Lecture 11: *d*-electrons and Ligand Field Theory

- Concept of oxidation state
- Oxidation states in *d*-block metal compounds
- Crystal field theory
- Ligand field theory
 - Jahn-Teller distortion
- Magnetic moments due to unpaired *d*-electrons

d

d-block metals

V•T•E	T'E Periodic table of electronegativity by Pauling scale																	
	ightarrow Atomic radius decreases $ ightarrow$ Ionization energy increases $ ightarrow$ Electronegativity increases $ ightarrow$																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Group – ↓ Period	Foriod																	
1	H 2.20		Mai	ny oxi	datio	n state	es, ricl	h chei	nistry	,								He
2	Li 0.98	Be 1.57	Mai	ny ma	gnetio	c com	pound	ds (un	paired	d <i>d</i> -ele	ectror	ns)	B 2.04	C 2.55	N 3.04	0 3.44	F 3.98	Ne
3	Na 0.93	Mg 1.31	Mai	Many colorful compounds due to <i>d</i> - <i>d</i> transitions										Si 1.90	P 2.19	S 2.58	CI 3.16	Ar
4	K 0.82	Ca 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2,96	Kr 3.00
5	Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2 20	Ag 1.93	Cd	In 1 78	Sn 1.96	Sb 2.05	Te 2.1	l 2.66	Xe 2.60
6	Cs 0.79	Ba 0.89	*	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 1.87	Bi 2.02	Po 2.0	At 2.2	Rn 2.2
7	Fr 0.7	Ra 0.9	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	FI	Uup	Lv	Uus	Uuo
		*	La 1.1	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.2	Gd 1.2	Tb 1.1	Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25	Yb 1.1	Lu 1.27	
		**	Ac 1.1	Th 1.3	Pa 1.5	U 1.38	Np 1.36	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.3	Cf 1.3	Es 1.3	Fm 1.3	Md 1.3	<mark>No</mark> 1.3	Lr 1.3	

Figure: Wikipedia

Elemental *d*-block metals

21	22	23	24	25	26	27	28	29	30	Figure: Wikipedi
Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	
НСР	HCP	BCC	BCC	BCC	BCC	HCP	FCC	FCC	HCP	
39	40	41	42	43	44	45	46	47	48	
Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	
НСР	НСР	BCC	BCC	НСР	НСР	FCC	FCC	FCC	НСР	
	72	73	74	75	76	77	78	79	80	
	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	
	НСР	BCC/TETR	BCC	НСР	HCP	FCC	FCC	FCC	RHO	
	104	105	106	107	108	109	110	111	112	
	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	
	[HCP]	[BCC]	[BCC]	[HCP]	[HCP]	[FCC]	[BCC]	[BCC]	[HCP]	

Cu (fcc)

Fe (bcc)

Zn (hcp)

Oxidation state (1)

- The exact definition of an oxidation state has been debated for a very long time
- IUPAC recommendation ("Comprehensive definition of oxidation state")
 - The oxidation state of an atom is the <u>charge of this atom</u> after <u>ionic</u> <u>approximation of its heteronuclear bonds</u>
- In other words:
 - 1. When a bond has two different atoms, for example O–H, all bonding electrons go to the more electronegative atom.
 - 2. When a bond has two similar atoms, for example F–F, all bonding electrons are divided equally between the atoms.
 - When points (1) and (2) have been sorted out for all bonds, the number of electrons for each atom is calculated and compared to a neutral atom → oxidation state.
- In a neutral molecule, the sum of oxidation states must be zero!

In H₂O, oxidation states are O(–II) and H(I). Oxidation states are **formal**, they do not correspond to real charges. H₂O is not $[H^+]_2[O^{2-}]!$ The bonding is polar covalent.

