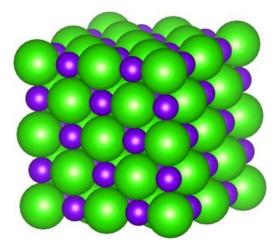
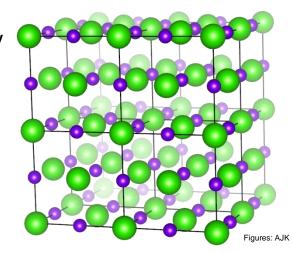
Lecture 1: Structure of crystalline materials

- Basics of crystalline materials
 - Dimensionality of solids
 - Molecular vs. non-molecular solids
- Key concepts for crystal structures
 - Unit cell
 - Crystal systems
 - Point group symmetry and translational symmetry
 - Crystal classes
 - Lattice types and Bravais lattices
 - Space groups

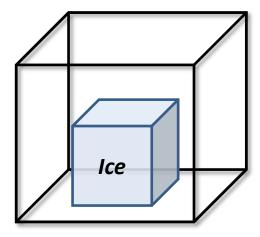




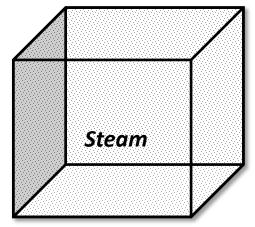
Basics of crystalline materials

States of bulk matter

Temperature increases



Solid: Adopts and maintains a shape that is independent of the container it occupies. Water



Figures: AJK

Liquid: Adopts the shape of the part of the container it occupies and is separated from the unoccupied part of the container by a definite surface.

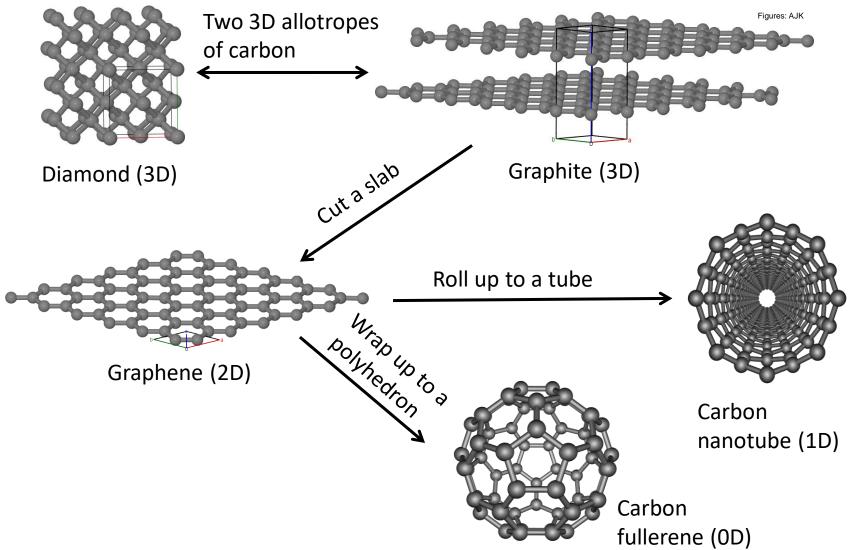
Gas: immediately fills any container it occupies

Condensed matter

Fluids (flow in response to forces such as gravity) **Molecular chemistry**

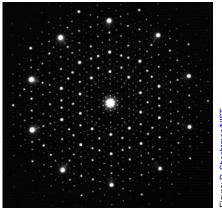
Ref: Atkins' Physical Chemistry, 9th ed. p. 4

Dimensionality of solids



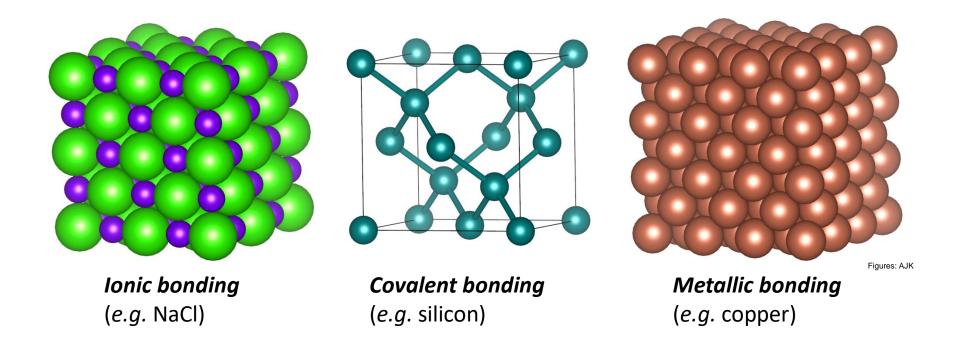
Crystalline materials

- A material is a crystal if it has essentially a sharp diffraction pattern (<u>IUCr definition</u>)
- The definition includes
 - Periodic crystals
 - <u>Aperiodic crystals</u>
 - <u>Quasicrystals</u>
- *Periodic* crystal is a *regular* arrangement of atoms in three dimensions. These include
 - a) Single crystals
 - b) Polycrystals composed of many crystallites
- Amorphous materials are non-crystalline and lack long-range order
 - Not discussed on this course



