
Introduction

ELEC-E7240 Coding Methods D (5 cr)

Patric Österg̊ard

Department of Information and Communications Engineering
Aalto University School of Electrical Engineering

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 1 / 298

Introduction

Lectures and Exercises

Lectures: Mondays 12–14 and Wednesdays 10–12

Teacher: Prof. Patric Österg̊ard (Kide, Konemiehentie 1, room 3512),
patric.ostergard@aalto.fi

Exercise sessions: Thursdays 14–16

Assistant: Tuomo Valtonen, tuomo.valtonen@aalto.fi

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 2 / 298

Introduction

Contents

B Coding theory

B Coding and decoding algorithms

B Application to digital communication

Cryptography is not considered in this course.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 3 / 298

Introduction

Prerequisites

Good: ELEC-C7220 Informaatioteoria

More importantly: A good mathematical background (algebra, linear
algebra) or an interest in mathematics

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 4 / 298

Introduction

Literature

The following books are particularly appropriate for students in electrical
engineering:

[Wic] S. B. Wicker, Error Control Systems for Digital Communication and
Storage, Prentice-Hall, Upper Saddle River, NJ, 1995. [Course
literature.]

J. Castiñeira Moreira & P. G. Farrell, Essentials of Error-Control Coding,
Wiley, Chichester, UK, 2006. [Course literature for turbo and LDPC
codes.]

S. Lin and D. J. Costello, Jr., Error Control Coding: Fundamentals and
Applications, Second edition, Pearson Prentice Hall, Upper Saddle River,
NJ, 2004.

T. K. Moon, Error Correction Coding: Mathematical Methods and
Algorithms, Wiley, Hoboken, NJ, 2005.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 5 / 298

Introduction

Outline of the Course

1. Introduction (1)
2. Algebra, in particular fields and polynomials over fields (2)
3. Linear block codes, cyclic codes (3)
4. BCH and Reed-Solomon codes (1)
5. Convolutional codes, the Viterbi algorithm (2)
6. Modern coding methods, channels with feedback (2)

To pass the course: See separate document

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 6 / 298

Introduction

Digital Communication Systems (1)

A digital communication system is a means of transporting information
from one party (A) to another (B).

digital The system uses a sequence of symbols from a finite alphabet
(Vq = {0, 1, . . . , q − 1}) to represent the information.
Transmission in digital form allows for error control coding.

The basic elements of a digital communication system:

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 7 / 298

Introduction

Digital Communication Systems (2)

The modulator maps the information symbols onto signals that can be
efficiently transmitted over the communication channel. The selection of a
modulation format is a subject that is outside the scope of this course, but
is treated in various other ELEC courses.

The physical channel attenuates the transmitted signal and introduces
noise. The most commonly assumed noise model is the additive white
Gaussian noise (AWGN) model.

In environments where noise is present, the demodulated data contains
errors. This is usually characterized in terms of a bit error rate (BER).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 8 / 298

Introduction

Shannon and Information Theory

In the late 1940s, the work of Shannon and Hamming at Bell Laboratories
laid the foundation for error control coding.

Shannon The father of information theory with his paper “A
Mathematical Theory of Communication” in 1948. Proved
the limits for ideal error control.

Hamming Presented and analyzed the first practical error control
system (based on Hamming codes).

Shannon’s results in his seminal paper allows to determine the minimum
possible number of symbols necessary for the error-free representation of a
given message. A longer message containing the same information is said
to have redundant symbols.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 9 / 298

Introduction

Codes

On a very general level, encoding is about binary relations between two
sets A (what is encoded) and B (the result of the encoding). The set B is
called a code.

The sets A and B are here typically q-ary strings, but any types of sets can
be considered in general. For example, B could be a set of images, as in
the Quick Response (QR) code.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 10 / 298

Introduction

Code Types (1)

source codes Remove uncontrolled redundancy and format data.

secrecy codes Encrypt information so that the information cannot be
understood by anyone except the intended recipient(s).

error control codes (or channel codes) Format the transmitted information
so as to increase its immunity to noise by inserting controlled
redundancy into the information stream.

Integration of these codes into the basic communication system model is
depicted in [Wic, Fig. 1-3].

B The order of the three codes is crucial!

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 11 / 298

Introduction

Code Types (2)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 12 / 298

Introduction

Strategies with Error Control Codes

When error control codes are used, there are several possible ways of
reacting to a detected error:

1. Request a retransmission of the erroneous word.
2. Tag the word as being incorrect and pass it along.
3. Attempt to correct the errors in the received word.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 13 / 298

Introduction

The Noisy Channel Coding Theorem

Theorem 1-1. With every channel we can associate a “channel capacity”
C . There exist error control codes such that information can be
transmitted across the channel at rates less than C with arbitrarily low
probability of error (bit error rate of the decoded sequence).

B The proof of this theorem only shows that such codes exist. It cannot
be used to construct good codes in practice!

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 14 / 298

Introduction

A Parity-Check Code (1)

Take the output of a binary source and break it up into k-bit blocks of the
form

m = (m0,m1, . . . ,mk−1).

At the end of every such block, append a redundant bit b as follows to get
a codeword (in the rest of this lecture, all additions are carried out modulo
2):

c = (m0,m1, . . . ,mk−1, b), where b =
k−1∑
i=0

mi .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 15 / 298

Introduction

A Parity-Check Code (2)

The receiver adds together the values in each coordinate. If the sum is 1,
we know that the received word is in error.

⇒ All erroneous words that contain an odd number of errors are
detected.

This code is a single-error-detecting (or 1-error-detecting) code. A code is
said to be t-error-detecting if all erroneous words with at most t errors are
detected.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 16 / 298

Introduction

A Hamming Code (1)

Let the message blocks and codeword be as follows (the length of these is
4 and 7, respectively):

m = (m0,m1,m2,m3),

c = (m0,m1,m2,m3, b0, b1, b2),

b0 = m1 + m2 + m3,

b1 = m0 + m1 + m3,

b2 = m0 + m2 + m3.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 17 / 298

Introduction

A Hamming Code (2)

The received word is denoted by r. The following (binary) values are
computed for each such word:

r = (r0, r1, r2, r3, r4, r5, r6),

s0 = r1 + r2 + r3 + r4,

s1 = r0 + r1 + r3 + r5,

s2 = r0 + r2 + r3 + r6.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 18 / 298

Introduction

A Hamming Code (3)

If s0 = s1 = s2 = 0, then the received word is a valid word. Otherwise, the
value of (s0, s1, s2) gives the position of a single error:

(s0, s1, s2) Error location

000 None
001 r6
010 r5
011 r0
100 r4
101 r2
110 r1
111 r3

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 19 / 298

Introduction

A Hamming Code (4)

This code is capable of correcting all received words with at most 1 error
⇒ it is a single-error-correcting code. Analogously, a code is said to be
t-error-correcting if all erroneous words with at most t errors can be
corrected.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 20 / 298

Introduction

Performance Improving with Error Control (1)

Error control is achieved via redundancy. The code rate R denotes the
ratio of k , the number of data symbols transmitted per codeword, to n,
the number of symbols transmitted per codeword. The code in the
previous example has rate 4/7.

If we want the data symbol rate RS (data symbols transmitted per second)
to remain constant, the overall symbol rate must be increased to RS/R.

⇒ If the transmission power level is constant, then the
transmitted/received energy per symbol is reduced from E to RE .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 21 / 298

Introduction

Performance Improving with Error Control (2)

The demodulated BER is then increased with respect to its previous value!
However, if the code is well selected, the BER at the output of the
decoder is better than with the original, uncoded system.

coding gain The additional transmitted power that is required to obtain
the same performance without coding.

An example of the coding gain is explained in [Wic, Example 1-2] and
depicted in [Wic, Fig. 1-4].

Coding is about saving energy. Green communications!

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 22 / 298

Introduction

Performance Improving with Error Control (3)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 23 / 298

Introduction

Other Applications of Codes

In this course, codes for error-detecting and error-correcting purposes are
discussed. In general, a code is any subset of words in a discrete space,
and there is a wide variety of possible applications.

Example. A binary covering code: C = {0000, 0101, 1110, 1011}. For any
binary word x of length 4, there exists a word in C that differs from x in at
most one coordinate. Applications:

I (Lossy) data compression

I Systems for betting (football pools)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 1 24 / 298

Algebra (1)

Algebra

Mathematics (in particular, algebra) is the language of coding theory. The
most important mathematical objects needed in coding theory are groups,
finite fields, and vector spaces. The first part of the course is devoted to
an in-depth discussion of these topics. (Note: finite field = Galois field.)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 25 / 298

Algebra (1)

Definition: Set

set An arbitrary collection of elements. A set may be finite (e.g.,
{1, 2, 3}), countably infinite (e.g., the positive integers), or
uncountably infinite (e.g., the real numbers).

cardinality The number of objects in the set. The cardinality of a set S
is denoted by |S |.

order = cardinality (in particular, when dealing with groups and
fields).

So for sets, we have cardinality = order = size.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 26 / 298

Algebra (1)

Definition: Group

A group is a set G on which a binary operation · : G × G → G is defined
and for which the following requirements hold:

1. Associativity: (a · b) · c = a · (b · c) for all a, b, c ∈ G .
2. Identity: there exists e ∈ G such that a · e = e · a = a for all

a ∈ G .
3. Inverse: for all a ∈ G there exists an element a−1 ∈ G such that

a · a−1 = a−1 · a = e.

A group is said to be commutative or abelian if it satisfies one more
requirement:

4. Commutativity: for all a, b ∈ G , a · b = b · a.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 27 / 298

Algebra (1)

Examples of Groups

Example 1. The set of integers forms an infinite abelian group under
integer addition, but not under integer multiplication (why not?).

Example 2. The set of n× n matrices with real elements forms an abelian
group under matrix addition.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 28 / 298

Algebra (1)

Finite Groups (1)

We are primarily interested in finite groups. One of the simplest methods
for constructing finite groups lies in the application of modular arithmetic.
We write

a ≡ b (mod m)

(pronounced “a is congruent to b modulo m”) if a = b + km for some
integer k . This relation is reflexive, symmetric, and transitive, and
therefore divides the set of integers into m distinct equivalence classes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 29 / 298

Algebra (1)

Finite Groups (2)

Example. Integers modulo 5.
[0] = {. . . ,−10,−5, 0, 5, 10, . . .},
[1] = {. . . ,−9,−4, 1, 6, 11, . . .},
[2] = {. . . ,−8,−3, 2, 7, 12, . . .},
[3] = {. . . ,−7,−2, 3, 8, 13, . . .},
[4] = {. . . ,−6,−1, 4, 9, 14, . . .}.

