless Tracking

The increasing awareness of privacy concerns and the implementation

of regulatory measures such as the General Data Protection Regulation

(GDPR) [25] have prompted popular browsers such as Safari and Firefox

to integrate built-in protections against third-party cookies. [26]. Google

has also announced plans to introduce similar measures starting in 2024.

As measures are taken to prevent stateful tracking, trackers are turn-

ing to stateless tracking methods more frequently. Stateless tracking re-

lies on identifying specific attributes of the client’s device [27], eliminating

the need to store information on the client’s computer. As a result, it poses

a greater challenge for detection.

Fingerprinting

Browser fingerprinting is a stateless tracking technique that gathers in-

formation through a web browser to construct a fingerprint of the device

used. This method exploits data exposed by browsers through JavaScript

APIs and HTTP headers [28], including device characteristics such as

type, operating system, browser version, screen resolution, installed fonts,

and browser plugins or extensions.By collecting this information, a tracker

can create a browser fingerprint that identifies users and enables track-

ing. However, unlike deterministic identifiers, a browser fingerprint is

statistical [26], meaning its ability to identify a device depends on the

uniqueness of the device configuration compared to others.

Early research conducted by Mayer [29] in 2009 highlighted the po-

tential of JavaScript APIs like navigator, screen, and plugins to identify

users, leading to the development of browser fingerprinting as an alterna-

tive to stateful cookies for web tracking. By hashing the contents of these

values, Mayer was able to uniquely identify 96% of client browsers.

In the following year, Eckersley [30] conducted a large-scale exper-

iment through the Panopticlick project on browser fingerprinting that

combined additional characteristics of the browser environment, such as

timezones and a list of installed fonts to create a user fingerprint. In the

experiment, almost half a million browsers were fingerprinted, and about

94% of Flash or Java users had a unique device fingerprint, enabling their

identification and tracking.

Despite the decreasing trust in browser plugins and the increasing

popularity of HTML5, browser plugins remain one of the most revealing

features, as validated by Laperdrix et al. [31]. Extensions also play an

important role, where 9-23% of evaluated extensions were detectable in

a study conducted by Nikiforkais [32]. The exact percentage largely de-

pended on the popularity of the extension and thread model.

5 Countermeasures

This section explores countermeasures that mitigate tracking efforts and

protect personal data during internet browsing. From private browsing

modes to VPNs and the Tor Browser, these solutions offer varying levels

of anonymity and security.

Dangers Private Browsing VPN Tor Browser

Local machine traces ✓ × ✓
ISP surveillance × ✓ ✓
Corporate Network × ✓ ✓
Geo-restrictions/censorship × ✓ ✓
DNS leaks × ✓ ✓
Tracking via fingerprinting × × Partial

Tracking via Cookies × × ✓

Table 1. Comparison of Countermeasures

5.1 Private browsing and DOT/DOH

Private browsing mode, available in major web browsers, enhances pri-

vacy by allowing users to browse the web without storing information on

their devices after the session ends. This eliminates any indication of

their activities during the browsing session, including browsing history,

cookies, and temporary cache files.

While private browsing mode eliminates traces left on the local ma-

chine, which a local invader with access to the user’s device can target,

it does not prevent tracking by other parties, such as ISP and corporate

network monitoring or government surveillance.

Private browsing mode effectively reduces third-party stateful track-

ing via cookies, as cookies do not persist across private sessions and are

cleared afterwards. However, it does not effectively address fingerprinting

techniques used for stateless tracking [33].

To complement private browsing mode, DNS-over-TLS (DoT) and DNS-

over-HTTPS (DoH) can be deployed. These protocols encrypt DNS re-

quests previously sent in the clear, allowing clients to send DNS queries

to the resolver over an encrypted transport. However, despite being a

significant step for privacy, encrypted DNS queries do not eliminate mon-

itoring or censorship [34]. It is still possible to identify accessed services

from the server IP address, TLS handshake, or through traffic analysis.

Additionally, DoT and DoH service providers receive a complete log of the

DNS requests.

5.2 VPN

Originally developed as a technology for secure data transmission across

public networks, VPN has evolved into a privacy-preserving tool with var-

ious implementations. A VPN allows clients to connect securely to an

intermediate VPN server through an encrypted tunnel [35]. The VPN

server then assigns users a different IP address and redirects traffic to

the desired destination. This hides personal information and browsing

history from third parties such as governments and ISPs. As a result,

VPN users can bypass surveillance and access geo-blocked content.

While VPNs provide protection, they are limited in preventing track-

ing by online services since cookies are stored on the local device. How-

ever, VPNs limit what online services can gather about the user since they

mask the user’s IP address.

Additionally, VPN service providers, particularly free ones, often op-

erate ambiguously without providing sufficient evidence to support their

privacy claims [36]. Users can never be sure whether their data undergoes

privacy breaches. Trust is transferred from the ISP or corporate network

to the VPN service provider when using a VPN.

Some VPN providers have been reported to log user data, sell it to

third-party data brokers, and manipulate traffic [36]. Furthermore, traffic

leakage can occur unintentionally due to poor security defaults, with DNS

leaks and IPv6 leaks being recurring risks [37].

5.3 The TOR Browser

Onion routing, designed to anonymize TCP-based applications like web

browsing, operates by constructing a path through a network of TOR

routers using layered encryption [38]. As traffic passes through these

nodes, symmetric keys successively unwrap it, resembling layers of an

onion. Thus, each node only knows about its predecessor and successor,

with only the exit TOR router capable of inspecting the payload and iden-

tifying the final destination. This onion-routing network ensures anony-

mous connections, allowing users to browse public websites without re-

vealing much about their identity to the server.

The TOR Browser, built upon Mozilla Firefox, simplifies connection to

the TOR overlay network [39]. It incorporates additional anonymity and

privacy features, such as the Tor button, NoScript, HTTPS-Everywhere,

and Tor Launcher, with default browsing set to private mode.

The TOR browser prevents user fingerprinting by ensuring uniformity

for Tor users, i.e., making one fingerprint for all. Additionally, the Tor

browser blocks Canvas and WebGL, removes plugins, and employs a de-

fault bundle of fonts [28]. It also masks the OS, consistently reporting

the user’s machine as Windows. While the TOR Browser offers resistance

against user fingerprinting, it still has shortcomings. Nonetheless, it re-

mains superior to previous mechanisms, such as private mode browsing

and VPN, which show no resistance to fingerprinting. However, the most

prevalent setback about TOR is its speed, where the multiple reroutings

make it unsuitable for streaming and gaming. .

6 Discussion

The results of this paper show that user data is a sought-after asset tar-

geted by many entities. Users are far more likely to leave traces behind

than to browse the Internet anonymously. For those vigilant about brows-

ing privately, many countermeasures are available, albeit often at the ex-

pense of ease and convenience. However, with ongoing research in this

field and the frequent proposal of regulations, there is hope that privacy

will one day become the default standard in everyday online interactions.

7 Conclusion

This paper investigated and categorized the evidence left of web brows-

ing in different parts of the network. It summarized prominent places

with traces linking to user web activity and highlighted the pervasive

nature of web browsing tracking. Equipped with this knowledge, users

can proactively protect their privacy and implement the suggested coun-

termeasures outlined in this paper. As the digital landscape continues

to evolve, users must remain vigilant and informed, advocating for their

right to privacy in an increasingly Internet-reliant world.

References

[1] E. Engström, K. Eriksson, M. Björnstjerna, and P. Strimling, “Global
variations in online privacy concerns across 57 countries,” Computers in
Human Behavior Reports, vol. 9, p. 100268, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2451958823000015

[2] E. W. Felten and M. A. Schneider, “Timing attacks on web privacy,” in Pro-
ceedings of the 7th ACM Conference on Computer and Communications Se-
curity, 2000, pp. 25–32.

[3] C. Jackson, A. Bortz, D. Boneh, and J. C. Mitchell, “Protecting browser state
from web privacy attacks,” in Proceedings of the 15th international confer-
ence on World Wide Web, 2006, pp. 737–744.

[4] M. Reith, C. Carr, and G. Gunsch, “An examination of digital forensic mod-
els,” International Journal of digital evidence, vol. 1, no. 3, pp. 1–12, 2002.

[5] S. Pretorius, A. R. Ikuesan, and H. S. Venter, “Attributing users based on
web browser history,” in 2017 IEEE Conference on Application, Information
and Network Security (AINS). IEEE, 2017, pp. 69–74.

[6] J. Oh, S. Lee, and S. Lee, “Advanced evidence collection and analysis of web
browser activity,” Digital investigation, vol. 8, pp. S62–S70, 2011.

[7] M. R. Jadhav and B. B. Meshram, “Web browser forensics for detecting user
activities,” International Research Journal of Engineering and Technology
(IRJET), vol. 5, no. 07, pp. 273–279, 2018.

[8] R. Bendrath and M. Mueller, “The end of the net as we know it? deep packet
inspection and internet governance,” New Media & Society, vol. 13, no. 7, pp.
1142–1160, 2011.

[9] P. Ohm, “The rise and fall of invasive isp surveillance,” U. Ill. L. Rev., p.
1417, 2009.

[10] T. Callahan, M. Allman, and M. Rabinovich, “On modern dns behavior and
properties,” ACM SIGCOMM Computer Communication Review, vol. 43,
no. 3, pp. 7–15, 2013.

[11] S. Bortzmeyer, “Dns privacy considerations,” Tech. Rep., 2015.

[12] C. Lu, B. Liu, Z. Li, S. Hao, H. Duan, M. Zhang, C. Leng, Y. Liu, Z. Zhang,
and J. Wu, “An end-to-end, large-scale measurement of dns-over-encryption:
How far have we come?” in Proceedings of the Internet Measurement Con-
ference, 2019, pp. 22–35.

[13] D. P. Bhave, L. H. Teo, and R. S. Dalal, “Privacy at work: A review and a
research agenda for a contested terrain,” Journal of Management, vol. 46,
no. 1, pp. 127–164, 2020.

[14] E. Lundin and E. Jonsson, “Anomaly-based intrusion detection: privacy con-
cerns and other problems,” Computer networks, vol. 34, no. 4, pp. 623–640,
2000.

[15] S. Kamara, S. Fahmy, E. Schultz, F. Kerschbaum, and M. Frantzen, “Anal-
ysis of vulnerabilities in internet firewalls,” Computers & Security, vol. 22,
no. 3, pp. 214–232, 2003.

[16] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intru-
sion detection systems: techniques, datasets and challenges,” Cybersecurity,
vol. 2, no. 1, pp. 1–22, 2019.

[17] C. E. Wills and M. Zeljkovic, “A personalized approach to web privacy:
awareness, attitudes and actions,” Information Management & Computer
Security, vol. 19, no. 1, pp. 53–73, 2011.

[18] B. Ur, P. G. Leon, L. F. Cranor, R. Shay, and Y. Wang, “Smart, useful, scary,
creepy: perceptions of online behavioral advertising,” in Proc. Eighth Sym-
posium on Usable Privacy and Security, 2012, pp. 1–15.

[19] T. Libert, “Exposing the invisible web: An analysis of third-party http re-
quests on 1 million websites,” International Journal of Communication,
vol. 9, p. 18, 2015.

[20] M. Ikram, R. Masood, G. Tyson, M. A. Kaafar, N. Loizon, and R. Ensafi,
“The chain of implicit trust: An analysis of the web third-party resources
loading,” in The World Wide Web Conference, 2019, pp. 2851–2857.

[21] A. Cahn, S. Alfeld, P. Barford, and S. Muthukrishnan, “An empirical study
of web cookies,” in Proceedings of the 25th international conference on world
wide web, 2016, pp. 891–901.

[22] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site mea-
surement and analysis,” in Proceedings of the 2016 ACM SIGSAC confer-
ence on computer and communications security, 2016, pp. 1388–1401.

[23] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy and tech-
nology,” in IEEE symposium on security and privacy, 2012, pp. 413–427.

[24] D. Fett, R. Küsters, and G. Schmitz, “Spresso: A secure, privacy-respecting
single sign-on system for the web,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp. 1358–
1369.

[25] M. Degeling, C. Utz, C. Lentzsch, H. Hosseini, F. Schaub, and T. Holz, “We
value your privacy... now take some cookies: Measuring the GDPR’s impact
on web privacy,” Informatik Spektrum, vol. 42, pp. 345–346, 2019.

[26] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the fingerprinters:
Learning to detect browser fingerprinting behaviors,” in IEEE Symposium
on Security and Privacy (SP), 2021, pp. 1143–1161.

[27] T. Urban, M. Degeling, T. Holz, and N. Pohlmann, “Beyond the front page:
Measuring third party dynamics in the field,” in Proceedings of The Web
Conference 2020, 2020, pp. 1275–1286.

[28] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine, “Browser fingerprinting:
A survey,” ACM Transactions on the Web (TWEB), vol. 14, no. 2, pp. 1–33,
2020.

[29] J. R. Mayer, “" any person. . . a pamphleteer" internet anonymity in the age
of web 2.0,” 2009.

[30] P. Eckersley, “How unique is your web browser?” in Privacy Enhancing
Technologies: 10th International Symposium, PETS 2010, Berlin, Germany,
July 21-23, 2010. Proceedings 10, 2010, pp. 1–18.

[31] P. Laperdrix, W. Rudametkin, and B. Baudry, “Beauty and the beast: Divert-
ing modern web browsers to build unique browser fingerprints,” in Sympo-
sium on Security and Privacy (SP). IEEE, 2016, pp. 878–894.

[32] O. Starov and N. Nikiforakis, “Xhound: Quantifying the fingerprintability
of browser extensions,” in IEEE Symposium on Security and Privacy (SP).
IEEE, 2017, pp. 941–956.

[33] Y. Wu, P. Gupta, M. Wei, Y. Acar, S. Fahl, and B. Ur, “Your secrets are safe:
How browsers’ explanations impact misconceptions about private browsing
mode,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp.
217–226.

[34] S. Siby, M. Juarez, C. Diaz, N. Vallina-Rodriguez, and C. Troncoso, “En-
crypted dns double right arrow privacy? a traffic analysis perspective,” in
27Th Annual Network And Distributed System Security Symposium . IN-
TERNET SOC, 2020.

[35] J. A. Donenfeld, “Wireguard: Next generation kernel network tunnel.” in
NDSS, 2017, pp. 1–12.

[36] M. T. Khan, J. DeBlasio, G. M. Voelker, A. C. Snoeren, C. Kanich, and
N. Vallina-Rodriguez, “An empirical analysis of the commercial vpn ecosys-
tem,” in Proceedings of the Internet Measurement Conference 2018, 2018,
pp. 443–456.

[37] V. C. Perta, M. V. Barbera, G. Tyson, H. Haddadi, and A. Mei, “A glance
through the vpn looking glass: Ipv6 leakage and dns hijacking in commer-
cial vpn clients,” Proceedings on Privacy Enhancing Technologies, vol. 1,
no. 11, pp. 1–15, 2015.

[38] R. Dingledine, N. Mathewson, P. F. Syverson et al., “Tor: The second-
generation onion router.” in USENIX security symposium, vol. 4, 2004, pp.
303–320.

[39] A. K. Jadoon, W. Iqbal, M. F. Amjad, H. Afzal, and Y. A. Bangash, “Forensic
analysis of tor browser: a case study for privacy and anonymity on the web,”
Forensic science international, vol. 299, pp. 59–73, 2019.

Side Channel and Fault Injection
Analysis of Trusted Execution
Environments

Sudharsun Lakshmi Narasimhan
sudharsun.lakshminarasimhan@aalto.fi

Tutor: Dr. Lachlan Gunn

Abstract

Trusted Execution Environments (TEEs) are designed to protect sensitive

applications; however, they remain susceptible to attacks that leverage le-

gitimate channels. This paper examines various attack vectors, such as

fault injection, cache-timing, Spectre and Meltdown, to provide a compre-

hensive understanding of their security implications. By dissecting these

attacks, the paper enables an informed approach to TEE security.

KEYWORDS: Intel SGX, ARM TrustZone, Speculative Execution, Cache-

Timing, Rowhammer, Voltage Glitching

1 Introduction

Program execution confinement techniques have significantly improved

security measures by isolating and terminating misbehaving programs.

By leveraging virtual memory and paging mechanisms, applications are

shielded from malicious interference. However, challenges persist, when

attackers exploit vulnerabilities to gain elevated privileges and manipu-

late the underlying operating system. Trusted Execution Environments

(TEEs) [17] address these challenges by ensuring the secure execution of

sensitive applications despite untrusted operating systems. TEEs, such

as Intel’s Software Guard Extensions (SGX) [7] and ARM Limited’s Trust-

Zone [14], employ distinct technical approaches, utilizing isolation and

confidentiality measures to protect critical operations such as banking

and data encryption in untrusted computing environments.

Despite their technical resilience, prominent TEEs such as SGX and

TrustZone remain vulnerable to attacks, often due to misuse of communi-

cation channels or optimization strategies. This paper explores represen-

tative classes of side-channel and fault injection attacks, focusing on SGX

and TrustZone. Recent studies [5, 20] indicates that even the latest gener-

ation of CPUs remains susceptible to longstanding side-channel attacks,

partly due to fragmented information about various vulnerabilities in dif-

ferent TEEs. Therefore, in contrast to papers that focus solely on specific

environments [2, 10], this study offers a comprehensive comparison across

multiple environments to underscore the security attributes of each TEE.

Additionally, such a comparison consolidates information on TEE-related

attacks and helps inform the community to prevent recurrent attacks.

2 Background

2.1 Trusted Execution Environments

TrustZone

ARM TrustZone [14] is a hardware-based security feature that establishes

two distinct environments within a single processor: a Normal World and

a Secure World. In the Normal World, regular operating systems and

applications such as Android or iOS run, while the Secure World handles

sensitive tasks such as encryption and authentication. TrustZone ensures

separation between these worlds, preventing normal world applications

from interfering with secure world operations, even if the normal world

is compromised. When sensitive tasks are needed, the processor switches

to the Secure World, managed by TrustZone, ensuring secure execution.

This switching occurs through the Monitor mode overseeing the process

by saving and restoring the state of each world during transitions.

An important feature of TrustZone is the NS (Non-secure) bit in the

Configuration Register of the processor. When set to 1, it indicates normal

world operation; when set to 0, it indicates secure world operation. This

bit enables seamless switching between modes and is crucial for other

components within the System on Chip (SoC) to discern between normal

and secure world operations. For example, the memory controller can en-

force distinct security policies based on the NS bit, ensuring proper han-

dling of memory accesses depending on data sensitivity. In ARM proces-

sors equipped with TrustZone, cache memory is adapted to accommodate

both secure and normal world requests, with each cache line’s tag includ-

ing the NS bit for security context identification. This adaptation facil-

itates efficient memory request distinction and eviction, allowing secure

and non-secure data to coexist while upholding security.

Intel SGX

Even when facing threats such as untrusted OS or application subversion,

SGX [7] ensures sensitive data remains secure. SGX introduces privi-

leged instructions for the creation and management of enclaves, which

are hardware-protected areas ensuring confidentiality and integrity. En-

claves and their data structures reside in the Enclave Page Cache (EPC),

a portion of the Processor Reserved Memory (PRM). The PRM is a subset

of dynamic random access memory (DRAM), which is inaccessible to other

software and peripherals. The CPU encrypts enclave data upon leaving

the processor, ensuring its confidentiality. Enclaves typically have their

own sections for code, data and other resources, similar to non-enclave

programs. These sections are encapsulated within the enclave’s virtual

address space, which is isolated and encrypted by the encryption unit.

3 Attacks on TEEs

3.1 Fault Injection

Fault injection attacks involve inducing faults in devices during opera-

tion to analyze their effects, potentially extracting sensitive information.

Techniques include power, clock and voltage glitching. Various fault mod-

els exist for cryptographic systems, such as single-bit, byte and multiple-

byte fault models, each with different precision levels. Injecting precise

bit faults is challenging, while inducing faults across bytes is compara-

tively easier, extracting secret information from them is complex.

Voltage Glitching

The VoltJockey attack [15, 16] targets multi-core systems, where an at-

tacker core manipulates voltage levels to induce hardware faults on vic-

tim cores and extracts confidential data through differential fault analy-

sis [9]. Assumptions include the presence of multiple cores with Dynamic

Voltage and Frequency Scaling (DVFS) capability and the attacker’s per-

mission to adjust voltage and frequency settings. The procedure involves

configuring the processor with the appropriate voltage, waiting for target

function execution, controlling fault injection points, inducing hardware

faults and restoring voltage to avoid detection. In Intel architecture, key

parameters for attackers include processor frequency, glitch voltage for

inducing faults, voltage for maintaining frequency, waiting time before

victim function execution, delay before specific victim code execution and

glitch duration. Voltage management involves adjusting the processor’s

voltage offset via software, while the frequency remains constant.

In Rich Execution Environment (REE), due to fixed operations on plain-

text in every round, the waiting time is not considered. To ensure precise

duration for fault injection, a custom kernel module is developed, facilitat-

ing the execution of the attack procedure. This module can be dynamically

loaded during the attack without integration into the kernel image.

In Intel SGX, where physical cores are shared with the normal envi-

ronment, processor voltage can be altered similarly to REE. AES encryp-

tion embedded in an SGX-based program, bound to the victim core, is vul-

nerable to the attack. Many of SGX’s checks are hardware-based and ex-

ert minimal influence on the execution time once they are loaded into the

EPC. After fault injection, differential fault analysis [9] yielded enclave-

protected encryption keys in SGX. The attack exposes gaps in data han-

dling checks during execution, highlighting the importance of safeguard-

ing execution integrity alongside encryption and authentication.

In ARM TrustZone, instead of fixed frequencies, there are two param-

eters: Fa for the attacker core frequency and Fv for the victim core fre-

quency. Initially, the attacker core operates at a high frequency while

the victim core runs at a low frequency. A temporary voltage surge is

then applied, sufficient for the attacker core but inadequate for the vic-

tim core, inducing errors in the latter. These errors undergo differential

fault analysis. Voltage regulation in ARM architecture involves modify-

ing the voltage regulator driver to accept voltage down-tuning only when

the frequency is reduced, enabling the attack. TrustZone, similar to SGX,

incorporates hardware-based security mechanisms that minimally affect

the timing parameters used between REE and TrustZone use cases.

Rowhammer

Rowhammer is a hardware exploit that targets the DRAM, allowing at-

tackers to manipulate stored bits without direct access. By repeatedly ac-

cessing specific rows, electromagnetic interference between adjacent rows

induces bit flips, compromising data integrity and posing security risks.

The SGX-Bomb attack [8] exploits the Memory Encryption Engine

(MEE) authentication checks in Intel SGX via the Rowhammer attack to

lock the processor. While SGX is designed to safeguard against physical

attacks on memory integrity by employing a drop-and-lock policy [6], the

SGX-Bomb attack allows attackers to utilize these protections to affect

the availability of the systems. The attack involves identifying conflict-

ing rows in the EPC region, locating interleaved row addresses within the

same bank for the Rowhammer attack and inducing bit flips to trigger

processor locking. Specific enclave code executes the Rowhammer attack,

causing memory corruption that the MEE interprets as a hardware in-

tegrity violation, leading to processor lock-up. This attack poses a signif-

icant security threat, allowing unprivileged programs to incapacitate the

processor, leading to a system-wide shutdown and loss of control.

In a Rowhammer attack against TrustZone [1], a malicious module op-

erating in the non-secure environment generates faults in specific mem-

ory locations using high-frequency memory read operations. These faults

extend to adjacent secure memory regions, causing corruption in critical

data, such as private RSA keys stored in TrustZone memory. Through

inducing these faults and observing resulting changes, attackers can de-

duce the private key via differential fault analysis [9], compromising the

integrity of the secure world.

The above Rowhammer attacks on Intel SGX and ARM TrustZone dif-

fer in capabilities. SGX-Bomb aims to compromise system availability

by inducing processor lock-up through memory corruption, posing risks,

especially in shared cloud environments. In contrast, TrustZone attacks

aim to extract sensitive data compromising TrustZone’s security.

3.2 Cache-Timing

Cache-timing side-channel attacks exploit cache memory access times to

extract sensitive data. The Prime+Probe technique involves saturating

the cache with attacker data and then observing delays caused by victim

memory accesses. By analyzing these delays, attackers can infer the vic-

tim’s accessed memory locations, potentially revealing sensitive informa-

tion. This underscores the vulnerability of shared cache memory, allowing

attackers to monitor and extract secret data from victim processes.

Both TrustZone and SGX cache side-channel attacks discussed in [13,

21] respectively use Prime+Probe for the attack. In TrustZone architec-

tures, cache contention occurs when normal world processes compete for

cache space with secure world data, leading to normal world cache lines

replacing secure world cache lines. Exploiting this contention, attackers

observe cache access timing or patterns to gain insight into secure world

activities, potentially revealing sensitive data. This attack utilizes the

shared cache mechanism to indirectly access and analyze secure world

data through cache contention. High-precision timer ARMv7 PMCCNTR

was employed to measure cache access times.

The SGX CacheZoom side-channel attack on Intel processors assumes

root access to an OS, allowing kernel module installation and boot prop-

erty configuration. The attack involves installing a malicious kernel driver

for kernel-level control and running the enclave and attacker’s code on the

same CPU core. Utilizing a high-precision timer with root access, the at-

tacker intermittently interrupts enclave execution to capture fine-grained

cache usage information. Through a pointer-chasing technique, controlled

data is populated in cache sets, enabling analysis of cache responses to

memory accesses. Before each interruption, the L1D cache state is exam-

ined and afterward, the cache is primed for probing. Analysis of cache

state fluctuations allows inference of enclave-accessed data. This compre-

hensive approach enhances temporal accuracy for the targeted L1 cache

in SGX environments compared to other attacks, due to strategies such as

core isolation, interrupt-driven sampling and fine-grained cache control.

3.3 Spectre

Speculative execution, a feature in processors, executes certain instruc-

tions before prior instructions complete execution, potentially enhancing

program performance. However, if speculation is incorrect, these results

are discarded, incurring a performance overhead. Even though the spec-

ulatively executed results are discarded, the microarchitectural changes

persist, providing an avenue for attackers to deduce sensitive informa-

tion, for instance, through cache timing. To enhance speculation accu-

racy, processors use branch prediction logic, learning from past branches

to predict their outcomes. In one variant of attack, Branch Target In-

jection (BTI), attackers identify specific regions within a victim’s process

code that reveal secret data. Attackers craft their program with an iden-

tical indirect branch as the victim’s and trigger it repeatedly, training the

processor’s branch predictor to expect the next instruction to be a return

to the code that exposes secret data. When the victim’s process executes

the same branch, the branch predictor speculatively executes instructions

based on its learned behavior from the attacker’s crafted section, inadver-

tently loading attacker-controlled data into the processor’s cache, which

was accessed based on the secret value. Analyzing cache timing discrep-

ancies, attackers deduce the contents of the secret data. The vulnerability

lies in the processor’s branch predictor, which fails to distinguish between

the virtual addresses of different processes.

The SgxPectre [3] attack in Intel SGX enclaves, assumes a prior knowl-

edge of the enclave program’s unchanging binary code. The attacker ini-

tially manipulates the Branch Target Buffer (BTB) outside the enclave to

redirect branch instructions, such as ret instructions, to locations contain-

ing secret-leaking instructions instead of their intended targets. Attack

preparations include flushing the victim’s branch target address and de-

pleting the Return Stack Buffer (RSB), which is a fixed-size buffer that

provides predictions for RET instructions, ensuring CPU reliance on the

BTB. Once prepared, the attacker sets register values for speculatively ex-

ecuted secret-leaking instructions, enabling them to access enclave mem-

ory targeted by the attacker. Cache traces left by these instructions are

monitored and a cache timing attack is employed to extract sensitive data

effectively. Analysis of cache access patterns allows the attacker to infer

the values loaded into registers during speculative execution, compromis-

ing the security of the SGX enclave.

Spectre variants have been demonstrated in ARM architectures; how-

ever, existing research has not yet revealed any instances of these attacks

targeting TrustZone. The absence of documented instances of Spectre

attacks on TrustZone presents an area for further investigation and anal-

ysis, discussed in Section 5.

