Appendix A

Extended half line

The extended half-line is a set $[0, \infty] = \mathbb{R}_+ \cup \{\infty\}$, where \mathbb{R}_+ denotes the nonnegative real numbers and ∞ is an element not in \mathbb{R}_+ . The extended half-line has a natural algebraic, order-theoretic, and topological structures. The topology then induced a natural Borel sigma-algebra to this space.

A.1 Algebraic structure

The sum and product operations on \mathbb{R}_+ are extended to $[0,\infty]$ by defining

$$x + \infty = \infty + x = \infty$$
 for $x \ge 0$,

and

$$x \cdot \infty = \infty \cdot x = \begin{cases} 0 & \text{for } x = 0, \\ \infty & \text{for } x > 0. \end{cases}$$

The set $[0, \infty]$ equipped with these operations is a semi-ring¹ with additive identity 0 and multiplicative identity 1.

A.2 Order

We define a relation \leq on $[0, \infty]$ by saying that $x \leq y$ if either $y = \infty$, or $x, y \in \mathbb{R}_+$ and $x \leq y$ in the usual ordering on the real line. We denote x < y whenever $x \leq y$ and $x \neq y$. Then set $[0, \infty]$ then becomes totally ordered², and a complete lattice in the sense that $\inf(A), \sup(A) \in [0, \infty]$ for every

¹https://en.wikipedia.org/wiki/Semiring

²A partial order is a relation \leq that is reflexive $(x \leq x)$, antisymmetric $(x \leq y, y \leq x \implies x = y)$, and (transitive $x \leq y, y \leq z \implies x \leq z$). A total order is a partial order such for every x, y, either $x \leq y$ or $y \leq x$.

nonempty $A \subset [0, \infty]$. We denote intervals with endpoints $a, b \in [0, \infty]$ by (a, b), (a, b], [a, b), and [a, b] as usual.

A.3 Topology

Sets of the form $(a,b) = \{x : a < x < b\}$ are called open intervals in $[0,\infty]$. Sets of the form $[0,a) = \{x : x < a\}$ and $(a,\infty] = \{x : x > a\}$ are called open rays in $[0,\infty]$. A set $A \subset [0,\infty]$ is called open if it can be expressed as a union³ of open intervals and open rays in $[0,\infty]$. The collection of all open sets is denoted $\mathcal{T}([0,\infty])$ and called the topology⁴ of $[0,\infty]$. Examples of open sets are $[0,\infty)$, $[0,\infty]$. Examples of closed sets include the singleton sets $\{a\}$ with $a \in [0,\infty]$ and the sets [0,a] and $[0,\infty]$. This type of topology can be defined for any totally ordered space — in general such topologies are called order topologies.

One may verify that $F: [0, \infty] \to [0, 1]$ defined by

$$F(x) = \begin{cases} 1 - e^{-x}, & 0 \le x < \infty, \\ 1, & x = \infty \end{cases}$$

is an increasing and continuous bijection with an increasing and continuous inverse

$$F^{-1}(x) = \begin{cases} \log \frac{1}{1-x}, & 0 \le x < 1, \\ \infty, & x = 1. \end{cases}$$

Therefore F serves as an order isomorphism and a topology isomorphism (homeomorphism) between $[0, \infty]$ and [0, 1]. Hence these sets share the same order-theoretic and topological properties. Especially, we find that $[0, \infty]$ is a compact and connected topological space. We can express the topology of the extended half line as $\mathcal{T}([0, \infty]) = F^{-1}(\mathcal{T}([0, 1]))$.

Proposition A.3.1. Every open set in $[0, \infty]$ can be expressed as a countable union of open intervals and open rays.

Proof. Denote by \mathbb{Q}_+ the set of nonnegative rational numbers. Denote by \mathcal{R} the set family consisting of open intervals (a, b), lower open rays [0, a), and upper open rays $(a, \infty]$ with *rational* endpoints $a, b \in \mathbb{Q}_+ \cup \{\infty\}$. We will show that every open set in $[0, \infty]$ can be expressed as a union of sets in \mathcal{R} .

 $^{^3\}mathrm{Also},$ the empty set is defined to be an open set.

⁴In general, a topology is a set family on Ω that contains \emptyset , Ω and is closed under arbitrary unions and finite intersections.

Let $U \subset [0, \infty]$ be open. Pick a point $x \in U$. Then x is either contained in an open interval (a, b), in a lower open ray [0, a), or in an upper open ray $(a, \infty]$, for some $a, b \in [0, \infty]$.