Silicon single crystal grown by Czochralski process (Deutsches Museum, München)

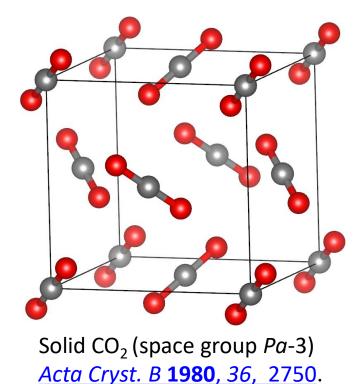
Non-molecular crystalline solids

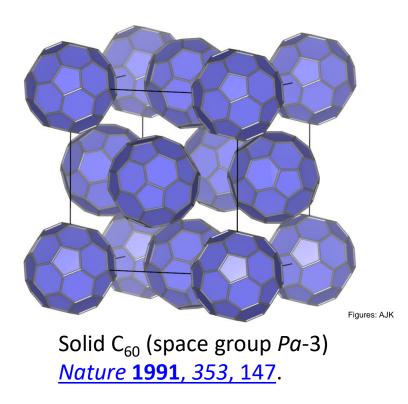


- Coordination polymers such as *metal-organic frameworks* show covalent bonding of metal atoms and organic molecules
- Coordination polymers are challenging the traditional classifications of solid state structures (see *e.g.* review of H. Furukawa *et al.*, <u>Science **2013**</u>, <u>341</u>, <u>1230444</u>).

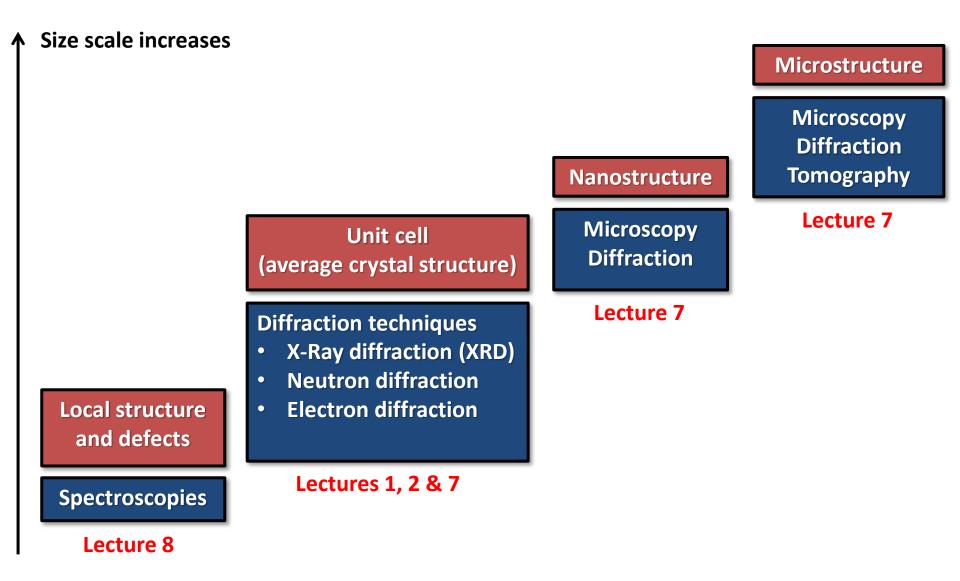
Molecular crystalline solids

- Composed of molecules that are held together by (weak) van der Waals forces
- Discussed only little here, but can be interesting for intercalation chemistry
- Much more relevant for small-molecule chemistry
- **Crystal engineering** using *e.g.* **hydrogen** and **halogen** bonding is making the boundary between molecular and non-molecular solids less clear!