3.4 Meltdown

In Meltdown [11], the attacker initiates a user-level program with mali-

cious intent, attempting to access kernel memory, which is typically pro-

tected and inaccessible from user space. Despite the security measures

in place, the processor speculatively executes the unauthorized memory

access instructions. Although the unauthorized memory access would nor-

mally result in an exception and termination of the program, the specu-

lative execution proceeds, potentially allowing the attacker to load sensi-

tive kernel data into CPU caches. The attacker then utilizes timing-based

side-channel attacks, such as cache timing analysis, to infer the contents

of the accessed kernel memory. By analyzing the discrepancies in mem-

ory access times, the attacker can deduce the value of specific memory

locations, thereby compromising sensitive kernel data.

Meltdown is only exploitable when the processor switches between dif-

ferent Exception Levels [12] within the same memory translation mech-

anism. Consequently, it cannot be utilized to access secure memory from

the non-secure world, making it inapplicable for TrustZone environments.

One of the key protections provided by SGX is the abort page seman-

tics, where attempts to access SGX memory using illegal memory ac-

cesses, such as those used in the Meltdown attack, result in all writes

being ignored and all reads returning a constant value, typically xFF.

However, Foreshadow [19] circumvented these protections by targeting

the "present" bit in the page table entry. This bit determines whether

a particular memory page is currently loaded into physical memory or

has been swapped out to disk. By manipulating the "present" bit to indi-

cate that a page is not present in physical memory, Foreshadow induced

translation faults when attempting to access enclave data. These transla-

tion faults bypassed SGX’s abort page semantics and allowed attackers to

perform Meltdown-style attacks, loading and retrieving data from the L1

cache based on the enclave secret value. Even though the L1 cache size is

typically limited, usually around 32 kilobytes, by leveraging SGX’s mech-

anisms for moving pages between encrypted memory and regular memory,

attackers could bring enclave data into the enclave page cache, effectively

loading it into the L1 cache. This allowed attackers to access potentially

gigabytes of enclave data from the cache, bypassing size limitations and

further compromising the security of SGX enclaves.

4 Defenses

In VoltJockey, restricting software-controlled voltage changes in Intel ar-

chitecture mitigates attacks against SGX. TrustZone can prevent attacks

by checking regulator driver integrity through storing credentials securely

in the boot image and comparing credentials during execution with those

in the boot image preventing driver revision as seen in attacks.

Cache prefetching in cryptographic libraries defends against cache

timing attacks. It involves loading key-dependent data or instructions

into the cache preemptively, reducing the temporal resolution available to

attackers. By filling the cache before it is probed, prefetching mitigates

the risk of unauthorized access to sensitive cryptographic information.

To mitigate the SGXBomb vulnerability, alternative policies to the

drop-and-lock approach, when integrity checks fail, are required. One

solution, as outlined in the paper [8], entails implementing drop-and-lock

only for SGX. This would mean disabling all subsequent SGX operations

if data corruption within an enclave occurs. While this strategy does not

entirely eliminate the denial-of-service (DoS) risk, it effectively prevents

the entire system from halting or restarting, ensuring the uninterrupted

functionality of non-enclave processes. In a Rowhammer attack against

TrustZone, Secure memory must be isolated from non-secure memory in

DRAM to prevent leakage of confidential information. Also, encryption

and authentication mechanisms can be implemented to safeguard data.

Kernel Page Table Isolation (KPTI) divides address space into sepa-

rate page tables for user and kernel modes. Prevents user programs from

accessing sensitive kernel memory, mitigating Meltdown vulnerabilities.

One mitigation for Foreshadow involves the implementation of a new in-

struction to flush the L1 cache during page-in and page-out operations.

The Spectre Branch Target Injection variant is mitigated by deploying

distinct branch target buffers (BTBs) for each process or thread, ensuring

predictions do not affect other threads’ speculative execution.

5 Discussion

The absence of Spectre Branch Target Injection (BTI) variant attacks in

TrustZone architecture could be attributed to the facilitated implementa-

tion of Branch Target Buffer (BTB) logic. As the BTB operates by predict-

ing the target based on the virtual address of the program counter, the

inclusion of an additional Non-Secure (NS) Bit in this prediction process

can be implemented with relative ease. Subsequently, by implementing a

mechanism to flush the BTB upon detecting any alteration in the NS Bit,

mitigation of BTI attacks can be achieved. Therefore, theoretically possi-

ble to execute a Spectre attack within TrustZone, the BTB logic outlined

effectively prevents such attempts, indicating that Spectre Branch Target

Injection attacks are only feasible under specific conditions.

While measures are taken to mitigate Voltjockey by restricting priv-

ilege access and integrity checks, the voltage injection class of attacks

remains a persistent threat [18] in TEE environments, necessitating con-

tinued research.

Although techniques such as prefetching can make cache timing at-

tacks more challenging to execute, fully mitigating them without compro-

mising performance remains an unresolved challenge [4], given that both

trusted and untrusted applications utilize the same cache.

Meltdown in SGX is prevented by abort page semantics, but the ab-

sence of L1 cache flushing during page-in and page-out operations or not

disabling hyperthreading leaves a Foreshadow [19] vulnerability, techni-

cally rendering Meltdown still feasible under certain circumstances.

Table 1. Side Channel Analysis on TEEs and REE

Attack SGX TrustZone REE

Cache Timing ○ ○ ○

Voltage Injection ○ ○ ○

Row Hammer ○ ○ ○

Spectre ○ è ○

Meltdown è ○␣ ○

○: Attack possible. è: Attack under conditions. ○␣: Attack not possible.

6 Conclusion

This paper has examined representative classes of side-channel attacks

on TEEs.The landscape of side-channel attacks and Trusted Execution

Environments (TEEs) continues to evolve rapidly. As new optimization

strategies are introduced, they often bring about novel classes of attacks,

necessitating ongoing research and analysis. Understanding the strengths

and weaknesses of different TEE environments is crucial in the face of

these evolving threats. The comprehensive analysis allows us to discern

the efficacy of security measures implemented within each TEE, provid-

ing insights into potential vulnerabilities and guiding the development of

trusted applications based on their specific security requirements.

References

[1] Pierre Carru. Attack TrustZone with Rowhammer. Available Online:
https://grehack.fr/2017/program (accessed on 05 April 2024).

[2] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. SoK: Un-
derstanding the Prevailing Security Vulnerabilities in TrustZone-assisted
TEE Systems. In 2020 IEEE Symposium on Security and Privacy (SP),
pages 1416–1432, 2020.

[3] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin,
and Ten H. Lai. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via
Speculative Execution. In 2019 IEEE European Symposium on Security
and Privacy (EuroSP), pages 142–157, 2019.

[4] Yun Chen, Ali Hajiabadi, Lingfeng Pei, and Trevor E. Carlson. New Cross-
Core Cache-Agnostic and Prefetcher-based Side-Channels and Covert-
Channels, 2023.

[5] Lukas Gerlach, Fabian Thomas, Robert Pietsch, and Michael Schwarz. A
Rowhammer Reproduction Study Using the Blacksmith Fuzzer. In Gene
Tsudik, Mauro Conti, Kaitai Liang, and Georgios Smaragdakis, editors,
Computer Security – ESORICS 2023, pages 62–79, Cham, 2024. Springer
Nature Switzerland.

[6] Shay Gueron. Memory Encryption for General-Purpose Pro-
cessors. IEEE Security and Privacy, 14(6):54–62, nov 2016.
https://doi.org/10.1109/MSP.2016.124.

[7] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and
Juan Del Cuvillo. Using innovative instructions to create trustworthy
software solutions. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, HASP
’13, New York, NY, USA, 2013. Association for Computing Machinery.
https://doi.org/10.1145/2487726.2488370.

[8] Yeongjin Jang, Jaehyuk Lee, Sangho Lee, and Taesoo Kim. SGX-Bomb:
Locking Down the Processor via Rowhammer Attack. In Proceedings
of the 2nd Workshop on System Software for Trusted Execution, Sys-
TEX’17, New York, NY, USA, 2017. Association for Computing Machinery.
https://doi.org/10.1145/3152701.3152709.

[9] Marc Joye and Michael Tunstall, editors. Fault Analysis in Cryp-
tography. Information Security and Cryptography. Springer, 2012.
https://doi.org/10.1007/978-3-642-29656-7.

[10] Paul Leignac, Olivier Potin, Jean-Baptiste Rigaud, Jean-Max Dutertre,
and Simon Pontié. Comparison of side-channel leakage on Rich and
Trusted Execution Environments. In Proceedings of the Sixth Work-
shop on Cryptography and Security in Computing Systems, CS2 ’19, page
19–22, New York, NY, USA, 2019. Association for Computing Machinery.
https://doi.org/10.1145/3304080.3304084.

[11] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval

Yarom, Mike Hamburg, and Raoul Strackx. Meltdown: reading ker-
nel memory from user space. Commun. ACM, 63(6):46–56, may 2020.
https://doi.org/10.1145/3357033.

[12] ARM Ltd. Learn the Architecture Exception Model. Available Online:
https://developer.arm.com/architectures/learn-thearchitecture/exception-
model/privilege-and-exception-levels (accessed on 05 April 2024).

[13] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom:
How SGX Amplifies the Power of Cache Attacks. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems
– CHES 2017, pages 69–90, Cham, 2017. Springer International Publish-
ing.

[14] Sandro Pinto and Nuno Santos. Demystifying Arm TrustZone: A
Comprehensive Survey. ACM Comput. Surv., 51(6), jan 2019.
https://doi.org/10.1145/3291047.

[15] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. VoltJockey:
Breaking SGX by Software-Controlled Voltage-Induced Hardware Faults.
In 2019 Asian Hardware Oriented Security and Trust Symposium (Asian-
HOST), pages 1–6, 2019.

[16] Pengfei Qui, Dongsheng Wang, Yongqiang Lyu, and Gang Qu.
VoltJockey: Abusing the Processor Voltage to Break Arm Trust-
Zone. GetMobile: Mobile Comp. and Comm., 24(2):30–33, sep 2020.
https://doi.org/10.1145/3427384.3427394.

[17] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah.
Trusted Execution Environment: What It is, and What It is Not. In
Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA - Volume 01,
TRUSTCOM ’15, page 57–64, USA, 2015. IEEE Computer Society.
https://doi.org/10.1109/Trustcom.2015.357.

[18] Xhani Marvin Saß, Richard Mitev, and Ahmad-Reza Sadeghi. Oops..! i
glitched it again! how to multi-glitch the glitching-protections on ARM
TrustZone-M. USA, 2023. USENIX Association.

[19] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and
Raoul Strackx. Foreshadow: extracting the keys to the intel SGX kingdom
with transient out-of-order execution. In Proceedings of the 27th USENIX
Conference on Security Symposium, SEC’18, page 991–1008, USA, 2018.
USENIX Association.

[20] Daniel Weber, Fabian Thomas, Lukas Gerlach, Ruiyi Zhang, and Michael
Schwarz. Reviving Meltdown 3a. In Computer Security – ESORICS 2023:
28th European Symposium on Research in Computer Security, The Hague,
The Netherlands, September 25–29, 2023, Proceedings, Part III, page 80–99,
Berlin, Heidelberg, 2024. Springer-Verlag. https://doi.org/10.1007/978-3-
031-51479-1_5.

[21] Ning Zhang, Kun Sun, Deborah Shands, Wenjing Lou, and Y. Thomas Hou.
TruSense: Information Leakage from TrustZone. In IEEE INFOCOM 2018
- IEEE Conference on Computer Communications, page 1097–1105. IEEE
Press, 2018. https://doi.org/10.1109/INFOCOM.2018.8486293.

Different approaches of inspecting
encrypted packages in a content
delivery network

Tino Korpelainen
tino.korpelainen@aalto.fi

Tutor: Jose Luis Martin Navarro

Abstract

Content delivery networks (CDNs) are integral to modern web traffic,

serving the majority of all requests on the Internet. As the majority of

internet traffic shifts to HTTPS, CDNs face challenges in inspecting en-

crypted packets for mitigating attacks, particularly denial-of-service (DoS)

and distributed denial-of-service (DDoS) attacks. This paper examines var-

ious methods for inspecting encrypted traffic within CDNs, focusing on

their effectiveness, false positive rates, privacy preservation, and perfor-

mance.

Three inspection approaches are analyzed: Man-in-the-middle, knowledge-

based, and machine learning-based. The Man-in-the-middle approach in-

volves decrypting, inspecting, and re-encrypting traffic, which can achieve

high detection and false positive rates but raises legal, security, and ethical

concerns. The knowledge-based approach relies on domain experts creat-

ing filters or rules based on patterns in malicious traffic, which can be

effective and privacy-preserving but requires regular updates and expert

input. Machine learning-based approaches involve using machine learn-

ing algorithms to identify patterns in encrypted traffic based on various

features, which can achieve high success rates in categorizing legitimate

and malicious traffic but face challenges in dataset selection.

In the end, a good solution will be a combination of different approaches

depending on their tested effectivity in the same environment. The solution

needs to balance the need for effectiveness with security, privacy, and per-

formance concerns.

KEYWORDS: web application firewall, deep packet inspection, CDN, CDN

attack, encryption

1 Introduction

Content delivery networks (CDNs) serve an important role in modern web

traffic. They are the middleman to a large percentage of internet requests.

According to Cisco Visual Networking Index: Forecast and Trends 2017-

2022, the amount of internet traffic that flowed through CDNs was 56%

in 2018 with an expected rise to 72% by the year 2022 [2].

The core idea of a CDN is to cache content as close to the user as pos-

sible to reduce the amount of latency to the user and reduce the load on

the origin server [9]. CDNs also provide many different security capabil-

ities, the largest of them being the mitigation of denial-of-service (DoS)

and distributed denial-of-service (DDoS) attacks [1] [9].

DoS and DDoS attacks consist of an attacker sending large amounts of

traffic to one host in an attempt to shut down a host. A distributed denial-

of-service attack differs from a denial-of-service attack by using multiple

different hosts to send illegitimate traffic. One of the ways that CDNS can

mitigate DDoS attacks is by deploying web application firewalls (WAFs)

[4]. These firewalls can inspect end-user requests and responses in a pro-

cess called deep packet inspection (DPI) to detect illegitimate traffic [3].

But with most of the internet traffic being encrypted and sent over

HTTPS [6], WAFs can no longer perform deep packet inspections on re-

quest payloads. This paper aims to give an overview of different ways of

inspecting encrypted traffic to mitigate DDoS/DoS attacks on the part of

a web application firewall. This paper also aims to analyze the different

approaches and their strengths and weaknesses.

2 Overview of the problem

A content delivery network consists of 4 main components: end users,

origin servers, edge servers, and request routing. End users are the con-

sumers end-usernt. Origin servers are the original hosts of the content.

Edge servers sit between the origin servers and end users at points of

presence (PoPs). Request routing is the component of a CDN that dis-

tributes end user requests to different edge servers. The main goal of

request routing is to choose edge servers that will decrease latency for

end users and evenly distribute the load [1].

All end user requests go to the edge server which will then either serve

the content if it has it or it will fetch it from the origin server. Due to this

edge servers are an ideal place to add security features. Thanks to request

routing edge servers are naturally great at absorbing DDoS attacks but

additional security can also be deployed such as the previously mentioned

WAFs. Before HTTPS became popular WAFs could do simple inspections

of the request payload to detect malicious actors. One example of this

would be the User-Agent header; a WAF can detect simple DDoS attacks

where the headers are not well-known web browsers. Now the amount of

information that can be extracted from requests has been greatly reduced

and other ways of detecting malicious requests are needed.

3 Different inspection approaches

There exist multiple different ways of inspecting encrypted traffic. This

paper analyzes 3 different approaches: the Man-in-the-middle approach,

the knowledge-based approach, and the machine learning-based approach.

The specifics of these different approaches will be explained further but

they all have similar requirements that they want to fulfill.

The main thing that they need to achieve is to be effective, meaning

that they have some non-negligent detection rate. The other main thing

they need is low a false positive rate, meaning that regular end users are

not treated as malicious actors by the CDN. Other things that benefit the

approach are privacy-preservation and performance. We want to preserve

the security and privacy that HTTPS offers. The approach also needs

to be performant. CDNs need to handle large amounts of requests in a

short time, so inspections can’t take a large amount of time. The simplest

way of solving this problem is to negate it entirely. This can be done by

decrypting the traffic at the CDN.

3.1 Man-in-the-middle approach

One way of inspecting encrypted data is by decrypting it at the CDN,

doing the inspection, and then re-encrypting it before sending it to the

final destination. This is called the Man-in-the-Middle approach and it

can have many different problems, including legal, ethical, and security

problems.

Interception of encrypted packages may increase the legal exposure

of a company using it according to Jarmoc [8]. This is because one is

usually inspecting communication that is expected to be private between

two parties. This can be especially true when inspecting packages inside

a company network as some countries or unions may have regulations

that restrict the eavesdropping of employee communication. Even if the

company is legally allowed to inspect their employee’s packages it can still

be unethical if employees are not cognisant of the inspection. An employee

might, for example, see the green lock icon in their browser and assume

that it is end-to-end encrypted like normally it would be. In this case,

even though they might have signed an employment contract that allows

for the inspection of their encrypted packages their browsers don’t make

that transparent to them.

Dormann identifies many different security issues with the man-in-

the-middle approach [5]. One of the main problems is that the user can-

not verify the encryption and correct usage of TLS/SSL between the CDN

and their final destination. Dormann also analyzed different software

that performs the MiTM and found several different mistakes that they

make in their process, including not correctly validating upstream certifi-

cate validity, not correctly communicating back to the client all certificate

information, and different warnings that may have propped up. Some

applications even send the client’s request to the server before communi-

cating a warning about a certificate error, potentially giving an attacker

sensitive data [5].

The man-in-the-middle approach solves multiple of the previously set

requirements. It achieves the same detection and false positive rate as

regular DPI solutions for non-encrypted traffic. This approach also adds a

slight delay to all requests since it needs to perform an additional step

of decryption and encryption. The biggest requirement that it fails is

privacy-preservation.

3.2 Knowledge-based approach

Knowledge-based approach requires that a domain expert analyzes pat-

terns in malicious traffic, creates filters or rules based on those patterns

and then those are used by the CDN to categorize incoming traffic. Filters

and rules about the specific domain are called the knowledge base As an

example of this Husák, Martin et al. [7] used only the SSL/TLS cipher

suite lists that were offered in the SSL/TLS handshake. By mapping ci-

pher suite lists to their HTTP User-Agent values they were able to create

a dictionary that can be used on unknown traffic to identify client types.

They were able to achieve a 95.4% detection rate of different client types

inside of a campus network.

However, there are multiple problems with the knowledge-based ap-

proach. First, you need to have an expert in the field that finds and an-

alyzes the differences. Second, the knowledge base needs to be updated

regularly, for example in Husák, Martin et al. [7] a popular browser could

update their offered cipher suites and the mapping would need to be re-

done.

The knowledge-based approach can also have multiple upsides. If one

can find rules with a high effectiveness, they can often be easily cal-

culated. The knowledge-based approach can also be privacy-preserving

when only using data from non-encrypted parts of the packet.

3.3 Machine learning-based approach

One of the most important parts of machine learning is choosing what

features to use. Shen, Meng et al. [11] divide features in analyzing en-

crypted traffic into three different categories packet-based features, sta-

tistical features, and raw traffic representation. Packet-based features

include f, for example, source and destination IP address, source and des-

tination port, and Time-To-Live of the IP header. Statistical features are

calculated from a group of packets. For example an average TCP header

size over some amount of packages. Raw traffic presentation means that

we don’t extract any features manually but instead present the raw traffic

in some form to a deep learning algorithm. These forms can be sequences,

graphs, or images [11].

One of the used machine learning algorithms for identifying network

traffic is called k-means clustering. K-means clustering aims to partition

data points into defined clusters. In this approach, a certain amount of

clusters is predefined and the algorithm tries to fit the data points into

that amount of clusters. If the algorithm finds appropriate clusters then

new data can be fit into a specific cluster. In the domain of DDoS pre-

vention, an ideal outcome would be two clusters with one being legitimate

traffic and the other being malicious traffic. One example of using a ma-

chine learning algorithm k-means clustering is a paper by Qin et al.[10].

In the paper, they used 11 features consisting of a session consisting of en-

crypted packets. The features included such fields as source IP address,

destination IP address, number of packets of different sizes, and the total

duration of the flow. Using just these features they were able to achieve

a successful categorization rate of over 95%, when the used dataset size

exceeded 4000 data points.

A big problem with machine learning approaches is the selection of

the dataset on which to train the model. The dataset must be represen-

tative of realistic traffic. This means that it must encompass a variety of

different web drivers such as Firefox, Chrome, and curl, across different

operating systems including Android, IOS, Windows, and Linux, as well

as having different modes of internet access such as 2G, 3G, 4G, Wi-Fi

and Ethernet. The creation of a useful and representative dataset can be

difficult.

The best way to create a comprehensive dataset would be to monitor

real-life traffic, which includes legitimate and malicious traffic. The prob-

lem with this approach is legal and ethical. Monitoring and capturing

public internet traffic by individuals is illegal in most jurisdictions with-

out explicit permission from a user. Large corporations such as internet

service providers or CDNs usually have already expansive consent from

users to monitor and capture their traffic without limits [12]. But large

corporations have an incentive to keep the datasets to themselves, as it is

a valuable asset to have. This results in a landscape where solutions are

created on proprietary datasets that cannot be widely used or validated.

4 Conclusion

To fulfill their roles CDNs WAFs need to be able to inspect encrypted traf-

fic in some form. They need to achieve a high detection rate, low false posi-

tive rate, performance and privacy-preservation. This paper brought forth

3 different approaches including man-in-the-middle approach, knowledge-

based approach, and machine learning-based approach. The best practi-

cal solution will be a combination of these different approaches tailored

to their environment. The solution needs to balance the need for effec-

tivity with security, privacy and perfor- mance concerns as each of these

approaches has their own strengths and weaknesses.

Man-in-the-middle approach involves decrypting the encrypted data

at the CDN before inspection can occurs. This approach can achieve as

high detection and false positive rates as regular WAFs on unencrypted

traffic. But what suffers is end user security and privacy. Also ethical con-

cerns can be raised as not all end users might be aware of the decryption

of their data.

Knowledge-based approach relies on domain experts analyzing pat-

terns in malicious traffic and creating filters or rules based on those pat-

terns. It can be effective and privacy-preserving when using data from

non-encrypted parts of the packet. However, it requires regular updates

to the knowledge base and the expertise of a domain expert.

Machine learning-based approach involves using machine learning al-

gorithms to identify patterns in encrypted traffic based on various fea-

tures. It can achieve high success rates in categorizing legitimate and

malicious traffic. However, the selection of a representative dataset for

training the model can be challenging due to legal and ethical considera-

tions.

The research and development of different approaches is highly de-

pendant of representative datasets that encompass the complexity of the

Internet. Achieving this kind of a dataset is extremely hard due to le-

gal concerns and because companies don’t want to give up their valuable

assets for free. Due to this, it is hard to evaluate and compare different

approaches. Especially in the machine learning approach the model can

be fitted to one dataset with a high efficacy but when generalized to the

Internet or another dataset its efficacy might not be enough or its false

positive rate becomes unbearable. In the future of encrypted packet in-

spection research, there should be a concerted effort to create unified rep-

resentative datasets or for companies to give researchers outside of their

companies more access to their datasets.

References

[1] Akamai. What Is a CDN (Content Delivery Network)?, 2024.
https://www.akamai.com/glossary/what-is-a-cdn.

[2] Thomas Barnett, Shruti Jain, Usha Andra, and Taru Khurana. Cisco vi-
sual networking index (vni) complete forecast update, 2017–2022. Amer-
icas/EMEAR Cisco Knowledge Network (CKN) Presentation, pages 1–30,
2018.

[3] Cloudflare. What is a next-generation firewall (NGFW)?, 2024.
https://www.cloudflare.com/learning/security/what-is-next-generation-
firewall-ngfw/.

[4] Cloudflare. What is a Web Application Firewall (WAF)?, 2024.
https://www.cloudflare.com/learning/ddos/glossary/web-application-
firewall-waf/.

[5] William Dormann. The risks of ssl inspection. Carnegie Mellon University,
Software Engineering Institute’s Insights (blog), Mar 2015. Accessed: 2024-
Mar-12.

[6] Google. Transparency report, 2024. Accessed: 2024-Mar-12.
https://transparencyreport.google.com/https/overview.

[7] Martin Husák, Milan Cermák, Tomás Jirsík, and Pavel eleda. Https traf-
fic analysis and client identification using passive ssl/tls fingerprinting.
EURASIP Journal on Information Security, 2016:1–14, 2016.

[8] Jeff Jarmoc. Ssl/tls interception proxies and transitive trust. In Black Hat
Europe, 2012.

[9] Erik Nygren, Ramesh K. Sitaraman, and Jennifer Sun. The akamai net-
work: a platform for high-performance internet applications. SIGOPS Oper.
Syst. Rev., 44(3):2–19, aug 2010.

[10] Xi Qin, Tongge Xu, and Chao Wang. Ddos attack detection using flow en-
tropy and clustering technique. In 2015 11th International Conference on
Computational Intelligence and Security (CIS), pages 412–415, 2015.

[11] Meng Shen, Ke Ye, Xingtong Liu, Liehuang Zhu, Jiawen Kang, Shui Yu,
Qi Li, and Ke Xu. Machine learning-powered encrypted network traffic
analysis: A comprehensive survey. IEEE Communications Surveys Tutori-
als, 25(1):791–824, 2023.

[12] Douglas Sicker, Paul Ohm, and Dirk Grunwald. Legal issues surrounding
monitoring during network research. pages 141–148, 10 2007.

Overview of Utility-First CSS

Tommi Pakarinen
tommi.pakarinen@aalto.fi

Tutor: Juho Vepsäläinen

Abstract

This paper provides an overview of Utility-First CSS and its impact on web

development practices. We analyze and compare the technical aspects of

Semantic CSS and Utility-First CSS. The paper examines popular imple-

mentations, such as Tailwind CSS, Tachyons, and Open Props, discussing

their features and impact on web development. Our findings contribute to

a deeper understanding of the evolving landscape of CSS methodologies.

KEYWORDS: CSS, Web, Utility-First, Tailwind

1 Introduction

Traditionally, a website is created using multiple technologies with dif-

ferent roles. Hypertext Markup Language (HTML) is the standard lan-

guage for creating the skeleton of a site. This website is then styled using

Cascading Style Sheets (CSS) to give the page more aesthetic elements.

However, there is no consensus on how style sheets should be organized

for easier scalability and less redundancy.

The most common method of organizing style sheets is to use generic

classes, such as a ".button" class for an HTML element that acts as a click-

able button. However, this style of CSS has drawbacks that can make

stylesheets harder to iterate and modify. This paper examines Utility-

First CSS, which attempts to address these problems by using utility

classes instead of creating unique classes for every kind of element.

The remaining sections are organized as follows: Section 2 presents

technical details about the CSS language and explains the differences be-

tween the traditional and Utility-First paradigms. Section 3 lists the most

popular implementations of Utility-First CSS. Section 4 discusses the im-

pact of Utility-First CSS on web development. Finally, Section 5 contains

concluding remarks.

2 CSS Paradigms

Cascading Style Sheets are based on style files consisting of blocks of

rules. These rule blocks consist of two components: the selector and the

declaration block. The selector specifies which elements in the HTML

should be selected, and the declaration block is essentially a list of key-

value pairs dictating how the properties of the HTML element should be

modified. These blocks cascade, meaning that an element can be the tar-

get of multiple declaration blocks, and it will apply all the rules as long as

there are no conflicts. These features are the basis of CSS and have been

part of the language since 1996 in the first W3C recommendation [19].

Figure 1. Example of a CSS and HTML file.

These declaration blocks, containing multiple rules, can be reused mul-

tiple times using classes. Classes are versatile and arguably the corner-

stone of CSS. Due to this versatility, it is not clear what a class should

represent. In modern web development, classes commonly represent a

generic idea: a button, a sidebar, or even as small as an icon. This in-

tuitive approach can be supplemented with utility classes such as white

text class or background color class. This idea of designing classes for

an abstract idea is commonly referred to as Semantic CSS [20]. On the

other hand, a recent idea known as Utility-First CSS has been on the rise.

In this paradigm, all the classes are utility classes, and HTML elements

are modified by giving them a list of utility classes dictating their appear-

ance [12].

The following sections list and compare the main differences between

current mainstream CSS frameworks, such as Bootstrap, and emerging

utility-First CSS frameworks, such as Tailwind CSS.

