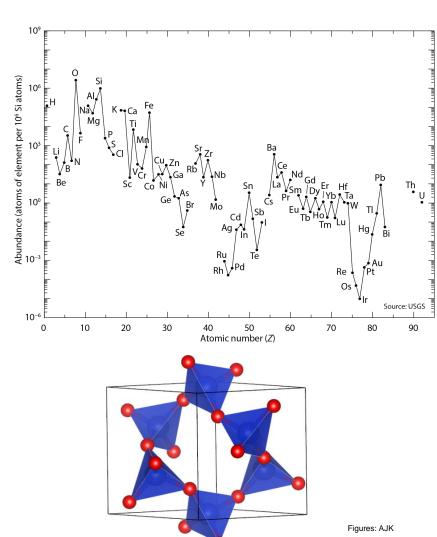
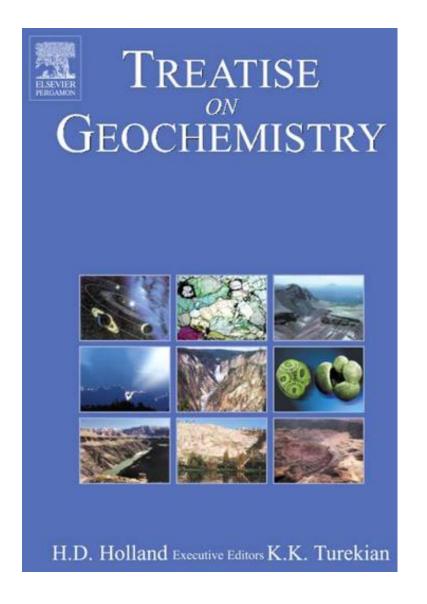
Mid-course checkpoint

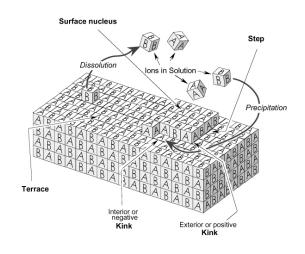
Week	Lect.	Date	Topic				
Week 1	1	Mon 8.1.	Structure of crystalline materials. Symmetry.				
Structure	2	Wed 10.1.	Hall C100. Structural databases, visualization of crystal structures.				
Week 2	3	Mon 15.1.	Bonding in solids. Description of crystal structures.				
Bonding	4	Wed 17.1.	Band theory. Band structures.				
Week 3	5	Mon 22.1.	Phase diagrams, crystal growth.				
Synthesis	6	Wed 24.1.	Solid state synthesis.				
Week 4	7	Video lect.	XRD, Miller indices. Powder XRD databases. Microscopies.				
Characterization	8	Video lect.	Spectroscopies and thermal analysis.				
Week 5	9	Mon 5.2.	Abundance of elements, geochemistry, minerals.				
Main groups	10	Wed 7.2.	Main group compounds, allotropes, Zintl phases.				
Week 6	11	Mon 12.2.	d-block metals, ligand field theory, magnetism.				
d-block metals	12	Wed 14.2.	d-block metal oxides and other compounds.				
		Examination w	veek for study period III (no lectures).				
Week 7	13	Mon 26.2.	12.15-14.00, C100. Defects, non-stoichiometric compounds.				
Defects and doping	14	Fri 1.3.	8.30-10.00, C100 . Semiconductors, doping.				
Final Wiki project deadline after mid-March.							


Lecture 9: Geochemistry, minerals

Geochemistry


- The origin and abundance of elements
- Goldchmidt classification
- Accessibility and supply of elements

Minerals


- Systematic classification
- Silicates
- Aluminosilicates
- Hardness as an example of a physical property

Literature

Some Fundamentals of Mineralogy and Geochemistry Link

©2006 by

L. Bruce Railsback, Department of Geology, University of Georgia Athens, Georgia 30602-2501 U.SA.

rlsbk@gly.uga.edu

A web-based document for public use available at www.gly.uga.edu/railsback/FundamentalsIndex.html