- (i) If $x \in (a, b)$, then $x \in (a', b')$ for some $a', b' \in \mathbb{Q}_+ \cup \{\infty\}$.
- (ii) If $x \in [0, a)$, then $x \in [0, a')$ for some $a' \in \mathbb{Q}_+ \cup \{\infty\}$.
- (iii) If $x \in (a, \infty]$, then $x \in (a', \infty]$ for some $a' \in \mathbb{Q}_+ \cup \{\infty\}$.

To every point $x \in U$ we may hence associate a set $R_x \in \mathcal{R}$ that contains x. As a consequence, $U = \bigcup_{x \in U} R_x$ can be expressed as a union of sets in \mathcal{R} .

Finally, we note that the lower and upper open rays in \mathcal{R} may be indexed using the elements of $\mathbb{Q}_+ \cup \{\infty\}$, and the open intervals in \mathcal{R} may be indexed using pairs in $(\mathbb{Q}_+ \cup \{\infty\})^2$. Because the sets $\mathbb{Q}_+ \cup \{\infty\}$ and $(\mathbb{Q}_+ \cup \{\infty\})^2$ are countable, it follows that every open set in $[0, \infty]$ can be expressed as a countable union of sets in \mathcal{R} . In other words, \mathcal{R} forms a countable basis for the topology of $[0, \infty]$.

A.4 Borel sigma-algebra

The Borel sigma-algebra on $[0, \infty]$ is defined as $\mathcal{B}([0, \infty]) = \sigma(\mathcal{T}([0, \infty]))$, the smallest sigma-algebra containing the open sets of $[0, \infty]$.

Proposition A.4.1. The family of closed lower rays $\mathcal{I} = \{[0, x] : x \in \mathbb{R}_+\}$ is a π -system on $[0, \infty]$ that generates the Borel sigma-algebra $\mathcal{B}([0, \infty])$.

Proof. The fact that \mathcal{I} is a π -system follows immediately by noting that $[0,x] \cap [0,y] = [0,x \wedge y]$ for all $x,y \in \mathbb{R}_+$. To finish the proof, it suffices to verify that

$$\mathcal{I} \subset \sigma(\mathcal{T}) \tag{A.4.1}$$

and

$$\mathcal{T} \subset \sigma(\mathcal{I}), \tag{A.4.2}$$

where $\mathcal{T} = \mathcal{T}([0,\infty])$ is the set family of open sets in $[0,\infty]$.

Verifying (A.4.1) is easy because each closed ray [0, x] is the complement of an open ray $(x, \infty]$, and therefore [0, x] belongs to $\sigma(\mathcal{T})$. To verify (A.4.1), we proceed in three steps.

(i) First we observe that $(a, b] \in \sigma(\mathcal{I})$ for all $a, b \in [0, \infty]$, because $(a, b] = [0, b] \cap [0, a]^c$: when $b < \infty$, both [0, a] and [0, b] belong to \mathcal{I} ; when $b = \infty$, $(a, b] = [0, a]^c$ is the complement of a set in \mathcal{I} .

(ii) By applying (i), we see that $(a,b) \in \sigma(\mathcal{I})$ for all $a,b \in [0,\infty]$, because

$$(a,b) = \begin{cases} \bigcup_{n \in \mathbb{N}} (a, b - \frac{1}{n}], & b < +\infty, \\ \bigcup_{n \in \mathbb{N}} (a, n], & b = +\infty. \end{cases}$$

(iii) By applying (ii), we see that $[a,b) \in \sigma(\mathcal{I})$ for all $a,b \in [0,\infty]$, because

$$[a,b) = [0,b) \cap [0,a)^c$$

= $([0,0] \cup (0,b)) \cap ([0,0] \cup (0,a))^c$.

The claim $\mathcal{T} \subset \sigma(\mathcal{I})$ follows from the above observations, because every open set in \mathcal{T} can be expressed as a countable union (see Proposition A.3.1) of intervals of form (a, b) and [0, a) and $(a, \infty]$ with $a, b \in [0, \infty]$.

A.5 Measurable functions

Let (S, \mathcal{S}) be a measurable space. A function $f: S \to [0, \infty]$ is called measurable if it is $\mathcal{S}/\mathcal{B}([0, \infty])$ -measurable.

Proposition A.5.1. f is measurable iff $\{s: f(s) \leq x\} \in \mathcal{S}$ for all $x \in \mathbb{R}_+$.

Proof. By Proposition A.4.1, the set family $\{[0, x]: x \in \mathbb{R}_+\}$, is a pi-system that generates $\mathcal{B}([0, \infty])$. The claim follows by Proposition 2.4.1.