2.1 Semantic CSS

Semantic CSS is the traditional strategy for writing CSS stylesheets. This

strategy is officially endorsed by W3C in the working draft for HTML5 [18].

In this paradigm, each class is semantically tied to an abstract concept.

For instance, a class such as ".ord-list" might signify an ordered list.

Many Semantic CSS frameworks operate similarly but offer different

styling for components. These frameworks encourage developers to uti-

lize the provided classes. For example, frameworks like Bootstrap [1]

and MaterialUI [2] offer classes defining elements like the "select field",

with the styling contained within these classes. Utilizing these frame-

works involves adding HTML elements and applying the relevant classes

to achieve the desired appearance, thus facilitating ease of use and rapid

iteration. This model, characterized by pre-styled components, is referred

to as the Semantic CSS in this paper.

This kind of organizational model is easy to expand on and reuse, as-

suming that there is no need to alter any pre-existing classes. However, if

this is the case, the CSS might become hard to modify and debug. Several

methods exist for altering existing classes, but many of these methods are

considered bad practice. These include using "!important", inline styles,

or increasing specificity to force precedence, which may result in convo-

luted stylesheets that are difficult to read and debug. Consequently, mod-

ifying such changes may necessitate the continued addition of priority-

increasing keywords.

Another issue with Semantic CSS is redundant declarations, where

classes may contain repeated declarations, leading to bloated stylesheets.

A solution to this redundancy is to extract repeated declarations into a

utility class that can be applied to classes without redundancy. However,

modifying the style of an element with a utility class containing multiple

rules may require the use of priority-increasing strategies. Utility-First

CSS is based on this idea of utility classes.

2.2 Utility-First CSS

Figure 2. Comparison between Semantic CSS (left) and Utility-First CSS (right)

In Semantic CSS, developers need to define and name semantic classes

that correspond to abstract concepts, such as a button. Utility-First CSS

turns this concept around and aims to streamline styling by eliminating

the need to create semantic classes. This is achieved by introducing utility

classes consisting of only a few CSS rules declarations at most [12]. For

instance, there could be a utility class named ".bg-blue" whose sole pur-

pose is to apply the CSS declaration "background-color: blue". Therefore,

styling an element involves combining these utility classes to achieve the

desired appearance. The difference between these two CSS paradigms is

illustrated in Figure 2.

Iterating on design with Utility-First CSS is fast since there is no

need to design CSS classes, resulting in a codebase that is easier to main-

tain [21]. However, these lower-level utility classes may lead to lengthy

and repetitive class lists that are challenging to parse by a human [15].

Some frameworks, like Tailwind CSS, address these issues by introduc-

ing methods to bundle utility classes into semantic classes [13]. Addition-

ally, using component-based frameworks such as React provides a solution

for reusing components without the necessity to write redundant utility

classes.

3 Implementations of Utility-First CSS

Semantic CSS and Utility-First CSS are paradigms that differ signifi-

cantly, but they are not mutually exclusive. A Semantic CSS framework

usually includes utility classes for more abstract features, such as break-

points for responsive design. Bootstrap 5 introduces a new feature named

the Utility API, enabling developers to generate utility classes for the

project [5].

Currently, the most popular Utility-First CSS libraries are Tailwind

CSS [7], Open Props [3], and Tachyons [4] according to the State of CSS

2023 survey [17]. The rise of Utility-First CSS is a recent trend, with

Tailwind CSS particularly standing out due to its high satisfaction ratio

among developers [17]. This section provides examples of CSS frame-

works that utilize the Utility-First Fundamentals.

3.1 Tailwind CSS

Tailwind CSS [7] is currently the largest Utility-First CSS framework and

the second most used CSS framework behind Bootstrap [17]. It is utilized

by companies such as Netflix [10]. The framework offers a vast library of

utility CSS classes that can be utilized out of the box. Additionally, it can

dynamically generate new utility classes for different modifiers, such as

"dark" or "hover". Despite its extensive library, Tailwind CSS optimizes

performance by bundling classes into a single small build stylesheet con-

taining only utility classes used in the project [8]. Figure 3 shows an

example of Tailwind CSS.

Figure 3. Example of Tailwind CSS. Left is CSS and right is the render. Each class
applies a small set of CSS rules. For example the class ".py-2" is equal to the

following: "padding-top: 0.5rem; padding-bottom: 0.5rem;"

Tailwind CSS also supports Semantic CSS through the use of the "@ap-

ply" directive. This directive enables developers to apply multiple classes

under another class label, essentially creating a reusable shorthand for

a group of utility classes. For instance, one can semantically define a

class ".button" that applies the following classes: ".font-medium .rounded-

lg" [13].

In modern web development, web pages are accessed on various de-

vices with different aspect ratios, such as phones and tablets. Respon-

sive web design is a crucial design approach that ensures smooth viewing

across different devices [16]. Tailwind CSS facilitates responsive web de-

sign through breakpoint prefixes, which can be added to any utility class

to create conditional classes. These classes are enabled only at specific

screen resolutions, allowing developers to define resolution breakpoints

according to their needs [11].

Tailwind CSS offers other built-in features as well. Modifier util-

ity classes can emulate native CSS pseudo-classes such as ":focus" and

":hover". Additionally, dark mode classes are supported with the "dark"

modifier. Similar to breakpoint prefixes, these modifiers can be attached

to any utility class, and the classes are efficiently generated and bundled

by the Tailwind CSS bundler [9].

3.2 Tachyons

Tachyons [4] is another Utility-First CSS library that follows a similar

workflow to Tailwind CSS. Although it has only a tenth of the usage rate

that Tailwind CSS has, it stands as the second most popular Utility-First

CSS framework [17].

Figure 4. Example of Tachyons. Left is CSS and right is the render. The naming scheme
is different but the workflow is similar to Tailwind CSS. For example the class

".db" is equal to the following: "display: block;"

Tachyons is an extensive library of utility classes that are readily

available for use. In comparison to Tailwind CSS, Tachyons is an ex-

tremely lightweight library that occupies considerably less space [14].

However, the framework is a pure Utility-First CSS library and therefore

does not offer any additional features beyond a rich collection of utility

functions. Unlike Tailwind CSS, it is not possible to group utility classes

under a single label using Tachyons [4].

3.3 Open Props

Open Props [3] is a recent lightweight CSS framework that incorporates

many Utility-First CSS fundamentals and applies them to Semantic CSS.

It shares a similar usage rate to Tachyons, being the 10th most used CSS

framework according to the State of CSS 2023 survey [17].

Open Props works on the built-in CSS variable feature, that allows

developers to set arbitrary values to variables. This CSS framework in-

cludes an extensive library of utility variables, such as fixed text sizes or

colors, that can be used in CSS declarations. Unlike Tailwind CSS, how-

ever, it is not possible to directly apply these utility variables to an HTML

element. Instead, developers must create semantic classes that serve as

a collection of these utility variables. The framework operates similarly

to Tailwind CSS’s "@apply" directive. Additionally, Open Props supports

responsive web design through media query props, enabling developers to

set conditional styles [3].

Figure 5. Example of Open Props with CSS (right side), HTML (top left), and the render
(bottom left). Semantic CSS classes are assigned to elements. These classes

consist of variables provided by Open Props. For example "padding:
var(–size-3)" evaluates to "padding: 1rem".

Figure 6. State of CSS 2023 survey [17].

4 Impact on Web Development

Utility-First CSS is a new paradigm that only started being adopted in the

2020s. According to the State of CSS 2023 survey [17] (Figure 6), Tailwind

CSS initially had a modest usage rate of only 6.1% among web develop-

ers. However, its adoption has seen consistent growth, with Tailwind CSS

reaching a substantial usage rate of 50.5% by 2023, positioning it as the

second most utilized CSS framework after Bootstrap (80.3%). Currently,

Tailwind CSS stands as the de facto Utility-first CSS framework.

Despite the rapid rise of the Utility-first paradigm, it remains rela-

tively young. When examining the usage of CSS frameworks across the

internet, it becomes evident that the market share of Utility-First CSS

frameworks remains relatively small. W3Techs is an institution analyz-

ing technologies used in websites through data scraping [6]. As of April

2024, Tailwind CSS only holds a market share of 0.6% among every web-

site employing a CSS framework. In contrast, Bootstrap, having been in

use for a longer duration, occupies a market share of 77.9% among all

websites. Nonetheless, Tailwind CSS still ranks as the fifth most preva-

lent CSS framework on the internet. [6]

Utility-First CSS is still evolving, and its impact on web development

is currently relatively small. However, the adoption rate of libraries such

as Tailwind CSS has been increasing steadily year by year [17], which

could potentially inspire more developers to switch to Utility-First CSS.

Due to the recency of this paradigm, there is a clear lack of academic liter-

ature on Utility-First CSS and its impact. Nevertheless, Utility-First CSS

remains a relatively new paradigm compared to Semantic CSS frame-

works like Bootstrap.

5 Conclusion

Utility-First CSS offers a departure from traditional Semantic CSS method-

ologies by prioritizing utility classes over semantic classes. Instead of

defining unique classes for each semantic element, developers utilize util-

ity classes that provide specific styling properties. This approach aims to

streamline development processes, enhance maintainability, and reduce

redundancy in stylesheets.

Among the popular implementations of Utility-First CSS frameworks,

Tailwind CSS emerges as a prominent example. Tailwind CSS offers a

comprehensive library of utility classes, allowing developers to rapidly it-

erate on designs and create responsive layouts. The framework’s support

for Semantic CSS through features like the "@apply" directive enables

developers to combine utility classes into semantic classes for better orga-

nization and reusability.

While Utility-First CSS is still in its early stages compared to Seman-

tic CSS frameworks like Bootstrap, its rapid adoption among developers

signifies its potential to reshape the landscape of web development. As

developers continue using Utility-First CSS, its impact on web develop-

ment will become more pronounced. Many frameworks such as Bootstrap

already include many features that follow Utility-first ideas.

References

[1] Bootstrap. https://getbootstrap.com/docs (Accessed 29.01.2024).

[2] MUI. https://mui.com (Accessed 29.01.2024).

[3] OpenProps. https://open-props.style (Accessed 04.04.2024).

[4] Tachyons. https://tachyons.io (Accessed 29.02.2024).

[5] Utility API. https://getbootstrap.com/docs/5.3/utilities/api (Accessed
03.04.2024).

[6] Usage statistics and market shares of CSS frameworks. April
2024. https://w3techs.com/technologies/overview/css_framework (Accessed
04.04.2024).

[7] A. Wathan. Tailwind CSS. https://tailwindcss.com (Accessed 29.02.2024).

[8] A. Wathan. TailwindCSS. https://tailwindcss.com (Accessed 03.04.2024).

[9] A. Wathan. Handling Hover, Focus, and Other States, 2020.
https://tailwindcss.com/docs/hover-focus-and-other-states (Accessed
04.03.2024).

[10] A. Wathan. Optimizing for Production, 2020.
https://tailwindcss.com/docs/optimizing-for-production (Accessed
04.03.2024).

[11] A. Wathan. Responsive Design, 2020.
https://tailwindcss.com/docs/responsive-design (Accessed 04.03.2024).

[12] A. Wathan. Utility-First Fundamentals, 2020.
https://tailwindcss.com/docs/utility-first (Accessed 28.01.2024).

[13] A. Wathan. Utility-First Fundamentals, 2020.
https://tailwindcss.com/docs/utility-first (Accessed 29.02.2024).

[14] Anjolaoluwa Adebayo-Oyetoro. Tailwind CSS vs. Tachyons. May 2020.
https://blog.logrocket.com/tailwindcss-vs-tachyons/ (Accessed 04.04.2024).

[15] Rehan Alam. Utility-first CSS framework? - Tailwind CSS,
2020. https://xenox.dev/tailwind-css-utility-first-css-framework (Accessed
29.02.2024).

[16] Fernando Almeida and José Monteiro. The role of responsive design in web
development. Webology, 14(2), 2017.

[17] Sacha Greif. State of CSS 2023. https://2023.stateofcss.com/en-US/css-
frameworks (Accessed 29.02.2024).

[18] Ian Hickson. HTML5, A vocabulary and associated APIs for HTML and
XHTML. April 2011. https://www.w3.org/TR/2011/WD-html5-20110405
(Accessed 02.04.2024).

[19] Håkon Wium Lie and Bert Bos. Cascading Style Sheets, level 1. December
1996. https://www.w3.org/TR/REC-CSS1-961217 (Accessed 28.01.2024).

[20] Tero Piirainen. NUE, 2023. https://nuejs.org/blog/tailwind-vs-semantic-css
(Accessed 29.02.2024).

[21] Inc. ThoughtWorks. Technology radar vol. 22. 2020.
https://assets.thoughtworks.com/assets/technology-radar-vol-22-en.pdf (Ac-
cessed 29.02.2024).

State orchestration in web with
finite-state machines

Tuomas Salminen
tuomas.t.salminen@aalto.fi

Tutor: Juho Vepsäläinen

Abstract

State management has become increasingly important in web develop-

ment, as demand for feature-rich web applications complicates develop-

ment. Finite-state machines have been widely used in various fields of

software development to model the various states the system can have, as

well as the transitions between these states. This paper reviews the use of

finite-state machines in web application state management. This approach

is also referred to as state orchestration. Two major libraries for state or-

chestration, XState and Robot, are examined in this paper, as well as the

benefits and drawbacks of such approaches. These libraries are based on

the statecharts model, which is an extension of the finite-state machine

model.

This paper argues that by using state machines, and statecharts in

particular, the system can be made more robust, with fewer possibilities

for ending up in unwanted states and thus causing errors. However, the

learning curve is steep, especially because state machines or statecharts are

rarely used in web development. Therefore, using libraries such as XState

and Robot is beneficial in systems which can be effectively modeled as state

machines, and which benefit from robust state management.

KEYWORDS: finite-state machine, statecharts, state management, state

orchestration

1 Introduction

Businesses are increasingly deploying their services as web applications,

that are expected to be feature-rich and reactive. Therefore, web develop-

ment has become highly complicated. In particular, state management in

web applications has become problematic, as the applications grow larger

with high amounts of possible events and outcomes. Modern web appli-

cations often use a component framework, such as React, Vue, Angular,

or Svelte. These frameworks allow developers to create web applications

using components that can manage their own state, and the state of their

child components by passing down the state to them. Large web applica-

tions usually use a state management library, such as Redux, MobX, or

Zustand, to handle the application’s global state.

These state management libraries act as a data store for informa-

tion needed in multiple parts of the application. However, this approach

leaves much to be desired when web applications have increasingly com-

plex state transitions with multiple conditions for moving from one state

to another. In the data store approach, the developer has to manually im-

plement the logic for state transitions, for example, by using if statements.

This can result in unwanted states and bugs in the code.

This paper reviews an alternative approach for state management in

web applications with the use of finite-state machines (FSM). FSMs can

enable the state management logic in the application to specify which

transitions are allowed between the states. This approach can also be

considered state orchestration instead of state management since FSMs

control how the data can change in the application, instead of only storing

it. Currently, XState is the most widely used solution for implementing

state management via FSMs in web development.

This paper tries to answer the following questions: what is the current

state of the art for state orchestration using FSMs in web development

and what are the benefits and disadvantages of such approaches? XState

is examined in particular, and a small demo of an XState state machine

will be presented to understand the library better. Another similar li-

brary, Robot, will also be discussed in this paper.

The paper is organized as follows. Section 2 introduces FSMs, stat-

echarts, and the actor model. Section 3 examines the XState and Robot

state orchestration systems. Section 4 presents an implementation of a

network request flow using XState. Section 5 discusses the benefits and

Figure 1. Statechart diagram for a network request flow.

drawbacks of the presented approaches to state management. Section 6

presents the conclusion.

2 Finite-state machines, statecharts, and the actor model

This section covers the FSM, statechart, and actor model. The modern

FSM state orchestration solutions use statecharts in their design, which

extend the conventional FSMs with powerful features, such as hierarchy,

concurrency, and communication [10]. The newest version of XState al-

lows the use of the actor model [5], in which components of the system are

actors that will send and receive messages to and from other actors [12].

2.1 Finite-state machine

The FSM is a model of computation that has a finite amount of states,

a start state, inputs, and transitions [6]. Transitions determine how to

move from one state to another given some input [6]. FSMs can be speci-

fied using state diagrams, which also help to visualize the system. FSMs

have been studied and used in various fields and applications, including

game development [14, 8], space launch systems [11], and event recon-

struction in digital investigations [9]. However, the basic FSM model is

too simple to be used in complex systems effectively, as the state diagram

quickly grows to an unmanageable size when the number of states and

transitions increases [10].

2.2 Statechart

Harel [10] extends the FSM model by proposing the statechart model,

which is a highly descriptive language for concisely expressing complex

systems. Statecharts can model hierarchy, conditions, and concurrency

between states. Due to hierarchy, the states can be nested inside other

states, allowing parts of the system to be decoupled from each other. Con-

ditions, also known as guards, allow for preconditions for transitions,

meaning transitions can be blocked if some condition is not met. With

concurrent states, the system can be split into multiple parts, with the

states in these parts not affecting each other but instead working in par-

allel.

Figure 1 illustrates a simple network request flow with the statechart

model. The handle request state is a parent state with three child states.

The initial state does not have to know how the request-handling logic

works, therefore it will only interact with the parent state. In a later

section, I will present how this logic can be implemented using XState.

2.3 Actor model

The actor model uses an actor as the central component of a system.

The actor has only one behavior, which is sending messages to other ac-

tors [12]. Hewitt et al. [12] present many benefits of this model, including

privacy, synchronization, and intentions. Actors will work only for actors

which have the authority to use them, actors can work concurrently, and

actors can be evaluated based on whether they satisfy their intention,

which can help with testing [12]. In XState, the actor model is used to

represent each FSM as an actor.

3 Current state orchestration solutions

The two major solutions for FSM state orchestration in web applications

are XState and Robot. Both use the statechart model but also have many

differences. In this section, the technologies are reviewed and compared.

3.1 XState

XState is a JavaScript and TypeScript library for creating FSMs and us-

ing them for state orchestration in both frontend and backend systems.

XState uses the statechart and actor model to manage the state of in-

creasingly complex web applications. It is framework-agnostic and can be

used with vanilla JavaScript or TypeScript if wanted. As of writing this

paper, it has 1.6 million weekly downloads [4]. Although the framework

has been researched little, it has been effectively used in some research,

for example by Chen [7], where a clinical guidance system is implemented

to prevent medical errors. With the use of statecharts in XState, the guid-

ance system was built to be lightweight, safety-prone, and configurable.

XState uses event-driven architecture together with the actor model.

In XState, a FSM is an actor, which can receive and send events, as well

as change its behavior when it receives an event [1]. The actors can also

invoke or spawn other actors to do some designated workflow. The differ-

ence between invoking and spawning is that invoked actors represent a

single state-based task that is stopped when the invoking state is exited,

and spawned actors represent multiple entities and can be started and

stopped at any time [1].

3.2 Robot

Similar to XState, Robot is used for state orchestration via FSMs in JavaScript

and TypeScript applications. It also uses statecharts in its design. How-

ever, there are some key differences between them [2]. Robot improves on

XState by intentionally keeping the bundle size of the library small at 1

kB, whereas XState bundle size is 13 kB. In Robot, the FSMs are compos-

able, meaning they are constructed from smaller reusable parts, unlike

in XState where the FSM is defined with one JavaScript options object.

XState supports the statechart feature of parallel states for a single FSM

while Robot does not. In Robot, this feature can still be implemented by

defining separate machines. Robot does not support the actor model as

XState does and it does not have a visualizer tool that draws diagrams of

the defined FSMs as in XState.

4 XState example

Figure 2 shows how the network request diagram in figure 1 looks as an

XState FSM. XState allows the use of statecharts features such as hier-

archy and guards, as seen in the diagram with the handle request par-

ent state providing hierarchy to the machine, and the if-else condition for

Figure 2. XState state machine diagram for a network request flow. Created with the
XState visualizer.

transitioning to the retry or failure states guarding unwanted transitions

from occuring. The success and failure states are the final states inside

the handle request parent state and will transition back to the initial state

via the onDone event.

The actor model in XState allows invoking actors to do a designated

workflow. The loading state invokes a workflow that tries to load data

from the server and will either complete it successfully or cause an er-

ror. The loading state can react to this result and transition to the cor-

rect state. Certain transitions also manipulate the state machine context,

such as when the machine transitions from loading to success state. Here

the setData function will be called, which sets the loaded data into the

context. The context information can be used in the machine, or retrieved

and used outside the machine.

The machine state will transition from the loading state to the retry

state if there are retry attempts left. The function retryAttemptsLeft is

defined in the code and will return true if the amount of retries is below

five. At the same time, the amount of retries will be incremented by one

each time the transition from loading to retry state occurs. A delayed

transition will then take place from the retry state back to the loading

state.

5 Discussion

The previous sections reviewed the current state orchestration solutions

and gave background on the theory behind them. This section discusses

the benefits and drawbacks of these approaches.

5.1 Learning curve

Finite-state machines, and statecharts in particular, offer an effective op-

tion to state orchestration in web applications, as discussed in [15]. How-

ever, the paper also points out that some prerequisite competence in FSMs

is needed to benefit from this approach. This makes the learning curve for

XState and Robot and similar solutions steep. Therefore, there should be

careful consideration before such tools are used. Horrocks [13] states that

statecharts are not widely used in user interface development because

their benefits are not obvious. Currently, there are many tools available

for frontend development, and often FSMs or statecharts are not needed.

In the worst scenario, they complicate the development process more with

little benefit.

To make the learning curve easier, XState has extensive and clear doc-

umentation and a visualizer tool, as well as AI tools to help with the FSM

creation. Robot lacks the visualizer and AI tools, and the documentation

is not as extensive, but the amount of features to learn is also fewer in

Robot. In particular, the visualizer can be useful in understanding the

logic of the FSM. The XState visualizer allows for stepping through the

states one by one and exporting the FSM diagram as code. There is also

an extension for Visual Studio Code that generates a diagram directly

from the given code, which can improve the development experience.

5.2 Code robustness

Horrocks [13] found that bug count was lower when using statecharts.

The bug count in statechart-based programs was only between 10 and

20 percent of the number of bugs in the programs built using other ap-

proaches. This can be due to FSMs and statecharts making it harder to

have unwanted states in the program. Furthermore, modeling a system

using statecharts can make testing easier when the possible events and

outcomes can be observed from the state diagram. The premium version

of XState studio also allows for automatic test case creation [3] based on

the provided code, making it simple to have high testing coverage for the

state machines.

6 Conclusion

The objective of this paper was to research the current state of the art

for state orchestration using FSMs in web development and analyze the

benefits and disadvantages of such approaches. This paper examined the

two major FSM state orchestration solutions, XState and Robot. Both

allow for building robust statecharts-based software, but XState offers

a wider range of features, such as the actor model. Compared to other,

non-FSM state management solutions, they allow for more robust state

handling, but can also make the code more complicated.

Future research on this topic would be valuable, given the rising de-

mand for feature-rich, large web applications. This paper only reviewed

the technologies superficially, therefore a more detailed study into them

would be beneficial. Particularly, studying the use of statecharts-based

state management tools in larger systems could yield useful results. Ad-

ditionally, studying the developer experience of such tools could be valu-

able.

References

[1] Actors. https://stately.ai/docs/actors. Accessed: 2024-03-02.

[2] Comparison with xstate. https://thisrobot.life/guides/comparison-w
ith-xstate.html. Accessed: 2024-03-02.

[3] Generate test paths. https://stately.ai/docs/generate-test-paths.
Accessed: 2024-04-03.

[4] npm xstate. https://www.npmjs.com/package/xstate. Accessed: 2024-03-
02.

[5] Xstate concepts. https://xstate.js.org/docs/about/concepts.html.
Accessed: 2024-02-01.

[6] Paul E. Black. finite state machine. Technical report, National Institute of
Standards and Technology, 2021. Accessed: 2024-03-02.

[7] Luting Chen. Modern lightweight approach for design and implementa-
tion of workflow-based clinical guidance system. PhD thesis, University of
Illinois at Urbana-Champaign, 2021.

[8] Christopher Dragert, Jorg Kienzle, and Clark Verbrugge. Statechart-based
ai in practice. Proceedings of the AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment, 8(1):136–141, Jun. 2021.

[9] Pavel Gladyshev and Ahmed Patel. Finite state machine approach to digital
event reconstruction. Digital Investigation, 1(2):130–149, 2004.

[10] David Harel. Statecharts: a visual formalism for complex systems. Science
of Computer Programming, 8(3):231–274, 1987.

[11] Joshua A Harris and Ann Patterson-Hine. State machine modeling of the
space launch system solid rocket boosters. Technical report, 2013.

[12] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ac-
tor formalism for artificial intelligence. In Proceedings of the 3rd Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’73, page 235–245,
San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers Inc.

[13] Ian Horrocks. Constructing the User Interface with Statecharts. Addison-
Wesley Longman Publishing Co., Inc., USA, 1st edition, 1999.

[14] Devang Jagdale. Finite state machine in game development. algorithms,
10(1), 2021.

[15] Thanh Nguyen. Statecharts for modern web application state management.
2020.

Power and energy monitoring for
sustainable large-scale computing

Tyler Eck
tyler.eck@aalto.fi

Tutor: Vesa Hirvisalo

Abstract

The emergence of edge computing has presented numerous challenges in

determining the environmental impact and long-term sustainability of cen-

tralized and decentralized computing systems. The environmental impact

of decentralized computational systems, by nature, is difficult to ascertain.

To this end, this paper aims to contribute to the existing literature by com-

prehensively reviewing the environmental considerations associated with

edge computing. By examining the effect of a common energy monitoring

technique, cooling optimization, across distributed computing nodes in a

large-scale edge computing system, this paper seeks to determine its ef-

fectiveness in managing power consumption in decentralized computing

architectures.

KEYWORDS: Edge Computing, Large Scale Systems, Cooling Optimiza-

tion, Cloud Computing, Power Monitoring, Energy Management Systems,

Sustainability

1 Introduction

In recent years, cloud computing services have become increasingly pop-

ular solutions to the rapid increase in demand for accessing computing

resources and data from any location at any time. Cloud computing data

centers, while centralizing computational services, have come at a sig-

nificant financial and environmental cost. With energy-intensive data

centers accounting for 1% of worldwide electricity [2] and 2% of global

greenhouse gas emissions [4], there is a significant need for data cen-

ter operators to conceptualize and adopt strategies focused on managing

their power and energy consumption to meet changing international and

domestic standards.

To tackle the challenges of reducing the carbon footprint and oper-

ational costs of cloud computing data centers, industry leaders such as

Google, Amazon, and Microsoft have employed advanced power monitor-

ing techniques to increase energy efficiency. These intelligent approaches

involve utilizing Power Usage Effectiveness (PUE) for optimizing energy

management systems. While effective in enhancing energy efficiency in-

side the data centers, monitoring energy consumption has become more

complicated as computing has expanded outside these centers with the

emergence of edge computing. Edge computing extends the centralized

data centers to form modern large-scale systems closer to the user. Al-

though this distribution of resources has significant advantages, this ex-

tension introduces challenges in accurately measuring power and energy

consumption due to its complex structure.

In both cloud and edge computing, effective power management dic-

tates the sustainability and cost-effectiveness of a data center system.

Of particular concern is the optimization of cooling mechanisms, which

play a pivotal role in maintaining power efficiency within data centers.

Traditional cooling approaches are inefficient and environmentally un-

sustainable on large scales, which pose substantial energy costs and en-

vironmental risks. Consequently, data center operators have found the

need to seek alternative cooling strategies, including geographical posi-

tioning and manipulating the layout of equipment placement within their

facilities. These innovative approaches offer the dual benefit of reducing

energy consumption while enhancing cooling efficiency, thereby address-

ing the need for power management in modern computing environments.

That said, the challenge remains in monitoring the efficacy of cooling op-

timization techniques and determining the most practical one.

This paper is to provide a comprehensive review of the power and en-

ergy monitoring techniques within data centers and analyze the effec-

tiveness and challenges of cooling optimization in large-scale computing

systems. Following this introduction, the paper will begin with a brief dis-

cussion of background information related to the evolution of cloud com-

puting into edge computing. Then, the third section will examine the

strategies and techniques used to monitor power and energy usage, man-

agement, and sustainability inside data centers. The fourth section will

then elaborate on the challenges in power and energy monitoring in edge

computing systems. Finally, the fifth and sixth sections are the discussion

and conclusion.