Theorem 2-1. The equivalence classes [0], [1], . . . , [m − 1] form an
abelian group of order m under addition modulo m.

Theorem 2-2. The equivalence classes [1], [2] . . . , [m− 1] form an abelian
group of order m − 1 under multiplication modulo m if and only if m is a
prime.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 30 / 298

Algebra (1)

The Two Groups of Order 4

· 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Addition mod 4

· 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

A dihedral group

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 31 / 298

Algebra (1)

A Multiplicative Group

· 1 2 3 4 5 6

1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Multiplication mod 7

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 32 / 298

Algebra (1)

More Definitions

order of a group element The order of g ∈ G is the smallest positive
integer n such that g · g · · · · · g︸ ︷︷ ︸

n

= e.

subgroup A subset S ⊆ G that forms a group. It is proper if S 6= G .

Example. The group of addition modulo 4 contains the proper subgroups
{0} and {0, 2}.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 33 / 298

Algebra (1)

Definition: Cosets

Let S be a subgroup of G . For any value of x ∈ G , the set
x · S := {x · s, s ∈ S} (respectively, S · x) forms a left coset (respectively,
right coset) of S in G . If G is abelian, x · S = S · x , and left and right
cosets coincide and are simply called cosets.

Example. The subgroup {0, 2} of the group of addition modulo 4 has the
cosets {0, 2} and {1, 3}.

Theorem 2-3. The distinct cosets of a subgroup S ⊆ G are disjoint.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 34 / 298

Algebra (1)

Lagrange’s Theorem

Theorem 2-4. If S is a subgroup of G , then |S | divides |G |.

Proof.
By Theorem 2-3, two distinct cosets of S are disjoint. Moreover, all
elements of G belong to some coset of S (for example, an element x
belongs to x · S). Therefore the distinct cosets, which are of order |S |,
partition G , and the theorem follows.

Corollary. A group G of prime order has exactly the following subgroups:
{e} and G .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 35 / 298

Algebra (1)

Definition: Ring

A ring is a set R with two binary operations · : R × R → R and
+ : R × R → R for which the following requirements hold:

1. R forms an abelian group under +. The additive identity element
is labeled 0.

2. Associativity for ·: (a · b) · c = a · (b · c) for all a, b, c ∈ R.
3. The operation · distributes over +: a · (b + c) = (a · b) + (a · c)

and (b + c) · a = (b · a) + (c · a).

A ring is said to be a commutative ring and a ring with identity,
respectively, if the following two requirements hold:

4. The operation · commutes: a · b = b · a.
5. The operation · has an identity element, which is labeled 1.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 36 / 298

Algebra (1)

Examples of Rings

Example 1. The set of integers modulo m under addition and
multiplication form a commutative ring with identity.

Example 2. Matrices with integer elements form a ring with identity
under standard matrix addition and multiplication.

Example 3. The set of all polynomials with binary coefficients forms a
commutative ring with identity under polynomial addition and
multiplication with the coefficients taken modulo 2. This ring is denoted
GF(2)[x].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 37 / 298

Algebra (1)

Definition: Field

A field is a set F with two binary operations · : F × F → F and
+ : F × F → F for which the following requirements hold:

1. F forms an abelian group under +. The additive identity element
is labeled 0.

2. F \ {0} forms an abelian group under ·. The multiplicative
identity element is labeled 1.

3. The operations + and · distribute: a · (b + c) = (a · b) + (a · c).

A field can also be defined as a commutative ring with identity in which
every non-zero element has a multiplicative inverse.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 38 / 298

Algebra (1)

Examples of Fields

Example 1. The rational numbers form an infinite field.

Example 2. The real numbers form an infinite field, as do the complex
numbers.

Example 3. GF(2):

+ 0 1

0 0 1
1 1 0

· 0 1

0 0 0
1 0 1

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 39 / 298

Algebra (1)

Constructing Fields

Finite field = Galois field.

Theorem 2-5. Let p be a prime. The integers {0, 1, . . . , p − 1} form the
field GF(p) under addition and multiplication modulo p.

Theorem. The order of a finite field is pm, where p is a prime. There is a
unique field for each such order.

When m > 1 in the previous theorem, one cannot use simple modular
arithmetic. Instead, such fields can be constructed as vector spaces over
GF(p).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 40 / 298

Algebra (1)

Vector Spaces

Let V be a set of vectors and F a field of scalars with two operations:
+ : V × V → V and · : F × V → V . Then V forms a vector space over F
if the following conditions are satisfied:

1. V forms an abelian group under +.
2. The operations + and · distribute: a · (u + v) = a · u + a · v and

(a + b) · v = a · v + b · v.
3. Associativity: For all a, b ∈ F and all v ∈ V , (a ·b) · v = a · (b · v).
4. The multiplicative identity 1 ∈ F acts as multiplicative identity in

scalar multiplication: for all v ∈ V , 1 · v = v.

The field F is called the ground field of the vector space V .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 41 / 298

Algebra (1)

On Vector Spaces

Example. A vector space over GF(3):
(1, 0, 2, 1) + (1, 1, 1, 1) = (2, 1, 0, 2), 2 · (1, 0, 2, 2) = (2, 0, 1, 1).

The expression a1 · v1 + a2 · v2 + · · ·+ am · vm where ai ∈ F , vi ∈ V is
called a linear combination. A set {v1, v2, . . . , vm} ⊆ V of vectors is called
a spanning set if all vectors in V can be obtained as a linear combination
of these vectors.

A set of vectors is said to be linearly dependent if (at least) one of the
vectors can be expressed as a linear combination of the others. Otherwise,
it is called linearly independent.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 42 / 298

Algebra (1)

Basis and Dimension (1)

A spanning set that has minimum cardinality is called a basis for V .

Example. The set {1000, 0100, 0010, 0001} is a (canonical) basis for V 4
2 ,

where V n
q denotes the set of q-ary n-tuples.

If a basis for a vector space V has k elements, then it is said to have
dimension k , written dim(V) = k.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 43 / 298

Algebra (1)

Basis and Dimension (2)

Theorem 2-6. Let {v1, v2, . . . , vk} be a basis for a vector space V . For
every vector v ∈ V there is a representation v = a1v1 + a2v2 + · · ·+ akvk .
This representation is unique.

Corollary. |V | = |F |k .

A vector space V ′ is said to be a vector subspace of V if V ′ ⊆ V .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 44 / 298

Algebra (1)

Inner Product and Dual Spaces

The inner product u • v of u = (u0, u1, . . . , un−1) and
v = (v0, v1, . . . , vn−1) is defined as

u • v =
n−1∑
i=0

ui · vi .

Let C be a k-dimensional subspace of a vector space V . The dual space
of C , denoted by C⊥, is the set of vectors v ∈ V such that for all u ∈ C ,
u • v = 0.

Theorem 2-8. The dual space C⊥ of a vector subspace C ⊆ V is itself a
vector subspace of V .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 45 / 298

Algebra (1)

The Dimension Theorem

Theorem 2-9. Let C be a vector subspace of V . Then dim(C) +
dim(C⊥) = dim(V).

Example. A code C ⊆ V 4
2 : C = {0000, 0101, 0001, 0100},

C⊥ = {0000, 1010, 1000, 0010}. Then dim(C) + dim(C⊥) = 2+2 = 4 =
dim(V).

Question. What is the dual space C⊥ when C = V ?

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 46 / 298

Algebra (1)

Properties of Finite Fields (1)

With β ∈ GF(q) and 1 the multiplicative identity, consider the sequence

1, β, β2,

In a finite field, this sequence must begin to repeat at some point.

The order of an element β ∈ GF(q), written ord(β), is the smallest
positive integer m such that βm = 1 (cf. order of group element).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 47 / 298

Algebra (1)

Properties of Finite Fields (2)

Theorem 2-10. If t = ord(β), then t | (q − 1).

Proof.
The set {β, β2, . . . , βord(β) = 1} forms a subgroup of the nonzero
elements in GF(q) under multiplication. The result then follows from
Lagrange’s theorem (Theorem 2-4).

Example. The elements of the field GF(16) can only have orders in
{1, 3, 5, 15}.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 48 / 298

Algebra (1)

The Euler Totient Function

The Euler φ (or totient) function, φ(t), denotes the number of integers
in {1, 2, . . . , t − 1} that are relatively prime to t. This function can be
computed as follows when t > 1 (φ(1) = 1):

φ(t) = t
∏

p|t, p prime

(
1− 1

p

)
.

Example 1. φ(56) = φ(23 · 7) = 56(1− 1/2)(1− 1/7) = 24.

Example 2. If t is a prime, then φ(t) = t(1− 1/t) = t − 1, as expected.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 49 / 298

Algebra (1)

Primitive Elements in Finite Fields

B If t 6 | (q − 1), then there are no elements of order t in GF(q)
(Theorem 2-10).

Theorem 2-12. If t | (q − 1), then there are φ(t) elements of order t in
GF(q).

An element in GF(q) with order (q − 1) is called a primitive element in
GF(q). There are φ(q − 1) primitive elements in GF(q).

⇒ All nonzero elements in GF(q) can be represented as (q − 1)
consecutive powers of a primitive element.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 50 / 298

Algebra (1)

Example: GF(7)

Order i Elements of order i φ(i)

1 {1} 1
2 {6} 1
3 {2, 4} 2
4 None –
5 None –
6 {3, 5} 2

For example, 51 = 5, 52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 51 / 298

Algebra (1)

Characteristic of Field

The characteristic of GF(q) is the smallest integer m such that
1 + 1 + · · ·+ 1︸ ︷︷ ︸

m

= 0.

Theorem 2-13. The characteristic of a finite field is a prime.

Theorem 2-14. The order of a finite field is a power of a prime.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 2 52 / 298

Algebra (2)

Finite Fields of Order pm

The following results were discussed in the previous lecture:

B The order of a finite field is a prime power.

B There is a unique finite field for each such order.

B If the order of a finite field is a prime p, one may act on
{0, 1, . . . , p − 1} with addition and multiplication modulo p.

The case pm, m > 1, is (somewhat) more complicated. In the sequel, p is
always a prime.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 53 / 298

Algebra (2)

The Ring of Polynomials GF(q)[x]

The collection of all polynomials anx
n + an−1x

n−1 + · · ·+ a1x + a0 with
arbitrary degree and ai ∈ GF(q) is denoted by GF(q)[x]. (Earlier example:
these polynomials form a commutative ring with identity.)