Oxidation state (2)

- Oxidation state is a key concept for understanding the chemistry of *d*-block metals
- *d*-metals show more versatile oxidation states in comparison to main group elements.
- *d*-metals also show compounds where the same metal has different oxidation states in the compound. For example, iron(II,III) oxide Fe₃O₄ (mineral *magnetite*).
- In many cases it is crucial to know the **crystal structure** of the material to determine the oxidation states.
- Using $FeCl_2$ and $FeCl_3$ as examples (Pauling electronegativities: Fe = 1.83, Cl = 3.16):

Figures: AJK

Known oxidation states for *d*-metals

4 <i>d</i>				Y	+1	+2	+3					
		-2		Zr	+1	+2	+3	+4				
	-3		-1	Nb	+1	+2	+3	+4	+5			
-4		-2	-1	Мо	+1	+2	+3	+4	+5	+6		
	-3		-1	Тс	+1	+2	+3	+4	+5	+6	+7	
-4		-2		Ru	+1	+2	+3	+4	+5	+6	+7	+8
	-3		-1	Rh	+1	+2	+3	+4	+5	+6		
				Pd	+1	+2	+3	+4	+5	+6		
		-2	-1	Ag	+1	+2	+3	+4				
		-2		Cd	+1	+2						

d-block metals show a larger number of oxidation states in comparison to main group elements or *f*-block elements

The most common oxidation states are shown in bold

Ref: <u>https://en.wikipedia.org/wiki/</u> List of oxidation states of the elements (based on Greenwood and Earnshaw + recent literature)

5 <i>d</i>		-2		Hf	+1	+2	+3	+4						
	-3		-1	Та	+1	+2	+3	+4	+5					
-4		-2	-1	W	+1	+2	+3	+4	+5	+6				
	-3		-1	Re	+1	+2	+3	+4	+5	+6	+7			
-4		-2	-1	Os	+1	+2	+3	+4	+5	+6	+7	+8		
	-3		-1	Ir	+1	+2	+3	+4	+5	+6	+7	+8	+9	
	-3	-2	-1	Pt	+1	+2	+3	+4	+5	+6			Yea	ar
	-3	-2	-1	Au	+1	+2	+3		+5				20	14
		-2		Hg	+1	+2								e

LETTER Nature **2014**, *514*, 475.

Identification of an iridium-containing compound with a formal oxidation state of IX

Guanjun Wang¹, Mingfei Zhou¹, James T. Goettel², Gary J. Schrobilgen², Jing Su³, Jun Li³, Tobias Schlöder⁴ & Sebastian Riedel^{4,5}

One of the most important classifications in chemistry and within the periodic table is the concept of formal oxidation states¹⁻⁴. The preparation and characterization of compounds containing elements with unusual oxidation states is of great interest to chemists⁵. The highest experimentally known formal oxidation state of any chemical element is at present VIII²⁻⁴, although higher oxidation states have been postulated^{6,7}. Compounds with oxidation state VIII include several xenon compounds⁸ (for example XeO_4 and XeO_3F_2) and the wellcharacterized species RuO₄ and OsO₄ (refs 2-4). Iridium, which has nine valence electrons, is predicted to have the greatest chance of being oxidized beyond the VIII oxidation state¹. In recent matrix-isolation experiments, the IrO4 molecule was characterized as an isolated molecule in rare-gas matrices⁹. The valence electron configuration of iridium in IrO_4 is $5d^1$, with a formal oxidation state of VIII. Removal of the remaining d electron from IrO₄ would lead to the iridium tetroxide cation ($[IrO_4]^+$), which was recently predicted to be stable¹⁰ and in which iridium is in a formal oxidation state of IX. There has been some speculation about the formation of $[IrO_4]^+$ species^{11,12}, but these experimental observations have not been structurally confirmed. Here we report the formation of $[IrO_4]^+$ and its identification by infrared photodissociation spectroscopy. Quantum-chemical calculations were carried out at the highest level of theory that is available today, and predict that the iridium tetroxide cation, with a T_d -symmetrical structure and a d^0 electron configuration, is the most stable of all possible $[IrO_4]^+$ isomers.

Figure 1 | Mass spectra of the iridium oxide cations. The cations are produced by pulsed-laser vaporization of an iridium metal target in an expansion of helium (**a**) or argon (**b**) seeded by dioxygen. The isotopic splitting of iridium can clearly be resolved with the relative peak areas matching the natural abundance isotopic distribution (¹⁹¹Ir, 37.3%; ¹⁹³Ir, 62.7%). *m/z*, mass/ charge ratio; intensity is shown in arbitrary units.