2 Background

This section will first discuss the evolution of cloud computing and data

centers, then outline the emergence and importance of edge computing

by illustrating how it complements the cloud to form large-scale systems.

Finally, the concept of power and energy monitoring is outlined, focusing

on the relationship between power monitoring and energy management.

2.1 The Evolution of Cloud Computing and Data Centers

Cloud computing provides access to a shared pool of configurable com-

puting resources that can be rapidly provisioned and released with mini-

mal effort or service provider interaction [19]. Widely adopted cloud ser-

vices and applications, like Amazon’s EC2/S3 and Google’s Google Mail

and Google Drive, promote cloud computing as the most significant role

in the IT sector [13]. The widespread adoption of cloud computing across

multiple sectors has resulted in the construction of data centers to mini-

mize latency and increase service availability. As of mid-2020, there were

a total of 541 public hyper-scale data centers globally and, with a 45% in-

crease in global cloud traffic, this number is predicted to double [21] and

suggests a rise in market value from USD 559.2 billion in 2023 to USD

2297.37 billion by 2032 [20].

While cloud computing has brought down costs and market entry re-

quirements for companies seeking to host their services online, this ad-

vancement has come at a cost. When considering the effect of Internet of

Things (IoT) and Moore’s law, it is predicted that the energy consumption

of data centers will rise from 286 TWh in 2016 to 1287 TWh in 2030 [14].

This 447% increase in power consumption will skyrocket the financial and

environmental effects of cloud computing and bring into question the sus-

Figure 1. Cloud Computing and Edge Computing forming Large-Scale Systems [11]

tainability of the cloud. To this end, data center hosts have faced the need

to employ techniques to monitor power utilization to increase energy ef-

ficiency, reduce operational costs and limit the environmental impacts of

these centres [4].

2.2 Transition to Edge Computing

While traditional cloud computing has been designed for processing infor-

mation in a centralized data center, edge computing represents a shift in

computing closer to the data source or the “edge”. Edge computing archi-

tecture involves placing smaller data centers located closer to edge devices

to minimize the volume of data sent to the cloud. By providing short-

period data analysis closer to the device side, edge computing provides

advantages over simple cloud computing including improved system per-

formance, protected data security and privacy, and reduced operational

costs [16]. This relatively new approach has become increasingly popular

as demand for IoT devices, like smartphones and PCs, are more promi-

nent in consumers’ lives. For instance, the number of smartphones and

PCs has raised the number of devices connected to the internet to 12.5 bil-

lion in 2010 and 50 billion in 2020 [9], underscoring the need for greater

utilization of edge computing in daily life.

2.3 Large-scale Systems

Edge computing extends centralized cloud data centers to form large-scale

systems. Figure 1 illustrates a high-level view of this system, showing the

distinction between the centralized cloud data centers, edge data centers,

and IoT devices [11]. It should be mentioned that, while the term “large-

scale” systems can be used to encompass multiple types of systems, the

approach this paper takes represents a fusion of the centralized cloud

and decentralized edge computing connected through telecommunication

networks.

2.4 Power and Energy Monitoring

The growth in complexity of large-scale systems has escalated the need for

power and energy monitoring techniques. This is reflected in the relation-

ship between power monitoring and energy management. Although the

two approaches are used interchangeably, they focus on different aspects

of the “power and energy monitoring” processes outlined in this paper.

Power monitoring serves as the foundational level monitoring tech-

nique, providing the necessary data needed to optimize energy manage-

ment systems. Through the continuous collection of power-related data,

which is further complicated by the different levels of the power architec-

tures in these systems, power monitoring helps to identify inefficiencies

in power quality to save cost. On the other hand, energy management

encompasses the planning and operation of energy consumption in these

systems. Usually, these intelligent management systems utilize power in-

formation collected from power monitoring tools to monitor, control, and

conserve energy. As a result, energy management systems lower the op-

erational cost and environmental impacts of these systems, making them

more sustainable.

This paper will analyze Power Usage Effectiveness (PUE) as the power

monitoring metric used to optimize power utilization in large-scale sys-

tems. The effectiveness of this monitoring can be seen from the analysis

of intelligent energy management systems used to increase energy effi-

ciency.

Figure 2. Data Center Power Distribution Architecture [1]

3 Power and Energy Monitoring Inside Data Centers

In this section, the current methods for power and energy monitoring

within the data centers are discussed. However, it is important to first

examine how power is distributed within the data centers as it can give

insight into the PUE levels of measurement.

3.1 Data Center Power Distribution Architecture

Power distribution is a critical architectural consideration that can greatly

affect a data center’s performance, efficiency, and cost. It is designed to

deliver electricity to multiple levels of the data center, starting from the

utility source, transferring through the physical facility, and arriving at

the individual servers and networking equipment. This architecture is

structured around three main levels: Utility Level, Facility Level, and

Rack Level. These levels each contain a unique set of components includ-

ing transformers, switchgear, backup generators, power distribution units

(PDU), power supply units (PSU), servers, and cooling systems. Figure 2

illustrates a simplified representation of a typical data center power dis-

tribution architecture.

At the utility level, data centers receive power from the grid, renew-

able energy sources, or generators. Transformers step down the volt-

age for utilization at the facility level. While this is an abstraction of a

highly complex process, essentially the power distributed at this level is

the source of power for the entire data center, and increasing efficiency at

this level can affect the entire facility.

At the facility level, the power received from the utility level is dis-

tributed to various loads within the facility, including IT equipment, cool-

ing systems, networking equipment, and lighting. The distribution is

physically operated by switchgear, busbars, and panel boards. Uninter-

ruptible power supply (UPS) systems are also at this level and offer backup

power in case of utility failures including power surges, spikes, and out-

ages. Improving efficiency at this level can include methods for utilizing

DC systems instead of the common AC systems for less power loss by con-

versions. For example, Europe utilizes lower input voltages, thus bypass-

ing the need for PDUs and conversions which increases power efficiency

[1].

At the rack level, data centers distribute power received from the

facility-level UPS systems to individual racks of servers and cooling sys-

tems. Each rack of servers, or Power Domains (PD), can consist of a few

thousand machines, an individual PDU and PSU, and rack-level UPS sys-

tems. Usually, these PDs are grouped into clusters on the data center floor

and belong to a single job scheduling domain. The PDUs provide multi-

ple outlets for connecting IT equipment and offer features for metering,

switching, and most importantly, power monitoring.

3.2 Power Usage Effectiveness

Power Usage Effectiveness (PUE) is the most widely adopted metric that

is used to measure power usage and analyze energy efficiency in data

centers. PUE is defined by the ratio between the total power consumed by

a data center and the power used by the servers [3], i.e.,

PUE =
TotalFacilityEnergy

ITEquipmentEnergy
(1)

This power usage metric is important for understanding how much of

the energy supplied to a data center is used for computing versus non-

computing functions. A PUE value of 1.0 indicates that the data center

has perfect efficiency as all the energy is used for servers. Research con-

ducted by the U.S. Environmental Protection Agency (EPA) determined

that the average PUE of modern data centers is 1.92 [5].

To accurately measure PUE, hardware components at multiple lev-

els of the power distribution architecture work together in monitoring the

power consumption at their designated position. The Green Grid provides

a framework that outlines three distinct levels of metering for PUE mea-

surement [18].

1. Basic Metering – Level 1 PUE measurement captures the IT load at

the output of UPS equipment of the facility level. This basic metering

approach represents the manual readings through a single meter on the

UPS output bus. Losses from transformers and electrical distribution

are not considered as only one reading is counted toward this basic PUE

measurement.

2. Intermediate Metering – Level 2 PUE measurement is described as a

“hybrid metering solution” as it typically involves both automatic and

manual recordings at the utility and facility levels. Measurements from

the utility, switchgear, and cooling systems meters are all considered

for this PUE measurement. However, this level still doesn’t provide the

level of granularity needed for accurately measuring PUE as losses from

PDUs are counted as part of the infrastructure and not IT.

3. Advanced Metering – Level 3 PUE measurement describes the advanced

approach utilized by modern data centers. At this level, the metering of

all levels is done automatically. This approach includes measurements

from all major power consumption hardware including IT, cooling sys-

tems, PDUs, and UPSs. This approach also measures values of meters

from subsystems of these major components including chillers, pumps,

fans, and lighting.

3.3 Energy Management Techniques for Cooling Optimization

Power analytic data like PUE plays a crucial role in optimizing energy

management systems. These systems aim to increase energy efficiency

in areas of the data center where power utilization is high. Figure 3 [1]

illustrates the power consumption breakdown of an average data center.

Although the largest share of power is allocated to IT equipment, cooling

loads account for 38% of the power consumption.

These cooling systems are an essential part of the facility’s infrastruc-

ture designed to remove heat generated by servers and other computing

hardware. In general, Temperature control inside data centers is crucial

for preventing overheating and maintaining optimal performance as these

electronic components are designed to operate efficiently within a specific

temperature range. The traditional approaches used by modern data cen-

ters include implementing computing room air conditioners (CRACs), re-

arranging server racks to separate rows into “cold aisles” and “hot aisles”,

and using chilled water systems [6].

While these methods optimize airflow and cooling fluid characteris-

Figure 3. Analysis of power consumption in data centers [1]

tics to handle heat efficiently, they operate with constant, predetermined

settings. To combat this, advanced adaptive cooling methods have been

proposed to handle dynamic real-time data center needs. Li et al. devel-

oped a model that can predict temperatures near servers using contin-

uous collected temperature and airflow data. As a result, “Thermocast”

forecasts temperature better than a machine learning approach, predict-

ing the thermal limits of servers 4.2 minutes before overheating [15]. On

a larger scope, Google’s DeepMind AI machine learning is utilized in its

data centers to reduce energy used for cooling by 40%, which equated to a

15% reduction in overall PUE overhead [10].

3.4 Sustainability Techniques for Cooling Optimization

While energy management systems optimize cooling through adaptive al-

gorithms using PUE and other power analytic data, sustainability tech-

niques have also proven to be effective in limiting the power for cooling.

The use of renewable energy sources over traditional “brown” energy can

significantly improve the overall energy efficiency and sustainability in

data centers. Utilizing solar, wind, and hydro energy does not only lower

operational costs when compared to fossil fuels, but it also reduces its

carbon emissions.

The largest cloud providers like Google, Microsoft, and Amazon have

all demonstrated how the integration of renewable energy sources can en-

hance data center efficiency. From 2019 to 2020, Google’s data centers

increased their reliance on carbon-free energy (CFE) from 61% to 67%,

vowing to operate all their data centers with CFE by 2030. Microsoft has

also worked towards operating its data centers on 100% of renewable en-

ergy by 2025. Amazon Web Services has a similar target to Microsoft, but

they’ve achieved the best progress, currently relying on 85% renewable

energy across its businesses [12].

This switch to carbon-free energy has led to even more cooling op-

timization techniques. One method involves the strategic placement of

these data centers in geographically cooler areas. For example, Finland’s

cold climate enables data centers to utilize the natural cooling provided

by the 5 degree Celsius seawater. Harnessing this natural energy can re-

duce the energy required by artificial cooling, offering a sustainable and

cost-effective solution for energy efficiency. As a result, there has been a

significant increase in data centers located in the Baltic region [17]. A

more advanced technique that can further optimize cooling is utilized in

Google’s Carbon-Intelligent Compute Management System. This system

focuses on reducing grid carbon emissions from its data center electricity.

It accomplishes this goal by allowing flexible workloads to tolerate delays,

pushing them to run at a less carbon-intensive time of day [8].

4 Challenges in Power and Energy Monitoring in Edge Computing

Monitoring power and energy consumption in edge environments poses

unique challenges when compared to traditional data center settings. These

challenges are primarily due to the distributed nature of edge computing.

When focusing on measuring PUE through the metering techniques in

data centers, all the metering equipment for each system is located in one

facility. However, as we expand into edge computing, these power meters

are distributed geographically, making it difficult to physically measure.

By extending power monitoring to include the estimated 30.9 billion edge

devices, the wide variety of different power, cooling, and operational re-

quirements for each device makes it even harder [8]. Although it is logis-

tically complex to manage every edge device’s power utilization, Data Cen-

ter Infrastructure Management (DCIM) software can be utilized for mon-

itoring and device management in small edge data centers. Although this

software needs stable electrical power and sufficient ventilation, DCIM

offers a method for remotely monitoring power analytic data. More im-

portantly, DCIM software provides remote visibility and early warning in

conjunction with device and environmental sensors and cameras [7].

Challenges also arise in the energy efficiency and sustainability of

edge data centers. Through the construction of more edge nodes, energy

efficiency of these networks significantly decreases, with a rising PUE

value of 1.1 to 1.55 [2]. Due to its geographical distribution, edge nodes

cannot utilize all the benefits that are received from switching to carbon-

free energy. Arroba et. al states that this increase in PUE value is mainly

due to efficiency problems in the cooling systems of these edge nodes and

proposes a novel two-phase immersion cooling strategy for these edge de-

ployments. After testing thew prototype of this approach, energy con-

sumption and operating cost both decreased by 20% and 30% respectively.

5 Discussion

In evaluating the effectiveness of cooling optimization techniques, such as

strategic geographical placement and the equipment layout within data

centers, it becomes evident that these approaches offer tangible benefits

in energy management across both centralized and decentralized comput-

ing architectures. However, the practical application of these strategies

faces inherent limitations.

Geographical location is an important consideration when construct-

ing cloud computing centers or edge computing hubs. Factors such as

elevation and climate can greatly influence the cooling that nature can

provide. Ideally, good geographical positioning can optimize cooling and

reduce overhead costs related to artificial methods of dissipating heat.

Yet, while geographic position can be advantageous in leveraging natural

cooling resources, it may not always be feasible due to land availability,

infrastructure costs, and proximity to other users, especially in the con-

text of edge computing. Additionally, factors such as climate change and

extreme weather events can introduce unpredictability to the effective-

ness of natural cooling methods, creating the additional need for backup

systems and contingency plans. Overall, while geographical location can

lend a hand in dissipating heat in a computing system, it is not a sustain-

ably reliable method of optimizing cooling within a large-scale system. On

the other hand, equipment layout optimization within facilities can offer

immediate cooling efficiency gains but requires continuous adaptation to

technological advancements and changes in computing demand. The for-

mation of “hot aisles” and “cold aisles” to direct heat away from the system

can greatly increase cooling efficiency. Furthermore, combining equip-

ment layout with external vents and/or artificial cooling mechanisms can

compound the benefits of a well-structured data center.

The transition towards more sustainable cooling solutions necessitates

a deep understanding of these methods’ potential and constraints, en-

suring they are effectively integrated within the broader framework of

large-scale computing systems’ power and energy monitoring strategies.

While natural and logistical optimization routes exist, a holistic approach

to cooling optimization is necessary to fully address the scalability chal-

lenges in supporting the ever-growing demands of the global computing

infrastructure. Data center operators must evaluate how best to utilize

multiple cooling techniques in tandem with each other to ensure that their

centers operate with maximum (sustainable) efficiency.

6 Conclusion

The transition of cloud to edge computing and the formation of decentral-

ized large-scale systems has brought numerous challenges in managing

the financial and environmental burdens of data centers and edge comput-

ing architectures. Data center operators are obligated to meet these chal-

lenges by integrating power and energy monitoring techniques to deter-

mine the best way to limit the environmental impact of their data centers

and increase their long-term sustainability. Cooling optimization within

a data center constitutes one of the most energy-demanding systems in a

data center. PUE adaptive algorithms and other power analysis data have

allowed data center operators to adjust cooling levels and find the optimal

balance between cost and overall sustainability. Yet, challenges arise in

determining the environmental impact of edge computing systems, given

their far-reaching and decentralized nature. To mitigate this, DCIM soft-

ware can be used to track energy usage over a decentralized network and

provide the necessary data to maintain operations within acceptable en-

vironmental sustainability limits. This information can help data center

operators to calibrate their cooling optimization strategies in the short

and long-term, so as to meet carbon footprint limitations, reduce overhead

costs, and create a more sustainable and eco-friendly computing system.

References

[1] Adeel Arif. Examining future data center power supply infrastructures.
Master’s thesis in Technology, 2024.

[2] Patricia Arroba, Rajkumar Buyya, Román Cárdenas, José L.Risco-Martín,
and José Manuel Moya. Sustainable edge computing: Challenges and fu-
ture directions. Master’s thesis, University of Melbourne, 2023.

[3] C. Belady and C. Malone. Efficiency metric called pue. Green Grid, 2006.

[4] Zhiwei Cao, Xin Zhou, Han Hu, Zhi Wang, and Yonggang Wen. Toward a
systematic survey for carbon neutral data centers. IEEE Communications
Surveys and Tutorials, 2022.

[5] J. Cho and Y. Kim. Improving energy efficiency of dedicated cooling sys-
tem and its contribution towards meeting an energy-optimized data center.
Applied Energy, 165:967–982, 2016.

[6] datacenter.com. Data center cooling: Future of cooling systems, meth-
ods and technologies, 2023. https://www.datacenters.com/news/data-center-
cooling-future-of-cooling-systems-methods-and-technologies.

[7] Patrick Donovan. How modern dcim addresses cio management challenges
within distributed, hybrid it environments. White Paper, 2022.

[8] Borko Drljaca. Edge computing challenges and how to solve them, 2022.

[9] Dave Evans. The internet of things: How the net evolution of the internet
is changing everything. Technical report, Cisco, 2011.

[10] Rich Evans and Jim Gao. Deepmind ai reduces energy used for cooling
google data centers by 40The Keyword, 2016.

[11] Artecs Research Group. Energy efficiency and large scale computing, 2021.

[12] Jane Harkness. Tracking the transition to renewable energy across data
centers, 2023.

[13] Avita Katal, Susheela Dahiya, and Tanupriya Choudhury. Energy efficiency
in cloud computing data centers: a survey on software technologies. Cluster
compute 26, 26:1845–1875, 2022.

[14] Martijn Koot and Fons Wijnhoven. Usage impact on data center electricity
needs: A system dynamic forecasting model. Applied Energy, 291, 2021.

[15] L. Li, C.-J. M. Liang, J. Liu, S. Nath, A. Terzis, and C. Faloutsos. Thermo-
cast: a cyber-physical forecasting model for datacenters. ACM, 2011.

[16] Dongqi Liu, Haolan Liang, Xiangjun Zeng, Qiong Zhang, Zidong Zhang, and
Mintong Li. Edge computing application, architecture, and challenges in
ubiquitous power internet of things. Frontiers in Energy Research, 2022.

[17] Motiva. Energy-efficient data centre. Technical report, Motiva, 2011.

[18] U.S. Department of Energy. Data center metering and resource guide. Bet-
ter Buildings, 2017.

[19] PeterMell and Timothy Grance. The nist definition
of cloud computing. Technical report, National In-
stitute of Standards and Technology, September 2011.
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-
145.pdf.

[20] Precedence Research. Cloud computing market: Forecast 2023-2032. Tech-
nical report, Precedence Research, 2023.

[21] Duncan Stewart, Nobuo Okubo, Patrick Jehu, and Michael Liu. The cloud
migration forecast: Cloudy with a chance of clouds. Technology, Media, and
Telecommunications Predictions 2021, 2020.

Exploring the Effectiveness and
Challenges of Self-Help Applications for
Mental Health Issues Raised by
COVID-19

Ulaş Sedat Aydın
ulas.aydin@aalto.fi

Tutor: Sanna Suoranta

Abstract

This paper examines the advantages and challenges of self-help applica-

tions for mental health. Individualized treatment approaches for men-

tal health problems were often utilized before COVID-19. However, the

prevalence and scope of mental health problems have expanded due to the

pandemic. Self-help applications have emerged as a significant tool, po-

tentially aligning well with the needs and habits of individuals affected

by these changes. This paper highlights the advantages and challenges of

self-help applications, considering their functions and features. By explor-

ing these aspects, this paper aims to provide a comprehensive overview of

the current state of self-help applications and what methods can be utilized

to deliver improved usability, accessibility, and acceptability. Finally, this

paper aims to predict the future of self-help applications using analysis

and technological developments.

KEYWORDS: Cognitive-behavioral therapy, Self-help applications, Depres-

sion, COVID-19

1 Introduction

After 2020, the COVID-19 pandemic had a profound impact on widespread

mental disorders, such as depression, loss of focus, anxiety, and ADHD,

particularly those with pre-existing mental illnesses. For instance, Lewis

et al. (2022) found that 60% of participants with a history of mental health

issues reported a degeneration in their mental state during the pandemic.

This degradation was correlated with factors such as younger age, diffi-

culty accessing mental health services, and socioeconomic challenges. The

study underlines the role of the pandemic in intensifying mental health

problems, indicating the need for targeted interventions to mitigate the

effects of the epidemic on vulnerable groups [7].

In the United States, approximately a quarter of the population ex-

periences serious mental health disorders annually, affecting half of the

population over their lifetime, and a majority of them remains untreated

[5]. This gap in the treatment of mental disorders shows that only indi-

viduals who are aware of their mental health and have both the financial

resources and time can access psychological therapy to solve their prob-

lems.

In this context, self-help applications accessible through mobile de-

vices offer a potential solution for mental health disorders. This paper

discusses the effectiveness and challenges of utilizing self-help applica-

tions for mental health. additionally highlighting their impact on specific

demographic groups such as adolescents and older populations.

Section 2 examines the usage of self-help applications, including their

functions and how they are used to enhance mental health. Section 3 and

Section 4 assess the advantages and challenges of these applications. It is

followed by Section 5, which explores ways to enhance their usability, ac-

cessibility, and acceptability. Finally, Section 6 discusses future directions

for self-help applications in mental health.

2 Usage of Self-Help Applications

Self-help applications are digital mobile tools primarily designed to aid

people in improving their mental well-being and awareness [6]. Users en-

gage with these applications in various ways, depending on their specific

needs and the features provided by the application.

The COVID-19 pandemic has highlighted the importance of self-help

applications, mainly due to rising anxiety and depression levels. With

the shift towards remote working and the comfort of online tasks, people

have increasingly turned to these applications for mental health support.

These tools offer immediate, accessible, cost-effective assistance, eliminat-

ing physical space limitations. Therefore, the pandemic has highlighted

the significance of self-help applications in managing mental health chal-

lenges and facilitated their enhanced utility through increased technology

adoption.

In order to address the mental health problems that have increased

due to the pandemic, self-help applications utilize diverse therapeutic

methods and physical approaches. For instance, some applications moni-

tor user activities, such as sleep patterns, physical activity, mood fluctua-

tions, and stress levels, to provide personalized feedback and recommen-

dations. In addition to monitoring user activities, they integrate game-

like elements and guidance, such as progress tracking, achievement badges,

and interactive challenges, to motivate users and make their experience

more interactive. By integrating these features, self-help applications of-

fer personalized meditation sessions and regular exercise programs based

on the users’ health data, ensuring that users remain active and commit-

ted to their mental health journey.

3 Advantages and Effectiveness of Self-Help Applications

3.1 Eliminating Physical Visit Requirements

Self-help applications assist individuals’ psychological treatment and men-

tal well-being by eliminating physical visits. This aspect significantly

reduces the time that users lose on their journey to improve their men-

tal health. These applications can enable users to manage their mental

health more flexibly by providing features such as meditation, online psy-

chotherapy sessions, and physical activity solutions to improve well-being.

The time saved by eliminating travel and waiting times for traditional

face-to-face sessions can be very practical, especially for people with tight

schedules or limited access to traditional services.

3.2 Cost Efficiency

Self-help applications can potentially make mental health solutions more

affordable. Warmerdam et al. showed that internet-based therapy may be

a cost-effective alternative to clinical treatment for treating depression in

adults [14]. For instance, recognizing early signs of burnout allows people

to be more mindful, adjust their pace, and mitigate the risk of experi-

encing burnout due to the awareness enhanced by self-help applications.

In contrast, traditional mental treatment may be expensive, making it

challenging to realize burnout before it is too late. Self-help applications

also provide a bridge to professional treatment, easing the transition and

maintaining well-being during recovery [8].

4 Challenges in Developing Self-Help Applications

4.1 Privacy and Data Security

Privacy is essential in self-help applications due to the sensitive nature

of the information involved. Users of self-help applications share per-

sonal health information and expect that information to remain private.

Surani et al. indicate that users are more likely to share sensitive men-

tal health information in digital environments when they trust that their

data will be kept confidential and secure [11]. However, privacy breaches

can lead to severe consequences, including loss of trust in self-help health-

care applications and even degenerating mental health symptoms due to

increased anxiety and stress [12].

In 2020, Vastaamo, a private psychotherapy company in Finland, ex-

perienced a severe security breach, leaking confidential and sensitive ther-

apy session notes belonging to thousands of patients. This breach not only

compromised the privacy of individuals seeking therapy but also caused

profound psychological consequences for patients after the incident due to

extreme distress, anxiety, and fear of exposure [4]. This breach highlights

the importance of strict data protection rules to protect user information

from unauthorized access and data leaks.

4.2 Adopting Adults and Elderly

Eisner et al. investigated the prevalence of smartphone ownership and

interest in mental health applications among surveyed individuals, re-

porting that a significant majority (90%) owned smartphones, and nearly

as many (88%) expressed their willingness to explore mental health ap-

plications [2]. Moreover, adolescents who are accustomed to daily phone

use are expected to find it easier to integrate personal development and

self-help applications into their routines. However, adopting self-help ap-

plications may be difficult for adult and elderly mobile users because they

mostly use mobile devices only for functional purposes, leading to diffi-

culty starting and getting used to these applications.

In order to improve the usability of self-help applications for older

users, various design choices can be taken into account for their specific

needs. For instance, simplifying the interface with larger icons, buttons,

and text can enhance visibility and ease of use. Additionally, intuitive

application navigation between features with a clear flow can prevent

confusion. Incorporating voice commands and audio assistance can pro-

vide alternative interaction methods for those who struggle with touch-

screens or small text. An interactive onboarding process can guide users

through the features and functionalities, promoting better understanding

and engagement. By integrating these design considerations, self-help

applications can become more user-friendly for older adults, potentially

increasing their acceptance and regular use of such digital mental health

solutions.

5 Enhancing Usability, Accessibility, and Acceptability of Self-Help
Applications

In order to address challenges in self-help applications and to enhance

the usability, accessibility, and acceptability of such tools, it is crucial to

consider various design choices, especially considering the wide range of

mental health issues raised by COVID-19. Before the pandemic, mental

health issues were relatively less common, allowing for more personal-

ized treatment approaches in specialized environments. However, due to

COVID-19, mental health problems have become more prevalent in differ-

ent demographic groups, and their scope has been expanded [7]. Hence, it

is essential to consider usability, accessibility, and acceptability while de-

veloping self-help applications so people with different backgrounds and

abilities can use them.

5.1 Enhancing Usability

Developers can focus on intuitive design that accommodates users with

different levels of technical proficiency to increase the usability of self-

help applications. Usability is crucial for self-help applications designed

to support users suffering from mental issues due to the significant effects

of mental disorders on people’s cognitive abilities, motivation, and atten-

tion span. For instance, users going through intense depression or anxiety

may experience symptoms such as shortened attention span and memory

loss. It can be challenging for these people to remember long instructions

or get used to the application’s complex features. Furthermore, it may be

extra challenging for them to find motivation to use self-help applications.

Streamlining navigation within the application, providing straightfor-

ward instructions, and interactive tutorials help users understand and

use the application effectively. Nielsen states that user-centered design

principles are crucial in creating intuitive interfaces [10]. Considering

the effects and difficulties that mental disorders have on people’s cogni-

tive abilities and emotional states, developers must put more effort into

creating more user-friendly applications that support users in their men-

tal health journey.

5.2 Enhancing Accessibility

In order to enhance the accessibility of self-help applications, it is essen-

tial to consider implementing responsive designs that can adjust the in-

terface depending on the device and the screen size. Furthermore, provid-

ing text-to-speech functionality in those applications can significantly en-

hance accessibility for people with visual impairments. For instance, the

application can read the mindfulness meditation instructions and allow

visually impaired users to engage better with the application. Providing

subtitles or sign language options for audio content in the application can

also assist people with hearing problems.