Example. We consider GF(3)[x]:

(x3 + 2x2 + 1) + (x2 + x + 1) = x3 + 3x2 + x + 2 = x3 + x + 2,

(x + 1) · (x2 + 2x + 1) = x3 + 2x2 + x + x2 + 2x + 1 = x3 + 1.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 54 / 298

Algebra (2)

Irreducible Polynomials

A polynomial f (x) ∈ GF(q)[x] is irreducible if f (x) cannot be factored
into a product of lower-degree polynomials in GF(q)[x]. Otherwise, it is
said to be reducible.

Example 1. The polynomial x3 + 1 ∈ GF(3)[x] is not irreducible (a
factoring is given in the previous example).

Example 2. The polynomial x2 + x + 1 ∈ GF(2)[x] is irreducible, but
x2 + x + 1 ∈ GF(4)[x] is not. (Irreducibility in GF(2)[x] follows as
x · (x + 1) = x2 + x , (x + 1) · (x + 1) = x2 + 1, and x · x = x2.)

⇒ The term irreducible must be used only with respect to a specific ring.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 55 / 298

Algebra (2)

Primitive Polynomials

An irreducible polynomial f (x) ∈ GF(p)[x] of degree m is primitive if the
smallest n for which f (x) divides xn − 1 is n = pm − 1. (It can be shown
that f (x) always divides xp

m−1 − 1.)

Example 1. The polynomial x3 + x + 1 ∈ GF(2)[x] is primitive, since it is
irreducible and does not divide any of x4 − 1, x5 − 1, and x6 − 1
(pm − 1 = 23 − 1 = 7).

NOTE!!! In GF(2), −1 = 1.

Example 2. In GF(2)[x], x7 − 1 = x7 + 1.

There are φ(2m − 1)/m binary primitive polynomials of degree m; for small
values of m, see [Wic, Appendix A].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 56 / 298

Algebra (2)

Polynomials Modulo f (x)

We denote the ring of polynomials GF(q)[x] modulo f (x) by
GF(q)[x]/f (x).

Example. In GF(3)[x]/(x2), we operate on the polynomials of degree at
most 1 (there are nine such polynomials) and with coefficients in GF(3).
For example, x(x + 1) = x2 + x = x .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 57 / 298

Algebra (2)

Two Methods for Constructing a Field of Order pm, m > 1

Method 1:

If f (x) ∈ GF(p)[x] is an irreducible polynomial of degree m, then
GF(p)[x]/f (x) is a field of order pm.

Method 2:

1. Take a primitive polynomial f (x) of degree m in GF(p)[x], and
let α be a root of f (x) (f (α) = 0).

2. The elements of the field are 0, 1 = α0, α1, . . . , αpm−2 taken
modulo f (α).

3. Carry out addition and multiplication modulo f (α).

We shall now construct GF(4) in these two ways using the polynomial
f (x) = x2 + x + 1 ∈ GF(2)[x], which is irreducible as well as primitive.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 58 / 298

Algebra (2)

First Construction of GF(4)

Here the elements of GF(4) are the four polynomials in GF(2)[x] with
degree at most 1. Addition comes directly and multiplication is done
modulo f (x) = x2 + x + 1.

+ 0 1 x x + 1
0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

· 0 1 x x + 1
0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 59 / 298

Algebra (2)

Second Construction of GF(4)

Here we let α be a root of the primitive polynomial
f (x) = x2 + x + 1 ∈ GF(2)[x], that is α2 + α + 1 = 0. The elements are
0, 1 = α0, α1, α2, and α is a primitive element of the field. Now
multiplication comes directly; when adding we utilize α2 + α + 1 = 0.

+ 0 1 = α0 α1 α2

0 0 α0 α1 α2

1 = α0 α0 0 α2 α1

α1 α1 α2 0 α0

α2 α2 α1 α0 0

· 0 1 = α0 α1 α2

0 0 0 0 0
1 = α0 0 α0 α1 α2

α1 0 α1 α2 α0

α2 0 α2 α0 α1

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 60 / 298

Algebra (2)

Computing in Fields (1)

A summary about operations in the field GF(pm):

B Addition is direct if one considers a ring of polynomials modulo some
polynomial.

B Multiplication is direct if one represent the elements of the field as
0, 1 = α0, α1, . . . , αpm−2.

B But: In neither of these cases can the other operation be carried out
in a direct way.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 61 / 298

Algebra (2)

Computing in Fields (2)

The study of algorithms for operating on fields is one of most important
research topics in computational algebra with many important applications
(in coding, cryptography, etc.).

Two possibilities if the field GF(q) is relatively small:

I Construct a look-up table of size q × q.

I Use so-called Zech logarithms; this requires a table of size q.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 62 / 298

Algebra (2)

Subfields

A subset S ⊆ GF(pm) that is a field is called a subfield of GF(pm). Every
field GF(pm) has itself as subfield; any other subfield is called proper.

Theorem. The subfields of GF(pm) are exactly the fields GF(pa) where
a | m.

Example. GF(64) = GF(26) contains GF(21), GF(22), GF(23), and
GF(26) as subfields.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 63 / 298

Algebra (2)

Minimal Polynomials

Let α ∈ GF(qm). The minimal polynomial of α with respect to GF(q) is
the smallest-degree nonzero polynomial f (x) ∈ GF(q)[x] such that
f (α) = 0.

Theorem 3-2. For each α ∈ GF(qm) there exists a unique monic
polynomial f (x) ∈ GF(q)[x] of minimal degree such that

1. f (α) = 0,
2. deg(f (x)) ≤ m,
3. g(α) = 0 implies that g(x) is a multiple of f (x),
4. f (x) is irreducible in GF(q)[x].

Another definition for primitive polynomials: the minimal polynomials for
primitive elements in a Galois field.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 64 / 298

Algebra (2)

Conjugates of Field Elements

Motivation: If we want a polynomial f (x) ∈ GF(q)[x] to have a root
α ∈ GF(qm), what other roots must the polynomial have?

The conjugates of α ∈ GF(qm) with respect to the subfield GF(q) are the
elements αq0

= α, αq1
, αq2

, . . ., which form the conjugacy class of α with
respect to GF(q).

Theorem 3-3. The conjugacy class of α ∈ GF(qm) with respect to GF(q)

contains d elements (that is, αqd = α) with d | m.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 65 / 298

Algebra (2)

Conjugacy Classes and Roots

Example. By Theorems 2-10 and 2-12, the orders of elements in GF(16)
are 1, 3, 5, and 15. Let α be an element of order 3. The conjugates of α
with respect to GF(2) are α, α2, α22

= α3α = α, so the conjugacy class is
{α, α2}.

Theorem 3-4. Let α ∈ GF(qm) and let f (x) be the minimal polynomial
of α with respect to GF(q). The roots of f (x) are exactly the conjugates
of α with respect to GF(q).

Corollary. All the roots of an irreducible polynomial have the same order.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 66 / 298

Algebra (2)

Example: Minimal Polynomials for GF(8)

Let α be root of the primitive polynomial x3 + x + 1 ∈ GF[2](x). Then the
elements of GF(8) are

0 = 0, α0 = 1, α1 = α, α2 = α2, α3 = α + 1, α4 = α2 + α,
α5 = α2 + α + 1, α6 = α2 + 1.

Conjugacy class Minimal polynomial
{0} M∗(x) = x − 0 = x
{α0 = 1} M0(x) = x − 1 = x + 1
{α, α2, α4} M1(x) = (x − α)(x − α2)(x − α4) = x3 + x + 1
{α3, α6, α5} M3(x) = (x − α3)(x − α6)(x − α5) = x3 + x2 + 1

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 67 / 298

Algebra (2)

Factoring xn − 1 (1)

Theorem 3-5. The nonzero elements in GF(qm) form the complete set of
roots of x (qm−1) − 1 = 0.

Proof.
For an arbitrary α ∈ GF(qm), ord(α) | (qm − 1) by Theorem 2-10, and
therefore α is a root of x (qm−1) − 1 = 0. Moreover, the equation
x (qm−1) − 1 = 0 is of degree (qm − 1) and can therefore have at most
(qm − 1) roots. Therefore, the nonzero elements of GF(qm) comprise the
complete set of roots.

Example. Factorization of x7 − 1 in GF(2)[x]. Using the results on the
previous slide,

x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 68 / 298

Algebra (2)

Factoring xn − 1 (2)

We now know how to factor x (qm−1)− 1 into irreducible polynomials in the
ring GF(q)[x]. What about the general case (xn − 1)?

All roots of (xn − 1) are nth roots of unity. We need to

1. identify the field where we can find all of these roots,
2. separate the roots into conjugacy classes, and
3. compute the minimal polynomials of the nth roots of unity.

If we have an element β ∈ GF(pm) of order n, then the solutions to
xn − 1 = 0 are 1, β, β2, . . . , βn−1. These distinct elements of order n are
often called primitive nth roots of unity.

How to find β and the order of the field?

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 69 / 298

Algebra (2)

Factoring xn − 1 (3)

By Theorem 2-12, we know that if n | (pm − 1), then there are φ(n) > 0
elements of order n in GF(pm).

The order of q modulo n is the smallest integer m such that n | (qm− 1).

Example. Factoring x5 − 1 in GF(2)[x]. Since 5 6 | (21 − 1), 5 6 | (22 − 1),
5 6 | (23 − 1), 5 | (24 − 1), GF(16) is the smallest binary extension field in
which one may find primitive 5th roots of unity (and the order of 2 modulo
5 is 4).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 70 / 298

Algebra (2)

Example: Factoring x25 − 1 in GF(2)[x]

Let β be a primitive 25th root of unity. The order of 2 modulo 25 is 20, so
we consider GF(220). The 25 roots of x25 − 1 = 0 can be grouped into the
following conjugacy classes with respect to GF(2):

{1},
{β, β2, β4, β8, β16, β7, β14, β3, β6, β12, β24, β23, β21, β17, β9, β18, β11,

β22, β19, β13},
{β5, β10, β20, β15}.

Consequently, x25 − 1 factors into three irreducible binary polynomials:
one of degree one (x − 1), one of degree four, and one of degree twenty.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 71 / 298

Algebra (2)

Cyclotomic Cosets

Cyclotomic cosets provide a simpler framework for what was done in the
previous slides.

The cyclotomic cosets modulo n with respect to GF(q) constitute a
partitioning of the integers into sets of the form

{a, aq, aq2, . . . , aqd−1}.