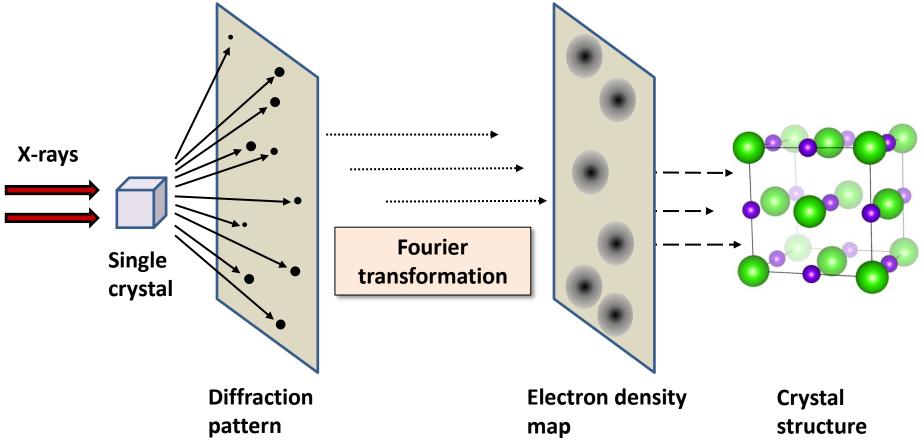


Structure determination of crystalline materials



X-ray diffraction

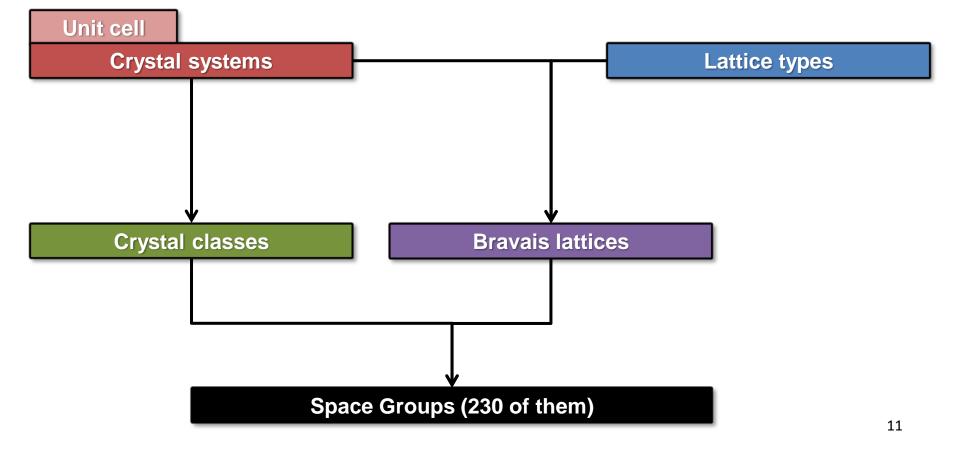
- X-rays are electromagnetic radiation of wavelength ~ 1 Å (10⁻¹⁰ m)
 - This matches the scale of atomic-level structure.
- The figure below shows a simplified illustration of single-crystal X-ray diffraction



Key concepts for crystal structures

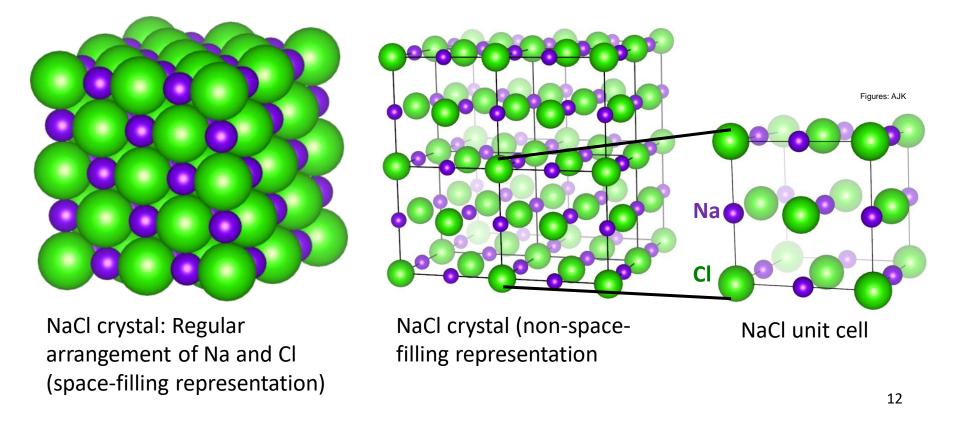
Key concepts for crystal structures

- To describe crystal structures, we will need the key concepts outlined below
- The following slides will introduce the concepts one by one, culminating in the concept of a **space group**

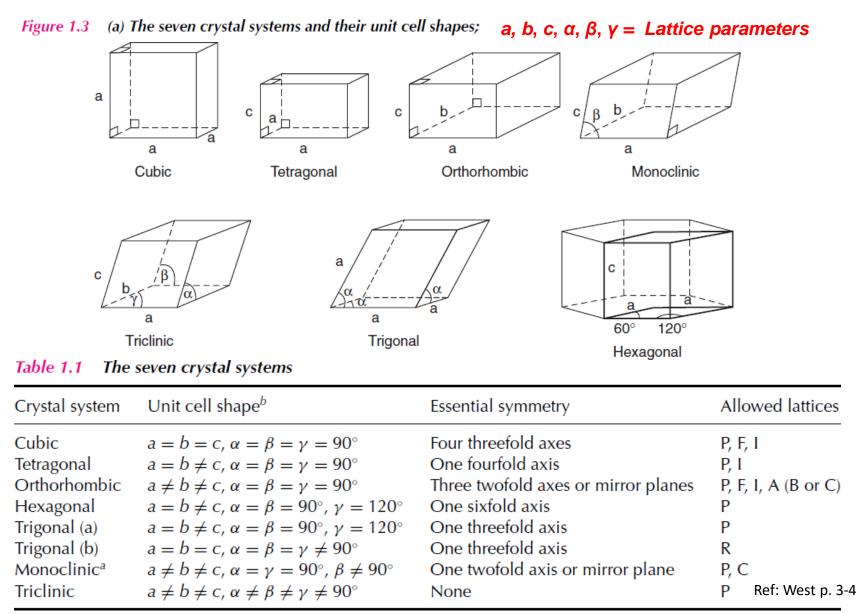


Unit cell

- *Crystal*: Regular arrangement of atoms in three dimensions
- The regular arrangement can be represented by a repeat unit called the *unit cell*
- Unit cell: The smallest repeating unit which shows the full symmetry of the crystal