On the other hand, utilizing accessibility standards can significantly

enhance the accessibility of self-help applications and ensure compatibil-

ity with assistive technologies, such as screen readers. For instance, the

Web Content Accessibility Guidelines (WCAG) is an accessibility standard

that provides extensive recommendations to improve web content accessi-

bility, which would help to ensure that people with disabilities have better

access to self-help applications [13].

5.3 Enhancing Acceptability

In order to enhance the acceptability of self-help applications among dif-

ferent user groups, it is crucial to appease concerns related to privacy

and data security. Building trust can be achieved through transparent

communication with users about the data handling process and by ensur-

ing compliance with high data protection standards. This highlights the

importance of not only being transparent but also ensuring that the infor-

mation provided is accessible and understandable to all users by avoiding

the use of overly complex language that may inhibit user participation.

However, it is vital to recognize that transparency mechanisms alone may

not be entirely effective. Acquisti et al. show that a significant majority

of Internet users do not read privacy policies, and of those who do, almost

half find the policies written in language too complex to understand [1].

On the other hand, providing personalization features in line with

users’ needs and preferences can foster engagement and make these ap-

plications more appealing to a broader range of users. For instance, devel-

opers can achieve a more personalized experience by integrating a mood-

tracking feature into self-help applications, especially in cases of mental

disorders such as depression and anxiety, which have dramatically in-

creased after the pandemic. The mood tracking feature encourages users

to record their emotional states during the day through the application.

Depending on these analytics, the application can create personalized

mindfulness meditation programs or develop a method more appropriate

to the person’s current emotional state in cognitive behavioral therapy

(CBT). Moreover, thanks to the mood tracking feature, in situations such

as perceived depression or high stress, the application can help users get

through this process more effortlessly and smoothly with more motivat-

ing quotes or meditation sessions instead of physical activity recommen-

dations.

6 Future Directions for Self-Help Applications

As self-help applications continue to evolve, emerging technologies such

as artificial intelligence (AI) and blockchain have the potential to inno-

vate mental health care. AI can increase efficacy through machine learn-

ing algorithms by personalizing treatment plans based on users’ previous

data. It also helps predict the success of the interventions. For instance,

Meinlschmidt et al. (2020) demonstrates the potential of random forest al-

gorithms to predict the efficacy of psychotherapeutic micro-interventions

based on daily mood assessments. This approach highlights the impor-

tance of AI’s ability to tailor interventions to suit individual mood dy-

namics, potentially increasing the effectiveness of mental health self-help

applications [9].

On the other hand, integrating Blockchain technology into self-help

applications can provide improved privacy and data security in the fu-

ture. Thanks to being decentralized, blockchain securely and immutably

records users’ sensitive health data. According to Fekih and Lahami

(2020), blockchain offers a promising solution to the privacy and secu-

rity challenges in digital health care. Therefore, integrating blockchain

into self-help applications can build trust among users by ensuring that

their data is handled securely [3].

7 Conclusion

In conclusion, self-help applications for mental health hold significant

promise in solving common mental disorders, especially those that have

increased after COVID-19, by offering a convenient, accessible, and af-

fordable way. Although there are challenges in developing and adopting

these applications, they can be an alternative to traditional mental health

treatment methods when design actions are taken to increase usability,

accessibility, and acceptability.

References

[1] Alessandro Acquisti, Laura Brandimarte, and George Loewenstein. Privacy
and human behavior in the age of information. Science (New York, N.Y.),
347:509–14, 01 2015. 10.1126/science.aaa1465.

[2] Emily Eisner, Natalie Berry, and Sandra Bucci. Digital tools to support
mental health: a survey study in psychosis. BMC Psychiatry, 23(1):726, 10
2023. 10.1186/s12888-023-05114-y.

[3] Rim Fekih and Mariam Lahami. Application of Blockchain Technology in
Healthcare: A Comprehensive Study, pages 268–276. 06 2020. 10.1007/978-
3-030-51517-1_23.

[4] Eija Heikkilä and Jaana Hevonoja. Useat tahot tutkivat psykoterapi-
akeskus vastaamon tietomurtoa ja kiristystä – kyberturvallisuuskeskus
pitää tapausta poikkeuksellisena, 2020. https://yle.fi/a/3-11605223.

[5] Alan E. Kazdin. Addressing the treatment gap: A key challenge for extend-
ing evidence-based psychosocial interventions. Behaviour Research and
Therapy, 88:7–18, 2017. 10.1016/j.brat.2016.06.004.

[6] Rachel Kenny, Barbara Dooley, and Amanda Fitzgerald. Developing mental
health mobile apps: Exploring adolescents’ perspectives. Health Informat-
ics Journal, 22(2):265–275, 2016. 10.1177/1460458214555041.

[7] Katie J. S. Lewis, Catrin Lewis, Alice Roberts, Natalie A. Richards, Claudia
Evison, Holly A. Pearce, Keith Lloyd, Alan Meudell, Bethan M. Edwards,
Catherine A. Robinson, and et al. The effect of the covid-19 pandemic on
mental health in individuals with pre-existing mental illness. BJPsych
Open, 8(2):e59, 2022. 10.1192/bjo.2022.25.

[8] Thies Lüdtke, Lilian Klara Pult, Johanna Schröder, Steffen Moritz, and
Lara Bücker. A randomized controlled trial on a smartphone self-help ap-
plication (be good to yourself) to reduce depressive symptoms. Psychiatry
Research, 269:753–762, 2018. 10.1016/j.psychres.2018.08.113.

[9] Gunther Meinlschmidt, Marion Tegethoff, Angelo Belardi, Esther Staluja-
nis, Minkyung Oh, Eun Kyung Jung, Hyun-Chul Kim, Seung-Schik Yoo, and
Jong-Hwan Lee. Personalized prediction of smartphone-based psychother-
apeutic micro-intervention success using machine learning. Journal of Af-
fective Disorders, 264:430–437, 2020. 10.1016/j.jad.2019.11.071.

[10] Jakob Nielsen. 10 usability heuristics for user interface design, 2024.
https://www.nngroup.com/articles/ten-usability-heuristics/.

[11] Aishwarya Surani, Amani Bawaked, Matthew Wheeler, Braden Kelsey,
Nikki Roberts, David Vincent, and Sanchari Das. Security and privacy
of digital mental health: An analysis of web services and mobile applica-
tions. In Vijayalakshmi Atluri and Anna Lisa Ferrara, editors, Data and
Applications Security and Privacy XXXVII, pages 319–338, Cham, 2023.
Springer Nature Switzerland. 10.1007/978-3-031-37586-6_19.

[12] John Torous, Gerhard Andersson, Andrew Bertagnoli, Helen Christensen,
Pim Cuijpers, Joseph Firth, Adam Haim, Honor Hsin, Chris Hollis, Shôn
Lewis, David C. Mohr, Abhishek Pratap, Spencer Roux, Joel Sherrill, and

Patricia A. Arean. Towards a consensus around standards for smart-
phone apps and digital mental health. World Psychiatry, 18(1):97–98, 2019.
10.1002/wps.20592.

[13] W3C World Wide Web Consortium. Web Content Accessi-
bility Guidelines (WCAG) 2.1. Technical report, W3C, 2023.
https://www.w3.org/TR/WCAG21/.

[14] Lisanne Warmerdam, Filip Smit, Annemieke van Straten, Heleen Riper,
and Pim Cuijpers. Cost-utility and cost-effectiveness of internet-based
treatment for adults with depressive symptoms: Randomized trial. J Med
Internet Res, 12(5):e53, Dec 2010. 10.2196/jmir.1436.

Robustness Assessment in ML Systems

Viktoriia Kovalenko
viktoriia.kovalenko@aalto.fi

Tutor: Samuel Marchal

Abstract

As machine learning systems become increasingly prevalent, ensuring

their robustness against adversarial attacks is crucial. This paper explores

recent developments in robustness assessment in machine learning sys-

tems, focusing on both adversarial and certified approaches. We explore

various types of attacks, including evasion, poisoning, and backdoor at-

tacks, and examine the metrics used for robustness assessment across dif-

ferent domains such as natural language processing and computer vision.

Comparing robustness assessment frameworks sheds light on their us-

ability and contribution potential. Despite the availability of open-source

tools, several challenges arise due to limited documentation and varying

attack types and metrics. By highlighting these challenges and identifying

areas for future research, this paper aims to facilitate the development of

more effective and user-friendly frameworks to protect machine learning

systems against adversarial attacks.

KEYWORDS: robustness assessment, robustness assessment evaluation

metrics, adversarial attacks, robustness assessment frameworks

1 Introduction

In recent years, machine learning has been widely adopted in numerous

industrial and research projects. The advent of deep learning models has

revolutionized various tasks that were performed exclusively by humans,

namely computer vision and natural language processing (NLP). Deep

learning models process extensive amounts of data to generate complex

patterns and predict an output, thereby frequently making them uninter-

pretable. In contrast to software development testing, machine learning

systems cannot be easily tested in production due to their uncertainty,

which makes them vulnerable to adversarial attacks.

Testing machine learning systems becomes increasingly critical for

mission critical software systems. While traditional metrics on validation

and test data can be beneficial for robustness assessment, they may ne-

glect hidden weaknesses in deep learning systems, hence more advanced

evaluation techniques need to be defined. To address the flaws, an ap-

proach of robustness assessment in machine learning systems has cur-

rently gained great popularity.

Robustness may be assessed with empirical and certified approaches,

which differ in providing a guarantee for safety for machine learning mod-

els. Empirical (also known as adversarial) evaluation process is a subset

problem which estimates the robustness of a model under adversarial at-

tacks, while certified robustness assessment warrants safety by releasing

a robustness certificate.

Typically, adversarial robustness assessment is performed by execut-

ing an attack and applying evaluation metrics either manually or with

dedicated software frameworks. However, due to their diverse applica-

tions, limited information exists regarding the generalization and compre-

hensive comparison of these tools. Consequently, researchers may need a

considerable amount of time to explore various resources and find the ap-

propriate framework for testing their model.

This paper overviews recent advances in adversarial and certified as-

sessment methods. It compares open-source adversarial robustness frame-

works due to the limited availability of certified robustness tools, which

are currently provided by only a few existing frameworks [17], [42], [9],

[39]. Additionally, this paper aims to identify the potential for adversarial

robustness assessment in areas that have been insufficiently covered.

This paper is organized as follows. Section 2 presents a classification

of adversarial attacks, a summary of robustness assessment metrics and

a recap of robustness certificate methods. Section 3 provides state-of-the-

art adversarial robustness assessment toolkits. Section 4 compares robust

assessment frameworks according to their application domains, range of

metrics, and usability. Finally, Section 5 concludes the current approaches

for robustness assessment.

2 Adversarial and certified assessment attacks and metrics

Adversarial attacks play a crucial role in assessing adversarial robust-

ness since they evaluate the behavior of the machine learning model un-

der abnormal conditions. On the contrary, certified robustness assess-

ment evaluates the guaranteed machine learning model’s lower bound of

robust accuracy against both known and unknown attacks under specific

conditions [17]. This section describes the adversarial attacks on machine

learning models along with the common and advanced robustness assess-

ment metrics and summarizes the current state of research on robustness

certification.

2.1 Classification of Adversarial Attacks

The primary attack types for machine learning models include poisoning,

extraction, evasion, inversion, inference, backdoor and model injection at-

tacks [3]. This research mostly focuses on the three types of attacks, which

are evasion, poisoning and backdoor. Attacks can also be categorized into

three main categories based on the knowledge of the model: black-box,

grey-box, and white-box attacks. In grey-box and white-box attacks an

attacker is partially or completely aware of model parameters, training

data and other features, while in black-box attacks an attacker has no

information about the model [5].

NIST AI report [27] classifies evasion attacks into black-box (optimisation-

based, universal evasion, physical evasion) and white-box attacks (score-

based, decision-based). Optimization-based, score-based and decision-based

evasion attacks are of particular interest within our research. Optimization-

based attack [11], [20], [2], [16] calculates the gradients of the model’s

loss function, aiming to generate adversarial examples that are close to

the original testing samples. Score-based and decision-based evasion at-

tacks aim to obtain adversarial examples by querying the model classifi-

cation or confidence scores.

Poisoning attack [18], [34] constructs a poisoned training dataset for

a model that will predict a wrong prediction label while having the same

training loss as a model trained on an original dataset. Neural backdoor

attack [12], [4], [14] occurs when an attacker modifies a subtle set of

training data causing a model to misbehave on the test time.

2.2 Robustness Assessment Metrics

Natural language processing metrics can be summarized and grouped into

two semantic categories, namely performance evaluation metrics (accu-

racy rate, success rate, error rate, IBP accuracy) and fairness evaluation

metrics (fairness, sensitivity) [26]. Performance evaluation metrics are

fundamental for assessing the overall performance of models and evalu-

ating the effectiveness of evasion attacks. They are calculated by finding

the percentage of successful/failed classification of an input text. On the

other hand, IBP accuracy is particularly useful for verifying model ro-

bustness against adversarial attacks. The advantage of the metrics is the

ease of calculation, however, they may not be fully descriptive due to the

lack of quality properties of the adversarial examples that commit to the

metric rate. Fairness and sensitivity metrics ensure that models are not

biased against specific ethnic groups or genders. These metrics are essen-

tial for detecting NLP biases, nonetheless, they should not be considered

as evidence of bias absence.

Computer vision robustness metrics categories include but not lim-

ited to performance evaluation metrics(classification accuracy, precision

at Top-1) and robustness evaluation metrics(corruption error, robustness

score) [8]. Classification accuracy and precision at Top-1 are valuable

for evaluating the effectiveness of a model in classification tasks, as they

offer ease of interpretation and comparability. The downside of the met-

rics is they may not fully demonstrate the potential to be robust against

various perturbations or corruptions in the input data. Alternatively, cor-

ruption error and robustness scores are designed to evaluate the ratio of

the corruption error or accuracy of the model to its clean error or accuracy.

In the context of graph neural networks certified accuracy metric [37]

is utilized for measuring robustness in structural perturbations. J. Xu

et al. [41] introduced robustness evaluation metrics for graphs, such as

classification margin, adversarial risk and adversarial gap. These met-

rics offer a more comprehensive assessment of the robustness since they

examine both discrete and continuous adversarial examples.

2.3 Advanced Robustness Assessment Metrics

Brendel et al. [1] introduced boundary attack with L2-distance metric

across all samples with adversarial perturbation on a specific example.

Similarly, Weng et al. [40] proposed the CLEVER metric for the attack-

agnostic and feasible measurement of large neural networks. Additional

metrics for adversarial attacks on object detection models were suggested

in [43], namely, False Positive Attack, False Negative Attack, Fractional

Precision, and Fractional Recall. The robustness evaluation framework

presented in [13] contains 23 data-oriented and model-oriented metrics

for conducting evaluations of a machine learning model. CERScore de-

fined in [35] presents robustness measurement of a black-box model. FOL

metric proposed by Wang et al. [38] along with the RobOT framework pro-

vides quantification of the loss in each test case for improving robustness.

Three additional sets of metrics, namely, out-of-distribution generaliza-

tion, stability, and uncertainty were also proposed to evaluate the robust-

ness of classification models [7]. An average robustness was introduced

in [23] which indicates the robustness to adversarial perturbations of a

classifier.

2.4 Robustness certification

Robustness certification aims to provide formal proof and guarantee of re-

sistance against adversarial attacks. The process consists of two method-

ologies defined in [17], specifically, robustness verification and robust train-

ing. The main objective of robustness verification is to provide a lower

bound of robust accuracy score against any attacks under certain pertur-

bation conditions, while robust training can enhance certified robustness

by training deep neural networks without theoretical limitations.

SoK [17] is the first open-source framework for robustness verification

and certification methodologies. It provides a benchmarking tool for over

20 verification and training methods. GCERT [42] presents complete ro-

bustness certification under various input modifications. Ferrari et al. [9]

developed branch-and-bound based complete verification for medium-size

machine learning models. Mirman et al. [22] implemented the GenProve

framework which computes bounds for the robustness of a generative

model.

3 Robustment Assessment Frameworks

The research area has a significant number of developed frameworks with

empirical attacks, however, we choose to focus on well-documented and

actively maintained toolkits. Additionally, we prioritize attacks that pro-

vide quantifiable results, namely robustness assessment metrics, allowing

more objective comparisons. We also analyze the domain of each library,

the types of data and models it can handle and the user-oriented design

of each library.

3.1 Cleverhans

Cleverhans [30] library introduced by Papernot et al. is a robustness as-

sessment software library that implements 11 evasion attacks. It explores

attacks exclusively on deep learning models with image data and employs

test accuracy metric for model benchmarking. The provided Github doc-

umentation contains 2 tutorials with attacks applied to CIFAR-10 [15]

and MNIST [6] datasets. Cleverhans supports 3 machine learning frame-

works, hence, authors mostly focus on PyTorch attack implementation.

3.2 Foolbox

Foolbox [33], [32] is a Python package for generating adversarial attacks,

namely 9 gradient-based evasion attacks, 3 score-based evasion attacks

and 8 decision-based evasion attacks. A robust accuracy metric is used

for evaluating the robustness of the classifier over the magnitude of per-

turbation. The Foolbox framework was designed for generating image

data attacks for computer vision models, consequently, it is incompatible

with models in other areas of machine learning. Foolbox works natively

with models in 3 machine learning frameworks and has a documentation

webpage with one tutorial published in Github.

3.3 SecML

Cleverhans and Foolbox attack implementations were integrated into a

SecML [21] software library along with the extended implementation of

evasion and poisoning attacks. SecML implements 11 evasion attacks

against deep neural networks and 3 poisoning attacks against scikit-learn

classifiers with 19 conventional accuracy metrics to measure the robust-

ness. The advantage of the library is the ability to monitor loss function

values and the intermediary stages of the model through attack itera-

tions and to provide quantitative analytics of function and gradient eval-

uations. Additionally, its interface enables visualization of attack per-

formance and logging of the execution time. The framework supports

both image and tabular data and contains documentation along with the

GitHub page with 15 tutorials.

3.4 DeepSec

DeepSec [19] is a platform for evaluating attacks with defenses to mea-

sure the affect of attacks. The framework supports the PyTorch library,

which consists of 10 robustness assessment metrics along with 16 eva-

sion attacks and 13 defense methods. Similarly to Cleverhans [30] and

Foolbox [33], it works with computer vision models and image datasets.

The framework offers brief guidance on generating adversarial examples,

executing defense, and evaluating the robustness of each defense.

3.5 Adversarial Robustness Toolbox (ART)

ART [25] implements 5 different adversarial attacks, including 46 eva-

sion attacks and 8 poisoning attacks and 3 backdoor attacks along with

3 robustness assessment metrics. The framework, which supports 9 ma-

chine and deep learning libraries, accommodates diverse types of source

data, including images, tables, audio and video. It supports a variety of

machine learning and deep learning models and provides robustness cer-

tification with DeepZ [36]. The GitHub page contains a vast amount of

tutorials for the different libraries. This makes the ART framework a

preferred tool for assessing machine learning models for both researchers

and practitioners.

3.6 TextAttack

A toolkit of 16 evasion NLP attacks for benchmarking NLP models was

first implemented in TextAttack [24] library. According to the authors,

it aims to address similar tasks as Cleverhans [30] in the NLP domain,

though it implements attacks with a set of common components. TextAt-

tack provides a summary of attack robustness with 5 conventional accu-

racy metrics and has a documentation website with a basic tutorial for

attacking a large language model.

3.7 Robustness Gym

Robustness Gym [10] was implemented for robustness assessment of NLP

models under evasion attacks with 6 conventional accuracy metrics. These

attacks are performed on generated data slices, which are subsequently

aggregated into a testbench to generate a descriptive report. Robustness

Gym utilizes TextAttack [24] framework adversarial attacks while sup-

porting three other evaluation idioms and it has a documentation page

with a basic tutorial.

3.8 Counterfit

Counterfit [31] is a software tool that enables ingesting multiple data

types with corresponding attacks from different frameworks. It leverages

TextAttack [24], ART [25] and AugLy [29] adversarial attacks for text,

image, and tabular attacks. Counterfit enables measuring conventional

accuracy metrics for images and tabular data and presents identical met-

rics to TextAttack [24] for text adversarial attacks. The overall number of

attacks account for 62 evasion attacks, 8 poisong attacks and 3 backdoor

attacks along with 8 robustness assessment metrics. The platform has

a GitHub documentation page with 6 tutorials for both image and text

attacks.

3.9 TrojanZoo

TrojanZoo [28] pioneered the development of a framework for evaluating

backdoor attacks in deep neural networks in the computer vision domain.

The toolkit contains 8 backdoor representative attacks with 6 robustness

assessment metrics. Example files demonstrating the basic usage of the

framework are available on the GitHub page of the project.

4 Comparison of Robustment Assessment Frameworks

In the previous section, we discussed the functionalities of each robust-

ness assessment framework, outlining their capabilities. However, in ad-

dition to functionality, user accessibility factors should be examined for se-

lecting the right framework for assessing model robustness. This section

analyzes the strengths and weaknesses of each framework considering

factors such as usability, potential for user contributions, and the ongoing

maintenance of the framework. Consequently, based on these considera-

tions, we suggest the most suitable frameworks for different tasks.

4.1 Framework Usability Assessment

Evaluation of open-source robustness assessment frameworks highlights

a potential framework adoption challenges since several frameworks, namely

Cleverhans [30], DeepSec [19], Counterfit [31] do not provide an API doc-

umentation page. Moreover, Cleverhans [30], SecML [21], DeepSec [19]

and TrojanZoo [28] lack adequate documentation regarding the metrics

employed in robustness assessment, which requires users to investigate

them in the source code. Additionally, only a few frameworks (SecML [21],

ART [25] and Counterfit [31]) offer a sufficient number of tutorials to en-

hance understanding of the framework API.

4.2 Contribution and Maintenance

Active contribution to open-source frameworks and diligent maintenance

are crucial for ensuring they remain valuable and effective in addressing

the shifting demands of users. An analysis of the reviewed frameworks

indicates recent contributions within the past year, with four frameworks

(Foolbox [33], ART [25], TextAttack [24], and TrojanZoo [28]) having con-

tributions within the last three months. Moreover, ART [25] and TextAt-

tack [24] frameworks offer the most informative contribution guides and

maintain active Slack channels for their contributors. This essential char-

acteristic facilitates the prompt addressing of any developmental errors or

feature suggestions within the framework.

4.3 Comparative Analysis of Attack Types and Robustness
Assessment Metrics

Finally, we compare the functionality of each framework based on the at-

tacks and metrics in a concise manner. Table 1 presents a comparative

analysis of attack types and robustness assessment metrics across dif-

ferent robustness assessment frameworks. As illustrated in the Table 1,

Counterfit [31] stands out for having the most evasion and poisoning at-

tacks, while SecML [21] and DeepSec [19] offers the widest range of ro-

bustness assessment metrics. TrojanZoo [28] excels in backdoor attacks,

providing a valuable resource for assessing various backdoor attack sce-

narios.

Evasion Attacks Poisoning Attacks Backdoor Attacks Robustness Metrics

Cleverhans [30] 11 0 0 1

Foolbox [33], [32] 20 0 0 1

SecML [21] 1 3 0 19

DeepSec [19] 16 0 0 10

ART [25] 46 8 3 3

TextAttack [24] 16 0 0 5

Robustness Gym [10] 16 0 0 6

Counterfit [31] 62 8 3 8

TrojanZoo [28] 0 0 8 6

Table 1. Comparison of attacks and robustness assessment metrics across various ro-
bustness assessment frameworks. The table presents the number of evasion at-
tacks, poisoning attacks, backdoor attacks and the robustness assessment met-
rics evaluated by each framework.

5 Conclusion

This paper overviews recent developments in robustness assessment re-

garding both adversarial and certified approaches. It outlines common at-

tacks and domain-specific metrics utilized for evaluating the effectiveness

of attacks and assessing adversarial robustness. Additionally, the study

explores predominant open-source frameworks for empirical robustness

assessment and discusses their adversarial attacks with corresponding

robustness assessment metrics. The last section compares the highlights

and challenges of each toolkit and suggests potential areas for researchers

to explore in order to develop an enhanced framework for robustness as-

sessment.

References

[1] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based ad-
versarial attacks: Reliable attacks against black-box machine learning mod-
els. arXiv preprint arXiv:1712.04248, 2017.

[2] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In 2017 ieee symposium on security and privacy (sp),
pages 39–57. Ieee, 2017.

[3] Pin-Yu Chen and Sijia Liu. Holistic adversarial robustness of deep learning
models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 15411–15420, 2023.

[4] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted
backdoor attacks on deep learning systems using data poisoning. arXiv
preprint arXiv:1712.05526, 2017.

[5] Tapadhir Das. Vulnerabilities of machine learning algorithms to adversar-
ial attacks for cyber-physical power systems.

[6] Li Deng. The mnist database of handwritten digit images for machine
learning research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[7] Josip Djolonga, Frances Hubis, Matthias Minderer, Zachary Nado, Jeremy
Nixon, Rob Romijnders, Dustin Tran, and Mario Lucic. Robustness Metrics.
https://github.com/google-research/robustness_metrics, 2020.

[8] Nathan Drenkow, Numair Sani, Ilya Shpitser, and Mathias Unberath. A
systematic review of robustness in deep learning for computer vision: Mind
the gap? arXiv preprint arXiv:2112.00639, 2021.

[9] Claudio Ferrari, Mark Niklas Muller, Nikola Jovanovic, and Martin
Vechev. Complete verification via multi-neuron relaxation guided branch-
and-bound. arXiv preprint arXiv:2205.00263, 2022.

[10] Karan Goel, Nazneen Rajani, Jesse Vig, Samson Tan, Jason Wu, Stephan
Zheng, Caiming Xiong, Mohit Bansal, and Christopher Ré. Robust-
ness gym: Unifying the nlp evaluation landscape. arXiv preprint
arXiv:2101.04840, 2021.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[12] Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-
nets: Evaluating backdooring attacks on deep neural networks. IEEE Ac-
cess, 7:47230–47244, 2019.

[13] Jun Guo, Wei Bao, Jiakai Wang, Yuqing Ma, Xinghai Gao, Gang Xiao, Ais-
han Liu, Jian Dong, Xianglong Liu, and Wenjun Wu. A comprehensive
evaluation framework for deep model robustness. Pattern Recognition,
137:109308, 2023.

[14] Yujie Ji, Xinyang Zhang, and Ting Wang. Backdoor attacks against learn-
ing systems. In 2017 IEEE Conference on Communications and Network
Security (CNS), pages 1–9. IEEE, 2017.

[15] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian in-
stitute for advanced research). Advances in Neural Information Processing
Systems 25, 2012.

[16] Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples
in the physical world. In Artificial intelligence safety and security, pages
99–112. Chapman and Hall/CRC, 2018.

[17] Linyi Li, Tao Xie, and Bo Li. Sok: Certified robustness for deep neural
networks. In 2023 IEEE symposium on security and privacy (SP), pages
1289–1310. IEEE, 2023.

[18] Jing Lin, Long Dang, Mohamed Rahouti, and Kaiqi Xiong. Ml attack
models: Adversarial attacks and data poisoning attacks. arXiv preprint
arXiv:2112.02797, 2021.

[19] Xiang Ling, Shouling Ji, Jiaxu Zou, Jiannan Wang, Chunming Wu, Bo Li,
and Ting Wang. Deepsec: A uniform platform for security analysis of deep
learning model. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 673–690. IEEE, 2019.

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.

[21] Marco Melis, Ambra Demontis, Maura Pintor, Angelo Sotgiu, and Battista
Biggio. secml: A python library for secure and explainable machine learn-
ing. arXiv preprint arXiv:1912.10013, 2019.

[22] Matthew Mirman, Alexander Hägele, Pavol Bielik, Timon Gehr, and Martin
Vechev. Robustness certification with generative models. In Proceedings of
the 42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, pages 1141–1154, 2021.

[23] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard.
Deepfool: a simple and accurate method to fool deep neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pages 2574–2582, 2016.

[24] John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby, Di Jin, and Yanjun
Qi. Textattack: A framework for adversarial attacks, data augmentation,
and adversarial training in nlp. arXiv preprint arXiv:2005.05909, 2020.

[25] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat Buesser, Am-
brish Rawat, Martin Wistuba, Valentina Zantedeschi, Nathalie Baracaldo,
Bryant Chen, Heiko Ludwig, et al. Adversarial robustness toolbox v1. 0.0.
arXiv preprint arXiv:1807.01069, 2018.