Electron configurations for 3d metals

Metal	Z	Group	The most common oxidation states
Sc	21	3	+3 (d ⁰)
Ti	22	4	+4 (d ⁰)
V	23	5	+2 (d ³), +3 (d ²), +4 (d ¹), +5 (d ⁰)
Cr	24	6	+3 (d ³), +6 (d ⁰)
Mn	25	7	+2 (d ⁵), +4 (d ³), +7 (d ⁰)
Fe	26	8	+2 (d ⁶), +3 (d ⁵)
Со	27	9	+2 (d ⁷), +3 (d ⁶)
Ni	28	10	+2 (d ⁸)
Cu	29	11	+1 (d ¹⁰), +2 (d ⁹)
Zn	30	12	+2 (d ¹⁰)

In compounds where the metal is oxidized, consider that it only has *d*-electrons left

Non-bonding *d*-electrons

- The mutual interaction between *bonding* electron pairs is similar in *d*-block metal compounds and main group compounds
- However, *d*-metals can possess *nonbonding d*-electrons in their five *d* orbitals.
- *d* electron configurations can be determined with *ligand field theory* (LFT)
 - 1. Attain a minimum repulsion with other *d*-electrons
 - 2. Attain a minimum repulsion with the bonding electron pairs (ligands)
- In its original version by Hans Bethe, it was formulated as crystal field theory (CFT)
 - Ligands are treated as point-like ions
 - Only consider electrostatic repulsion between the *d*-electrons and the ligands
- LFT is in principle superseded by the *molecular orbital theory*
 - LFT is still is a convenient and simple tool to understand the bonding and magnetism of *d*-metal compounds

Ligand field theory (1)

- In ligand field theory, the ligands are not just considered as negative point charges, but the covalent nature of the σ-bonding is also taken into account
- The basic concept of the *d*-orbital splitting remains

Ligand field theory (2)

Ref: Müller p. 74

12

- In an octahedral geometry, the t_{2g} and e_g orbitals are separated by energy Δ_0
 - $-\Delta_0$ depends on the repulsion between the bonding electron pairs and *d* electrons
- Δ_0 decreases when the ligand electronegativity increases
 - Bonding electrons are pulled further from the metal *d* electrons -> less repulsion
- Δ_0 decreases when the size of the ligand atom increases
 - Bonding electrons are distributed over a larger space -> less repulsion
- Δ_0 is large for ligands that form multiple bonds with the metal atom (e.g. CO, CN⁻)
 - More bonding electrons -> more repulsion with the d electrons
- Δ_0 can be measured with spectroscopic methods and the *spectrochemical series* is obtained by ordering different ligands according to decreasing Δ_0 :
 - − CO (strong field, large Δ_0) > CN⁻ > PR₃ > NO₂⁻ > NH₃ > NCS⁻ > H₂O > RCO₂⁻ ≈ OH⁻ > F⁻ > NO₃⁻ > Cl⁻ ≈ SCN⁻ > S₂⁻ > Br⁻ > I⁻ (weak field, small Δ_0)
- 4*d* and 5*d* orbitals have larger overlap with ligand orbitals and larger Δ_0 than 3*d*

$$\Delta_{O} \left[\begin{array}{ccc} & & & & \\ & & & & \\ & & & \\ & & & &$$

Ligand field theory (3)

- LFT can be used to explain the magnetism of *d*-metal compounds
- Because of the splitting of the *d*-orbitals, there is an energetical competition between *high-spin* and *low-spin* configuration of the *d*-orbitals
- The first three *d* electrons occupy the t_{2q} orbitals in accordance to *Hund's rule*
- When four *d* electrons are present, there are two alternatives for the fourth electron
 - The energy for putting a second electron in an already occupied orbital is called the electron pairing energy P
 - If $P > \Delta_0$, the fourth electron will occupy an e_q orbital (high-spin)
 - If $P < \Delta_0$, the fourth electron will occupy a t_{2q} orbital (low-spin)

Jahn-Teller effect (1)

Ref: Müller p. 76

- In a high-spin d^4 complex only one of the two e_q orbitals is occupied
- If d_z^2 is occupied -> repulsion on the bonding electrons of the ligands on the z axis
- The axial ligands are pushed back and the octahedron elongates along the z axis
 - This effect is known as the *Jahn–Teller effect*
- The d_{x-y}^{2-2} orbital could have been occupied, elongating bonds along x and y axes
 - The energy cost of elongating four bonds is higher, and this is less common (but still possible!)
- The J-T effect occurs when degenerate orbitals are unevenly occupied
- **Strong** J–T effect can be observed for the following electronic configurations:

Jahn-Teller effect (2)

• Illustration of tetragonal distortion (elongation) for an octahedral *d*⁹ complex

Other coordination geometries

- The splitting of the *d*-orbitals is different for other coordination geometries
- The figure below shows the most typical geometries for *d*-metals

Relative energies of electrons in *d*-orbitals for different coordination geometries

Most common coordination polyhedra for coordination numbers 2-6

polyhedronc.n.config.central atomexampleslinear2 d^{10} Cu(I), Ag(I),Cu_2O, Ag(CN)_2^-,arrangementAu(I)He(II)Au(C)^* Au(CI^-, II)	gCl ₂ , HgO*
linear 2 d^{10} Cu(I), Ag(I), Cu ₂ O, Ag(CN) ₂ ⁻ , Au(I) Ha(II) Au(I) d^{10} Au(I) d^{10} Cu ₂ O, Ag(CN) ₂ ⁻ , Au(I) d^{10} Au(I) d^{10} Au(I) d^{10} Cu ₂ O, Ag(CN) ₂ ⁻ , Au(I) d^{10}	gCl ₂ , HgO*
$A_{\rm H}({\rm I}) = A_{\rm H}({\rm I})$ $A_{\rm H}({\rm I})$	lgCl ₂ , HgO*
arrangement $Au(1), Hg(11)$ $AuCIN, AuCI2, H$	
triangle 3 d^{10} Cu(I), Ag(I), Cu(CN) ₃ ²⁻ , Ag ₂ Cl	3— 5 ,
Au(I), Hg(II) Au(PPh ₃) $^+_3$, HgI 3	
square 4 d^8 Ni(II), Pd(II), Ni(CN) ₄ ²⁻ , PdCl ₂ [*]	,
Pt(II), Au(III) PtH_4^{2-} , Pt(NH ₃) ₂ C	$l_2, AuCl_4^-$
tetrahedron 4 d^0 Ti(IV), V(V), TiCl ₄ , VO ₄ ³⁻ ,	
$Cr(VI), Mo(VI), CrO_3^*, CrO_4^{2-}, Mo$	O_4^{2-}, WO_4^{2-}
$Mn(VII), Re(VII) Mn_2O_7, ReO_4^-$	
$Ru(VIII), Os(VIII) RuO_4, OsO_4$	
d^1 V(IV), Cr(V), VCl ₄ , CrO ₄ ³⁻ ,	
Mn(VI), Ru(VII) MnO_4^{2-} , Ru O_4^{-}	
d^5 Mn(II), Fe(III) MnBr ₄ ²⁻ , Fe ₂ Cl ₆	
d^6 Fe(II) FeCl ₄ ²⁻	
d^7 Co(II) CoCl ₄ ²⁻	
d^8 Ni(II) NiCl ₄ ²⁻	
d^9 Cu(II) CuCl ₄ ^{2-†}	
d^{10} Ni(0), Cu(I), Ni(CO) ₄ , Cu(CN) ³ ₄	}
$Zn(II), Hg(II)$ $Zn(CN)_4^{2-}, HgI_4^{2-}$	
square 5 d^0 Ti(IV), V(V), TiOCl ₄ ²⁻ , VOF ₄ ⁻ ,	
pyramid $Nb(V)$, $NbSCl_4^-$,	
Mo(VI), W(VI), MoNCl ₄ ⁻ , WNCl ₄ ⁻	
d^1 V(IV), Cr(V), VO(NCS) ₄ ²⁻ , CrOO	Cl_4^- ,
$Mo(V), W(V), MoOCl_4^-, WSCl_4^-,$	
Re(VI) ReOCl ₄	
d^2 Os(VI) OsNCl ₄	
d^4 Mn(III), Re(III) MnCl ₅ ²⁻ , Re ₂ Cl ₈	
d^7 Co(II) Co(CN) ₅ ³⁻	
trigonal 5 d_2^2 V(IV) VCl ₃ (NMe ₃) ₂	
bipyramid d^8 Fe(0) Fe(CO) ₅	
octahedron 6 nearly all; rarely Pd(II), Pt(II), Au(III), C	u(I)

endless chain Jahn–Teller distorted

Magnetic moments (1)

