

CS-E5745 Mathematical Methods for Network Science

Mikko Kivelä

Department of Computer Science Aalto University, School of Science mikko.kivela@aalto.fi

January 18, 2024

Generating functions and their use in networks

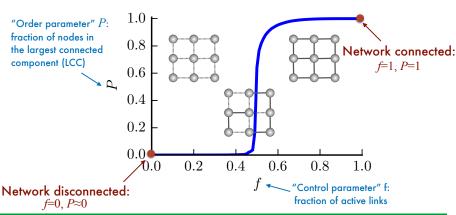
- Learning goals this week:
 - Learn the concept of probability generating functions (PGF's) and their basic properties
 - Recognise what kind of problems can be solved with PGF's and be able to solve them
 - Learn how to solve a Galton-Watson process using PGF's and how to apply that to networks
- We will be following the Section 13 in Newman: Networks, An Introduction

Components and excess degree

- Problem: Find the component size distribution of a (sparse) network produced by a configuration model
 - Assumptions: network is infinitely large, there are almost no loops
- Equivalent problem: start a BFS process from random node in a tree
 - Branching factor is given by the excess degree distribution q(k)
- Reminder: We already did this in the basic course (8 next slides)

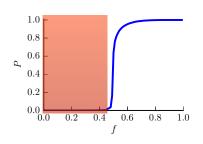
Percolation theory

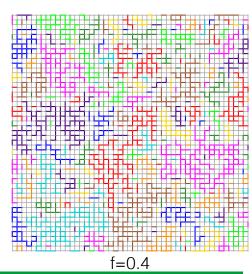
 Change something in the network (add/remove links, increase transmission probability, etc) and the component structure changes



Disconnected phase

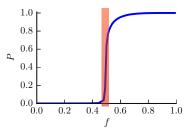
- Largest component relatively small
- Other components small

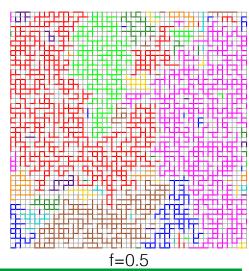




Phase transition

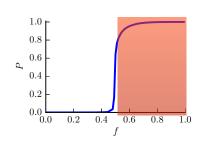
- The largest component becomes the "giant component"
- Other components from very large to small

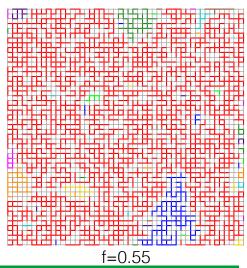




Connected phase

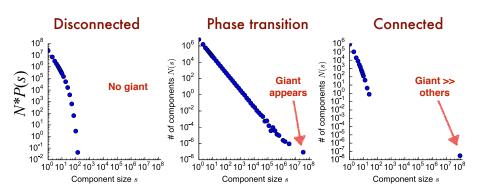
- The giant component size same scale as network size
- Other components small





Component size distributions

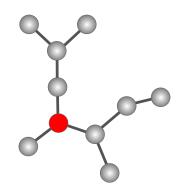
(square grid with $N=10^4*10^4$ nodes)



- The size distribution of other components at the phase transition point follows a power law!
 - "Critical point" in the theory of critical phenomena

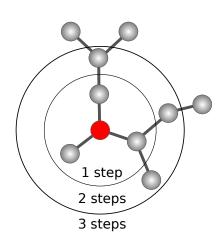
How to estimate the transition point?

- Idea: start from a random node, find how many nodes you can reach
- Before transition: you can always reach only a small number of nodes
- After transition: possibility of reaching very large number of nodes

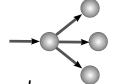


Branching processes

- Sparse large random networks have (almost) no loops
- Breadth first search is a "branching process":
 - A node has q "children"
- At step t, n_t nodes
 - $\bullet \quad n_{t+1} = \langle q \rangle n_t$
 - Exponential growth $(\langle q \rangle > 1)$ or decay $(\langle q \rangle < 1)$



Excess degree



- The excess degree q: follow a link to a node, how many links does it have, not including the link that was followed?
 - Remember the friendship paradox: following a link leads to high degree nodes: $\langle k_{nn} \rangle = \langle k^2 \rangle / \langle k \rangle$
- Expected excess degree: $\langle q \rangle = \langle k^2 \rangle / \langle k \rangle 1$ expected number not including the of neighbours link that was followed

Components and excess degree

- Problem: start a BFS process from random node in a tree
 - Branching factor is given by the excess degree distribution
- There are k₁ neighbors where k₁ is drawn from p(k). If k₁ > 0:
 - There are $k_2 = \sum_{i=1}^{k_1} k_{1,i}$ second neighbors where each $k_{1,i}$ (number of second neighbors the first neighbor i has) is drawn from q(k). If $k_2 > 0$:
 - ► There are $k_3 = \sum_{i=1}^{k_2} k_{2,i}$ third neighbors where each $k_{2,i}$ is drawn from q(k). If $k_3 > 0$:
 - **.**..
- ▶ What is the distribution of k_2 , k_3 , ... ?
 - This is a variation of the Galton-Watson process
 - We can write the above equations using random variables K_d , and solve them using probability generating functions