Example. Cyclotomic cosets modulo 25 with respect to GF(2)
(cf. previous example):

{0},
{1, 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13},
{5, 10, 20, 15}.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 3 72 / 298

Linear Codes (1)

Block Codes

block code A code C that consists of words of the form
(c0, c1, . . . , cn−1), where n is the number of coordinates (and
is said to be the length of the code).

q-ary code A code whose coordinate values are taken from a set
(alphabet) of size q (unless otherwise stated, GF(q)).

encoding Breaking the data stream into blocks, and mapping these
blocks onto codewords in C .

The encoding process is depicted in [Wic, Fig. 4-1].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 73 / 298

Linear Codes (1)

Encoding

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 74 / 298

Linear Codes (1)

Redundancy

If the data blocks of a q-ary code are of length k , then there are M = qk

possible data vectors. (But all data blocks are not necessarily of the same
length.)

There are qn possible words of length n, out of which qn −M are not valid
codewords. The redundancy r of a code is

r = n − logq M,

which simplifies to r = n − k if M = qk .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 75 / 298

Linear Codes (1)

Code Rate

The redundancy is frequently expressed in terms of the code rate. The
code rate R of a code C of size M and length n is

R =
logq M

n
.

Again, if M = qk , R = k/n.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 76 / 298

Linear Codes (1)

Transmission Errors (1)

The corruption of a codeword by channel noise, modeled as an additive
process, is shown in [Wic, Fig. 4-2].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 77 / 298

Linear Codes (1)

Transmission Errors (2)

error detection Determination (by the error control decoder) whether
errors are present in a received word.

undetectable error An error pattern that causes the received word to be a
valid word other than the transmitted word.

error correction Determine which of the valid codewords is most likely to
have been sent.

decoder error In error correction, selecting a codeword other than that
which was transmitted.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 78 / 298

Linear Codes (1)

Error Control

The decoder may react to a detected error with one of the following three
responses:

automatic repeat request (ARQ) Request a retransmission of the word.
For applications where data reliability is of great importance.

muting Tag the word as being incorrect and pass it along. For
applications in which delay constraints do not allow for
retransmission (for example, voice communication).

forward error correction (FEC) (Attempt to) correct the errors in the
received word.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 79 / 298

Linear Codes (1)

Weight and Distance (1)

The (Hamming) weight of a word c, denoted by w(c) (or wH(c)), is the
number of nonzero coordinates in c.

Example. w((0, α3, 1, α)) = 3, w(0001) = 1.

The Euclidean distance between v = (v0, v1, . . . , vn−1) and
w = (w0,w1, . . . ,wn−1) is

dE (v,w) =
√

(v0 − w0)2 + (v1 − w1)2 + · · ·+ (vn−1 − wn−1)2.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 80 / 298

Linear Codes (1)

Weight and Distance (2)

The Hamming distance between two words, v = (v0, v1, . . . , vn−1) and
w = (w0,w1, . . . ,wn−1), is the number of coordinates in which they differ,
that is,

dH(v,w) = |{i | vi 6= wi , 0 ≤ i ≤ n − 1}|,

where the subscript H is often omitted. Note that w(c) = d(0, c), where 0
is the all-zero vector, and d(v,w) = w(v − w).

The minimum distance of a block code C is the minimum Hamming
distance between all pairs of distinct codewords in C .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 81 / 298

Linear Codes (1)

Minimum Distance and Error Detection

Let dmin denote the minimum distance of the code in use. For an error
pattern to be undetectable, it must change the values in at least dmin

coordinates.

B A code with minimum distance dmin can detect all error patterns of
weight less than dmin.

Obviously, a large number of error patterns of weight w ≥ dmin can also be
detected.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 82 / 298

Linear Codes (1)

Forward Error Correction

The goal in FEC systems is to minimize the probability of decoder error
given a received word r. If we know exactly the behavior of the
communication system and channel, we can derive the probability p(c | r)
that c is transmitted upon receipt of r.

maximum a posteriori decoder (MAP decoder) Identifies the codeword ci
that maximizes p(c = ci | r).

maximum likelihood decoder (ML decoder) Identifies the codeword ci that
maximizes p(r | c = ci).

Bayes’s rule p(c | r) = pC (c)p(r|c)
pR(r) .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 83 / 298

Linear Codes (1)

Minimum Distance and Error Correction

The two decoders are identical when pC (c) is constant, that is, when all
codewords occur with the same probability. The maximum likelihood
decoder is assumed in the sequel.

The probability p(r | c) equals the probability of the error pattern e = r− c.
Small-weight error patterns are more likely to occur than high-weight ones
⇒ we want to find a codeword that minimizes w(e) = w(r − c).

B A code with minimum distance dmin can correct all error patterns of
weight less than or equal to b(dmin − 1)/2c.

It is sometimes possible to to correct errors with w > b(dmin − 1)/2c.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 84 / 298

Linear Codes (1)

Decoder Types

A complete error-correcting decoder is a decoder that, given a received
word r, selects a codeword c that minimizes d(r, c).

Given a received word r, a t-error-correcting bounded-distance decoder
selects the (unique) codeword c that minimizes d(r, c) iff d(r, c) ≤ t.
Otherwise, a decoder failure is declared.

Question. What is the difference between decoder errors and decoder
failures in a bounded-distance decoder?

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 85 / 298

Linear Codes (1)

Example: A Binary Repetition Code

The binary repetition code of length 4 is {0000, 1111}.

Received Selected Received Selected

0000 0000 1000 0000
0001 0000 1001 0000 or 1111∗
0010 0000 1010 0000 or 1111∗
0011 0000 or 1111∗ 1011 1111
0100 0000 1100 0000 or 1111∗
0101 0000 or 1111∗ 1101 1111
0110 0000 or 1111∗ 1110 1111
0111 1111 1111 1111

∗Bounded-distance decoder declares decoder failure.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 86 / 298

Linear Codes (1)

Error-Correcting Codes and a Packing Problem

A central problem related to the construction of error-correcting codes can
be formulated in several ways:

1. With a given length n and minimum distance d , and a given field
GF(q), what is the maximum number Aq(n, d) of codewords in
such a code?

2. What is the minimum redundancy for a t-error-correcting q-ary
code of length n ?

3. What is the maximum number of spheres of radius t that can be
packed in an n-dimensional vector space over GF(q) ?

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 87 / 298

Linear Codes (1)

The Hamming Bound

The number of words in a sphere of radius t in an n-dimensional vector
space over GF(q) is

Vq(n, t) =
t∑

i=0

(
n

i

)
(q − 1)i .

Theorem 4-1. The size of a t-error-correcting q-ary code of length n is

M ≤ qn

Vq(n, t)
.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 88 / 298

Linear Codes (1)

The Gilbert Bound

Theorem 4-2. There exists a t-error-correcting q-ary code of length n of
size

M ≥ qn

Vq(n, 2t)
.

Proof.
Repeatedly pick any word c from the space, and after each such operation,
delete all words w that satisfy d(c,w) ≤ 2t from further consideration.
Then the final code will have minimum distance at least 2t + 1 and will be
t-error-correcting. The theorem follows from the fact that at most
Vq(n, 2t) words are deleted from further consideration in each step.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 89 / 298

Linear Codes (1)

Comparing Bounds

Theorems 4-1 and 4-2 say that for the redundancy r of a code,

logq Vq(n, t) ≤ r ≤ logq Vq(n, 2t).

These bounds for binary 1-error-correcting codes are compared in
[Wic, Fig. 4-3].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 90 / 298

Linear Codes (1)

Perfect Codes

A block code is perfect if it satisfies the Hamming bound with equality.

Theorem 4-4. Any nontrivial perfect code over GF(q) must have the
same length and cardinality as a Hamming or Golay code.

Note: The sphere packing problem and the error control problem are not
entirely equivalent.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 91 / 298

Linear Codes (1)

List of Perfect Codes

1. (q, n, k = n, t = 0), (q, n, k = 0, t = n): trivial codes.
2. (q = 2, n odd, k = 1, t = (n − 1)/2): odd-length binary

repetition codes (trivial codes).
3. (q, n = (qm − 1)/(q − 1), k = n −m, t = 1) with m > 0 and q a

prime power: Hamming codes and nonlinear codes with the same
parameters.

4. (q = 2, n = 23, k = 12, t = 3): the binary Golay code.
5. (q = 3, n = 11, k = 6, t = 2): the ternary Golay code.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 92 / 298

Linear Codes (1)

Linear Block Codes

A q-ary code C is said to be linear if it forms a vector subspace over
GF(q). The dimension of a linear code is the dimension of the
corresponding vector space.

A q-ary linear code of length n and dimension k (which then has qk

codewords) is called an (n, k) code (or an [n, k] code).

Linear block codes have a number of interesting properties.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 93 / 298

Linear Codes (1)

Properties of Linear Codes

Property One The linear combination of any set of codewords is a
codeword (⇒ the all-zero word is a codeword).

Property Two The minimum distance of a linear code C is equal to the
weight of the codeword with minimum weight (because
d(c, c′) = w(c− c′) = w(c′′) for some c′′ ∈ C).

Property Three The undetectable error patterns for a linear code are
independent of the codeword transmitted and always consist
of the set of all nonzero codewords.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 94 / 298

Linear Codes (1)

Generator Matrix

Let {g0, g1, . . . , gk−1} be a basis of the codewords of an (n, k) code C
over GF(q). By Theorem 2-6, every codeword c ∈ C can be obtained in a
unique way as a linear combination of the words gi . The generator matrix
G of such a linear code is

G =


g0

g1
...

gk−1

 =


g0,0 g0,1 · · · g0,n−1

g1,0 g1,1 · · · g1,n−1
...

...
. . .

...
gk−1,0 gk−1,1 · · · gk−1,n−1

 ,
and a data block m = (m0,m1, . . . ,mk−1) is encoded as mG.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 95 / 298

Linear Codes (1)

Parity Check Matrix

The dual space of a linear code C is called the dual code and is denoted
by C⊥. Clearly, dim(C⊥) = n − dim(C) = n − k, and it has a basis with
n − k vectors. These form the parity check matrix of C :

H =


h0

h1
...

hn−k−1

 =


h0,0 h0,1 · · · h0,n−1

h1,0 h1,1 · · · h1,n−1
...

...
. . .

...
hn−k−1,0 hn−k−1,1 · · · hn−k−1,n−1

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 96 / 298

Linear Codes (1)

The Parity Check Theorem

Theorem 4-8. A vector c is in C iff cHT = 0.