- Unpaired electrons of *d*-block metal complexes give rise to magnetic properties
- Magnetic properties are often expressed in terms of the magnetic moment μ, which is directly related to the number of unpaired electrons
- μ arises from electron spin (μ_s) and electron orbital motion (μ_L)
- Electron may be considered as a bundle of negative charge spinning on its axis.
- Spin magnetic moment μ_s for a single electron can be calculated with

$$\mu_S = g\sqrt{s(s+1)}$$

where s is the spin quantum number, $\frac{1}{2}$, and g is the gyromagnetic ratio (~2.00). Substituting for s and g gives $\mu_s = 1.73$ BM for one electron.

• BM = Bohr Magneton (SI units):

$$1 \text{ BM} = \frac{e\hbar}{2m_e}$$

where *e* is the charge, \hbar is the reduced Planck constant, m_e is the electron rest mass.

Ref: West p. 451

Magnetic moments (2)

• In atoms or ions with more than one unpaired electron, the overall spin moment is

$$\mu_S = g\sqrt{S(S+1)}$$

where S is the sum of the spin quantum numbers of the individual unpaired electrons.

• For high-spin Fe³⁺ with five unpaired electrons: $S = 5 \times \frac{1}{2} = \frac{5}{2}$ and $\mu_s = 5.92$ BM.

lon	No. of unpaired electrons	$\mu_{S(calc)}$	$\mu_{(ext{observed})}$
V ⁴⁺	1	1.73	~1.8
V^{3+}	2	2.83	~ 2.8
Cr ³⁺	3	3.87	~3.8
Mn ²⁺	5 (high spin)	5.92	\sim 5.9
Fe^{3+}	5 (high spin)	5.92	\sim 5.9
Fe^{2+}	4 (high spin)	4.90	5.1–5.5
Co ³⁺	4 (high spin)	4.90	~5.4
Co ²⁺	3 (high spin)	3.87	4.1–5.2
Ni ²⁺	2	2.83	2.8-4.0
Cu ²⁺	1	1.73	1.7-2.2

Table 9.3 Calculated and observed magnetic moments (BM) for some transition metal ions

Source: data taken from F. A. Cotton and G. Wilkinson (1966), Advanced Inorganic Chemistry: a Comprehensive Text, 2nd edn, John Wiley & Sons, Inc., New York.

Magnetic moments (3)

• The motion of an electron around the nucleus may give rise to an orbital moment (the expression is applicable to free atoms or ions):

$$\mu_{S+L} = g\sqrt{4S(S+1) + L(L+1)}$$

• *L* is the orbital angular momentum quantum number for the metal ion:

$$L = \hbar \sqrt{l(l+1)}$$

where *I* is the azimuthal quantum number ($s \rightarrow 0$, $p \rightarrow 1$, $d \rightarrow 2$, $f \rightarrow 3$, ...)

- In practice, *L* is often completely or partially quenched in cases where the electric fields on the surrounding atoms or ions restrict the orbital motion
 - In such cases, the observed moments are similar to predicted spin-only values

lon	No. of unpaired electrons	$\mu_{S(ext{calc})}$	$\mu_{S+L(calc)}$	$\mu_{(ext{observed})}$
V ⁴⁺	1	1.73	3.00	~1.8
V ³⁺	2	2.83	4.47	~ 2.8
Cr ³⁺	3	3.87	5.20	~ 3.8
Mn ²⁺	5 (high spin)	5.92	5.92	\sim 5.9
Fe^{3+}	5 (high spin)	5.92	5.92	\sim 5.9
Fe^{2+}	4 (high spin)	4.90	5.48	5.1-5.5
Co ³⁺	4 (high spin)	4.90	5.48	\sim 5.4
Co ²⁺	3 (high spin)	3.87	5.20	4.1-5.2
Ni ²⁺	2	2.83	4.47	2.8-4.0
Cu ²⁺	1	1.73	3.00	1.7-2.2

 Table 9.3
 Calculated and observed magnetic moments (BM) for some transition metal ions

Source: data taken from F. A. Cotton and G. Wilkinson (1966), Advanced Inorganic Chemistry: a Comprehensive Text, 2nd edn, John Wiley & Sons, Inc., New York.