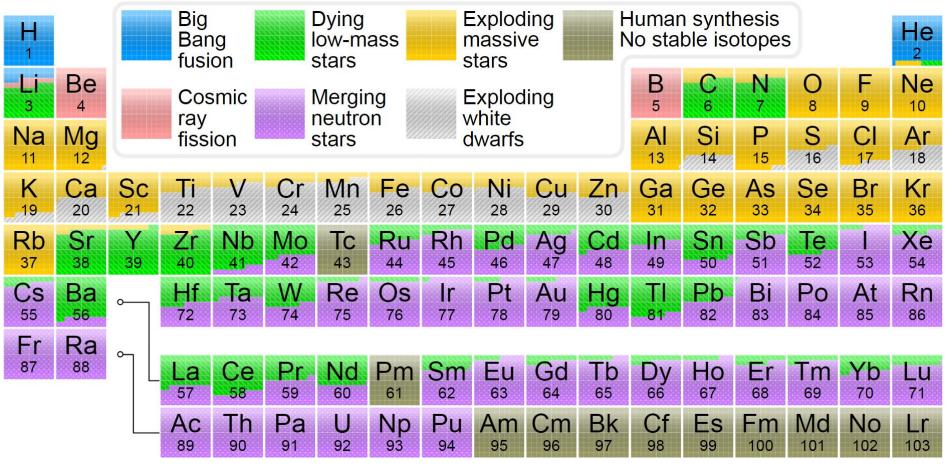
The origin of chemical elements

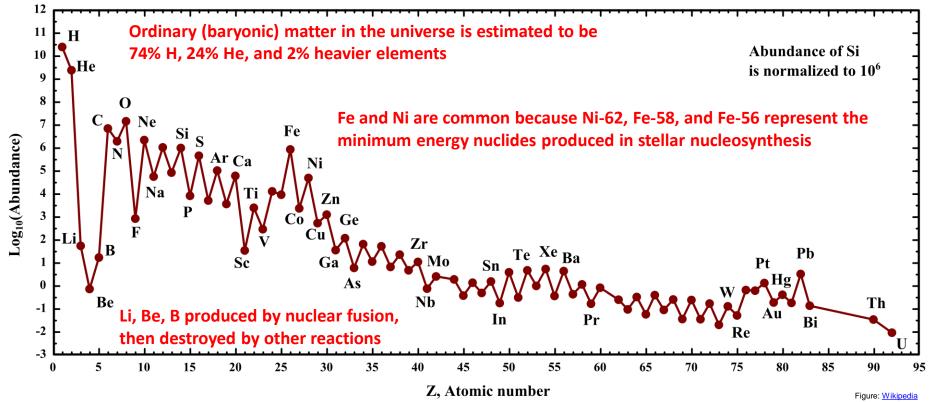
- Big Bang nucleosynthesis (H, He, some Li)
- Stellar nucleosynthesis
 - Elements up to Ni are created by fusion reactions (see Table below)
- Elements heavier than Ni are created by neutron and proton capture processes
 - Supernova nucleosynthesis and merging neutron stars (ongoing research!)

Table 1 Hydrostatic nuclear burning stages in massive stars. The table gives burning stages, main and secondary products (ashes), typical temperatures and burning timescales for a $20M_{\odot}$ star, and the main nuclear reactions. An ellipsis $(\cdot \cdot \cdot)$ indicates more than one product of the double carbon and double oxygen reactions, and a chain of reactions leading to the buildup of iron group elements for silicon burning.

Fuel	Main products	Secondary products	T (10^9 K)	Duration (yr)	Main reaction
Н	Не	¹⁴ N	0.037	8.1×10^6	$4H \rightarrow {}^{4}He$ (CNO cycle)
Не	O, C	¹⁸ O, ²² Ne	0.19	1.2×10^{6}	$3^4 \text{He} \rightarrow {}^{12}\text{C}$
	,	s-Process			$^{12}\text{C} + ^{4}\text{He} \rightarrow ^{16}\text{O}$
C	Ne, Mg	Na	0.87	9.8×10^{2}	$^{12}C + ^{12}C \rightarrow \cdots$
Ne	O, Mg	Al, P	1.6	0.60	$^{20}\text{Ne} \rightarrow ^{16}\text{O} + ^{4}\text{He}$
					20 Ne + 4 He \rightarrow 24 Mg
O	Si, S	Cl, Ar,	2.0	1.3	$^{16}O + ^{16}O \rightarrow \cdots$
		K, Ca			
Si	Fe	Ti, V, Cr,	3.3	0.031	28 Si $\rightarrow ^{24}$ Mg $+ ^{4}$ He \cdots 28 Si $+ ^{4}$ He $\rightarrow ^{24}$ Mg \cdots
		Mn, Co, Ni			28 Si + 4 He \rightarrow 24 Mg···

Main origin of chemical elements

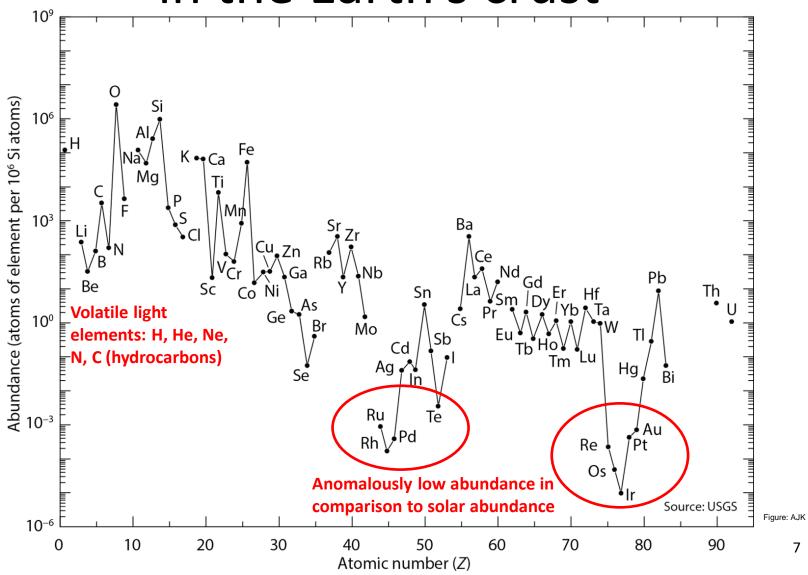



Figure: Wikipedia

https://en.wikipedia.org/wiki/Stellar_nucleosynthesis

https://en.wikipedia.org/wiki/Supernova_nucleosynthesis

http://blog.sdss.org/2017/01/09/origin-of-the-elements-in-the-solar-system/


Abundances of the elements in the Solar system

Two general trends:

- 1. A decrease in abundance as elements become heavier
- An alternation of abundance in elements as they have even or odd atomic numbers (the Oddo-Harkins rule, arises from the details of the helium burning process)

Abundances of the elements in the Earth's crust

Abundan	ce and form	of the most	abundant	elements in	Earth's continental crust. Shannon ionic radii: $O^{2-} = 140 \text{ pm}$
Order of abundance	Element	Weight % in crust	Molar % in crust	Volume % in crust	Si ⁴⁺ = 40 pm Typical natural form at Earth surface
1	Oxygen	46.3	60.2	94.2	O ²⁻ in minerals and H ₂ O; small amount as elemental O ₂ in atmosphere
2	Silicon	28.2	20.8	0.8	Almost all as Si4+ in silicate minerals; some as H4SiO4 in seawater
3	Aluminum	8.1	6.2	0.4	Almost all as Al ³⁺ in minerals
4	Hydrogen	0.1	2.9	-	Almost all as H ⁺ in H ₂ O, OH ⁻ in minerals, and HCO ₃ ⁻
5	Sodium	2.4	2.2	1.1	All as Na ⁺ , largely in minerals but also in seawater
6	Calcium	4.1	2.1	1.2	All as Ca2+, largely in minerals but also in seawater
7	Iron	5.4	2.0	0.4	Mostly as Fe ²⁺ and Fe ³⁺ in minerals
8	Magnesium	2.3	2.0	0.3	All as Mg ²⁺ , largely in minerals but also in seawater
9	Potassium	2.1	1.1	1.5	All as K ⁺ , largely in minerals but also in seawater
10	Titanium	0.5	0.2	0.04	Almost all as Ti ⁴⁺ in minerals

Percentages are calculated from data for average continental crust in Appendix III of Krauskopf (1979). For a more recent but less complete compilation, see Taylor

0.002

0.1

0.0003

0.007

0.004

and McLennan (1985) The abundances of the first fifteen elements listed add up to 99.77 molar % of average crust. Gold is included solely to allow comparison of these 15 most abundant elements to a very scarce element. Volume percent for oxygen in boldface illustrates the paraphrase by Mason (1958) of the words of Viktor Goldschmidt that "the lithosphere may well be called the oxysphere".

Mostly as P^{5+} in phosphate (PO_4^{3-})