Proof.
(⇒) Given a vector c ∈ C , c • h = 0 for all h ∈ C⊥ by the definition of
dual spaces.
(⇐) If cHT = 0, then c ∈ (C⊥)⊥, and the result follows as (C⊥)⊥ = C ,
which in turn holds as C ⊆ (C⊥)⊥ and dim(C) = dim((C⊥)⊥).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 97 / 298

Linear Codes (1)

Parity Check Matrix and Minimum Distance

Theorem 4-9. The minimum distance of a code C with parity check
matrix H is the minimum nonzero number of columns that has a nontrivial
linear combination with zero sum.

Proof.
If the column vectors of H are {d0, d1, . . . , dn−1} and
c = (c0, c1, . . . , cn−1), we get
cHT = c[d0 d1 · · · dn−1]T = c0d0 + c1d1 + · · ·+ cn−1dn−1, so cHT = 0 is
a linear combination of w(c) columns of H.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 98 / 298

Linear Codes (1)

Singleton Bound

Theorem 4-10. The minimum distance dmin of an (n, k) code is bounded
by dmin ≤ n − k + 1.

Proof.
By definition, any r + 1 columns of a matrix with rank r are linearly
dependent. A parity check matrix of an (n, k) code has rank n − k, so any
n − k + 1 columns are linearly dependent, and the theorem follows by
using Theorem 4-9.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 4 99 / 298

Linear Codes (2)

Implementing Linear Codes

With linear codes and their generator and parity check matrices, encoding
and decoding can be carried out by operating on these matrices (instead of
handling complete lists of possible codewords). Very large codes can
therefore be handled.

The problem of recovering the data block from a codeword can be greatly
simplified through the use of systematic codes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 100 / 298

Linear Codes (2)

Systematic Codes (1)

Using Gaussian elimination and column reordering it is always possible to
get a generator matrix of the form

G = [P | Ik] =


p0,0 p0,1 · · · p0,n−k−1 1 0 · · · 0
p1,0 p1,1 · · · p1,n−k−1 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

pk−1,0 pk−1,1 · · · pk−1,n−k−1 0 0 · · · 1

 ,

so that the data block is embedded in the last k coordinates
of the codeword: c = mG = [m0 m1 · · · mk−1][P | Ik] =
[c0 c1 · · · cn−k−1 | m0 m1 · · · mk−1].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 101 / 298

Linear Codes (2)

Systematic Codes (2)

The corresponding parity check matrix for systematic codes is
H = [In−k | −PT] =


1 0 · · · 0 −p0,0 −p1,0 · · · −pk−1,0

0 1 · · · 0 −p0,1 −p1,1 · · · −pk−1,1
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 −p0,n−k−1 −p1,n−k−1 · · · −pk−1,n−k−1

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 102 / 298

Linear Codes (2)

Standard Array Decoder (1)

A received word r is modeled by the summation r = c + e, where c is the
transmitted codeword and e is the error pattern induced by the channel
noise. The maximum likelihood decoder picks a codeword c′ such that
r = c′ + e′, where e′ has the smallest possible weight. A look-up table
called a standard array decoder can be used to implement this process.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 103 / 298

Linear Codes (2)

Standard Array Decoder (2)

Consider all words in V n
q in the following way:

1. Remove all codewords in C from V n
q . List these in a single row,

starting with the all-zero word.
2. Select (and remove) one of the remaining words of the smallest

weight and write it in the column under the all-zero word. Add
this word to all other codewords and write the results in the
corresponding columns (and remove these from the set of
remaining words).

3. With no remaining words, stop; otherwise, repeat Step 2.

B Each row in the table is a coset of C .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 104 / 298

Linear Codes (2)

Example: Standard Array for a Small Code

With G =

[
1 0 1 0
1 1 0 1

]
, one possible standard array is

0000 1010 1101 0111

0001 1011 1100 0110
0010 1000 1111 0101
0100 1110 1001 0011

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 105 / 298

Linear Codes (2)

Properties of Standard Arrays

B The standard array is uniquely determined exactly when the code is
perfect.

B A standard array for a q-ary code of length n has qn entries, all of
which are stored in memory.

B A standard array can be used only for small codes.

The next method to be presented reduces the entry table from size qn to
qn−k .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 106 / 298

Linear Codes (2)

Syndrome Vectors

For a received vector r, where r = c + e, we know that rHT = 0 when
r = c (e = 0); cf. Theorem 4-8. The matrix product rHT is called the
syndrome vector s for the received vector r.

s = rHT

= (c + e)HT

= cHT + eHT

= eHT

⇒ The syndrome vector depends only on the error pattern. Moreover,
the syndrome vector is the same for all words in a row of a standard
array (and different for words in different rows).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 107 / 298

Linear Codes (2)

Example: Syndrome Table for a Small Code

The code used in the previous example has H =

[
1 0 1 1
0 1 0 1

]
.

Error pattern Syndrome

0000 00
0001 11
0010 10
0100 01

If r = 1111 is received, then s = rHT = 10, so e = 0010 and c = 1101.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 108 / 298

Linear Codes (2)

Weight Distribution of a Block Code

The weight distribution of an (n, k) code C is a series of coefficients
A0,A1, . . . ,An, where Ai is the number of codewords of weight i in C .

The weight distribution is often written as a polynomial
A(x) = A0 + A1x + · · ·+ Anx

n. This representation is called the weight
enumerator.

The MacWilliams Identity: Let A(x) and B(x) be the weight
enumerators for an (n, k) code C and its (n, n − k) dual code C⊥. Then

B(x) = 2−k(1 + x)nA

(
1− x

1 + x

)
.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 109 / 298

Linear Codes (2)

Binary Hamming Codes

The binary Hamming codes are (n = 2m − 1, k = 2m −m − 1) perfect
one-error-correcting codes for any integer m ≥ 2.

The columns of a parity check matrix (of size m× n) of a binary Hamming
code consist of all 2m − 1 nonzero vectors of length m. The smallest
number of such vectors that sum to zero is three ⇒ the minimum distance
is d = 3.

Question. Prove that these codes are indeed perfect.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 110 / 298

Linear Codes (2)

Decoding Hamming Codes

A received word corrupted by a single error in position i gives
s = rHT = dT

i , where di is the ith column H.

Decoding algorithm for Hamming code:

1. Compute the syndrome s = rHT .
2. Find the column di of H that matches the syndrome.
3. Complement the ith bit in the received word.

If the columns of H are in lexicographic order, the decimal value of the
syndrome gives the position of the error (with the coordinates numbered
1, 2, . . . , n = 2m − 1).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 111 / 298

Linear Codes (2)

Weight Enumerator for Hamming Codes (1)

The weight enumerator for the (n, k) binary Hamming code is

A(x) =
(1 + x)n + n(1− x)(1− x2)(n−1)/2

n + 1
.

For example, for the (15, 11) binary Hamming code we get
A(x) = 1 + 35x3 + 105x4 + 168x5 + 280x6 + 435x7 + 435x8 + 280x9 +
168x10 + 105x11 + 35x12 + x15.

The weight enumerator can be used to calculate exact probabilities of
undetected error and decoder error as a function of the binary symmetric
channel crossover probability; see [Wic, Fig. 4-9].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 112 / 298

Linear Codes (2)

Weight Enumerator for Hamming Codes (2)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 113 / 298

Linear Codes (2)

Nonbinary Hamming Codes

Hamming codes over GF(q) are
(n = (qm − 1)/(q − 1), k = (qm − 1)/(q − 1)−m) perfect
one-error-correcting codes for any integer m ≥ 2.

The column vectors of a parity check matrix (of size m × n) of such a
code are selected from the set of qm − 1 nonzero vectors of length m.
Since for each such m-tuple, there are q − 1 other m-tuples that are
multiples of that m-tuple, exactly one m-tuple is selected from each such
set of multiples. For example, over GF(3), (1, 2, 0) + (1, 2, 0) = (2, 1, 0).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 114 / 298

Linear Codes (2)

Modified Codes

puncturing Delete one of the redundant coordinates. An (n, k) codes
becomes an (n − 1, k) code.

extending Add an additional redundant coordinate. An (n, k) code
becomes an (n + 1, k).

shortening Delete a message coordinate. An (n, k) code becomes an
(n − 1, k − 1).

lengthening Add a message coordinate. An (n, k) code becomes an
(n + 1, k + 1) code.

These and two additional terms are illustrated in [Wic, Fig. 4-10].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 115 / 298

Linear Codes (2)

Linear Cyclic Block Codes (1)

A (linear or nonlinear) code C of length n is said to be cyclic if for every
codeword c = (c0, c1, . . . , cn−1) ∈ C , there is also a codeword
c′ = (cn−1, c0, c1, . . . , cn−2) ∈ C .

The code polynomial of a codeword c = (c0, c1, . . . , cn−1) ∈ C is
c(x) = c0 + c1x + · · ·+ cn−1x

n−1. We know that if C is a q-ary (n, k)
code, then the codewords form a vector subspace of dimension k within
the space of all n-tuples over GF(q).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 116 / 298

Linear Codes (2)

Linear Cyclic Block Codes (2)

Let C be a cyclic code, and let c = (c0, c1, . . . , cn−1) and c′ be two
codewords such that c′ is obtained by a right cyclic shift of c. Then

x · c(x) = x · (c0 + c1x + · · ·+ cn−1x
n−1)

= c0x + c1x
2 + · · ·+ cn−1x

n

≡ cn−1 + c0x + c1x
2 + · · ·+ cn−2x

n−1 (mod xn − 1)

≡ c ′(x) (mod xn − 1).

Now x tc(x) mod (xn − 1) corresponds to a shift of t places to the right.
In general, a(x)c(x) mod (xn − 1), where
a(x) = a0 + a1x + · · ·+ an−1x

n−1 ∈ GF(q)[x]/(xn − 1) is an arbitrary
polynomial, is a linear combination of cyclic shifts of c and is a codeword.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 117 / 298

Linear Codes (2)

Properties of Cyclic Codes

Let C be a q-ary (n, k) linear cyclic code.

1. Within the set of code polynomials in C there is a unique monic
polynomial g(x) with minimal degree r < n called the generator
polynomial of C .

2. Every codeword polynomial c(x) ∈ C can be expressed uniquely
as c(x) = m(x)g(x) mod (xn − 1), where m(x) ∈ GF(q)[x] is a
polynomial of degree less than n − r .