[26] Marwan Omar, Soohyeon Choi, DaeHun Nyang, and David Mohaisen. Ro-
bust natural language processing: Recent advances, challenges, and future
directions. IEEE Access, 2022.

[27] Alina Oprea and Apostol Vassilev. Adversarial machine learning: A taxon-
omy and terminology of attacks and mitigations. Technical report, National
Institute of Standards and Technology, 2023.

[28] Ren Pang, Zheng Zhang, Xiangshan Gao, Zhaohan Xi, Shouling Ji, Peng
Cheng, Xiapu Luo, and Ting Wang. Trojanzoo: Towards unified, holistic,
and practical evaluation of neural backdoors. In 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P), pages 684–702. IEEE,
2022.

[29] Zoe Papakipos and Joanna Bitton. Augly: Data augmentations for robust-
ness, 2022.

[30] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben
Feinman, Alexey Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Au-
rko Roy, Alexander Matyasko, Vahid Behzadan, Karen Hambardzumyan,
Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg,
Jonathan Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hen-
dricks, Jonas Rauber, and Rujun Long. Technical report on the cleverhans
v2.1.0 adversarial examples library. arXiv preprint arXiv:1610.00768, 2018.

[31] Will Pearce and Ram Shankar Siva Kumar. Ai security risk assessment
using counterfit. Microsoft Security Blog, 2021.

[32] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Foolbox: A python
toolbox to benchmark the robustness of machine learning models. In Reli-
able Machine Learning in the Wild Workshop, 34th International Conference
on Machine Learning, 2017.

[33] Jonas Rauber, Roland Zimmermann, Matthias Bethge, and Wieland Bren-
del. Foolbox native: Fast adversarial attacks to benchmark the robustness
of machine learning models in pytorch, tensorflow, and jax. Journal of Open
Source Software, 5(53):2607, 2020.

[34] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian Suciu, Christoph
Studer, Tudor Dumitras, and Tom Goldstein. Poison frogs! targeted clean-
label poisoning attacks on neural networks. Advances in neural information
processing systems, 31, 2018.

[35] Shubham Sharma, Jette Henderson, and Joydeep Ghosh. Certifai: Coun-
terfactual explanations for robustness, transparency, interpretability, and
fairness of artificial intelligence models. arXiv preprint arXiv:1905.07857,
2019.

[36] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and
Martin Vechev. Fast and effective robustness certification. Advances in
neural information processing systems, 31, 2018.

[37] Binghui Wang, Jinyuan Jia, Xiaoyu Cao, and Neil Zhenqiang Gong. Cer-
tified robustness of graph neural networks against adversarial structural
perturbation. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pages 1645–1653, 2021.

[38] Jingyi Wang, Jialuo Chen, Youcheng Sun, Xingjun Ma, Dongxia Wang, Jun
Sun, and Peng Cheng. Robot: Robustness-oriented testing for deep learning
systems. In 2021 IEEE/ACM 43rd International Conference on Software
Engineering (ICSE), pages 300–311. IEEE, 2021.

[39] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh,
and J Zico Kolter. Beta-crown: Efficient bound propagation with per-neuron
split constraints for neural network robustness verification. Advances in
Neural Information Processing Systems, 34:29909–29921, 2021.

[40] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yu-
peng Gao, Cho-Jui Hsieh, and Luca Daniel. Evaluating the robustness
of neural networks: An extreme value theory approach. arXiv preprint
arXiv:1801.10578, 2018.

[41] Jiarong Xu, Junru Chen, Siqi You, Zhiqing Xiao, Yang Yang, and Jiangang
Lu. Robustness of deep learning models on graphs: A survey. AI Open,
2:69–78, 2021.

[42] Yuanyuan Yuan, Shuai Wang, and Zhendong Su. Precise and generalized
robustness certification for neural networks. In 32nd USENIX Security
Symposium (USENIX Security 23), pages 4769–4786, 2023.

[43] Mohammad Zarei, Chris Ward, Josh Harguess, and Marshal Aiken. Ad-
versarial barrel! an evaluation of 3d physical adversarial attacks. In 2022
IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pages 1–6.
IEEE, 2022.

Trade-offs for Securing ML Systems

Yahya Al-Eryani
yahya.al-eryani@aalto.fi

Tutor: Samuel Marchal

Abstract

The growing integration of machine learning (ML) technology across var-

ious vital industry sectors emphasizes the importance of securing ML sys-

tems from emerging threats. This survey explores the security vulnera-

bilities of machine learning systems, including adversarial attacks, data

poisoning, and model inversion, that pose a threat to their integrity and

reliability. It highlights the advancement of defense mechanisms, such

as adversarial training and differential privacy, to mitigate these threats.

However, the process of enhancing security often involves compromises that

could potentially impact the accuracy, privacy, and fairness of the sys-

tems. This paper investigates the trade-offs involved underscores the need

for adopting a comprehensive security approach that takes into account the

interplay between robustness and other critical system attributes.

KEYWORDS: Machine Learning Security, Adversarial Attacks, Data Poi-

soning, Model Inversion, Defense Mechanisms, Trade-offs, Adversarial Train-

ing, Differential Privacy, System Robustness, Privacy, Fairness, Accuracy

1 Introduction

ML systems have become integral to modern computing, revolutionizing

various sectors and industries from healthcare to finance, and from au-

tonomous vehicles to cybersecurity. However, with the growing integra-

tion of ML technologies into vital systems and applications, the potential

impact of its security vulnerabilities becomes increasingly significant, and

the importance of securing ML systems from malicious attacks becomes

apparent.

Security in ML systems is a critical area of focus that includes a range

of practices and technologies designed to protect ML models from various

threats. A prominent example of such threats is adversarial attacks[15].

These attacks involve creating inputs specifically designed to confuse or

deceive the model, causing it to make incorrect predictions or classifi-

cations. This type of threat can undermine the integrity and reliability

of ML systems. Another significant threat arises from data poisoning

attacks[5], where attackers inject malicious data into the training set,

causing the model to learn incorrect patterns and behaviors. These at-

tacks highlight the importance of robust data handling and processing

mechanisms to prevent unauthorized access and manipulation of sensi-

tive information. Likewise, model inversion attacks introduce another

layer of vulnerability, as they exploit ML models to extract sensitive infor-

mation from the training data, thereby compromising the data confident-

iality[2].

In response to these security threats, a wide range of defense mecha-

nisms and strategies has been developed, each targeting particular vul-

nerabilities. For instance, adversarial training is employed to enhance

the robustness of ML models by training them with a variety of mali-

cious inputs[16]. This approach trains models to recognize and accurately

respond to deceptive attempts, thereby strengthening their security. An-

other defense mechanism is the use of differential privacy techniques[21],

which train models in a manner that prevents the disclosure of sensitive

information from their training data, thus protecting data privacy. Fur-

thermore, robustness testing and formal verification are utilized to rigor-

ously evaluate the reliability and security of ML systems against various

threats[20]. Ultimately, the goal of these defensive technologies and ap-

proaches is to maintain the integrity, availability, and confidentiality of

data and models[2], ensuring they operate as intended and deliver reli-

able and trustworthy outcomes.

Despite the development of advanced technologies to secure ML sys-

tems, research indicates that achieving security often involves trade-offs,

compromising essential elements, such as accuracy, privacy, and fairness[13].

Building on this premise, this paper is structured as follows: Section 2 dis-

cusses ML threats and vulnerabilities, including the adversarial threat

model, attacks on ML systems, and defense techniques and methodolo-

gies. Section 3 analyzes the trade-offs in securing ML systems, focusing

on security versus privacy, security versus fairness, and security versus

accuracy. Section 4 summarizes the main findings, analyzes the method-

ologies and their impact, and outlines future research directions. Section

5 presents the conclusion, bringing together the insights and implications

of the paper.

2 ML Threats And Vulnerabilities

2.1 Adversarial Threat Model

The study of adversarial threats against ML systems has evolved to in-

clude a comprehensive framework that extends beyond the attacker’s knowl-

edge to involve their goals, capabilities, strategies, and the expected im-

pact of their attacks. This approach, based on previous works in the field

[18, 4, 3], provides an in-depth understanding of the strategies used by

adversaries against ML systems.

A well-defined adversarial threat model has four components: the ad-

versary’s goal, knowledge, capability, and attacking strategy[18]. The

goals range from launching indiscriminate attacks that disrupt model in-

tegrity with high false positive and false negative rates to targeted attacks

for privacy breaches or data extraction.

Adversarial activities can be categorized into three main knowledge-

based scenarios: black-box, gray-box, and white-box attacks[2]. In black-

box attacks, adversaries lack knowledge of the model’s internals but can

still observe its outputs to craft deceptive inputs. Gray-box attacks rep-

resent a middle ground, where the adversary is aware of the model’s ar-

chitecture but lacks knowledge of its specific parameters. The most in-

formed, white-box attackers, possess complete knowledge of the model,

including its parameters, allowing for the most sophisticated and direct

attack strategies.

The adversary’s capability reflects their control over training and test-

ing data and is evaluated across several factors: the causal or exploratory

nature of the attack, the percentage of data under their control, and their

knowledge of model features and parameters[18]. Finally, the attacking

strategy refers to the methods used to manipulate data, modify category

labels, and tamper with features to achieve desired outcomes[18].

2.2 Attacks on Machine Learning Systems

The vulnerabilities of ML systems are most prominent during their train-

ing and testing phases. These stages are particularly susceptible to at-

tacks that can diminish the performance and reliability of the systems.

identifying and addressing vulnerabilities in ML systems is crucial given

their vital significance in various applications. This section focuses on

the potential threats posed to machine learning (ML) systems throughout

the processes of training, testing, and inference, highlighting the need to

implement robust security measures.

Training Phase Attacks

• Poisoning Attacks: These attacks involve the manipulation of the

training data to diminish the efficacy of the machine learning model

performance [5]. Such attacks are able to target a range of models, such

as neural networks (NN), Support Vector Machines (SVM), and cluster-

ing algorithms by inserting adversarial samples (SVM)[11]. Adversar-

ial samples are generated to create model misclassification or decline in

performance which can significantly affect the reliability and accuracy

of ML systems [5]. Hence, the insertion of these samples into the train-

ing dataset enables the poisoning attack without the alteration of the

model itself [17]. Consequently, attackers have been utilizing advanced

technologies such as Generative Adversarial Networks (GAN) to gener-

ate high-quality adversarial samples [27] to make the defense against

these attacks more challenging [18].

• Backdoor and Trojan Attacks: These threats embed hidden mali-

cious features into machine learning models during the training process,

which are triggered by particular inputs during the inference phase.

The utilization of this concealed strategy does not compromise the model’s

efficacy when applied to usual inputs but rather guarantees intentional

errors when exposed to manipulated inputs imposing notable security

vulnerabilities [8, 26].

Testing and Inferring Phase Attacks

• Adversarial Example Attacks: The attacks were initially recognized

by Szegedy et al.[23] and they involve the exploitation of vulnerabilities

in the model by adding alterations to the input data, resulting in inaccu-

rate model prediction. Deep Neural Networks (DNNs) are particularly

vulnerable to malicious attacks in an array of applications, including

image recognition and autonomous driving [11]. The vulnerability is

increased by the transferability of adversarial examples across several

models, which allows attackers to compromise systems even in the ab-

sence of accurate model knowledge[26, 23].

• Evasion and Impersonation: Attackers can avoid detection or im-

personating legitimate users by creating inputs that are misclassified

by the ML model. [18] has demonstrated evidence of these attacks in

several domains, such as spam detection, malware identification, and

facial recognition systems.

• Inversion and Extraction Attacks: These involve utilizing the model

outputs to deduce sensitive information about the training set or to re-

build the model itself [11]. Inversion attacks impose substantial privacy

risks, while extraction attacks could cause intellectual property theft

and unauthorized replication of ML services [26].

2.3 Defense Techniques and Methodologies

The advancement in ML security has led to the development of resilient

defensive mechanisms specifically designed to safeguard ML systems from

a wide range of adversarial attacks. This section presents an overview of

defensive strategies employed across the whole machine learning system

lifetime. It outlines essential strategies for addressing potential risks, im-

proving the protection of data, and preserving privacy, thereby strength-

ening the robustness of machine learning systems against various forms

of malicious attacks.

Security Assessment, Proactive and Reactive Mechanisms

Machine learning security involves the implementation of both proactive

and reactive defense techniques. According to [18], Proactive defenses

refer to identifying potential vulnerabilities through penetration testing

before an attack occurs, whereas reactive defenses include evaluating the

impact of attacks and updating the models accordingly. It indicates that

the evaluation of the system security largely depends on these methods,

which leverage the non-stationary data distribution induced by adversar-

ial samples to predict and mitigate attacks. The methods employed in-

clude quantitative security analysis, evaluation within adversarial set-

tings, and a particular focus on the difference in distribution between

training and testing data when subjected to an adversarial attack.

Training Phase Countermeasures

In the training phase, it is crucial to prioritize the maintenance of data

purity and the enhancement of learning algorithms’ robustness. Effec-

tive countermeasures include techniques, such as data sanitization, which

involves the separation and removal of malicious samples from train-

ing data, as well as strengthening algorithmic robustness through ap-

proaches, such as the Bootstrap Aggregating and Random Subspace Method

(RSM)[?]. To protect ML models against poisoning and backdoor attacks,

advanced techniques, such as secure SVM (Sec-SVM), are used to protect

against feature manipulation and evasion attacks [9].

Testing and Inference Phase Countermeasures

During the testing or inference phase, the robustness of learning algo-

rithms can be improved by applying game theory principles[6]. [18] states

that this approach simulates the dynamic interactions between poten-

tial attackers and defenders, employing techniques such as Stackelberg

Games and Nash-SVM algorithms, which are based on the notion of Nash

equilibrium. Furthermore, it reports that the implementation of defensive

distillation techniques improves the performance of deep neural networks

(DNNs) in detecting adversarial samples, reducing false alarm rates. It

further conveys that active defensive solutions, which involve retraining

learning models using adversarial samples to meet testing data distribu-

tions, also play a crucial role in resisting testing phase attacks.

Data Security and Privacy

Securing and protecting data, particularly in the pre-training and train-

ing stages, involves the utilization of sophisticated cryptographic meth-

ods. In the context of training machine learning (ML) models, encryption

techniques such as differential privacy (DP)[10] and homomorphic encryp-

tion (HE)[1] are employed to secure data both before and during its pro-

cessing. This encryption ensures that the data remains usable for train-

ing purposes without any compromise. By including these methods at the

early stages of the machine learning lifecycle, particularly before the com-

mencement of training and throughout it, [18] confirms that we guarantee

that potential attackers are unable to extract private user data from com-

putational outcomes. It conveys that the use of this proactive strategy

offers a strong defense mechanism against future privacy breaches and

data recovery attacks.

Comprehensive Defense Frameworks

Wu et al.[24] emphasize that the defensive mechanisms span a wide range

of strategies that can potentially be used at different stages of the model

lifecycle. They imply that these strategies include algorithm-specific meth-

ods along with broader approaches that improve the overall resilience and

security of ML models. During the training phase, methods, such as AN-

TIDOTE and Bagging Classifiers are used to identify outliers and address

poisoning threats, and adversarial training to improve the model’s ro-

bustness to adversarial examples [18]. Subsequently, in the post-training

phase, Xue et al.[26] state that activation clustering and pruning-fine-

tuning techniques are employed to enhance the model’s ability to mitigate

backdoor attacks. Furthermore, they indicate that secure aggregation

protocols, such as Federated Learning, are essential for maintaining pri-

vacy in machine learning applications. These protocols are applied during

the data aggregation phase, particularly in situations when model train-

ing is distributed. These examples emphasize the adaptability and wide

range of security measures across the machine learning lifecycle [26].

3 Analyzing The Trade-offs in Securing ML Systems

Ensuring the security of machine learning systems is a complex task that

requires a careful balance between robustness and other metrics of per-

formance. In the process of enhancing defensive measures to safeguard

these systems from adversarial attacks, it is important to take into ac-

count the potential impact on other essential attributes of the system.

Security enhancements can inadvertently impact the transparency of the

model’s decision-making processes and the privacy of the data it handles.

Furthermore, it is crucial to carefully consider the impact of countermea-

sures on the fairness and accuracy of the machine learning system. This

section will explore the trade-offs associated with enhancing the security

and resilience of ML systems, particularly on privacy, fairness, and accu-

racy.

3.1 Security Versus Privacy

Song et al.[22] assert that enhancing the security of machine learning

models against adversarial examples tends to increase their vulnerability

to privacy risks, particularly membership inference attacks. They indi-

cate that the paradoxical effect emerges due to the inherent trade-off be-

tween the need to maintain model robustness and the urge to protect the

privacy of training data. They justify by stating that in the case of adver-

sarially robust models, the protection against adversarial inputs inadver-

tently amplifies the model’s sensitivity to its training data. The amplified

sensitivity results in an increased susceptibility to membership inference

attacks, whereby an adversary can determine with certainty if an input

was included in the model’s training dataset.

[22] convey that robust models, which are specifically built to with-

stand attacks from adversaries, have a substantial gap in their ability to

generalize. They point out that this gap is illustrated by a notable differ-

ence between their performance on training data, known as adversarial

train accuracy, and their performance on unseen data, referred to as ad-

versarial test accuracy. For instance, Robust CIFAR10 classifiers exam-

ined in the study exhibit significant divergence in their performance dur-

ing training and testing when subjected to adversarial conditions. Specif-

ically, the adversarial train accuracy is at 96%, while the adversarial test

accuracy is only 47%. The presence of this gap suggests that the mod-

els have become more responsive to changes in the training data. This is

due to robust training techniques designed to ensure that prediction accu-

racy remains within a predetermined range, particularly for the training

instances, as highlighted by [22].

[22] further indicates that the membership inference attacks leverage

this sensitivity by exploiting the confidence with which models predict

labels for inputs. it establishes that Robust models, which are trained

to ensure consistent predictions for altered versions of training exam-

ples, inadvertently reveal more information about these examples com-

pared to their non-robust counterparts. This is evident from the success of

membership inference attacks, where the accuracy of such attacks signifi-

cantly surpasses the baseline accuracy achievable through random guess-

ing. This conveys that the attacks exploit both benign and adversarially

altered inputs, with the latter providing a stronger basis for inference

due to the models’ attempts to maintain prediction confidence under dis-

turbance.

Addressing the privacy risks introduced by robustness enhancements

involves adopting countermeasures that mitigate the models’ sensitivity

to training data without compromising their defensive capabilities, as es-

tablished by Song et al. They suggest that techniques, such as tempera-

ture scaling and regularization, aimed at improving robustness general-

ization offer potential pathways to balancing the security-privacy trade-

off. Temperature scaling, for instance, reduces the prediction confidence

disparity between training and test data, thereby obscuring the signals

used by membership inference attacks. Regularization techniques focus

on enhancing the model’s generalization across adversarial conditions,

thus narrowing the performance gap that facilitates membership infer-

ence [22].

3.2 security Versus Fairness

The challenging interplay between security and fairness in machine learn-

ing models, especially those trained on adversarial samples, underscores

a complex trade-off. [25] highlights that adversarial training strategies,

while intended to enhance the resilience of models, inadvertently aggra-

vate the differences in accuracy and resilience across various classes or

groups in the data. it states The concept of "robust fairness" highlights

a fundamental conflict between the improvement of model security and

ensuring equitable treatment across diverse data groups.

According to [25], Adversarial training methods, such as PGD (Pro-

jected Gradient Descent) and TRADES, despite their efficacy in improv-

ing model robustness, exhibit significant variances in performance across

different classes. They illustrate that models trained on datasets, such

as CIFAR10 and SVHN, exhibit substantial differences in both standard

accuracy and robustness, with certain classes ("automobile" in CIFAR10)

faring significantly better than others ("cat" in CIFAR10). This variance

is not present in models trained without adversarial examples, indicating

a unique challenge introduced by adversarial training techniques.

To mitigate this "robust fairness" issue, the introduction of the Fair-

Robust-Learning (FRL) framework marks a pivotal step towards balanc-

ing the scales of security and fairness [7]. The FRL framework employs

strategies such as "Reweight," "Remargin," and a combination of both,

aiming to dynamically adjust training weights and adversarial perturba-

tion margins for underperforming classes [25]. This approach seeks to

minimize the disparity in performance, ensuring that models remain ro-

bust without compromising on fairness.

3.3 Security Versus Accuracy

Achieving an optimal balance between the security of machine learning

models and their accuracy is a critical yet challenging aspect of design-

ing ML systems. Recent research conducted by Zhuo et al.[28], has ex-

tensively examined and confirmed robustness against adversarial threats

often coming at the cost of diminished model performance on legitimate

inputs. They indicate that trade-offs are evident in several aspects, partic-

ularly in the model’s reaction to adversarial examples, data manipulation

attacks, and the overall integrity of the training process.

Adversarial examples exemplify the critical security challenges fac-

ing contemporary ML systems. Efforts to enhance model resilience to

such attacks, as demonstrated through adversarial training techniques,

can inadvertently lead to a degradation in accuracy on unperturbed data

[11]. The phenomenon, as analyzed in the security-accuracy trade-off,

highlights the careful balance required in model design—prioritizing ad-

versarial robustness may result in models that are overly cautious or in-

accurate in normal conditions.

The integrity of training data plays a crucial role in the model’s even-

tual performance and security. Data poisoning attacks, wherein mali-

cious data is introduced into the training set, present a direct threat

to the model’s accuracy by corrupting its learning process [5]. Defense

mechanisms against such attacks, including rigorous data validation and

anomaly detection techniques, are essential but can also complicate the

data processing pipeline and potentially exclude valuable, albeit anoma-

lous, training examples [11].

The configuration of model hyperparameters emerges as a critical fac-

tor in navigating the security-accuracy trade-off. As detailed by [28], hy-

perparameter optimization (HPO) strategies, such as multi-objective opti-

mization, offer a promising avenue to systematically explore the trade-off

landscape. By simultaneously considering adversarial robustness and ac-

curacy during the HPO process, it is possible to identify configurations

that strike an optimal balance, tailored to the specific requirements of the

application domain.

4 Discussion

The interconnections between security, privacy, fairness, and accuracy are

not independent problems, but rather intricately linked, exerting sub-

stantial influence on each other. For instance, enhancing the robustness of

models against adversarial threats may inadvertently risk privacy. This

was shown in [12], where it was found that robust models became more

sensitive to the training data, hence increasing the vulnerability to mem-

bership inference attacks. Similarly, efforts to secure privacy through dif-

ferential privacy mechanisms can introduce disparities in model fairness

and accuracy, as emphasized in [14]. The complexities mentioned high-

light the need for a comprehensive strategy in designing machine learning

systems that simultaneously considers these trade-offs.

Achieving a state of balance among these opposing objectives requires

the implementation of sophisticated technologies and frameworks that

enable precise management of the influence of security measures on pri-

vacy, fairness, and accuracy. One example that may be cited is federated

learning, which is explored in [14]. Federated learning presents a poten-

tial solution for improving privacy while maintaining model fairness and

accuracy [19]. This is achieved by sharing the learning process across

multiple clients. Furthermore, the differential privacy mechanism de-

scribed in [14] introduces a systematic approach to explicitly manage pri-

vacy trade-offs, providing a framework for effectively managing the bal-

ance between protecting privacy and ensuring fairness in the model.

To comprehensively address these trade-offs, it is essential to use frame-

works and techniques that explicitly include fairness and privacy issues

in the process of machine learning development. The technique intro-

duced in [14] offers a measurable method for assessing the fairness and

privacy implications of machine learning models. This enables informed

decision-making that effectively balances these factors. Moreover, the in-

corporation of adversarial training and differential privacy, as proposed

in [12] offers a practical approach to improve the security of models while

taking into account the implications on privacy and fairness.

Although there have been improvements in dealing with the compro-

mises between security, privacy, fairness, and accuracy in machine learn-

ing systems, there is still a notable lack of research in creating complete

frameworks that can thoroughly assess and alleviate these compromises

in real-world scenarios. Contemporary approaches often address these

concerns in a fragmented manner, resulting in solutions that may priori-

tize one attribute while neglecting others. Further studies should focus on

the advancement of comprehensive frameworks that include these factors

from their initial development, possibly employing multi-objective opti-

mization methodologies to identify optimal balance.

Furthermore, it is essential to conduct further empirical research to

get a comprehensive understanding of the real-world implications asso-

ciated with these trade-offs, particularly in critical fields, such as health-

care, finance, and law enforcement. Exploring the impact of various defen-

sive mechanisms in diverse circumstances will provide a more profound

understanding of their effectiveness and constraints.

5 Conclusion

The mission of ensuring the security of machine learning systems re-

veals a complex set of compromises between security, privacy, fairness,

and accuracy. While advancements in ML security technologies have sig-

nificantly enhanced the resilience of these systems against malicious at-

tacks, they have, consequently, revealed a new set of vulnerabilities and

challenges. Achieving an optimal balance between these conflicting de-

mands requires a sophisticated methodology that acknowledges the in-

terdependence of these challenges. Further research should focus on the

development of comprehensive frameworks that include security, privacy,

fairness, and accuracy factors from the first stages. This will facilitate

the building of ML systems that are not only secure and resilient but also

equitable, accurate, and privacy-preserving.

References

[1] Nawal Almutairi, Frans Coenen, and Keith Dures. K-means clustering
using homomorphic encryption and an updatable distance matrix: Secure
third party data clustering with limited data owner interaction. pages 274–
285, 08 2017.

[2] Afnan Alotaibi and Murad A. Rassam. Adversarial machine learning at-
tacks against intrusion detection systems: A survey on strategies and de-
fense. Future Internet, 15(2), 2023.

[3] Marco Barreno, Blaine Nelson, Anthony D. Joseph, and J. D. Tygar. The
security of machine learning. Machine Learning, 81(2):121–148, May 2010.

[4] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of
pattern classifiers under attack. IEEE Transactions on Knowledge and
Data Engineering, 26(4):984–996, April 2014.

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against
support vector machines, 2013.

[6] Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial
prediction problems. New York, NY, USA, 2011. Association for Computing
Machinery.

[7] Hongyan Chang and Reza Shokri. On the privacy risks of algorithmic fair-
ness, 2021. doi: 10.48550/arXiv.2011.03731.

[8] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted
backdoor attacks on deep learning systems using data poisoning, 2017.

[9] Ambra Demontis, Marco Melis, Battista Biggio, Davide Maiorca, Daniel
Arp, Konrad Rieck, Igino Corona, Giorgio Giacinto, and Fabio Roli. Yes,
machine learning can be more secure! a case study on android malware
detection, 2017.

[10] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel,
Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and
Programming, pages 1–12, Berlin, Heidelberg, 2006. Springer Berlin Hei-
delberg.

[11] European Union Agency for Cybersecurity (ENISA). Secur-
ing machine learning algorithms. Technical report, Euro-
pean Union Agency for Cybersecurity (ENISA), December 2021.
https://www.enisa.europa.eu/publications/securing-machine-learning-
algorithms.

[12] Alex Gittens, Bülent Yener, and Moti Yung. An adversarial perspective on
accuracy, robustness, fairness, and privacy: Multilateral-tradeoffs in trust-
worthy ml. IEEE Access, 10:120850–120865, 2022.

[13] Xiuting Gu, Zhu Tianqing, Jie Li, Tao Zhang, Wei Ren, and Kim-
Kwang Raymond Choo. Privacy, accuracy, and model fairness trade-offs
in federated learning. Computers Security, 122:102907, 2022.

[14] Xiuting Gu, Zhu Tianqing, Jie Li, Tao Zhang, Wei Ren, and Kim-
Kwang Raymond Choo. Privacy, accuracy, and model fairness trade-offs
in federated learning. Computers Security, 122:102907, 2022.

[15] Muhammad Irfan, Sheraz Ali, Irfan Yaqoob, and Numan Zafar. Towards
deep learning: A review on adversarial attacks. pages 91–96, 04 2021.

[16] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine
learning at scale, 2017.

[17] Bo Li, Yining Wang, Aarti Singh, and Yevgeniy Vorobeychik. Data poisoning
attacks on factorization-based collaborative filtering, 2016.

[18] Qiang Liu, Pan Li, Wentao Zhao, Wei Cai, Shui Yu, and Victor C. M. Leung.
A survey on security threats and defensive techniques of machine learning:
A data driven view. IEEE Access, 6:12103–12117, 2018.