Probability generating functions

Let X be a random variable with non-negative integers as outcomes, and probability distribution P(X = k) = p(k):

$$g(z) = p(0) + p(1)z + p(2)z^2 \cdots = \sum_{k=0}^{\infty} p(k)z^k$$
 (1)

- ► Example: p(1) = 0.5 and p(2) = 0.5, then PGF is $g(z) = 0.5z + 0.5z^2$
- ▶ Example: Poisson distribution $p(k) = e^{-c} \frac{c^k}{k!}$ gives $g(z) = \sum_{k=0}^{\infty} e^c \frac{c^k}{k!} z^k = e^{c(z-1)}$

Probability generating function properties (1/4)

 \triangleright p(k) can be extracted through derivation

$$p(k) = \left[\frac{1}{k!} \frac{d^k}{dz^k} g(z)\right]_{z=0}$$
 (2)

- Example: for $g(z) = 0.5z + 0.5z^2$, we get $p(2) = \left[\frac{1}{2!} \frac{d^2}{dz^2} g(z)\right]_{z=0} = \left[\frac{1}{2!} 1\right]_{z=0} = 0.5$
- ► Example: for $g(z) = e^{c(z-1)}$, we get $p(2) = \left[\frac{1}{2!} \frac{d^2}{dz^2} g(z)\right]_{z=0} = \left[\frac{1}{2} c^2 e^{c(z-1)}\right]_{z=0} = \frac{1}{2} c^2 e^{-c}$

Probability generating function properties (2/4)

Moments can also be calculated through derivation

$$\langle X^m \rangle = \left[\overbrace{z \frac{d}{dz} \dots z \frac{d}{dz}}^m g(z) \right]_{z=1} = \left[(z \frac{d}{dz})^m g(z) \right]_{z=1}$$
 (3)

Norks also for the "zeroth" moment: g(1) = 1

Probability generating function properties (3/4)

Sums of independent random variables X₁ and X₂ become products of GFs

$$g_{X_1+X_2}(z) = g_{X_1}(z) * g_{X_2}(z)$$
 (4)

▶ If the X_i i.i.d. then the sum $S = \sum_{i=1}^{N} X_i$ becomes a power of the GF

$$g_{\mathcal{S}}(z) = [g_{X_i}(z)]^N \tag{5}$$

 Constant c is just a random variable that always has the same result

$$g_{X_1+c}(z) = g_{X_1}(z) * z^c$$
 (6)

Probability generating function properties (4/4)

▶ If N is also a random variable in $S = \sum_{i=1}^{N} X_i$, then the sum becomes a combination

$$g_{\mathcal{S}}(z) = g_{\mathcal{N}}(g_{X_i}(z)) \tag{7}$$

This is the case in the Galton-Watson process!

Generating functions for degrees

- We use the notation from Newman:
 - For the degree distribution p(k):

$$g_0(z) = \sum_{k=0}^{\infty} p(k) z^k$$

For the excess degree distribution q(k):

$$g_1(z) = \sum_{k=0}^{\infty} q(k)z^k$$

These two are related: (Exercise 4a)

$$g_1(z) = \frac{1}{\langle k \rangle} \frac{d}{dz} g_0(z) \tag{8}$$

► The number of first neighbors of a random node k_1 is drawn from the degree distribution p(k)

$$g_{K_1}(z)=g_0(z)$$

► Each second neighbor i adds $k_{1,i}$ new nodes, and these numbers come from the excess degree distribution q(k)

$$g_{K_{1,i}}(z)=g_1(z)$$

► The number of second neighbors K_2 is the sum of excess degrees $K_{1,i}$

$$K_2 = \sum_{i=1}^{K_1} K_{1,i}$$

Using the combination property (7)

$$g_{K_2}(z)=g_0(g_1(z))$$

► The number of third neighbors K₃ is the sum of excess degrees K_{2,i}

$$K_3 = \sum_{i=1}^{K_2} K_{2,i}$$

▶ Using the combination property and $g_{K_2}(z) = g_0(g_1(z))$

$$g_{K_3}(z) = g_{K_2}(g_1(z)) = g_0(g_1(g_1(z)))$$

We get a recursive equations

$$g_{K_1}(z) = g_0(z)$$

 $g_{K_d}(z) = g_{K_{d-1}}(g_1(z))$

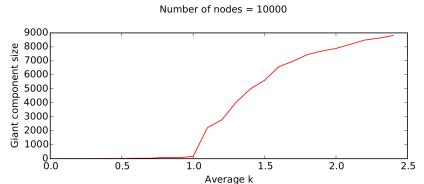
- ▶ Writing closed form solutions for $p(k_d)$ often not possible
- The expected value can be solved in closed form for any d:

$$\langle K_d \rangle = \langle q \rangle^{d-1} \langle k \rangle = \left(\frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} \right)^{d-1} \langle k \rangle$$
 (9)