All as F⁻, largely in minerals but also in seawater

Range of valence states from 4- to 4+

Mostly as Mn²⁺, Mn³⁺, and Mn⁴⁺ in minerals

Almost all as S⁶⁺ in sulfate (SO₄²⁻) or S²⁻ in sulfides

As Au⁰ and Au⁺

11

12

13

14

15

≥73

Phosphorous

Fluorine

Carbon

Manganese

Sulfur

Gold

0.1

0.06

0.02

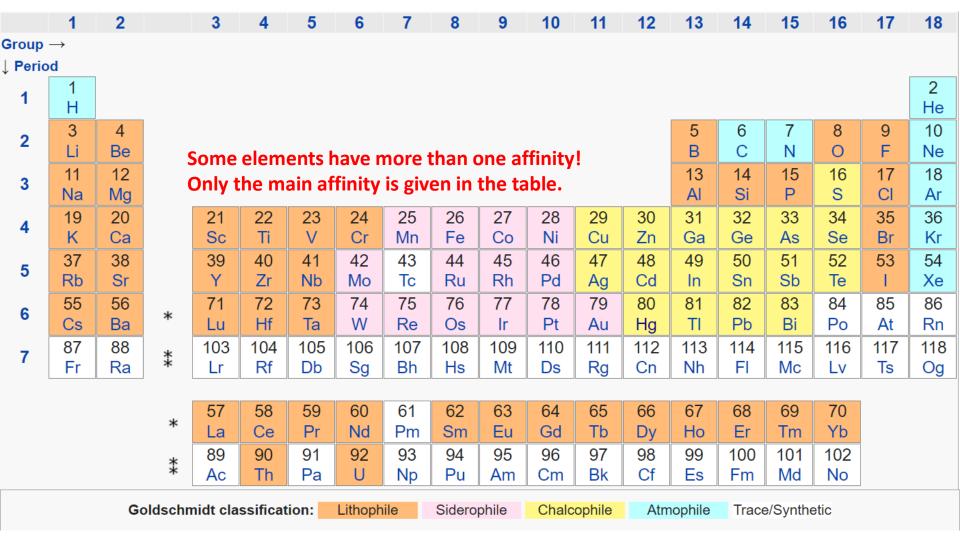
0.1

0.03

0.0000003

0.1

0.07

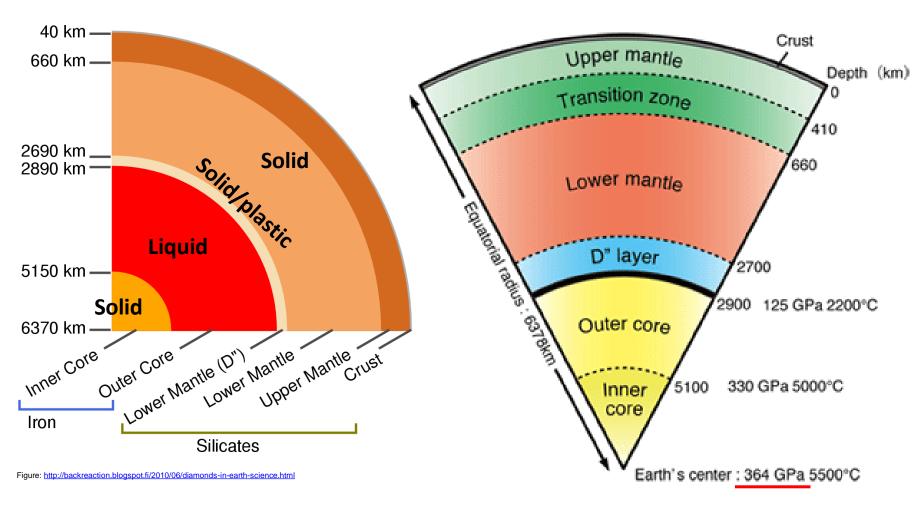

0.04

0.04

0.02

0.00000003

Goldschmidt classification (1/3)


Goldschmidt classification (2/3)

- **Lithophile** = rock-loving elements
 - Remain on or close to the surface because they combine readily with oxygen, forming compounds that do not sink into the core
 - The strong affinity for oxygen causes them to associate very strongly with silica, forming relatively low-density minerals that thus float to the crust
 - Many lithophile metals are of considerable value as structural metals (magnesium, aluminium, titanium, vanadium), but the process of smelting these metals is *extremely energy-intensive*
- **Siderophile** = iron-loving elements
 - High-density transition metals which tend to sink into the core because they dissolve readily in iron either as solid solutions or in the molten state
 - Many siderophile elements have very small affinity for oxygen (e.g. gold)
 - Form stronger bonds with carbon or sulfur, but even these are not strong enough to separate out with the chalcophile elements
 - Include technologically highly important precious metals

Goldschmidt classification (3/3)

- Chalcophile = chalcogen-loving / ore-loving elements
 - Remain on or close to the surface because they combine readily with sulfur and/or some other chalcogen other than oxygen, forming compounds which do not sink into the core
 - Sulfides are much denser than the silicate minerals formed by lithophile elements and chalcophile elements separated below the lithophiles at the time of the first crystallisation of the Earth's crust
 - Because the minerals they form are nonmetallic, this depletion has not reached the levels found with siderophile elements
 - Chalcophiles can be easily extracted by reduction with coke
- Atmophile = gas-loving (volatile) elements
 - Remain mostly on or above the surface because they are, or occur in, liquids and/or gases at temperatures and pressures found on the surface
 - Strongly depleted on earth as a whole relative to their solar abundances owing to losses from the atmosphere during the formation of the Earth
 - Carbon: CO, CO₂, hydrocarbons

Structure of Earth

Example: graphite-diamond phase transition occurs at \sim 130 km depth for T = 800°C

Figure: http://www.spring8.or.jp/en/news_publications/research_highlights/no_57/

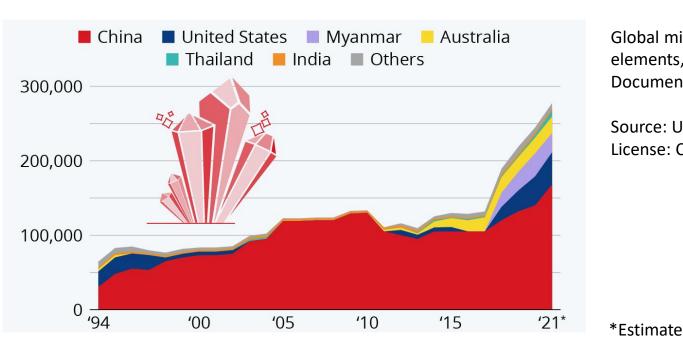
Geophysical exploration

- Seismic methods
 - Example: Reflection seismology
 - When a seismic wave travelling through the Earth encounters an interface between two materials with different acoustic impedances, some of the wave energy will **reflect** off the interface and some will **refract** through the interface
 - Seismic source: dynamite, seismic vibrator ("thumper truck")
- Geodesy and gravity techniques
- Magnetic techniques (e.g. aeromagnetic surveys)
- Electrical and electromagnetic techniques
 - Magnetotellurics
 - Electrical resistivity tomography
 - Ground-penetrating radar
- The brute-force approach: drill a hole and explore what comes out (next slide)

Kola Superdeep Borehole

- Drilling began in 1970, reached 12 262 meters in 1989
 - Abandoned in 2006
 - Mariana Trench: 10 994 m
- Site of fascinating geophysical discoveries, but actually reached only 1/3 of the estimated thickness of the Baltic continental crust (35 km)

The borehole, welded shut


Accessibility and supply of elements (1/3)