3. The generator polynomial g(x) of C is a factor of xn − 1 in
GF(q)[x].

Since g(x) is monic, g(x) = g0 + g1x + · · ·+ gr−1x
r−1 + x r .

Question. Why can we assume that g0 6= 0 ?

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 118 / 298

Linear Codes (2)

Possible Dimensions of Cyclic Codes (1)

The dimension of a cyclic code C is is n − r , where r is the degree of the
generator polynomial of C . The factorization of xn − 1 into irreducible
polynomials in GF(q)[x] has been discussed earlier.

Example 1. Binary cyclic codes of length n = 15 (= 24 − 1). The
conjugacy classes formed by the powers of α, an element of order 15 in
GF(16) are

{1},
{α, α2, α4, α8},
{α3, α6, α12, α9},
{α5, α10},
{α7, α14, α13, α11}.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 119 / 298

Linear Codes (2)

Possible Dimensions of Cyclic Codes (2)

Example 1. (cont.) Hence, the binary polynomial x15 − 1 factors into one
binary polynomial of degree 1, one of degree 2, and three of degree 4.
Therefore x15 − 1 has factors of all degrees between 1 and 15 (for
example, 11 = 4 + 4 + 2 + 1), and there are binary cyclic (15, k) codes for
all 1 ≤ k ≤ 15.

Example 2. In a previous lecture, it was shown that the binary polynomial
x25 − 1 factors into one polynomial of degree one, one of degree 4 and one
of degree 20. Hence there are binary cyclic (25, k) codes for
k ∈ {1, 4, 5, 20, 21, 24, 25}.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 120 / 298

Linear Codes (2)

Encoding Cyclic Codes (1)

Let g(x) be the degree r generator polynomial for an (n, k) q-ary cyclic
code C . An (n − r)-symbol data block (m0,m1, . . . ,mn−r−1) is associated
with a message polynomial m(x) = m0 + m1x + · · ·+ mn−r−1x

n−r−1.
Now

c(x) = m(x)g(x)

= m0g(x) + m1xg(x) + · · ·+ mn−r−1x
n−r−1g(x)

= [m0 m1 · · · mn−r−1]


g(x)
xg(x)

...
xn−r−1g(x)

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 121 / 298

Linear Codes (2)

Encoding Cyclic Codes (2)

A generator matrix for a cyclic code is then

G =


g0 g1 · · · gr

g0 g1 · · · gr
. . .

. . .
. . .

. . .

g0 g1 · · · gr

 ,
where the unmarked entries are zero.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 122 / 298

Linear Codes (2)

Decoding Cyclic Codes (1)

Since g(x) | (xn − 1), there exists a parity polynomial h(x) such that
g(x)h(x) = xn − 1. Moreover, since g(x) | c(x), we have that
c(x)h(x) ≡ 0 (mod xn − 1). We denote s(x) := c(x)h(x) mod (xn − 1)
with s(x) = s0 + s1x + · · ·+ sn−1x

n−1 ∈ GF(q)[x]/(xn − 1). Now

s(x) =
n−1∑
t=0

stx
t ≡ c(x)h(x) ≡

(
n−1∑
i=0

cix
i

)n−1∑
j=0

hjx
j


≡ 0 (mod (xn − 1)) ⇒

st =
n−1∑
i=0

cih(t−i) mod n

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 123 / 298

Linear Codes (2)

Decoding Cyclic Codes (2)

Take the last (n − k) of the parity check equations:

s′ =


sk
sk+1

...
sn−1


T

=


∑n−1

i=0 cih(k−i) mod n∑n−1
i=0 cih(k+1−i) mod n

...∑n−1
i=0 cih(n−1−i) mod n


T

=

[c0 c1 · · · cn−1]


hk hk−1 · · · h0

hk hk−1 · · · h0

. . .
. . .

. . .
. . .

hk hk−1 · · · h0


T

= cHT .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 124 / 298

Linear Codes (2)

Decoding Cyclic Codes (3)

By a previous argument, if c is a codeword, then s′ = cHT = 0, so the
rows of H are vectors in C⊥. Moreover, since the row rank of H is n − k
(as h(x) is monic, the rows are linearly independent). Hence the row space
spans C⊥, and H is a valid parity check matrix.

Theorem 5-3. Let C be an (n, k) cyclic code with generator polynomial
g(x). Then C⊥ is an (n, n − k) cyclic code with generator polynomial
h∗(x), the reciprocal of the parity polynomial for C .

Proof.
The parity check matrix has the same structure as the generator
matrix.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 125 / 298

Linear Codes (2)

Example: Binary Cyclic Code of Length 7 (1)

First, we need to factor x7 − 1 over GF(2)[x]. Let α be a root of
p(x) = 0, where p(x) is the primitive polynomial x3 + x + 1. The
conjugacy classes and the corresponding polynomials are as follows:

{1} ↔ x + 1,
{α, α2, α4} ↔ x3 + x + 1,
{α3, α6, α5} ↔ x3 + x2 + 1.

The polynomial g(x) = (x3 + x + 1)(x + 1) = x4 + x3 + x2 + 1 is one
possible generator polynomial. The corresponding parity polynomial is
h(x) = (x7 + 1)/g(x) = x3 + x2 + 1.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 126 / 298

Linear Codes (2)

Example: Binary Cyclic Code of Length 7 (2)

(cont.) The message polynomials consist of all binary polynomials of
degree less than or equal to 2. The code is a (7, 3) code (with 23 = 8
words). A codeword of the code is, for example,
(x2 + 1) · g(x) = 1 + x3 + x5 + x6 → 1001011. The following matrices
are, respectively, a generator matrix and a parity check matrix of the code:

G =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 , H =


1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 5 127 / 298

Cyclic Codes

Systematic Cyclic Codes

Polynomial multiplication encoding for cyclic linear codes is easy.
Unfortunately, the codes obtained are in most cases not systematic.
Systematic cyclic codes can be obtained through a procedure that is only
slightly more complicated than the polynomial multiplication procedure.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 128 / 298

Cyclic Codes

Systematic Encoding

Consider an (n, k) cyclic code C with generator polynomial g(x). The
k-symbol message block is given by the message polynomial m(x).

Step 1. Multiply the message polynomial m(x) by xn−k .

Step 2. Divide the result of Step 1 by the generator polynomial g(x).
Let d(x) be the remainder.

Step 3. Set c(x) = xn−km(x)− d(x).

This encoding works, as (1) c(x) is a multiple of g(x) and therefore a
codeword, (2) the first n − k coefficients of xn−km(x) are zero, and (3)
only the first n − k coefficients of −d(x) are nonzero (the degree of g(x)
is n − k).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 129 / 298

Cyclic Codes

Example: Systematic Encoding (1)

We consider the (7, 3) binary cyclic code with generator polynomial
g(x) = x4 + x3 + x2 + 1 discussed in a previous example, and encode
101 = 1 + x2 = m(x).

Step 1. xn−km(x) = x4(x2 + 1) = x6 + x4.

Step 2. x6 + x4 = (x4 + x3 + x2 + 1)(x2 + x + 1) + (x + 1), so
d(x) = x + 1 (Carry out the necessary division in the same
way as you learnt in elementary school!).

Step 3. c(x) = x6 + x4 − (x + 1) = 1 + x + x4 + x6, and the
transmitted codeword is 1100101.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 130 / 298

Cyclic Codes

Example: Systematic Encoding (2)

The systematic generator matrix is obtained by selecting as rows the
codewords associated with the messages 100, 010, and 001. The parity
check matrix is obtained using the basic result (presented earlier) that
H = [In−k | −PT] with G = [P | Ik]. In the current example, we get

G =

 1 0 1 1 1 0 0
1 1 1 0 0 1 0
0 1 1 1 0 0 1

 , H =


1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 131 / 298

Cyclic Codes

Implementations of Cyclic Codes

Data rates are very high in many applications ⇒
only very fast decoders and encoders can be used.

Fast circuits are, for example, simple exclusive OR (XOR) gates, switches,
and shift registers. For nonbinary encoders and decoders, finite-field adder
and multiplier circuits are needed. We now focus on shift-register (SR)
encoders and decoders for cyclic codes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 132 / 298

Cyclic Codes

Operational Elements in Shift Registers (1)

The symbology used is depicted in [Wic, Fig. 5-1].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 133 / 298

Cyclic Codes

Operational Elements in Shift Registers (2)

half-adder Adds the input values without carry. In the binary case, XOR.

SR cell Flip-flops. In the binary case, one.

fixed multiplier Multiplies the input value with a given value. In the binary
case, existence or absence of connection.

In the nonbinary case, we assume that the field is a binary extension field:
GF(pm) with p = 2. The circuits are substantially more complicated when
p 6= 2.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 134 / 298

Cyclic Codes

Addition and SRs in Extension Fields

Elements α, β ∈ GF(2m) are represented as binary m-tuples
(a0, a1, . . . , am−1) and (b0, b1, . . . , bm−1), respectively.

Then the addition of α and β gives (a0 + b0, a1 + b1, . . . , am−1 + bm−1),
where + is binary addition. The nonbinary addition circuit is shown in
[Wic, Fig. 5-2].

The non-binary shift-register cells are implemented with one flip-flop for
each coordinate in the m-tuple; see [Wic, Fig. 5.4].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 135 / 298

Cyclic Codes

Multiplication in Extension Fields

As an example, we consider multiplication in GF(24) of an arbitrary value
β = b0 + b1α+ b2α

2 + b3α
3 by a fixed value g = 1 +α, where α is a root

of the primitive polynomial x4 + x + 1. Then

β · g = (b0 + b1α + b2α
2 + b3α

3)(1 + α)

= b0 + (b0 + b1)α + (b1 + b2)α2 + (b2 + b3)α3 + b3α
4

= b0 + (b0 + b1)α + (b1 + b2)α2 + (b2 + b3)α3 + b3(α + 1)

= (b0 + b3) + (b0 + b1 + b3)α + (b1 + b2)α2 + (b2 + b3)α3.

The corresponding multiplier circuit is illustrated in [Wic, Fig. 5-3].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 136 / 298

Cyclic Codes

Nonsystematic Encoders
With message polynomial m(x) = m0 + m1x + · · ·+ mk−1x

k−1 and
generator polynomial g(x), the codeword polynomial is

c(x) = m(x)g(x)

= m0g(x) + m1xg(x) + · · ·+ mk−1x
k−1g(x).