▶ Diverges if ⟨q⟩ > 1

- ▶ If for some d we get $K_d = 0$ we say that there is an extinction
 - ⟨q⟩ > 1 : Probability of extinction smaller than 1 (supercritical)
 - $ightharpoonup \langle q \rangle < 1$: Probability of extinction is 1 (subcritical)
- ▶ When $\langle q \rangle$ = 1 the system is at *critical state*
 - ► The extinction d time, total number of reachable nodes $\sum_{d} K_{d}$ etc. are distributed as power-laws $p(d) \propto d^{\alpha}$
 - The exponents of these power-laws are the critical exponents

► The "percolation threshold" for G(N, p) was solved numerically as an exercise during CS-E5740:

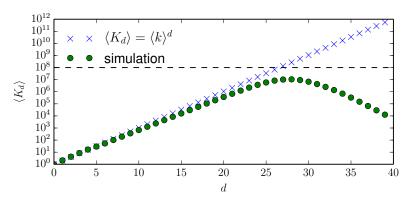


- ▶ G(N,p) has Poisson degree distribution when $N \to \infty$ while $\langle k \rangle$ is constant
 - $p(k) = \frac{\langle k \rangle^k}{k!} e^{-\langle k \rangle}.$
 - Second moment $\langle k^2 \rangle = \langle k \rangle^2 + \langle k \rangle$
- Average excess degree

$$\langle q \rangle = \frac{\langle k^2 \rangle - \langle k \rangle}{\langle k \rangle} = \langle k \rangle$$

- $\langle K_d \rangle = \langle k \rangle^d$
- ▶ The giant component exists iff $\langle k \rangle > 1$

► Result can be compared to simulations (ER network with $N = 10^8$ and $\langle k \rangle = 2$)



- We can also try to solve the distributions of each K_d for ER networks:
 - $ightharpoonup g_0(z) = e^{\langle k \rangle (z-1)}$ (Poisson degree distribution)

$$g_1(z) = \frac{1}{\langle k \rangle} \frac{d}{dz} g_0(z) = e^{\langle k \rangle (z-1)}$$
 (Also Poisson!)

$$g_{K_3} = g_0(g_1(z)) = e^{\langle k \rangle (e^{\langle k \rangle (e^{\langle k \rangle (z-1)} - 1)} - 1)}$$

- **.**..
- We cannot write a closed form solution to the distribution of K_d for general d
 - ► Even *K*₂ difficult
 - For given d and k_d we can write $P(K_d = k_d)$
 - Results are not pretty

Examples for probabilities of K_d:

$$P(K_3 = 0) = e^{-2 + \frac{2}{e^{-\frac{2}{e^2} + 2}}}$$

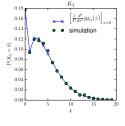
$$P(K_3 = 1) = \frac{8}{e^2 e^{-\frac{2}{e^2} + 2} e^{-\frac{2}{e^{-\frac{2}{e^2} + 2}} + 2}}$$

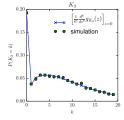
$$P(K_3 = 2) = \frac{1}{e^{-\frac{2}{e^{-\frac{2}{e^2} + 2}} + 2}} \left(\frac{32}{e^4 e^{-\frac{4}{e^2} + 4}} + \frac{16}{e^4 e^{-\frac{2}{e^2} + 2}} + \frac{8}{e^2 e^{-\frac{2}{e^2} + 2}} \right)$$

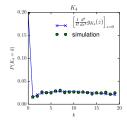
$$P(K_4 = 0) = e^{-\frac{2}{e^{-\frac{2}{e^2} + 2}} + 2}$$

$$P(K_4 = 0) = e^{-\frac{2}{e^{-\frac{2}{e^2} + 2}} + 2}$$

Result can be compared to simulations (ER network with $N = 10^6$ and $\langle k \rangle = 2$)







Solving for component size distributions

- Solving the Galton-Watson process gives us a criterion for the percolation threshold
- ► The expected number of nodes ⟨K_d⟩ in a BFS can be solved for configuration model
 - Accuracy of the approximation goes down when $\langle K_d \rangle$ approaches the network size
- ► The full distribution of the number of nodes $P(K_d = k)$ in a BFS can be difficult to solve
- Next week: solution for the component size distribution using GFs