1		Remaining years											2				
н		until depletion of					733.5-50 years 3333									He	
1.00794		known reserves				A second	5-50	years								4.002602	
3	4		(Da	(based on current rate of extraction)				50-100 years				5	6	7	8	9	10
Li	Be				-	I	5	0-100) yea	rs		В	С	N	0	F	Ne
6.941	9.012182			5-50 y					_			10.811	12.0107	14.00674	15.9994	18.99840	20.1797
11	12		50-100 years			10	00-50	0 yea	irs		13	14	15	16	17	18	
Na	Mg			100-500 years								Al	Si	Р	S	Cl	Ar
22.98977	24.3050		_									26.98153	28.0855	39.97376	32.066	35.4527	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33 grap	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.95591	47.867	50.9415	51.9961	54.93804	55.845	58.93320	58.6934	63.546	65.39	69.723	72.61	74.92160	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47 / 10000	48	49	50	51 ///////	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	ln 💮	Sn	Sb	Те	100	Хe
85.4678	87.62	88.9085	91.224	92.90638	95.94	(98)	101.07	102.9055	106.42	107.8682	112.411	114.818	118.760	121.760	127.60	126.9044	131.29
55	56	57	72	73	74	75	76	77 June 1	78	79	80	81	82	83	84	85	86
Cs	Ва	La *	Hf	Та	W	Re	Os	lr 🦠	Pt	Au	Hg	(TI %	Pb	Bi	Po	At	Rn
132.9054	137.327	138.9055	178.49	180.9479	183.84	186.207	190.23	192.217	195.078	196.9665	200.59	204.3833	270.2	208.9804	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	Ac‡	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rq	Uub	Uut	Uuq	Uup	Lv	Uus	Uuo
(223)	226.025	(227)	(257)	(260)	(263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)	(292)		1

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
Lanthanides *	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	140.9077	144.24	(145)	150.36	151.964	157.25	158.9253	158.9253	162.50	164.9303	167.26	168.9342	173.04	174.967
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Actinides ‡	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0381	231.0289	238.0289	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Accessibility and supply of elements (2/3)

- The crustal abundance of elements is not equal to their accessibility
 - Elements are not equally distributed throughout the Earth
- Some elements have been declared to be Critical Raw Materials (CRM) by EU
- For example, Rare Earth Elements (REE) are often discussed as critical in supply
 - For REE, it is actually a question of supply and demand
 - In 2011, there was a steep increase in prices
 - New mining operations have been opened around the world after that
- So far, new supply of elements has emerged when the price has been right

Global mine production of rare earth elements, in tons (statista.com). Documented production only.

Source: United States Geological Survey

License: CC-BY-ND

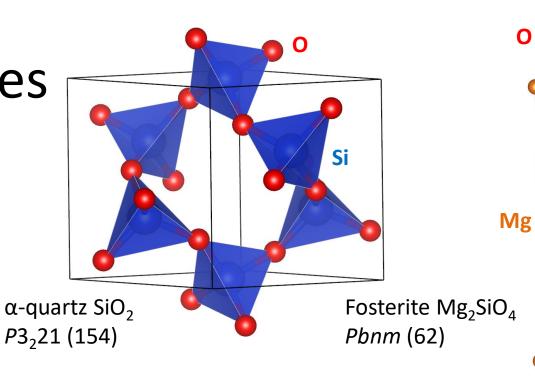
Accessibility and supply of elements (3/3)

- The key question is, should we really push to find more elements at any cost?
 - Environmental problems become more severe as previously inaccessible resources are being utilized
 - Minerals are one of the most important reasons to human conflicts (for example, Democratic Republic of the Congo)
 - It is not sensible to use easily accessible resources for non-recyclable use-oncethrow-away consumer goods and leave no reserves for the future
- Possible remedies:
 - 1. Plan the use of resources in a better way
 - 2. Improve recycling/re-use
 - 3. Substitute Critical Raw Materials with new functional materials
- All these solutions require chemists and materials scientists!

Minerals

Minerals

- 1995 definition of a mineral from The International Association of Minerals (IMA):
 - "A mineral is an element or chemical compound that is normally crystalline and that has been formed as a result of geological processes"
- More detailed (and controversial) definition (Tasa 2007):
 - 1. Naturally occurring
 - 2. Stable at room temperature
 - 3. Represented by a chemical formula (note: many are solid solutions!)
 - 4. Usually abiogenic (not resulting from the activity of living organisms)
 - 5. Ordered atomic arrangement
- IMA has approved almost 6000 minerals (2024)


Mineral-related databases

- IMA Database of Mineral Properties: https://rruff.info/ima/
 - For instructions, see MyCourses -> Databases -> IMA documentation
- The RRUFF™ Project: https://rruff.info
 - Integrated database of Raman spectra, X-ray diffraction and chemistry data for minerals (> 20 000 Raman spectra)
 - For instructions, see MyCourses -> Databases -> RRUFF documentation
- American Mineralogist Crystal Structure Database (AMSCSD)
 - Over 4000 crystal structures
 - Shortcut to all structures: http://rruff.geo.arizona.edu/AMS/all_minerals.php
- Minerals are a popular topic and hence Wikipedia is also an excellent resource
 - https://en.wikipedia.org/wiki/Category:Minerals by crystal system