[19] Priyanka Mary Mammen. Federated learning: Opportunities and chal-
lenges, 2021.

[20] Mark Huasong Meng, Guangdong Bai, Sin Gee Teo, Zhe Hou, Yan Xiao, Yun
Lin, and Jin Song Dong. Adversarial robustness of deep neural networks:
A survey from a formal verification perspective. IEEE Transactions on
Dependable and Secure Computing, pages 1–1, 2022.

[21] Valentin Mulder and Mathias Humbert. Differential Privacy, pages 157–
161. Springer Nature Switzerland, Cham, 2023.

[22] Liwei Song, Reza Shokri, and Prateek Mittal. Privacy risks of securing
machine learning models against adversarial examples. CCS ’19, page
241–257, New York, NY, USA, 2019. Association for Computing Machin-
ery. doi: 10.1145/3319535.3354211.

[23] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural
networks, 2014.

[24] Baoyuan Wu, Shaokui Wei, Mingli Zhu, Meixi Zheng, Zihao Zhu, Mingda
Zhang, Hongrui Chen, Danni Yuan, Li Liu, and Qingshan Liu. Defenses in
adversarial machine learning: A survey, 2023.

[25] Han Xu, Xiaorui Liu, Yaxin Li, Anil K. Jain, and Jiliang Tang. To be ro-
bust or to be fair: Towards fairness in adversarial training, 2021. doi:
10.48550/arXiv.2010.06121.

[26] Mingfu Xue, Chengxiang Yuan, Heyi Wu, Yushu Zhang, and Weiqiang Liu.
Machine learning security: Threats, countermeasures, and evaluations.
IEEE Access, 8:74720–74742, 2020.

[27] Chaofei Yang, Qing Wu, Hai Li, and Yiran Chen. Generative poisoning
attack method against neural networks, 2017.

[28] Yue Zhuo, Zhihuan Song, and Zhiqiang Ge. Security versus accuracy:
Trade-off data modeling to safe fault classification systems. IEEE Transac-
tions on Neural Networks and Learning Systems, pages 1–12, 2023.

Ad-hoc Cloud: A User-Provided Cloud
Infrastructure at Network Edge

Huang Yaojun
yaojun.huang@aalto.fi

Tutor: Sara Ranjbaran

Abstract

As demands for processing complex tasks continue to rise and device ca-

pabilities continue to advance, resource sharing and collaboration among

user devices become increasingly critical. In this scenario, traditional com-

puting paradigms face challenges in effectively utilizing resources. Ad-hoc

Cloud is a novel user-provided infrastructure concept that leverages exist-

ing and non-exclusive edge devices to achieve resource sharing. This paper

provides an overview of Ad-hoc Cloud Computing, exploring various im-

plementations, and highlighting their contributions to optimizing resource

utilization and enhancing user experience. Additionally, the paper con-

cludes several challenges and future research directions in Ad-hoc Cloud

Computing, including user incentives, task delegation, and security. De-

spite being in its early stages, Ad-hoc Cloud Computing shows promise in

supplementing existing computing paradigms.

KEYWORDS: User-Provided Cloud Infrastructure, Ad-hoc Cloud Comput-

ing, Edge Computing, Task offloading

1 Introduction

Although hardware technology continues to advance, individual machines

still cannot keep up with the increasing demands of processing complex

tasks. Cloud Computing (CC), a novel computing model [1], emerges as

a solution to this challenge by revolutionizing the delivery of applications

over the Internet. It offers virtually unlimited computing resources that

can be provisioned on-demand, empowering users with unprecedented

flexibility [2]. Mobile Cloud Computing (MCC) is a paradigm that com-

bines Mobile Computing and Cloud Computing [3]. By outsourcing com-

puting tasks to data centers, thin devices can deliver interactive experi-

ences that exceed local capabilities. However, this model, while powerful,

comes with a drawback: high latency.

Edge Computing and Fog Computing are models proposed to maxi-

mize the potential of Cloud Computing. These models aim to decentralize

computing power and bring it closer to the user to reduce data transfer la-

tency and enhance service responsiveness. Multi-Access Edge Computing

(MEC) [4], seeks to improve application performance and user experience

by processing relevant tasks in a place closer to users. However, compared

to the centralized managed data centers, the decentralized management

at the edge exacerbates the deployment challenges of edge servers. One

of the challenges that prevent the feasibility of such a model is who will

deploy such infrastructure.

The concept of User-Provided Infrastructure (UPI) has been developed

to optimize system efficiency and utilize the potential of network edges.

UPI makes use of idle heterogeneous edge devices that have increasing

computing power to supplement edge computing capabilities. User de-

vices cooperate to perform complex tasks beyond the capabilities of a sin-

gle machine. Ad hoc Cloud Computing [5]. is one way to achieve UPI.

It is a local cloud that utilizes computing resources from existing, non-

exclusive, and unreliable infrastructures.

To evaluate the practicality of Ad-hoc Cloud Computing, this paper

discusses the characteristics of Ad-hoc Cloud and reviews various Ad-hoc

Cloud frameworks, attempting to summarize the challenges and direc-

tions in this area.

The paper is structured as follows. Section 2 provides an overview of

the computing paradigms. Section 3 explores various research related to

Ad hoc Cloud architecture. Section 4 discusses the approaches outlined in

this paper. Finally, Section 6 concludes the paper.

2 Computing paradigm

Cloud computing is a model that offers access to a shared pool of com-

puting and storage resources on-demand, ensuring scalability and acces-

sibility from any location [2]. However, it faces significant challenges

due to the geographical centralization of computing resources in distant

data centers. This structure introduces transmission delays across the

network, resulting in bottlenecks that are particularly challenging for

latency-sensitive applications such as Augmented Reality and Cloud Gam-

ing.

This section introduces Fog Computing and Edge Computing, two main

computing paradigms that try to alleviate the problems of Cloud Com-

puting and task offloading, the main approach to utilize the computing

paradigm.

2.1 Fog Computing

Fog Computing (FC) was introduced by Cisco in 2012 as a response to the

limitations of Cloud Computing [6]. It acts as an intermediary platform

between conventional data centers and end devices, providing computing

and storage services. Essentially, it represents a "descending" cloud that

is closer to end-users.

Fog computing has several advantages over Cloud Computing, such

as reduced bandwidth consumption, location awareness, low latency, and

mobility support. The architecture of fog computing is typically geograph-

ically distributed and consists of a diverse array of heterogeneous de-

vices with varying capabilities [7]. These unique properties enable the

construction of large-scale automated systems, making fog computing a

highly efficient solution for Internet of Things (IoT) implementations. FC

has found widespread applications in areas such as smart cities.

2.2 Edge Computing

Edge Computing (EC) is another concept to extend the Cloud Comput-

ing paradigm. It is a distributed computing framework that leverages

edge devices for data processing instead of offloading tasks solely to the

cloud. By processing and analyzing data in place only one jump to its

source, Edge Computing significantly reduces latency that occurs when

data is transmitted to distant cloud centers, thus achieving shorter re-

sponse times and enhanced user experience [8]. Edge Computing is not

intended to replace cloud computing but rather acts as a supplement.

By bringing computational capabilities to the network edge, it eliminates

bottlenecks inherent in centralized architectures, thereby supporting the

cloud computing experience. Multi-Access Edge Computing (MEC) [4] is

an architecture defined by the European Telecommunications Standards

Institute (ETSI). MEC provides cloud computing capabilities and IT ser-

vices at the network edge, offering features such as on-premises deploy-

ment, lower latency, and location awareness [8]. The advantages of Edge

Computing make it an essential solution for a variety of latency-sensitive

applications, establishing its critical role in the fields of multimedia en-

tertainment and smart homes.

2.3 Task offloading

Compared to data centers, end devices typically have limited computing

power and may not be able to perform resource-intensive computing tasks

locally, which prompts the adoption of task-offloading strategies. Task of-

floading involves delegating computing tasks to other nodes, aiming to re-

duce processing time, but potentially increase transmission time. There

are three types of task offloading: local execution, partial offloading to

other capable devices, and full remote computing [9]. The specific task

offloading strategy chosen depends on various factors, such as the nature

of the tasks, the characteristics of the processing devices, and optimiza-

tion objectives like energy efficiency, latency, cost, security, and Quality of

Experience [10].

Mobile Cloud Computing architectures involve processing tasks gen-

erated by end devices either locally or by sending them to cloud cen-

ters for processing. With advancements in hardware and the advent of

5G technology, end devices now have increased computing capabilities

and reduced communication latency which allows tasks to be offloaded

to the cloud or neighboring end devices for direct collaboration, known as

Device-to-Device (D2D) Task Offloading. This approach increases flexi-

bility and leads to a more diverse architecture. However, the joining of

numerous heterogeneous devices distributed across different layers of the

architecture makes the optimization problem intricate. Various methods

have been proposed for optimized task scheduling, which can be catego-

rized into three types: (a) Mathematical Optimization algorithms; (b) Ma-

chine learning algorithms; and (c) Control Theory-based approaches [11].

In the scenario of the Internet of Things (IoT), edge devices often ex-

hibit different capabilities, so collaborative efforts are essential to effi-

ciently execute tasks. For example, a camera may be tasked with image

collection while a phone can be responsible for processing. By offloading

tasks to other devices, end devices can work together to complete more

complex tasks with shorter execution and transmission times.

3 Ad-hoc Cloud Computing

Ad hoc Cloud is an emerging research direction. It refers to a computa-

tional model that leverages existing, non-exclusive, and unreliable infras-

tructures to acquire computing resources [5]. Originating from the con-

cepts of volunteer and grid computing, Ad hoc Cloud has the key following

difference. It operates as a local cloud consisting of volunteer resources,

eliminating the need for trust between users and infrastructure. More-

over, it ensures job continuity and minimizes interference with the host,

adept at handling diverse workloads.

Ad hoc Cloud typically comprises a group of nearby mobile devices

willing to share resources, alleviating the computational bottleneck at the

edge server. Additionally, it provides the capability to execute compute-

intensive applications locally when remote network connections encounter

issues [12]. Ad hoc Cloud facilitates a cloud-style paradigm within the

local network, effectively utilizing idle computing resources in the local

network environment, thereby enhancing device utilization and reducing

energy consumption [13].

This section presents a variety of implementations and applications of

Ad hoc Cloud.

3.1 Dynamic Mobile Cloud Computing

Dynamic Mobile Cloud Computing [14] is a local cloud framework de-

signed to optimize resource utilization in mobile computing. It includes

three key components: resource handler, job handler, and cost handler.

The resource handler is responsible for tasks such as resource discovery,

monitoring, and metadata exchange. The job handler is tasked with man-

aging jobs and scheduling while the cost handler estimates costs and han-

dles transactions between client devices and the master device. In this

framework, the master device initiates device discovery to identify po-

tential clients. Subsequently, considering factors such as user priorities,

requirements, and constraints, the framework calculates costs to select

the optimal node for task delegation. Before or after job delegation, the

master device pays the client device for its resources. The experiments

use Bluetooth as the transmission solution and show that the offloading

strategy can always provide better performance.

3.2 Transient Clouds

Transient Clouds [15] is a temporary network that forms dynamically

among nearby devices, allowing them to act as a cloud platform and share

their resources. A transient cloud is established when devices come to-

gether and dissipates when they leave. Resources shared in the Transient

Cloud include general computing capabilities such as CPU and storage,

and heterogeneous capabilities such as sensing and localization. Devices

within the network submit tasks to the Transient Cloud, which then dis-

tributes the tasks based on the device’s capabilities. The transient cloud

employs a modified version of the Hungarian method, which dynamically

adjusts the cost based on previous assignments to achieve load balanc-

ing. In the experimental simulation results using Wifi Direct and An-

droid, Transient Clouds outperforms standalone execution when the ratio

of computation to transmission size is high. This highlights the potential

for collaborative resource sharing among users.

Figure 1. Comparison between traditional (left) and Context-Awareness (right) Tran-
sient Clouds [16]

Sciarrone et al. enhanced Transient Clouds by integrating the high-

level information: context and introduced the concept of the Transient

Context-Aware Cloud (TCAC) [16]. Within TCAC, devices share high-level

information instead of low-level capabilities. This approach can signifi-

cantly reduce the workload on the devices. For instance, if a device pos-

sesses knowledge of its position, it can share this information with other

devices, thus obviating the continuous same task delegation to devices

equipped with GPS functionality.

3.3 Ad-hoc Cloud Implementation

The paper [5] presents a comprehensive, integrated, and end-to-end Ad

hoc Cloud solution, with an implementation based on BOINC. The over-

all architecture of the Ad-hoc Cloud is shown in Figure 2. It consists of

cloudlets and ad hoc guests that utilize existing idle resources from host

users to allocate them to tasks submitted by cloud users. An ad hoc client

installed on the host manages the resource load and provides feedback

on the host information to the server. This implementation follows the

concept of Platform as a Service (PaaS), which ensures that the platform

details are transparent to cloud users. The framework employs reliabil-

ity as a metric for task scheduling, which is calculated by the previously

assigned and completed jobs, host and guest failures, and resource load.

To enhance system robustness, snapshots are periodically synchronized

to potential backup machines, and in the event of a fault, one of the nodes

is instructed to restore the snapshot for fault recovery.

Figure 2. The Ad-hoc Cloud architecture [5]

Chi and Wang [17] extend the concept of Ad hoc Clouds into the do-

main of cloud gaming, introducing a progressive game resource download

mechanism. In this framework, each end client possesses a copy of the

initial game state and gradually downloads additional content from the

cloud or nearby peers as users progress through the game. In addition, a

collaborative task mechanism is employed to dynamically distribute game

components across different devices. The ad-hoc cloudlet is leveraged for

task execution initially, but when its capabilities are exceeded, tasks are

transferred to the cloud. This approach optimizes resource utilization and

effectively reduces energy consumption.

3.4 Crowdsourced Edge Computing

Crowdsourced Edge Computing (CEC) [18] extends the concept of Ad-hoc

Cloud Computing to a larger scale at the network edge. CEC operates in

an ad hoc manner, acting as a distributed computing framework where

all peers are considered equal. Roles within the network are divided into

three categories: Task handlers, Workers, and Message brokers, and each

node takes on one or more of these roles. Compared to the prevailing

commercial driving force of mainstream edge computing paradigms, the

CEC model places a stronger emphasis on community and voluntary par-

ticipation. In CEC, devices contribute computing resources based on the

desires of individuals or communities. This vendor-neutral service fosters

the creation of more sustainable communities and can lead to entirely

new forms of digital economies. Such democratized resource sharing fa-

cilitates decentralization and holds significant potential for application

in the IoT area. However, this appealing computing paradigm is still in

its nascent stage of development and faces significant challenges in areas

such as Quality of Service, data consistency and security, and resource

management.

4 Discussion

Ad-hoc Cloud emerges as a promising frontier aimed at optimizing re-

source utilization and mitigating deployment challenges inherent in edge

and fog computing. Despite various explorations in this domain, the paradigm

is still in its infancy and awaits further investigations to reveal its full po-

tential. The following are some research trends and directions:

1. User Incentives Mechanism: While conventional architectures rely on

monetary incentives to drive users to join the network, recent research

has started to explore the integration of social computing. These novel

approaches aim to encourage users to voluntarily contribute their de-

vices, fostering a more sustainable ecosystem.

2. Task Delegation and Load Balancing: Task scheduling approaches have

evolved from simple indiscriminate task offloading to account for the

characteristics of heterogeneous devices, and further to a comprehen-

sive task distribution that takes into account both device capabilities

and load balancing. This evolution is crucial for the extension of Ad-hoc

Cloud to the context of IoT environments, where collaboration among

diverse devices is essential for efficient operation.

3. Scenario Analysis and Data Sharing: By analyzing tasks and data flow

in practical applications, devices can be instructed to share contexts and

individual information. This enables the Ad-hoc Cloud to make more

optimal decisions at macroscopic scales, reducing redundant computa-

tions and data transmissions, which further optimizes resource utiliza-

tion and reduces bandwidth consumption.

However, despite advances in areas such as network formation and

task scheduling, Ad-hoc Cloud still faces significant challenges in terms

of security and privacy. Ad-hoc Cloud does not assume the trustworthi-

ness of devices within the network, allowing any node to join or leave the

network at any time. This architectural flexibility makes it highly vul-

nerable to malicious attacks, including network contamination and data

leakage. For Ad-hoc Cloud to be deployed effectively in the IoT domains

such as smart cities, it is imperative to ensure the protection of partici-

pants’ data. Therefore, further research in this direction is necessary to

achieve a reliable and secure implementation of Ad-hoc Cloud.

5 Conclusion

This paper provides an overview of different implementations of the Ad-

hoc cloud computing paradigm. Ad-hoc Cloud is a new model that uses

idle resources to redefine edge computing infrastructures. The paper in-

troduces two early-stage frameworks: Dynamic Mobile Cloud Computing

and Transient Clouds, and presents a detailed implementation of Ad-hoc

Cloud. It also discusses the concept of Crowdsourced Edge Computing.

In addition, the paper evaluates the current achievements of these ap-

proaches and identifies several future research trends, including the user

incentive mechanism, task delegation, data sharing and security. Ad-

dressing these challenges has the potential to facilitate the utilization of

Ad-hoc Cloud and transform the deployment paradigm of edge computing.

References

[1] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph,
Randy H Katz, Andrew Konwinski, Gunho Lee, David A Patterson, Ariel
Rabkin, Ion Stoica, et al. Above the clouds: A berkeley view of cloud com-
puting. Technical report, 2009.

[2] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.
doi: 10.6028/NIST.SP.800-145.

[3] Atta ur Rehman Khan, Mazliza Othman, Sajjad Ahmad Madani, and
Samee Ullah Khan. A survey of mobile cloud computing application mod-
els. IEEE Communications Surveys Tutorials, 16(1):393–413, 2014. doi:
10.1109/SURV.2013.062613.00160.

[4] Sami Kekki, Walter Featherstone, Yonggang Fang, Pekka Kuure, Alice Li,
Anurag Ranjan, Debashish Purkayastha, Feng Jiangping, Danny Frydman,
Gianluca Verin, et al. Mec in 5g networks. ETSI white paper, 28(2018):1–
28, 2018.

[5] Gary A. McGilvary, Adam Barker, and Malcolm Atkinson. Ad hoc cloud
computing. In 2015 IEEE 8th International Conference on Cloud Comput-
ing. IEEE, June 2015. doi: 10.1109/CLOUD.2015.153.

[6] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-
puting and its role in the internet of things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, page
13–16, New York, NY, USA, 2012. Association for Computing Machinery.
doi: 10.1145/2342509.2342513.

[7] Firas Al-Doghman, Zenon Chaczko, Alina Rakhi Ajayan, and Ryszard
Klempous. A review on fog computing technology. In 2016 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC), pages 001525–
001530, 2016. doi: 10.1109/SMC.2016.7844455.

[8] Vasco Pereira Jorge Bernardino Gonçalo Carvalho, Bruno Cabral. Edge
computing: current trends, research challenges and future directions. Com-
puting, 103:993–1023, 2021. doi: 10.1007/s00607-020-00896-5.

[9] Junna Zhang and Xiaoyan Zhao. An overview of user-oriented com-
putation offloading in mobile edge computing. In 2020 IEEE World
Congress on Services (SERVICES), pages 75–76, 2020. doi: 10.1109/SER-
VICES48979.2020.00029.

[10] S. Taheri-abed, A.M. Eftekhari Moghadam, and M.H. Rezvani. Machine
learning-based computation offloading in edge and fog: a systematic review.
Cluster Computing, 26:3113–3144, 2023. doi: 10.1007/s10586-023-04100-z.

[11] Firdose Saeik, Marios Avgeris, Dimitrios Spatharakis, Nina Santi, Dim-
itrios Dechouniotis, John Violos, Aris Leivadeas, Nikolaos Athanasopou-
los, Nathalie Mitton, and Symeon Papavassiliou. Task offloading in edge
and cloud computing: A survey on mathematical, artificial intelligence and
control theory solutions. Computer Networks, 195:108177, 2021. doi:
10.1016/j.comnet.2021.108177.

[12] Ibrar Yaqoob, Ejaz Ahmed, Abdullah Gani, Salimah Mokhtar, Muhammad
Imran, and Sghaier Guizani. Mobile ad hoc cloud: A survey. Wireless
Communications and Mobile Computing, 16(16):2572–2589, 2016. doi:
10.1002/wcm.2709.

[13] Graham Kirby, Alan Dearle, Angus Macdonald, and Alvaro Fernandes. An
approach to ad hoc cloud computing, 2010. doi: 10.48550/arXiv.1002.4738.

[14] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu. Dynamic mobile
cloud computing: Ad hoc and opportunistic job sharing. In 2011 Fourth
IEEE International Conference on Utility and Cloud Computing, pages 281–
286, 2011. doi: 10.1109/UCC.2011.45.

[15] Terry Penner, Alison Johnson, Brandon Van Slyke, Mina Guirguis, and Qi-
jun Gu. Transient clouds: Assignment and collaborative execution of tasks
on mobile devices. In 2014 IEEE Global Communications Conference, pages
2801–2806, 2014. doi: 10.1109/GLOCOM.2014.7037232.

[16] Andrea Sciarrone, Igor Bisio, Fabio Lavagetto, Terrence Penner, and Mina
Guirguis. Context awareness over transient clouds. In 2015 IEEE
Global Communications Conference (GLOBECOM), pages 1–5, 2015. doi:
10.1109/GLOCOM.2015.7417785.

[17] Fangyuan Chi, Xiaofei Wang, Wei Cai, and Victor C.M. Leung. Ad hoc
cloudlet based cooperative cloud gaming. In 2014 IEEE 6th International
Conference on Cloud Computing Technology and Science, pages 190–197,
2014. doi: 10.1109/CloudCom.2014.112.

[18] Stéphane Kündig, Constantinos Marios Angelopoulos, Sanmukh R. Kup-
pannagari, José Rolim, and Viktor K. Prasanna. Crowdsourced edge:
A novel networking paradigm for the collaborative community. In 2020
16th International Conference on Distributed Computing in Sensor Systems
(DCOSS), pages 474–481, 2020. doi: 10.1109/DCOSS49796.2020.00080.

User-Provided-Infrastructure at the Edge

Yinan Hu
yinan.hu@aalto.fi

Tutor: Sara Ranjbaran

Abstract

In recent years, the number of user devices has been increasing rapidly,

especially in scnarios of the Internet of Things (IoTs). To meet the demand

for computation and connectivity of these user devices, fog computing has

been proposed. Fog computing enables user devices at the edge of networks

to serve as hosts which provide computing resources to other devices in the

vicinity, thus supporting mobility and heterogeneity in scenarios of IoTs

compared to cloud computing. This paper introduces fog computing from

the perspectives of its characteristics and architecture. Furthermore, this

paper reviews the major research challenges of fog computing and dis-

cusses the proposed solutions. It will be shown that fog computing will

be feasible in IoTs with more research conducted to provide solutions that

achieve higher scalability.

KEYWORDS: Fog computing, IoTs, Edge computing

1 Introduction

With the rapid growth of demand for resources of servers, storage and

various services, traditional forms of computing, which refer to conduct-

ing data processing and storing using local computing resources, cannot

meet people’s needs to a large extent. In response to this, cloud comput-

ing, featuring a pay-as-you-go mode, enables organizations and individu-

als to have on-demand access to a shared pool of computing resources and

pay only for what they consume [1]. However, cloud computing requires

sending data to remote data centers for processing, which cannot support

mobility in practical scenarios, such as the Internet of Vehicles. Further-

more, the design of cloud computing does not consider the heterogeneity of

user devices, which limits its application in the scenarios of the Internet

of Things (IoTs) where advanced handheld devices are increasing rapidly.

To address these limitations, the concept of fog computing has been

proposed. As an extension of the cloud, the fog refers to a paradigm where

heterogeneous user devices at the edge of networks can act as hosts to pool

their computing resources, such as storage and communication, to match

wide-ranging user requirements [1, 2].

The practical fog computing platform is a middle layer between the

end devices and traditional cloud data centers, deploying resources of

computation, storage and communication for nearby users [6]. Compared

to the cloud, the fog can provide seamless services to users and collaborate

with cloud data centers in the remote to carry out a robust performance,

which emphasizes the strength of the fog in the domain of IoTs.

This paper reviews the paradigm of fog computing and its architec-

ture. In addition, this paper reviews the main issues of fog computing by

categorizing them into network management, resource management and

incentivization. This paper also reviews the solutions to the issues.

This paper is organized as follows. Section 2 explains the motivation of

fog computing and its strengths over cloud computing. Section 3 presents

the typical 3-tier architecture of fog computing. Section 4 reviews the ma-

jor challenges in fog computing and the proposed solutions to them. Sec-

tion 5 discusses the feasibility and effectiveness of the existing solutions.

Finally, Section 6 provides concluding remarks.

2 Characteristics of Fog Computing

Fog computing was first proposed by Cisco [1] to address the limitations

of cloud computing in handling latency-sensitive applications. By intro-

ducing computing nodes in the vicinity of user devices, fog computing

meets the delay requirement of clients or users. In addition, fog com-

puting shows strengths in other aspects over cloud computing, such as

low latency, support for mobility and decentralized data processing.

2.1 Low latency

In data processing, systems in fog computing architecture can timely re-

spond and conduct tasks [1, 2]. By extending the computing resources

to the edge of networks, fog computing decreases the distance of data

transmission, thus lowering the communication delay. The low-latency

characteristic enables fog computing to have a significant performance in

applications that have a high real-time requirement, such as IoTs, Smart

Grid and Automation. In these applications, the fog can process data

at a comparatively higher speed and provide real-time decisions and re-

sponses, which enhances the performance of systems and the quality of

user experience.

2.2 Support for heterogeneity

Supporting for heterogeneity refers to the ability of the fog to effectively

integrate and orchestrate devices with different types and performance [1].

These devices can have different hardware architectures, computing capa-

bilities and storage capacities. Compared to cloud computing, which was

initially not designed to support heterogeneity, the fog is capable of coordi-

nating the jobs of heterogeneous devices, allowing these devices to collab-

orate to conduct tasks [7]. This support for heterogeneity enables systems

of fog computing to be flexible, leveraging the strengths of various devices,

thus adapting to different computing demands and environments, which

is a crucial characteristic in IoTs where the number of advanced devices

is increasing rapidly.

2.3 Support for mobility

Support for mobility refers to the capability of the fog to provide seam-

less services as users move [1, 2]. This characteristic allows users to

constantly access and use computing resources on the move, without in-

terrupting or rebuilding connection. Fog computing leverages deploying

computing resources at the edge of networks to enable the resources to be

located near the users, thus offering uninterrupted services. This support

for mobility is important for the application of fog computing in specific

scenarios, such as the Internet of Vehicles.

2.4 Decentralized data processing

Data processing of cloud computing depends on cloud data centers, which

causes problems, such as trade-off issues between time and bandwidth [2].

Compared to this architecture, fog computing has a characteristic of de-

centralized data processing, i.e., data can be processed at the edge of net-

works, in the vicinity of data sources, which improves the efficiency of

processing data, decreases the response time and reduces the dependen-

cies on high bandwidth. In addition, decentralized data processing can

optimize the utilization of computing resources. By distributing comput-

ing nodes in a wide range of locations, fog computing systems can process

data more efficiently.

3 Architecture of Fog Computing

The prevalent structure of fog computing in existing research follows a

three-tiered architecture, in which the fog layer lies between the cloud

layer and the device layer. Sun and Zhang [6] describe the architecture

of fog computing as a human neural network. Figure 1 shows the archi-

tecture, which is comprised of the brain nerve center, spinal nerve center

and peripheral nerves, distributed over the body. The brain nerve cen-

ter refers to the cloud data center. The spinal nerve center refers to the

fog computing data center. The peripheral nerves refer to the user de-

vices. This human neural network architecture explains the relationship

among the cloud data center, the fog data center and user devices.

Device layer A wide range of user devices, such as sensors, IoT devices,

smart phones, are located on this layer and connected to the fog

layer. These devices produce data and communicate with the com-

puting nodes of the fog layer.