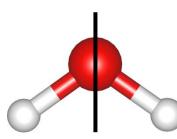


Crystal systems



Symmetry

- The most characteristic feature of any crystal structure is its *symmetry*
- The shape of the unit cell is not enough to determine the crystal system. It is the symmetry of the unit cell that really determines the crystal system
 - For example, a "pseudocubic" crystal structure could have a = b = c and $\alpha = \beta = \gamma = 90^\circ$, but it would not possess the correct cubic symmetry
- In the context of crystals, we will encounter two types of symmetry:
 - Point group symmetry (both in crystals and molecules)
 - **Translational symmetry** of the crystal lattice (only in crystals)
- We describe the symmetry properties of crystals and molecules in terms of:
 - **Symmetry elements** (for example, a mirror plane)
 - **Symmetry operations** (the actual process of applying a symmetry element)
- In crystals and molecules, a symmetry operation transfers an atom into a new spatial position that cannot be distinguished from its original position

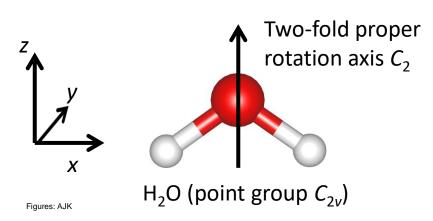


Mirror plane in a water molecule

Point group symmetry

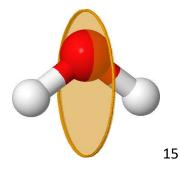
- In point group symmetry operations, at least one point stays unchanged during the symmetry operation
- For learning point group symmetry, we will utilize the Symmetry@Otterbein website: <u>https://symotter.org/</u>
- The **point group** of a molecule is based on the symmetry elements that are present

Symmetry element	Symmetry operation	Schönflies symbol
Symmetry plane (mirror plane)	Reflection through plane	σ
Inversion	Every point x, y, z translated to -x, -y, -z	i
Proper axis (rotation)	Rotation about axis by 360/n degrees	C _n
Improper axis (improper rotation)	Rotation by 360/ <i>n</i> degrees followed by reflection through plane perpendicular to rotation axis	S _n



Mirror plane σ_{yz}

Mirror plane σ_{xz}



Symmetry elements in crystals

- Crystals may display rotational symmetries 2, 3, 4, and 6, not others
- In crystallography, the symmetries are labeled with *Hermann–Mauguin* symbols
- Crystals show several symmetry elements that are not present in molecules

Symmetry element	Hermann-Mauguin symbol (crystals)	Schönflies symbol (molecules)
Symmetry plane (mirror plane)	т	σ
Inversion	1	i
Proper axis (rotation)	<i>n</i> = 2, 3, 4, 6	<i>C</i> _n
Improper axis (improper rotation)	-	S _n
Elements only in crystals		
Inversion axis (point symmetry)	$\overline{n} = \overline{3}, \overline{4}, \overline{6}$	-
Glide plane (includes translation)	a, b, c, d, n	-
Screw axis (includes translation)	2 ₁ , 3 ₁ , etc.	-

(Inversion axis, glide plane, and screw axis explained in more detail in extra slides)

Crystal classes

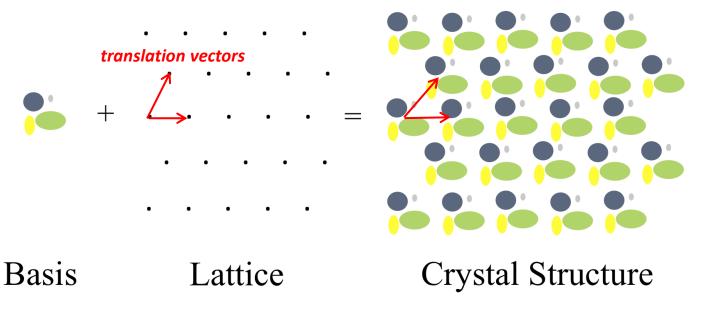
• By combining the seven crystal systems and 32 crystallographic point groups, we obtain the following 32 crystal classes:

Crystal system	Crystal classes (point groups) in Hermann-Mauguin notation	Crystal classes (point groups) in Schönflies notation
Triclinic	1, 1	<i>C</i> ₁ , <i>C</i> _{<i>i</i>}
Monoclinic	2, m, 2/m	C_{2}, C_{s}, C_{2h}
Orthorhombic	222, mm2, mmm	D_2, C_{2v}, D_{2h}
Tetragonal	4, 4 , 4/m, 422, 4mm, 4 2m, 4/mmm	$C_4, S_4, C_{4h}, D_4, C_{4v}, D_{2d}, D_{4h}$
Trigonal	3, 3 , 32, 3 <i>m</i> , 3 <i>m</i>	$C_{3}, S_{6}(C_{3i}), D_{3}, C_{3v}, D_{3d}$
Hexagonal	6, 6 , 6/m, 622, 6mm, 6 m2, 6/mmm	$C_6, C_{3h}, C_{6h}, D_6, C_{6v}, D_{3h}, D_{6h}$
Cubic Ref: Müller p. 24. Wiking	23, $\overline{4}$ 3 <i>m</i> , $m\overline{3}$, 432, $m\overline{3}m$	T, T _d , T _h , O, O _h

Ref: Müller p. 24, Wikipedia

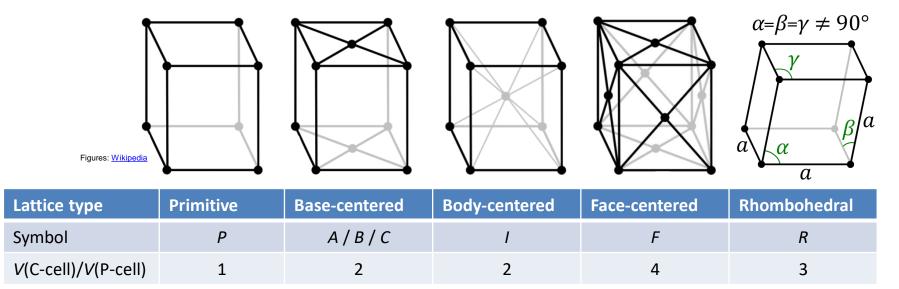
Lattice

- The most characteristic feature of any crystal structure is its *symmetry*
 - 1. Point group symmetry (discussed above)
 - 2. Translational symmetry of the crystal lattice
- Crystal structure = **basis** (atoms) + crystal lattice

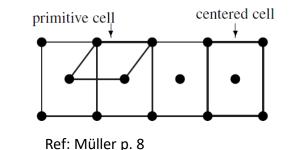


Lattice types

- Every crystal structure belongs to one of five *lattice types*:
 - The balls are lattice points, *not* atoms!

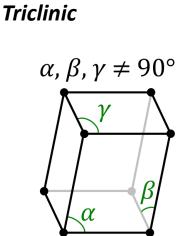


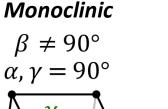
- *Primitive cell*: unit cell with the smallest possible volume
- **Centered unit cell**: the smallest repeating unit which shows the full symmetry of the crystal
- The centered unit cell is 2, 3, or 4 times larger than the primitive cell (table: *V(C-cell)/V(P-cell)*)



Bravais lattices (1)

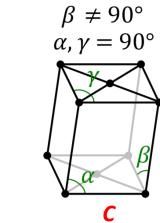
• By combining **7 crystal systems** and **5 lattice types** we obtain 14 *Bravais lattices*