IMinorala consisting		A table of sys	tematic miner	alogy I: basic categories				
Minerals consisting of uncharged atoms (i.e., in elemental state)	Minerals consisti bonded to sing (no radical groups d	gle anions	Minerals consisting of cations bonded to negatively-charged radical groups (i.e., to complex ions like CO ₃ ²⁻ or AsS ₃ ²⁻)					
		Fluorides Fluorite (CaF ₂) Chlorides	Fluosalts:	Fluosilicates Ferruccite (NaBF ₄) Fluosilicates Hieratite (K ₂ SiF ₆)	ions			
	with 1- anions)	Halite (NaCl) Bromides Bromargyrite (AgBr) Iodides Iodargyrite (AgI)	Silicat	es form 90% of the Earth's crust	Negative charge in mineral comes from halide anions			
Native elements	Н	Oxides Hematite (Fe ₂ O ₃)	Oxysalts:		_			
Sulfur (S) Diamond (C) Copper (Cu)	"Group VI -ides" (and thus minerals with 2- anions)	Sulfides Galena (PbS)	Sulfosalts:	Sulfarsenates Sulfoyanadates Sulfogermanates Sulfarsenites Sulfantimonates Sulfantimonites Sulfostannates Sulfobismuthites	cal groups in			
		Selenides chavalite (FeSe)	Seleniosalts:	Selenioantimonates Seleniobismuthites Permingeatite Seleniobismuthites (Cu ₃ SbSe ₄)	"Radi			
		Tellurides Altaite (PbTe)	Tellurisalts:	Telluribismuthites Volynskite (AgBiTe ₂)	Sec			
	"Group V -ides" (and thus minerals with 3- anions) Antimonides & Sob "Group IV -ides" (and thus minerals	Nitrides Dsbornite (TiN) Phosphides rringerite (Fe,Ni) ₂ P Arsenides Bilingite (FeAs ₂) Bismuthides Bismuthides Biolevskite (PdBi) Carbides Bioissanite (SiC) Silicides Bupeiite(Fe ₃ Si)	abundant mi	A bit of the periodic table: A bit	Group IV and V elements			

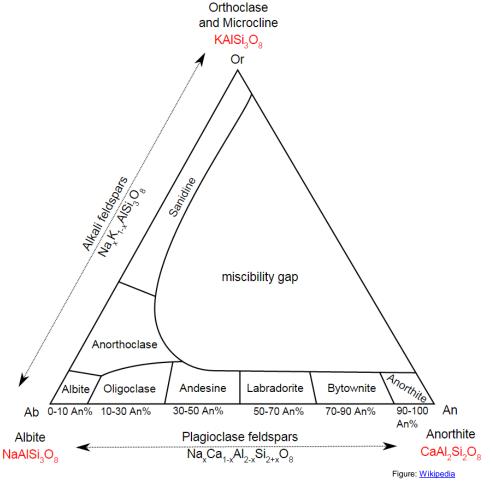
This table does not show hybrid categories that would include minerals like brenkite (Ca₂CO₃F₂) or kermesite (Sb₂S₂O). It also does not show H⁺-bearing minerals; their inclusion would best be shown with a third dimension leading to hydroxides, bicarbonates, bisulfates, etc.

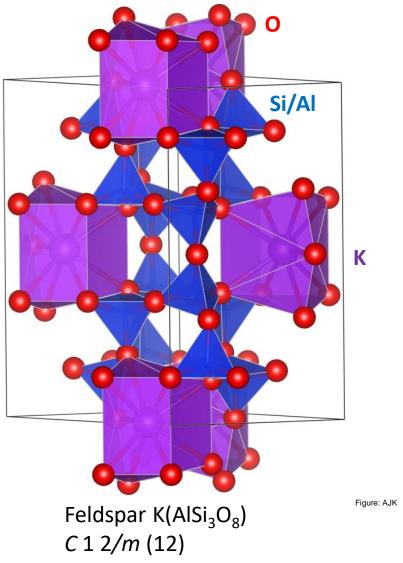
Silicates

Ref: West p. 81

Table 1.27 Relation between chemical formula and silicate anion structure

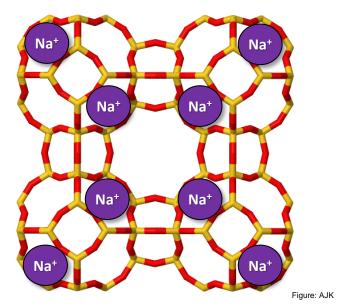
	Number o	f oxygens per Si		
Si:O ratio	Bridging	Non-bridging	Type of silicate anion	Examples
1:4	0	4	Isolated SiO ₄ ⁴ -	Mg ₂ SiO ₄ olivine, Li ₄ SiO ₄
1:3.5	1	3	Dimer Si ₂ O ₇ ⁶ -	Ca ₃ Si ₂ O ₇ rankinite, Sc ₂ Si ₂ O ₇ thortveite
1:3	2	2	Chains $(SiO_3)_n^{2n-}$	Na ₂ SiO ₃ , MgSiO ₃ pyroxene
			Rings, e.g. $Si_3^{n}O_9^{6-}$	CaSiO ₃ ^a , BaTiSi ₃ O ₉ benitoite
			$Si_6O_{18}^{12-}$	$Be_3Al_2Si_6O_{18}$ beryl
1:2.5	3	1	Sheets $(Si_2O_5)_n^{2n-}$	Na ₂ Si ₂ O ₅ "Tectosilicates", Quartz family +
1:2	4	0	3D framework	SiO_2^b aluminosilicates: 75% of the crust


 $^{{}^}a\text{CaSiO}_3$ is dimorphic. One polymorph has $\text{Si}_3\text{O}_9^{6-}$ rings and the other has infinite $(\text{SiO}_3)_n^{2n-}$ chains.