Fog layer Fog layer serves as the central computing and data process-

ing layer. The computing nodes of the fog layer are distributed at

the edge of networks, responsible for receiving, processing and stor-

ing data transmitted from the device layer. These nodes can conduct

computing jobs, optimize data transmission and provide timely re-

sponse with low latency. The major goal of the fog layer is to locate

the computing resources in the vicinity of user devices, thus offering

seamless services and enhancing user experience.

Figure 1. Architecture of fog computing based on the nervous system [6]

Cloud layer Cloud layer is the highest layer in the architecture, and

consists of the cloud data center. The cloud layer is responsible for

conducting tasks requiring larger computing capability and storing

data on a larger scale. The cloud layer collaborates with fog layer to

optimize the overall performance and improve the scalability of the

architecture.

4 Research Challenges

The major research challenges of fog computing involve resource man-

agement, incentivization and network management [2]. Currently, re-

searchers have been approaching these issues and proposing new solu-

tions to them.

4.1 Resource management issue

The resource management issue of the fog refers to the optimization of re-

source utilization, which focuses on designing effective scheduling mech-

anisms and facilitating resource sharing among heterogeneous devices.

As a solution to resource management issue, Mobile-IoT-Federation-

as-a-Service (MIFaaS) proposed by Farris et al. [3] realizes the federation

of different mobile IoT devices and reduces the cost of deploying data cen-

ters on the network edge. To be more specific, MIFaaS utilizes a coalition

formation game model to enable the IoT Cloud Providers (ICPs) to con-

verge to a federation based on their own interests.

To efficiently utilize the resources among heterogeneous devices, Tang

et al. [7] propose a general framework that enables mobile devices to col-

laborate and share three types of resources, including communication,

computation and storage. This framework can be applied to various device-

to-device resource-sharing models. In parallel, candidate algorithms are

utilized to address both the offline and online optimization issues under

the framework.

To provide users with the computing, storage and communication re-

sources efficiently, Kiani and Ansari [5] design a novel hierarchical model

by considering the principles of LTE Advanced backhaul network and in-

troducing concepts of field, shallow, and deep cloudlets. In addition, a

two-time scale mechanism is proposed to achieve the efficient allocation

of resources.

4.2 Incentive issue

The incentive issue of fog computing refers to motivating end users to

participate in resource sharing, addressing challenges of encouraging col-

laboration in the fog computing paradigm.

To address the incentive issue, Sun and Zhang [6] propose an incentive

mechanism involving reward and punishment. The goal of the mechanism

is to encourage resource owners to participate in the public pool and share

their resources. Furthermore, the mechanism is responsible for supervis-

ing resource supporters and ensures their active participation in tasks.

Inspired by effective business models, Iosifidis et al. [4] introduce two

types of innovative User-Provided-Infrastructure (UPI) models that fo-

cus on network sharing. For each model, Iosifidis et al. [4] investigate

the essential features required by an effective incentive mechanism and

propose a potential solution. Furthermore, they introduce a simplified

sharing algorithm to achieve a Pareto optimal and incentive-compatible

sharing equilibrium, which is suitable for large-scale IoT systems.

4.3 Network management issue

The network management issue of fog refers to managing and optimizing

the communication between the user devices at the edge, with the goal

of enhancing the network-related quality of experience. More specifically,

it includes various types of tasks, such as the design of network topology,

selection of communication protocols and management of network traffic.

A network slicing approach proposed by Theodorou and Xezonaki [8]

serves as a solution to IoT Infrastructure shareability. The approach ex-

ploits 5G Network Slicing and virtualization technologies to realize the

division of network traffic and manage the access to services from IoT

devices.

5 Discussion

Existing solutions to fog computing mainly focuses on scheduling resources [3,

7, 5], managing networks [8] or motivating users [6, 4]. The feasibility

and effectiveness of the solutions in practical scenarios depend on various

factors, such as security, scalability, and generality.

In terms of resource management, the general framework proposed by

Tang et al. [7] offers a more flexible solution compared with others, by

considering three different types of resources. Therefore, the framework

can address the heterogeneity of user devices and be applied to real IoT

scenarios where the types of devices are increasing rapidly.

With the goal of incentivization, researchers have proposed various

reward and penalty mechanisms. Sun and Zhang [6] design incentive

schemes for various scenarios, including Provider-assisted Mobile User-

Provided Infrastructures (UPIs), Autonomous Mobile UPIs and Large-

Scale Systems. Therefore, among the existing solutions, the solution pro-

posed by Sun and Zhang has the best generality and scalability.

Further research can be conducted to validate the feasibility of the

existing solutions and the application of the fog to different real-world

scenarios. In parallel, more standards and criteria are needed to evaluate

the efficiency of the solutions.

6 Conclusion

Fog computing is expected to play a crucial role in IoTs where user de-

vices are heterogeneous. Collaborating with remote cloud data centers,

fog data centers can serve as hosts and provide seamless services to users

at the edge, thus improving both the quality of experience and robustness

of systems. This paper introduces the characteristics and architecture

of fog computing. Furthermore, this paper reviews the major research

challenges and the proposed solutions. Finally, this paper discusses the

feasibility and effectiveness of the solutions.

References

[1] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-
puting and its role in the internet of things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, page
1316, New York, NY, USA, 2012. Association for Computing Machinery.

[2] Mung Chiang. Fog networking: An overview on research opportunities.
arXiv preprint arXiv:1601.00835, 2016.

[3] I. Farris, L. Militano, M. Nitti, L. Atzori, and A. Iera. Mifaas: A mobile-iot-
federation-as-a-service model for dynamic cooperation of iot cloud providers.
Future Generation Computer Systems, 70:126–137, 2017.

[4] George Iosifidis, Lin Gao, Jianwei Huang, and Leandros Tassiulas. Incentive
Schemes for UserProvided Fog Infrastructure, pages 129–150. 2020.

[5] Abbas Kiani and Nirwan Ansari. Toward hierarchical mobile edge com-
puting: An auction-based profit maximization approach. IEEE Internet of
Things Journal, 4(6):2082–2091, 2017.

[6] Yan Sun and Nan Zhang. A resource-sharing model based on a repeated
game in fog computing. Saudi Journal of Biological Sciences, 24(3):687–694,
2017. Computational Intelligence Research & Approaches in Bioinformatics
and Biocomputing.

[7] Ming Tang, Lin Gao, and Jianwei Huang. Communication, computation, and
caching resource sharing for the internet of things. IEEE Communications
Magazine, 58(4):75–80, 2020.

[8] Vasileios Theodorou and Maria-Evgenia Xezonaki. Network slicing for multi-
tenant edge processing over shared iot infrastructure. In 2020 6th IEEE
Conference on Network Softwarization (NetSoft), pages 8–14, 2020.

Exploring data-driven optimal ventilation
control using CO2 concentration
monitoring and control

Yinda Xu
yinda.xu@aalto.fi

Tutor:Matti Huotari

Abstract

As many people spend the majority of their time indoors, the energy con-

sumed by buildings for heating, ventilation, and air conditioning (HVAC)

is a key contributor to global energy use. It is evident that balanced CO2

levels are also one of the IAQ factors, as it has pronounced effects on occu-

pant health and performance. This paper presents a comparative review

between traditional ventilation control techniques and data-driven meth-

ods like ML and CNN, as well as advanced techniques in AI such as LSTM

and RL. Thus, the proposed AI-based models seem to be efficient enough to

dynamically regulate the ventilation rates and optimize energy consump-

tion while maintaining satisfactory IAQ levels.

KEYWORDS: CO2 concentration, HVAC system, Optimal control, data-

driven

1 Introduction

In today’s world, a significant part of the population spends a considerable

amount of their time inside buildings, such as offices, homes, or other fa-

cilities [11]. These environments are tailored to offer comfort regardless

of the outside climate. Yet, it’s essential to recognize that these struc-

tures play a substantial role in the overall energy consumption, making

up about 30% to 40% of the global energy use [17]. A closer look at the

energy use in buildings indicates that heating, ventilation, and air condi-

tioning (HVAC) systems are responsible for almost half of this consump-

tion [26].

Interestingly, despite the high energy use, dissatisfaction with indoor

environmental conditions persists among occupants. Studies highlight

the significant influence of indoor environmental factors such as air tem-

perature, humidity, and Carbon dioxide (CO2) levels on the health and

productivity of individuals [27]. CO2 plays a crucial role in evaluating

Indoor Air Quality (IAQ) [15]. Elevated levels of CO2 are a sign of in-

adequate indoor air quality, which may negatively impact human health,

decrease productivity, and impair the overall well-being of occupants [8].

As CO2 concentration is highly related to occupancy and IAQ, CO2 level

data is also becoming a popular indicator for estimating indoor air condi-

tions.

As a result, the challenge transforms into an optimization issue fo-

cused on keeping CO2 concentrations under a specific limit while mini-

mizing energy consumption of HVAC systems.

In order to evaluate and feel how modern technology influence indoor

ventilation control, this paper provides a comprehensive review of the

most recent approaches for optimal ventilation control in relation to CO2

concentration.

The organization of the paper is as follows: Section 2 offers an overview

of CO2 concentration and HVAC systems. Section 3 firstly explores var-

ious studies that have employed traditional methods in ventilation con-

trol, then delves into a range of contemporary approaches highlighted in

recent research. Section 4 expresses key insights and discusses potential

avenues for future research in this field. Finally, Section 5 concludes the

paper.

2 CO2 concentration and its impact

In practical applications, the concentration of CO2 is commonly utilized

as a metric for assessing indoor air quality [15]. Elevated CO2 levels typ-

ically indicate inadequate ventilation, as they reflect a lack of sufficient

exchange with fresh external air or the absence of air purification. Such

conditions not only lead to the accumulation of CO2 but also facilitate an

increase in concentration of other pollutants, including volatile organic

compounds (VOCs) and particulate matter. These pollutants can origi-

nate from various sources within the indoor environment and have the

potential to compromise the health and comfort of occupants. Therefore,

maintaining appropriate CO2 levels is essential as it serves as a proxy in-

dicator for the presence of various pollutants and the overall effectiveness

of a building’s ventilation system.

Although CO2 is a byproduct of human respiration and not inherently

a pollutant, elevated levels of CO2 in indoor environments have been

shown to adversely affect human health and productivity [9]. Research

indicates that an increase in CO2 concentration can impact the cardio-

vascular and respiratory systems [23]. One study suggests that exposure

to CO2 levels ranging from 900 ppm to 2800 ppm can lead to instability in

heart rate and increased vascular resistance [25]. Furthermore, at a con-

centration of 5000 ppm, significant increases in blood pressure and blood

pH levels have been observed [6]. Prolonged exposure to such elevated

CO2 conditions can result in subjective symptoms such as headaches and

surges in cerebral blood flow, posing significant health risks to individ-

uals [22]. Moreover, even with a CO2 concentration level a bit higher

than 1000 ppm, people’s ability to recognize has been proven to be de-

creased [7]. To limit the effects of CO2 concentrations on building occu-

pants, most countries set up their own standards for building designers.

The CO2 concentration limit of 1000 ppm is commonly recommended in

different countries as standards for the management of generic IAQ con-

cerns.

3 Ventilation control using CO2 monitoring

It is widely recognized that individuals spend a considerable portion of

their time indoors, with estimates suggesting this could be as much as

90% [12]. Concurrently, the building sector is a major consumer of energy.

According to the US Energy Information Administration (EIA), this sector

is responsible for over one-third of final energy consumption across resi-

dential, commercial, and industrial domains [16]. The European context

shows a similar trend, with buildings consuming over 40% of produced

energy [20]. HVAC systems are particularly significant, often being the

largest single category of energy use within buildings. In regions with

extreme temperatures, such as the Arabian Gulf, the energy demand for

air conditioning alone can constitute up to 80% of a building’s energy con-

sumption [3]. Therefore, enhancing the energy efficiency of HVAC sys-

tems is not only of environmental importance but also economically ben-

eficial, providing a significant opportunity for energy conservation in the

sector.

The ventilation system can be mainly divided into two categories: nat-

ural ventilation and mechanical ventilation. Even though many stud-

ies focused on developing natural ventilation design for buildings in re-

cent year, mechanical ventilation systems are still the most widely used.

There are many different types of ventilation systems: mixing ventila-

tion, displacement ventilation, personalized ventilation, hybrid air distri-

bution, stratum ventilation, local exhaust ventilation, and piston ventila-

tion. Each system has its specific set of advantages and trade-offs regard-

ing cost, energy consumption, installation complexity, and maintenance

needs.

3.1 Traditional ventilation control

Compare to conventional ON–OFF control, demand-controlled ventilation

(DCV) becomes more and more popular as it shows great energy-saving

advantages. Plenty of ventilation control system aim to use CO2 concen-

tration data as a indicator to employ DCV, as CO2 concentration shows

a strong relation with the presence of occupancy and IAQ. At the mean-

time, CO2 detector protects people’s privacy more compared to optical sen-

sors [10].

PID and rule-based control

In the past, conventional control strategies such as Proportional-Integral-

Derivative (PID) and rule-based systems have been extensively imple-

mented across various domains. A PID controller continuously calculates

the difference between the CO2 setpoint and the current CO2 concentra-

tion, then applies a correction based on proportional, integral, and deriva-

tive terms. The proportional part is the fundamental one; it makes an

in-time response to drag the controlled value to the setpoint. If the CO2

levels have deviated from the setpoint for a while, it means there is a

consistent error. The integral part of the controller will accumulate the

error over time and try to get the CO2 level back to the setpoint. The

derivative part will foresee the trends of CO2 level changes and apply the

corresponding corrections. The rule-based control follows pre-determined

rules. For example, if the CO2 concentration is below a specific level, it

will apply minimal ventilation; if the CO2 concentration is above a specific

level, it will maximize ventilation. It is simpler than PID control but has

easier deployment. Time-based control, which is very common in reality,

is also belonging to rule-based control.

Nonetheless, the inherent complexity of real-world scenarios and the

requisite adaptability pose significant challenges to the effective deploy-

ment of these methodologies. Specifically, PID controllers risk instability

unless meticulously tuned, while basic rule-based controls often falter in

accurately addressing the nonlinear dynamics characteristic of CO2 man-

agement processes [5].

Model Predictive Control

Model Predictive Control (MPC) can be a traditional control method but

can also be a data-driven control method. It depends on how the predic-

tive model is obtained and used. If the MPC replies with a mathematical

model of the system, it is a traditional one. In this context, the model is

determined by physical laws and the system’s mechanics. MPC considers

various factors, both the ventilation system aspect and the environment

aspect. For example, the ventilation efficiency, the outdoor air efficiency,

and the occupancy pattern. Nevertheless, it at least takes current and

historical CO2 concentrations as inputs, forecasts future air quality con-

ditions, and makes decisions based on those predictions.

However, despite its predictive capabilities, MPC has several disad-

vantages. On one hand, it usually has poor generalization capability. In

detail, MPC relies on the accurate model of the system, it is not easy to

make the model generalize across different operational conditions or sys-

tems. Or in other words, a model developed for one system might not

perform well when applied to different systems. On the other hand, it is

hindered by computational demands and inherent latency in execution,

making it less viable for real-time applications [19].

Other traditional control

Not like other methods that try to explain complex systems, fuzzy logic

control, on the other hand, simplifies complex systems into more manage-

able sub-systems through the designer’s insight. Yet its utility is curtailed

by the subjective nature of rule formulation and the intricacies involved

in its architectural design. Moreover, fuzzy controllers lack the capac-

ity for interactive learning in practical settings [13]. In contrast, Genetic

Algorithms (GAs) offer a novel approach by simulating the evolutionary

process to identify optimal control strategies. This method involves gen-

erating a diverse set of potential solutions, assessing their suitability, and

employing genetic operations to refine them iteratively [4]. However, the

primary drawback of GAs, particularly when addressing problems of a

larger magnitude, is their substantial computational requirements.

3.2 Data-driven ventilation control

When implementing data-driven ventilation control using CO2 concentra-

tion data, it usually means using CO2 data to predict the occupancy rate

and then adjust the control strategy according to the demand.

Tradition machine learning approaches

Start with basic machine learning approaches, support vector machine

(SVM) is a supervised learning model used for classification and regres-

sion analysis. It operates by finding the hyperplane that best divides a

dataset into classes in the feature space. The author of [29] uses this

model to achieve optimal control by predicting occupant. The author

of [21] also uses another supervised classification model, random forest

(a typical structure illustrated in Figure 1), to predict occupancy. It op-

erates by constructing a multitude of decision trees at training time and

outputting the class that is the mode of the classes (for classification) or

mean prediction (for regression) of the individual trees.

The study [18] proves that decision tree and hidden Markov model

(HMM) algorithms are well suited for occupancy detection. Decision tree

is also a supervised learning algorithm used for classification and re-

gression tasks, which is also the fundamental element in random forest

model we discussed before. The HMM is a statistical model that assumes

the system being modeled is a Markov process with unobserved (hidden)

states. This assumption enables the method being very powerful in ex-

ploring sequential characteristics and capturing temporal dynamics of ob-

served data.

Neural-network-based machine learning methods

As internet of things in buildings becomes more and more popular and

the great hardware development in larger scale computation. There are

some innovative methods based on neural network emerging.

Multiple layer perceptron (MLP) (structure is illustrated in Figure. 2,

Figure 1. Typical random forest algorithm structure [2].

Figure 2. Multilayer perceptrons structure. [29]

is the pioneering method using neural network, and has been proven be-

ing capable of solving highly non-linear and complex problems. The MLP

has multiple layers of nodes in a directed graph, with each layer fully

connected to the next one. Those layers can explore the relation between

inputs and outputs. In study [24], the research team proves the MLP

can strongly predict the volatile CO2 behavior. They took past passive

infrared sensor data, temperature, Dewpoint, and humidity as input fea-

tures, successfully forecast CO2 concentration in advance of 1, 6, and 24

h. A Convolutional Neural Network (CNN) is a deep learning algorithm

specialized in processing image-like data. However, to my best knowledge,

there is no CNN using environmental features like CO2 concentration to

predict occupancy or to control the ventilation optimally.

Figure 3. Original LSTM structure. [28]

Long Short-Term Memory (LSTM) models [28] are a special kind of

Recurrent Neural Network (RNN) capable of learning time-series data.

Compared to RNN, it overcomes the problem of vanishing and exploding

gradients in typical RNN models. The author of [14] explored the way

using LSTM model to predict occupancy. They collected data on indoor

and outdoor temperature, humidity, and CO2 levels, and implement the

LSTM model to infer the occupancy situation based on those data. Even

though their work did not test the energy saving capability with ventila-

tion control, it still shows the potential in HVAC system automation.

Reinforcement Learning (RL) in ventilation control using CO2 moni-

toring is a sophisticated approach that employs the principles of reinforce-

ment learning to optimize indoor air quality and energy efficiency. In this

method, an agent, usually the ventilation control system, to interact with

the indoor environment to learn the best ventilation control strategy. It

aims to achieve optimal air quality with minimal energy use. The authors

of [5] and [3] explored the reinforcement learning implementation in ven-

tilation control with field studies. In a supervised learning framework,

the agent is first trained using the baseline. Then, the agent learns in

an actor-critic framework using proximal policy optimization. According

to the findings [3], it can result in healthier CO2 concentrations, a 44%

improvement in thermal comfort, and a 21% decrease in energy consump-

tion.

Recently, large language models (LLMs) are very popular. For exam-

ple, ChatGPT is the current hottest topic. It is is based on the Trans-

former architecture. The transformer architecture, which solely relies on

an attention mechanism to identify global dependencies between input

and output, marks a substantial divergence from earlier sequence learn-

ing models. The study [1] firstly explored the way using the ChatGPT in

HVAC control. By using it, the HVAC system is able to make decisions in

a sequential manner according to ChatGPT’s suggestions.

4 Discussion

By investigating those traditional ventilation control methods and data-

driven ventilation control methods, we can find the common disadvan-

tages of both sides. From our perspectives, data-driven methods usually

have the advantages of high accuracy and efficiency in predicting demand,

thus saving more energy while still providing good indoor air quality.

However, these methods usually require sensors to collect enough data

and also have computational requirements. In this way, traditional meth-

ods are quite cheap, which is also the reason they are still dominating the

current ventilation control markets. In conclusion, we think data-driven

methods have a bright future as the cost of hardware will reduce and more

and more powerful models are emerging.

5 Conclusion

In this paper, we first review the importance of CO2 concentration and

ventilation. Then, we offer a thorough analysis of the most recent meth-

ods for the best ventilation control in relation to CO2 concentration. We go

through both traditional ventilation control methods and data-driven ven-

tilation control methods. We find data-driven methods have more promis-

ing potential in future ventilation control applications.

References

[1] Ki Uhn Ahn, Deuk-Woo Kim, Hyun Mi Cho, and Chang-U Chae. Al-
ternative approaches to hvac control of chat generative pre-trained trans-
former (chatgpt) for autonomous building system operations. Buildings,
13(11):2680, 2023.

[2] Anne-Laure Boulesteix, Silke Janitza, Jochen Kruppa, and Inke R König.
Overview of random forest methodology and practical guidance with em-
phasis on computational biology and bioinformatics. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery, 2(6):493–507, 2012.

[3] Yassine Chemingui, Adel Gastli, and Omar Ellabban. Reinforcement
learning-based school energy management system. Energies, 13(23):6354,
2020.

[4] Velimir Congradac and Filip Kulic. Hvac system optimization with co2
concentration control using genetic algorithms. Energy and Buildings,
41(5):571–577, 2009.

[5] Patrick Nzivugira Duhirwe, Jack Ngarambe, and Geun Young Yun. Energy-
efficient virtual sensor-based deep reinforcement learning control of indoor
co2 in a kindergarten. Frontiers of Architectural Research, 12(2):394–409,
2023.

[6] David A Gortner, AA Messier, E Heyder, and KE Schaefer. The Effects of
Elevated Atmospheric CO2 on Acid-Base Balance and Red-Cell Electrolytes
of FBM Submarine Crew Members. Submarine base, US Naval Submarine
Medical Center, 1971.

[7] Ulla Haverinen-Shaughnessy, DJ Moschandreas, and RJ Shaughnessy. As-
sociation between substandard classroom ventilation rates and students’
academic achievement. Indoor air, 21(2):121–131, 2011.

[8] Tyler A. Jacobson, Jasdeep S. Kler, Michael T. Hernke, Rudolf K. Braun,
Keith C. Meyer, and William E. Funk. Direct human health risks of in-
creased atmospheric carbon dioxide. Nature Sustainability, 2(8):691–701,
August 2019. Publisher Copyright: © 2019, Springer Nature Limited.

[9] Tyler A Jacobson, Jasdeep S Kler, Michael T Hernke, Rudolf K Braun,
Keith C Meyer, and William E Funk. Direct human health risks of in-
creased atmospheric carbon dioxide. Nature Sustainability, 2(8):691–701,
2019.

[10] Wooyoung Jung and Farrokh Jazizadeh. Human-in-the-loop hvac opera-
tions: A quantitative review on occupancy, comfort, and energy-efficiency
dimensions. Applied Energy, 239:1471–1508, 2019.

[11] Neil Klepeis, William Nelson, Wayne Ott, and John Robinson. The national
human activity pattern survey (nhaps): A resource for assessing exposure
to environmental pollutants. 01 2001.

[12] Neil E Klepeis, William C Nelson, Wayne R Ott, John P Robinson, Andy M
Tsang, Paul Switzer, Joseph V Behar, Stephen C Hern, and William H En-
gelmann. The national human activity pattern survey (nhaps): a resource
for assessing exposure to environmental pollutants. Journal of Exposure
Science & Environmental Epidemiology, 11(3):231–252, 2001.

[13] Chuen-Chien Lee. Fuzzy logic in control systems: fuzzy logic controller. i.
IEEE Transactions on systems, man, and cybernetics, 20(2):404–418, 1990.

[14] Xiguan Liang, Jisoo Shim, Owen Anderton, and Doosam Song. Low-cost
data-driven estimation of indoor occupancy based on carbon dioxide (co2)

concentration: A multi-scenario case study. Journal of Building Engineer-
ing, 82:108180, 2024.

[15] Lidia Morawska, Joseph Allen, William Bahnfleth, Philomena M. Bluyssen,
Atze Boerstra, Giorgio Buonanno, Junji Cao, Stephanie J. Dancer, An-
dres Floto, Francesco Franchimon, Trisha Greenhalgh, Charles Haworth,
Jaap Hogeling, Christina Isaxon, Jose L. Jimenez, Jarek Kurnitski, Yuguo
Li, Marcel Loomans, Guy Marks, Linsey C. Marr, Livio Mazzarella, Ar-
sen Krikor Melikov, Shelly Miller, Donald K. Milton, William Nazaroff,
Peter V. Nielsen, Catherine Noakes, Jordan Peccia, Kim Prather, Xavier
Querol, Chandra Sekhar, Olli Seppänen, Shin ichi Tanabe, Julian W. Tang,
Raymond Tellier, Kwok Wai Tham, Pawel Wargocki, Aneta Wierzbicka, and
Maosheng Yao. A paradigm shift to combat indoor respiratory infection.
Science, 372(6543):689–691, 2021.

[16] Zhihong Pang, Yan Chen, Jian Zhang, Zheng O’Neill, Hwakong Cheng, and
Bing Dong. How much hvac energy could be saved from the occupant-
centric smart home thermostat: A nationwide simulation study. Applied
Energy, 283:116251, 2021.

[17] Luis Pérez-Lombard, José Ortiz, and Christine Pout. A review on buildings
energy consumption information. Energy and Buildings, 40(3):394–398,
2008.

[18] Seung Ho Ryu and Hyeun Jun Moon. Development of an occupancy pre-
diction model using indoor environmental data based on machine learning
techniques. Building and Environment, 107:1–9, 2016.

[19] A Ryzhov, Henni Ouerdane, Elena Gryazina, Aldo Bischi, and K Turitsyn.
Model predictive control of indoor microclimate: existing building stock
comfort improvement. Energy conversion and management, 179:219–228,
2019.

[20] OA Seppänen, WJ Fisk, and Mar J Mendell. Association of ventilation rates
and co2 concentrations with health andother responses in commercial and
institutional buildings. Indoor air, 9(4):226–252, 1999.

[21] Adarsh Pal Singh, Vivek Jain, Sachin Chaudhari, Frank Alexander Krae-
mer, Stefan Werner, and Vishal Garg. Machine learning-based occupancy
estimation using multivariate sensor nodes. In 2018 IEEE Globecom Work-
shops (GC Wkshps), pages 1–6, 2018.

[22] U. Sliwka, J.A. Krasney, S.G. Simon, P. Schmidt, and J. Noth. Part one:
Effects of sustained low-level elevations of carbon dioxide on cerebral blood
flow and autoregulation of the intracerebral arteries in humans. Aviation
Space and Environmental Medicine, 69(3):299 – 306, 1998.

[23] Ge Song, Zhengtao Ai, Zhengxuan Liu, and Guoqiang Zhang. A systematic
literature review on smart and personalized ventilation using co2 concen-
tration monitoring and control. Energy Reports, 8:7523–7536, 2022.

[24] Saman Taheri and Ali Razban. Learning-based co2 concentration predic-
tion: Application to indoor air quality control using demand-controlled ven-
tilation. Building and Environment, 205:108164, 2021.

[25] Tommi Vehviläinen, Harri Lindholm, Hannu Rintamäki, Rauno Pääkkö-
nen, Ari Hirvonen, Olli Niemi, and Juha Vinha. High indoor co2 concentra-
tions in an office environment increases the transcutaneous co2 level and
sleepiness during cognitive work. Journal of occupational and environmen-
tal hygiene, 13(1):19–29, 2016.

[26] Yu Yang, Guoqiang Hu, and Costas J Spanos. Stochastic optimal control of
hvac system for energy-efficient buildings. IEEE Transactions on Control
Systems Technology, 30(1):376–383, 2021.

[27] Liang Yu, Shuqi Qin, Meng Zhang, Chao Shen, Tao Jiang, and Xiaohong
Guan. A review of deep reinforcement learning for smart building energy
management. IEEE Internet of Things Journal, 8(15):12046–12063, 2021.

[28] Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of
recurrent neural networks: Lstm cells and network architectures. Neural
computation, 31(7):1235–1270, 2019.

[29] M.S. Zuraimi, A. Pantazaras, K.A. Chaturvedi, J.J. Yang, K.W. Tham, and
S.E. Lee. Predicting occupancy counts using physical and statistical co2-
based modeling methodologies. Building and Environment, 123:517–528,
2017.