The corresponding SR circuit is shown in [Wic, Fig. 5-5].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 137 / 298

Cyclic Codes

Systematic Encoders

Step 1. (Multiply m(x) by xn−k .) Easy, shown in [Wic, Fig. 5-8].

Step 2. (Divide the result of Step 1 by g(x), and let d(x) be the
remainder.) Polynomial division is carried out through the
use of a linear feedback shift register (LFSR) as shown in
[Wic, Fig. 5-9], where a(x) is divided by g(x), and q(x) and
d(x) are the quotient and remainder, respectively.

Step 3. (Set c(x) = xn−km(x)− d(x).) Achieved by combining the
two SR circuits for the previous steps, as shown in [Wic, Fig.
5-12].

An alternative encoder for cyclic codes, not considered here, is presented
in [Wic, Fig. 5-13].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 138 / 298

Cyclic Codes

Shift-Register Polynomial Division

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 139 / 298

Cyclic Codes

An Example of Polynomial Division

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 140 / 298

Cyclic Codes

A Systematic Encoder

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 141 / 298

Cyclic Codes

Error Detection for Systematic Codes

The transmitted codeword of a systematic cyclic code has the form

c = (c0, c1, . . . , cn) = (−d0,−d1, . . . ,−dn−k−1︸ ︷︷ ︸
remainder block

,m0,m1, . . . ,mk−1︸ ︷︷ ︸
message block

).

Error detection is performed on a received word r as follows.

1. Denote the values in the message and parity positions of the
received word r by m and d, respectively.

2. Encode m using an encoder identical to that used by the
transmitter, and denote the remainder block obtained in this way
by d′.

3. Compare d with d′. If they are different, then the received word
contains errors.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 142 / 298

Cyclic Codes

Syndrome Computation for Systematic Codes

Denote the received word by r with m and d in the message and parity
positions, respectively. Let d′ be a valid parity block of message m (cf.
previous slide), and denote this valid word by r′.

s = rHT

= (r − r′)HT (as r′HT = 0)

= (d0 − d ′0, d1 − d ′1, . . . , dn−k−1 − d ′n−k−1︸ ︷︷ ︸
d−d′

, 0, 0, . . . , 0)HT

= d− d′,

since the parity check matrix has the form H = [In−k | −PT].

Syndromes for nonsystematic codes can also be computed through the use
of shift registers.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 143 / 298

Cyclic Codes

Error-Correction Approaches

Error correction has earlier been discussed for general linear codes.

B A standard array has qn entries.

B A syndrome table has qn−k entries.

B We shall see that the number of entries of a syndrome table for cyclic
linear codes can be reduced to approximatively qn−k/n.

B With more (algebraic) structure of the codes, even more powerful
decoding is possible (to be discussed in forthcoming lectures).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 144 / 298

Cyclic Codes

Syndrome Decoding for Cyclic Codes

Theorem 5-3. Let s(x) be the syndrome polynomial corresponding to a
received polynomial r(x). Let ri (x) be the polynomial obtained by
cyclically shifting the coefficients of r(x) i steps to the right. Then the
remainder obtained when dividing xs(x) by g(x) is the syndrome s1(x)
corresponding to r1(x).

Having computed the syndrome s with an SR division circuit, we get si (x)
after the input of i 0s into the circuit! We then need only store one
syndrome s for an error pattern e and all cyclic shifts of e.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 145 / 298

Cyclic Codes

Decoding Algorithm for Cyclic Codes

1. Let i := 0. Compute the syndrome s for a received vector r.
2. If s is in the syndrome look-up table, goto Step 6.
3. Let i := i + 1. Enter a 0 into the SR input, computing si .
4. If si is not in the syndrome look-up table, goto Step 3.
5. Let ei be the error pattern corresponding to the syndrome si .

Determine e by cyclically shifting ei i times to the left.
6. Let c := r − e. Output c.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 146 / 298

Cyclic Codes

Example: Error Correction of (7,4) Cyclic Code (1)

Consider the (7,4) binary cyclic code generated by g(x) = x3 + x + 1, with
parity check polynomial h(x) = (x7 + 1)/g(x) = x4 + x2 + x + 1, and with
parity check matrix

H =

 1 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

 .
This is a one-error-correcting Hamming code, so all correctable error
patterns are cyclic shifts of 0000001. An SR error-correction circuit for this
code is displayed in [Wic, Fig. 5-14].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 147 / 298

Cyclic Codes

Example: Error Correction of (7,4) Cyclic Code (2)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 148 / 298

Cyclic Codes

Error Detection in Practice

The most frequently used error control techniques in the history of
computers and communication networks are:

one-bit parity check Very simple, but yet important.

CRC codes Shortened cyclic codes that have extremely simple and fast
encoder and decoder implementations.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 149 / 298

Cyclic Codes

Properties of CRC Codes

B Cyclic redundancy check (CRC) codes are shortened cyclic codes
obtained by deleting the j rightmost coordinates in the codewords.

B CRC codes are generally not cyclic.

B CRC codes can have the same SR encoders and decoders as the
original cyclic code.

B CRC codes have error detection and correction capabilities that are at
least as good as those of the original cyclic code.

B CRC codes have good burst-error detection capabilities.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 150 / 298

Cyclic Codes

Some Generator Polynomials

CRC-4 g4(x) = x4 + x3 + x2 + x + 1
CRC-12 g12(x) = (x11 + x2 + 1)(x + 1)
CRC-ANSI gA = (x15 + x + 1)(x + 1)
CRC-CCITT gC = (x15 + x14 + x13 + x12 + x4 + x3 + x2 + x + 1)·

(x + 1)

Example. The polynomial g12(x) divides x2047 − 1 but no polynomial
xm − 1 with smaller degree, so it defines a cyclic code of length 2047 and
dimension 2047− 12 = 2035. So, CRC-12 encodes up to 2035 message
bits, generating 12 bits of redundancy.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 151 / 298

Cyclic Codes

Error Detection Performance Analysis

The error detection performance of codes depends on the type of errors. In
performance analysis, the following three situations are most often
considered.

1. Total corruption of words.
2. Burst errors. These are errors that occur over several consecutive

transmitted symbols.
3. The binary symmetric channel.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 152 / 298

Cyclic Codes

Total Corruption of Words

When an (n, k) code is used, total corruption leads to a decoder error with
probability

qk

qn
= qk−n.

Note that this probability is solely a function of the number of redundant
symbols in the transmitted codewords.

Example. With CRC-12, an error is detected with probability
1− 2−12 ≈ 0.999756 in case of total corruption.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 153 / 298

Cyclic Codes

Burst-Error Detection

A burst-error pattern of length b starts and ends with nonzero symbols;
the intervening symbols may be take on any value, including zero.

Theorems 5-4, 5-5, and 5-6. A q-ary cyclic or shortened cyclic codes
with generator polynomial g(x) of degree r can detect all burst error
patterns of length r or less; the fraction 1− q1−r/(q − 1) of burst error
patterns of length r + 1; and the fraction 1− q−r of burst error patterns of
length greater than r + 1.

Example. With CRC-12, all bursts of length at most 12, 99.95% of bursts
of length 13, and 99.976% of longer bursts are detected.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 154 / 298

Cyclic Codes

The Binary Symmetric Channel

An exact determination of the performance of a CRC code over the binary
symmetric channel requires knowledge of the weight distribution of the
code.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 6 155 / 298

BCH and Reed-Solomon Codes

Background

The algebraic structure of linear codes and, in particular, cyclic linear
codes, enables efficient encoding and decoding algorithms and fast
implementations.

BCH (from the names of Bose, Ray-Chaudhuri, and Hocquenghem) and
Reed-Solomon codes are even more powerful algebraic codes.
Reed-Solomon codes can be described as certain nonbinary BCH codes
(they are, however, discussed separately, as Reed-Solomon codes have
some interesting properties that are not found in other BCH codes).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 156 / 298

BCH and Reed-Solomon Codes

Minimum Distance of Cyclic Codes

When constructing an arbitrary cyclic code, there is no guarantee as to the
resulting minimum distance. An exhaustive computer search is often
needed to find the minimum-weight codewords of a linear code and
thereby the minimum distance.

BCH codes, on the other hand, take advantage of a useful result that
ensures a lower bound on the minimum distance given a particular
constraint on the generator polynomial. This result is known as the BCH
bound.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 157 / 298

BCH and Reed-Solomon Codes

The BCH Bound

Theorem 8-1. Let C be a q-ary (n, k) cyclic code with generator
polynomial g(x). Let m be the order of q modulo n (GF(qm) is thus the
smallest extension field of GF(q) that contains a primitive nth root of
unity), and let α be a primitive nth root of unity. Select g(x) to be a
minimal-degree polynomial in GF(q)[x] such that
g(αb) = g(αb+1) = · · · = g(αb+δ−2) = 0 for some integers b ≥ 0 and
δ ≥ 1 (so g(x) has δ − 1 consecutive powers of α as zeros). Now the code
C defined by g(x) has minimum distance dmin ≥ δ.

The parameter δ in this theorem is the design distance of the BCH code
defined by g(x).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 158 / 298

BCH and Reed-Solomon Codes

Parity Check Matrix for BCH Code

The following matrix can be used as a parity check matrix for a BCH code
from Theorem 8-1:


1 αb α2b · · · α(n−1)b

1 αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

...
...

...

1 αb+δ−3 α2(b+δ−3) · · · α(n−1)(b+δ−3)

1 αb+δ−2 α2(b+δ−2) · · · α(n−1)(b+δ−2)

 .

(Note: The first column can be written as α0·b, α0·(b+1),)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 159 / 298

BCH and Reed-Solomon Codes

Design Procedure for BCH Codes

To construct a t-error-correcting q-ary BCH codes of length n:

1. Find a primitive nth root of unity α ∈ GF(qm), where m is
minimal.

2. Select δ − 1 = 2t consecutive powers of α, starting with αb for
some nonnegative integer b.

3. Let g(x) be the least common multiple of the minimal
polynomials for the selected powers of α with respect to GF(q).
(Each of the minimal polynomials should appear only once in the
product.)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 160 / 298

BCH and Reed-Solomon Codes

Types of BCH Codes

narrow-sense BCH code with b = 1.

primitive BCH code with n = qm − 1 for some positive integer m (the
nth root of unity α is a primitive element in GF(qm)).