Figures: AJK

^bThe three main polymorphs of silica, quartz, tridymite and cristobalite, each have a different kind of 3D framework structure.

Aluminosilicates: Feldspars


 By far the most abundant group of minerals in the earth's crust, forming about 60% of terrestrial rocks

Aluminosilicates: Zeolites

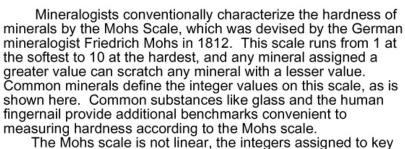
- Microporous aluminosilicate minerals
 - Cronstedt 1756: heating *stilbite*,
 NaCa₄(Si₂₇Al₉)O₇₂·28(H₂O), produced steam
 - $Z\acute{e}\bar{o}$ -> to boil
 - Líthos -> rock
- Can be considered as molecular sieves, with actual industrial applications in:
 - lon-exhange (e.g. water purification and softening)
 - Catalysis (e.g. In petrochemical industry)
- http://www.iza-structure.org/databases/
- http://www.hypotheticalzeolites.net/

LTA zeolite (Pm-3m) [Na₁₂(H₂O)₂₇]₈[Al₁₂Si₁₂ O₄₈]₈

Hardness of minerals as an example of physical property trends

Hardness of minerals I: the Mohs scale

8000


6000

Knoop Hardness

4000

2000

0

minerals do not allow determination of non-integer intermediate values, and the procedure for "scratching" was not well defined. More quantitative schemes to measure hardness include the Knoop scale, devised by Frederick Knoop of the U.S. National Bureau of Standards in 1939. Knoop hardness of a substance is determined by measuring the area of a "diamond-shaped" indentation made by a particular set of facets of a diamond pressed into the substance at a set pressure for a set time. Another scheme is the Vickers hardness test, devised by R.L. Smith and G.E. Sandland, engineers at Vickers, Ltd. of the United Kingdom in the 1920s. Vickers hardness is similarly determined by measuring the area of a square indentation made by a diamond at a given pressure. Other measures of hardness include Brinell Hardness, which measures the area of the indentation made by a steel sphere, and Rockwell Hardness, which measures the depth of the indentation made by a steel

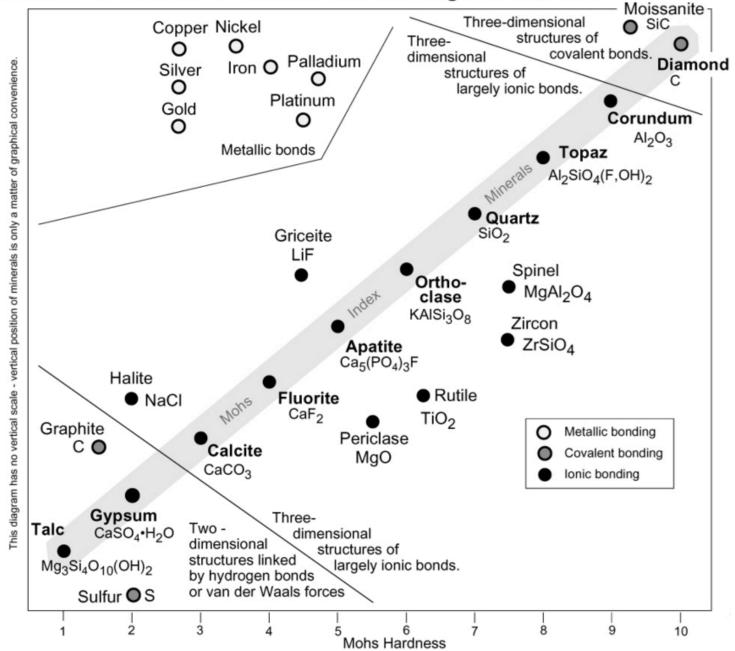
sphere or a diamond-tipped cone. This plot shows the non-linearity of the Mohs 500 Corundum scale by comparing the hardness of its index minerals to their hardness as measured by the Knoop and Vickers methods. Further pages Knoop in this series seek to explain some of the Topaz Hardness controls on hardness of minerals. Ortho- Quartz clase **Apatite** Talc Gypsum Calcite Fluorite Vickers Hardness 7 9 10 Finger nail Mohs Hardness