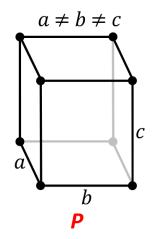


α

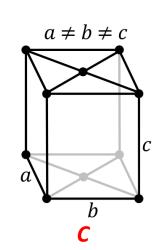
Ρ

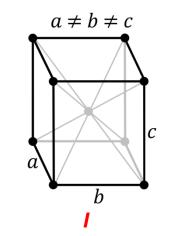


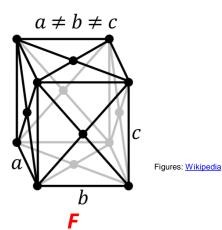
Orthorhombic



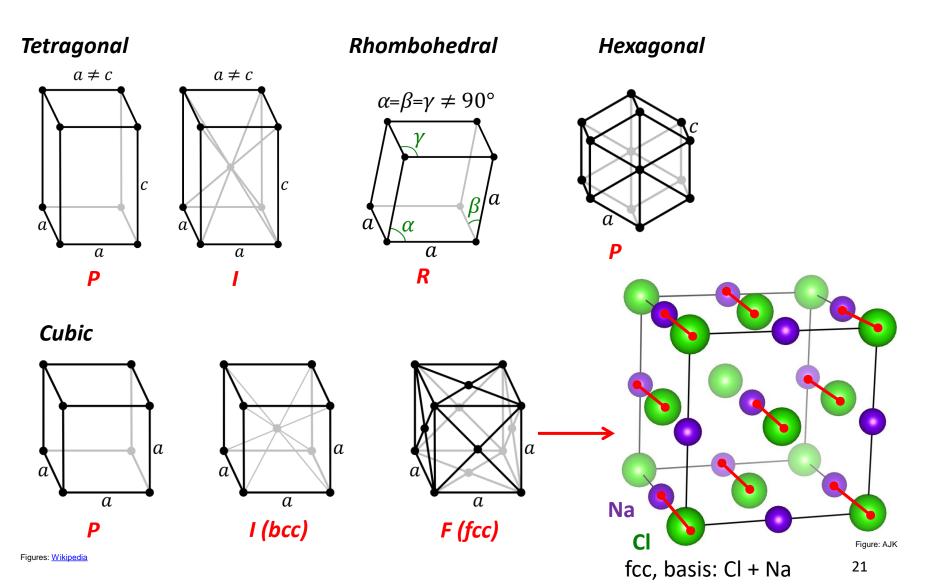
Ρ

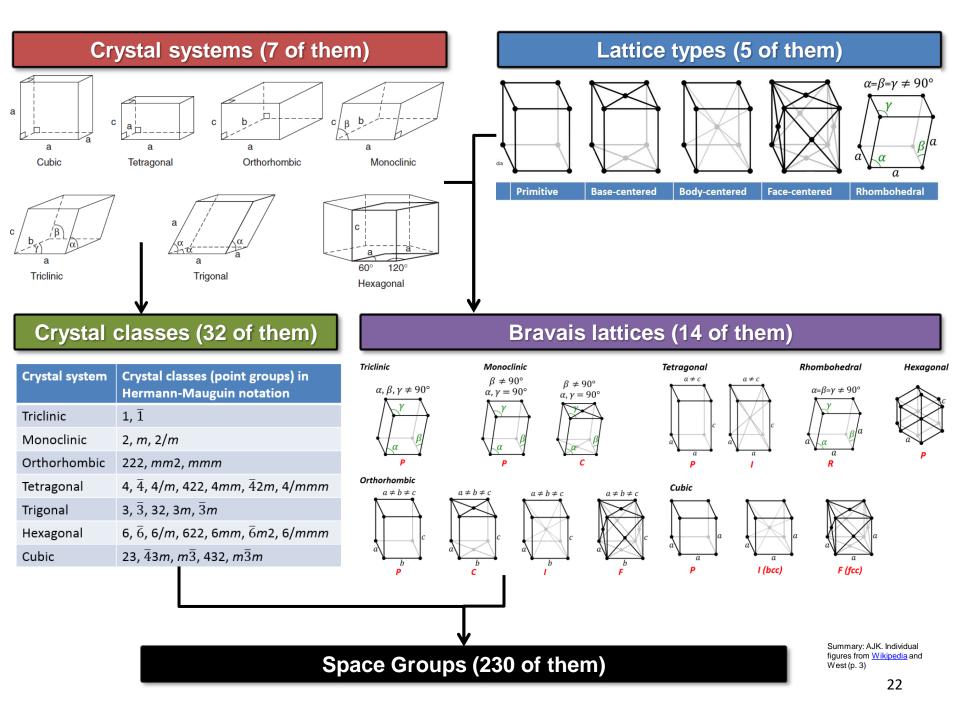






Bravais lattices (2)





Space groups

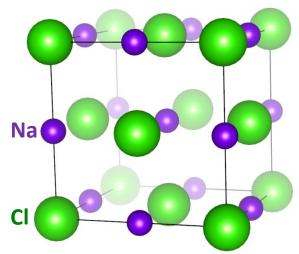
- The **32** crystal classes and **14** Bravais lattices give rise to **230** space groups
- The Hermann-Mauguin symbol for the space group of NaCl: $Fm\overline{3}m$ (or Fm-3m)
- The symbol begins with a capital letter *P*, *A*, *B*, *C*, *F*, *I*, or *R*, specifying the presence of *translational symmetry* in three dimensions and the lattice type (*centering*)
- The letter is followed by a listing of the other symmetry elements
- Some examples:
 - All *triclinic* space groups: *P*1 and *P*-1
 - Some *monoclinic* space groups: P2, Pm, C2/c
 - Some *hexagonal* space groups: *P6, P6/mmm, P6/mcc*
 - Some *cubic* space groups: *Pm*-3*m*, *Im*-3*m*
- Note that some space groups can be defined with *alternate axes* and/or *origin* (see e.g. orthorhombic SGs in <u>http://img.chem.ucl.ac.uk/sgp/large/ortho.htm</u>)
- Everything about space groups: International Tables of Crystallography
- Good resource: <u>http://img.chem.ucl.ac.uk/sgp/large/sgp.htm</u>
- Wikipedia: <u>https://en.wikipedia.org/wiki/List_of_space_groups</u>

Defining a crystal structure

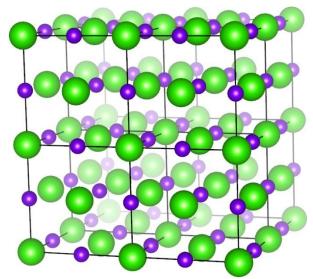
- A crystal structure is defined by
 - Space group
 - Lattice parameters
 - Atomic coordinates (positions) in fractional coordinates ($0.0 \le x, y, z < 1.0$)
 - Normally only symmetry-independent atoms in the asymmetric unit are listed
- For example, NaCl
 - Fm-3m
 - a = b = c = 5.6402 Å ($\alpha = \beta = \gamma = 90^{\circ}$ by definition for a cubic space group)
 - Atomic coordinates (*x*, *y*, *z*): **Cl**: 0.0, 0.0, 0.0; **Na**: 0.5, 0.5, 0.5
- Typically, crystal structures are distributed in Crystallographic Information Files (CIF)
- A *definition* of a crystal structure is not usually enough to understand the real chemistry. For this, we need a *description* of the crystal structure
 - Concepts such as bonding, packing of spheres, coordination, polyhedra, ...