Window glass

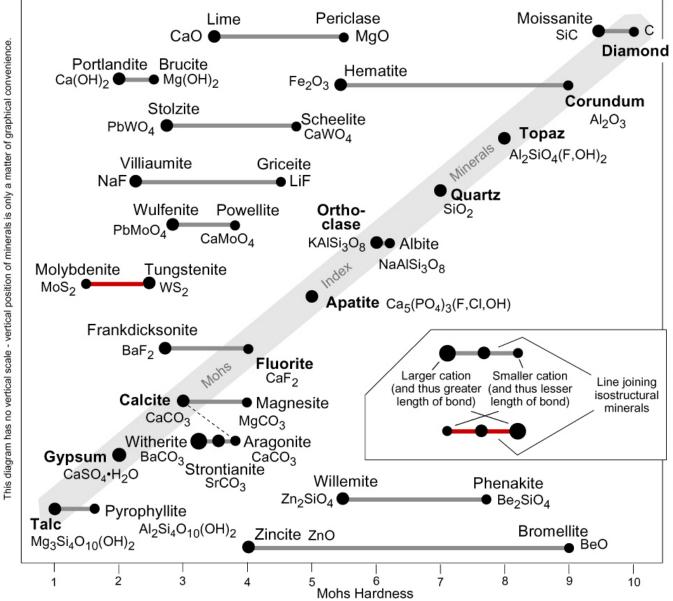
Steel file

ΑK

- 1500


-1000

VcikersHardness


Diamond

Steel of a pocket knife

Hardness of minerals II: variation with bonding and structure

Hardness of minerals IVa: variation with bond length and cation size



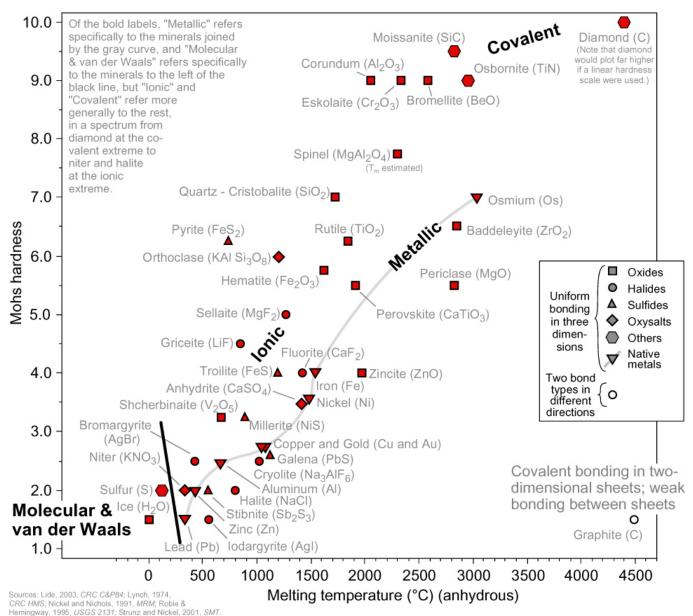
One control on hardness of a mineral is the length of bonds within that mineral. To illustrate this point, this diagram shows pairs or sets of isostructural minerals. In almost all of the examples shown on this diagram, minerals with larger cations, and thus greater bond lengths, are softer than their counterparts with smaller cations and thus shorter bonds. Much the same point can be made with regard to anion size, as is shown in Part IVb of this series.

One pair of isostructural minerals shown here, the one joined by a red line, has hardnesses opposite the pattern described above. Those minerals are molybdenite and tungstenite, the sulfides of the relatively soft cations Mo4+ and W4+. Bonding in these two minerals may be sufficiently covalent, and bonding in tungstenite more covalent, that the more covalent bond causes greater hardness of tungstenite. The same sort of trend can be seen with regard to Ag⁺ and Pb²⁺ minerals in Part IVb of this series.

Hardness data are from Nickel, E.H., and Nichols, M.C., 1991, *Mineral Reference Manual:* New York, Van Nostrand Reinhold, 250 p.

Hardness of minerals IVb: variation with bond length and anion size

This diagram has no vertical scale - vertical position of minerals is only a matter of graphical convenience.


One control on the hardness of a mineral is the length of bonds within that mineral. To illustrate this point, this diagram shows pairs of chemically analogous minerals that differ only in their anions. In most of the examples shown on this diagram (the ones joined by light gray lines), minerals with larger anions, and thus greater bond lengths, are softer than their counterparts with smaller anions and thus shorter bonds.

However, in two cases shown here (the ones joined by red lines), larger anions lead to harder minerals. These are the examples where soft cations, Ag⁺ and Pb²⁺, bond to 2- anions. In these cases, the bonds of soft cations to increasingly large and thus increasingly soft anions may lead to sufficiently covalent bonds to cause greater hardness of minerals.

Hardness data are from Nickel, E.H., and Nichols, M.C., 1991, Mineral Reference Manual: New York, Van Nostrand Reinhold, 250 p.

* The hardness of pyrolusite is commonly listed as 2, but that is the value for earthy masses of minute crystals. The hardness of a single crystal of pyrolusite is 6.5 (Gaines et al., 1997, *Dana's New Mineralogy:* New York, John Wiley & Sons, 1819 p.).

Melting temperature and hardness of minerals

The plot at left shows that there is a general correlation between melting temperature of minerals and their hardness. This relationship is most striking for the native metals, which are connected by a curve here. However, the correlation holds for all the minerals shown with filled symbols $(r^2 = 0.733)$.

The reason for this relationship is that both melting temperature (a measure of susceptibility to thermal destruction) and hardness (a measure of susceptibility to mechanical destruction) depend on bond strength. Minerals with three-dimensional frameworks of covalent bonds have great hardness and high melting temperatures: diamond is the ultimate example. At the other extreme. minerals of molecules held together by weak bonds like van der Waals forces (for sulfur) and hydrogen bonds (the molecular bond for ice) have low hardness and melting temperature.

Graphite falls off this trend, for good reason. Its strong covalent bonds in two dimensions preclude disintegration and melting except at extremely high temperature, but the weak bonds between sheets (i.e., in the third dimension) allow mechanical deformation that we recognize as a low hardness.

LBR HardnessMeltingPlot06 2/2008