Formula units (Z)

- Counting the contents of a unit cell for NaCl:
- 8 Cl⁻ ions in the 8 vertices, each belonging to 8 adjacent cells = 8/8 = 1 Cl⁻ ion in total
- 6 Cl⁻ ions in the 6 centers of the faces, each belonging to two cells = 6/2 = 3 Cl⁻ ions
- 1 Na⁺ ion in the center of the cell, not shared with other cells
- 12 Na⁺ ions in the centers of the 12 edges, each belonging to 4 cells = 12 / 4 = 3 Na⁺ ions
- In total **4** Na⁺ ions and **4** Cl⁻ ions
 - NaCl is said to have **4** "formula units" per unit cell
 - Denoted with Z = 4



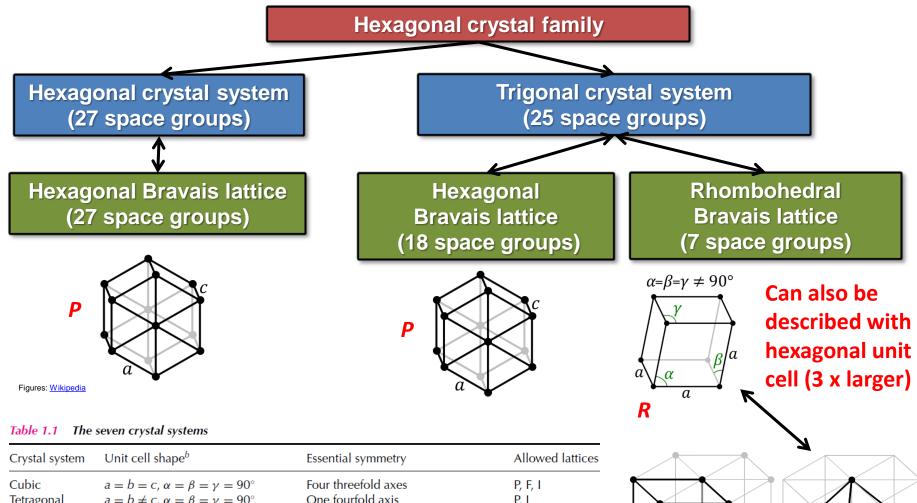
Figures: AJK



Extra slides

"Nice-to-know"-type material that is not needed for completing the exercises

More details on trigonal crystal system

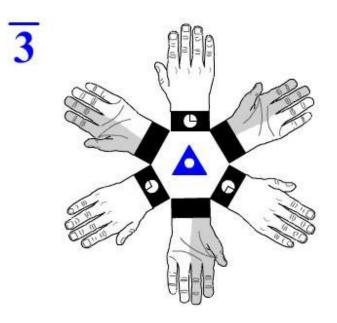


27

erystar system	onneen snape	Essential symmetry	/ morred lattices
Cubic	$a = b = c, \alpha = \beta = \gamma = 90^{\circ}$	Four threefold axes	P, F, I
Tetragonal	$a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$	One fourfold axis	P, I
Orthorhombic	$a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$	Three twofold axes or mirror planes	P, F, I, A (B or C)
Hexagonal	$a = b \neq c$, $\alpha = \beta = 90^\circ$, $\gamma = 120^\circ$	One sixfold axis	Р
Trigonal (a)	$a = b \neq c, \alpha = \beta = 90^\circ, \gamma = 120^\circ$	One threefold axis	Р
Trigonal (b)	$a = b = c, \alpha = \beta = \gamma \neq 90^{\circ}$	One threefold axis	R
Monoclinic ^a	$a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	One twofold axis or mirror plane	P, C
Triclinic	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	None	Р

Symmetry elements in crystals: Inversion axis

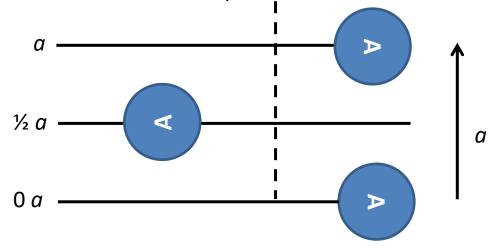
- Denoted by \overline{n} . Rotation of 360° / *n* followed by inversion.
- $\overline{1}$ = equal to inversion center
- $\overline{2}$ = equal to mirror plane (*m*)
- $\overline{3}, \overline{4}, \overline{6}$ are actual inversion axes
- For example, $\overline{3}$ inversion axis (equal to S_6 improper rotation):



Symmetry elements in crystals: Glide plane

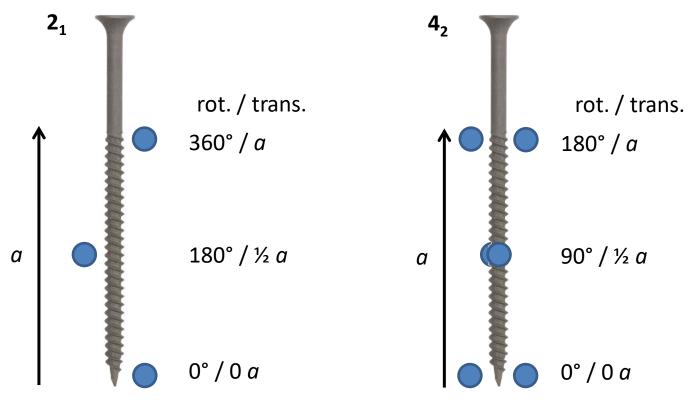
- Reflection followed by a translation
 - Simple glide planes are denoted as a, b, c (axis of the glide)
 - n glide: reflection followed by translation of 1/2 along two cell edges
 - *d* glide (diamond glide): reflection followed by translation of 1/4 along *two* cell edges

Glide plane (parallel to a, reflection followed by a translation of $\frac{1}{2}a$)



Symmetry elements in crystals: Screw axis

- Combination of rotation and translation, denoted as x_v :
 - Rotation of 360° / x; translation of y / x units along the screw axis
 - 2_1 screw axis: rotation of 360° / 2 = 180°; translation of 1/2 units
 - 4_2 screw axis: rotation of 360° / 4 = 90°; translation of 2/4 = 1/2 units



Quasicrystals (1)

- Quasicrystals exhibit long-range order, but do not have translational periodicity
- Quasicrystals can show "forbidden" rotational symmetries of 5, 8, 10, 12, etc.
- Discovered by Daniel Schechtman in 1982, Nobel prize 2011 (link)

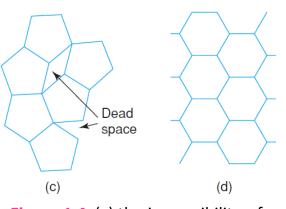
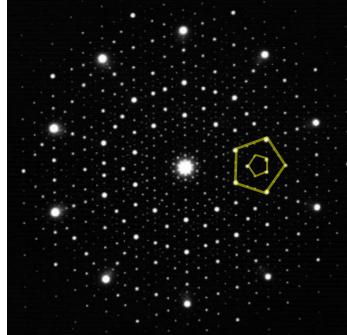
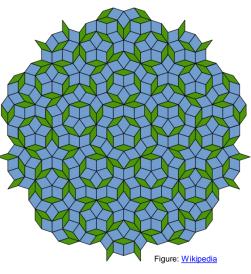


Figure 1.4. (c) the impossibility of forming a complete layer of pentagons; (d) a complete layer of hexagons



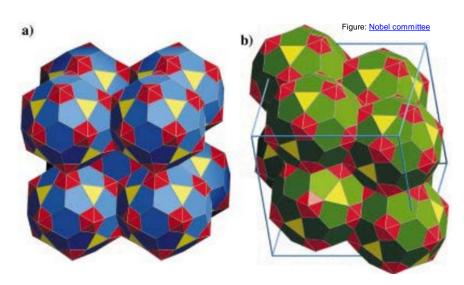
Electron diffraction pattern from an icosahedral quasicrystal



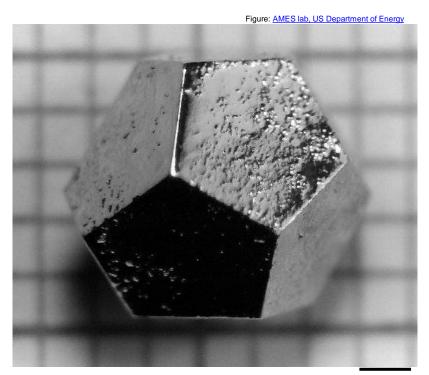
Penrose tiling (no translational periodicity)

Quasicrystals (2)

- Icosahedral symmetry is allowed together with translational symmetry in 6dimensional space
- Refinement of quasicrystal models involves the refinement of the position and shape of the atomic surfaces in 6-dimensional space for icosahedral quasicrystals



Polyhedral arrangements in icosahedral quasicrystal *approximants* in the system Ca-Cd (*Angew. Chem.* **2001**, *40*, 4037-4039)



Ho-Mg-Zn dodecahedral quasicrystal (*Phys. Rev. B* **1999**, *59*, 308–321)

mm

Perfect crystals do not exist

- Crystal structures from X-ray diffraction are "average" structures
- Real crystals possess defects (lecture 13)
- Point defects, line defects, grain boundaries, stacking faults, bulk defects, etc.
- Some defects can be characterized using techniques other than XRD (lecture 8)

CI Na CI CI Na CI Na

Figure 2.2 2D representation of a Schottky defect with cation and anion vacancies.