A list of the generator polynomials for binary, narrow-sense, primitive BCH
codes of lengths 7 through 255 can be found in [Wic, Appendix E].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 161 / 298

BCH and Reed-Solomon Codes

Example: Binary BCH Codes of Length 31 (1)

Let α be a root of the primitive polynomial x5 + x2 + 1 ∈ GF(2)[x]. Then
α is a primitive element in GF(32), so these BCH codes are primitive. The
cyclotomic cosets and minimal polynomials are

C0 = {0} ↔ M0(x) = x + 1,
C1 = {1, 2, 4, 8, 16} ↔ M1(x) = x5 + x2 + 1,
C3 = {3, 6, 12, 24, 17} ↔ M3(x) = x5 + x4 + x3 + x2 + 1,
C5 = {5, 10, 20, 9, 18} ↔ M5(x) = x5 + x4 + x2 + x + 1,
C7 = {7, 14, 28, 25, 19} ↔ M7(x) = x5 + x3 + x2 + x + 1,
C11 = {11, 22, 13, 26, 21} ↔ M11(x) = x5 + x4 + x3 + x + 1,
C15 = {15, 30, 29, 27, 23} ↔ M15(x) = x5 + x3 + 1.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 162 / 298

BCH and Reed-Solomon Codes

Example: Binary BCH Codes of Length 31 (2)

A narrow-sense one-error-correcting code: Now b = 1 and δ = 3, so
g(x) must have α and α2 as zeros. The minimal polynomial of both α and
α2 is M1(x), so the generator polynomial is

g(x) = LCM(M1(x),M2(x)) = M1(x) = M2(x) = x5 + x2 + 1.

Since deg(g(x)) = 5, the dimension of the code is 31− 5 = 26, so g(x)
defines a (31, 26) binary single-error-correcting BCH code.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 163 / 298

BCH and Reed-Solomon Codes

Example: Binary BCH Codes of Length 31 (3)

A parity check matrix for the constructed code has the following general
form:

H =

[
1 α · · · α29 α30

1 α2 · · · α27 α29

]
.

Since any binary polynomial having α as a zero must also have the other
conjugates as zeros (including α2), the matrix has redundant rows, so the
second row may be deleted.

Note: This code is the binary Hamming code of length 31.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 164 / 298

BCH and Reed-Solomon Codes

Example: Binary BCH Codes of Length 31 (4)

A narrow-sense two-error-correcting code: Now b = 1 and δ = 5, so
g(x) must have α, α2, α3, and α4 as zeros. The generator polynomial is

g(x) = LCM(M1(x),M2(x),M3(x),M4(x)) = M1(x)M3(x)

= (x5 + x2 + 1)(x5 + x4 + x3 + x2 + x + 1)

= x10 + x9 + x8 + x6 + x5 + x3 + 1.

Since deg(g(x)) = 10, the dimension of the code is 31− 10 = 21, so g(x)
defines a (31, 21) binary double-error-correcting BCH code.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 165 / 298

BCH and Reed-Solomon Codes

BCH Codes: Some Remarks

B The true minimum distance may be larger than the design distance.

B We want to maximize the dimension (and therefore the rate) with a
given minimum distance. Therefore, it is sometimes worth considering
codes that are not narrow-sense (b > 1).

B The weight distributions for most BCH codes are not known.

B The weight distributions for all double- and triple-error-correcting
binary primitive BCH codes have been found.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 166 / 298

BCH and Reed-Solomon Codes

Reed-Solomon Codes

Some trends:

1. For a fixed alphabet GF(q), the cardinality of the cyclotomic
cosets modulo n is generally smaller for primitive codes
(n = qm − 1).

2. Large alphabets generally lead to smaller cyclotomic cosets.

BCH codes of length n = q − 1 over GF(q) are called Reed-Solomon
codes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 167 / 298

BCH and Reed-Solomon Codes

Constructing Reed-Solomon Codes

We want to construct a t-error-correcting code of length q− 1 over GF(q).

1. By Theorem 2-12, there exists a required primitive (q − 1)th root
of unity α in GF(q).

2. We want to construct the cyclotomic cosets modulo q − 1 with
respect to GF(q). Since q ≡ 1 (mod q − 1), we have aqs ≡ a
(mod q − 1), so all cyclotomic cosets have one element {a} and
the associated minimal polynomials are of the form x − αa.

The generator polynomial of a t-error correcting code is then

g(x) = (x − αb)(x − αb+1) · · · (x − αb+2t−1).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 168 / 298

BCH and Reed-Solomon Codes

Example: Reed-Solomon Code over GF(8) (1)

Let α be a root of the primitive binary polynomial x3 + x + 1 and therefore
a primitive 7th root of unity. (The elements of GF(8) are then 0, 1, α, α2,
α3 = α + 1, α4 = α2 + α, α5 = α2 + α + 1, and α6 = α2 + 1.)

We construct a 2-error-correcting code. Then 2t = 4, and a narrow-sense
generator polynomial is

g(x) = (x − α)(x − α2)(x − α3)(x − α4) = x4 + α3x3 + x2 + αx + α3.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 169 / 298

BCH and Reed-Solomon Codes

Example: Reed-Solomon Code over GF(8) (2)

Since the generator polynomial has degree 4, we have a (7, 3) code over
GF(8) and the following parity check matrix:

H =


1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α α3 α5

1 α3 α6 α2 α5 α α4

1 α4 α α5 α2 α6 α3

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 170 / 298

BCH and Reed-Solomon Codes

Minimum Distance of Reed-Solomon Codes

As the following theorem shows, we know the minimum distance of
Reed-Solomon codes!

Theorem 8-2. An (n, k) Reed-Solomon code has minimum distance
n − k + 1.

Proof.
Since the generator polynomial g(x) is the product of δ − 1 minimal
polynomials of the form x − αa, its degree is δ − 1. As we also know that
the degree of g(x) is n − k , we get that the minimum distance is at least
δ = n − k + 1. The result now follows, since by the Singleton bound
(Theorem 4-10), the minimum distance is at most n − k + 1.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 171 / 298

BCH and Reed-Solomon Codes

Maximum Distance Separable Codes

An (n, k) code that satisfies the Singleton bound with equality is called
maximum distance separable (MDS). MDS codes have a number of
interesting properties.

B If C is MDS, so is its dual C⊥.

B Any combination of k coordinates in an MDS code may be used as
message coordinates in a systematic representation.

B The weight distribution of MDS codes is known, see
[Wic, Theorem 8-5].

B Punctured and shortened MDS codes are MDS.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 172 / 298

BCH and Reed-Solomon Codes

Decoding BCH and Reed-Solomon Codes

The first explicit decoding algorithm for binary BCH codes was described
by Peterson in 1960. Peterson’s algorithm is useful only for correcting
small numbers of errors.

Berlekamp introduced the first truly efficient decoding algorithm for both
binary and nonbinary BCH codes in 1967. This was further developed by
Massey and is usually called the Berlekamp-Massey decoding algorithm.

These and other decoding algorithms for BCH codes are considered in
[Wic, Ch. 9].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 7 173 / 298

Convolutional Codes (1)

Background

Convolutional codes do not segment the data stream, but convert the
entire data stream into another stream (codeword). Some facts about
convolutional codes:

I Introduced by Elias in 1955.

I Constructed mainly using heuristic techniques (cf. block codes:
algebraic and combinatorial techniques).

I Can be decoded in an “asymptotically optimal” way using the
so-called Viterbi algorithm (which Forney proved to be a
maximum-likelihood decoding algorithm for convolutional codes).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 174 / 298

Convolutional Codes (1)

Linear Convolutional Encoders (1)

An encoder with k inputs and n outputs is said to have rate k/n.

A rate-1/2 linear convolutional encoder is shown in [Wic, Fig. 11-1], and a
rate-2/3 encoder is shown in [Wic, Fig. 11-2]:

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 175 / 298

Convolutional Codes (1)

Linear Convolutional Encoders (2)

The k input and n output streams are denoted by x(0), x(1), . . . , x(k−1),
and y(0), y(1), . . . , y(n−1), respectively. The data of an input stream is

denoted by x(i) = (x
(i)
0 , x

(i)
1 , . . .), and analogously for y(i).

From multiple output streams, we can create a single output stream

y = (y
(0)
0 , y

(1)
0 , . . . , y

(n−1)
0 , y

(0)
1 , . . .), and an analogous notation can be

used for multiple inputs.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 176 / 298

Convolutional Codes (1)

Linear Convolutional Encoders (3)

Linear convolutional encoders can be viewed as, for example,

I finite impulse response (FIR) digital filters, or

I finite state automata.

It is known that every linear convolutional encoder is equivalent to a
minimal encoder that is feedback-free.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 177 / 298

Convolutional Codes (1)

Output as Function of Input (1)

Each element in the output stream y is a combination of the elements in
the input stream x. (Note: The shift-register contents are initialized to
zero before the encoding process begins.)

Example. In the encoder in [Wic, Fig. 11-1], we have

y
(1)
0 = x

(0)
0 + 0 + 0,

y
(1)
1 = x

(0)
1 + x

(0)
0 + 0,

y
(1)
2 = x

(0)
2 + x

(0)
1 + 0,

y
(1)
3 = x

(0)
3 + x

(0)
2 + x

(0)
0 ,

...

y
(1)
i = x

(0)
i + x

(0)
i−1 + x

(0)
i−3.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 178 / 298

Convolutional Codes (1)

Output as Function of Input (2)

Example. (cont.) From the last expression on the previous page, it is
clear that if y′ and y′′ are the codewords corresponding to inputs x′ and x′′,
respectively, then y′ + y′′ is the codeword corresponding to the input
x′ + x′′, so the code is linear . In this example, if x(0) = (10110), then
y(1) = (11111110).

The linear structure of these codes allows for the use of some powerful
techniques from linear systems theory.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 179 / 298

Convolutional Codes (1)

Impulse Response

An impulse response g
(i)
j is obtained for the ith output of an encoder by

applying a single 1 at the jth input followed by a string of zeros:
x(j) = δ = (1000 . . .). Strings of zeros are applied to all other inputs. The
impulse response is terminated at the point from which the output
contains only zeros.

Example. For the encoder in [Wic, Fig. 11-1], we have

g
(0)
0 = (1011),

g
(1)
0 = (1101).

(Notation: g
(i)
j ,l is bit l of g

(i)
j .) The impulse responses are often referred

to as generator sequences.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 180 / 298

Convolutional Codes (1)

Constraint Length

The constraint length K of a convolutional code is the maximum number
of bits in a single output stream that can be affected by any input bit.

In practice, another definition is often used: The constraint length is the
length of the longest input shift register plus one:

K := 1 + m,

where m := maxi mi is called the maximal memory order and mi is the
length of the shift register into which x(i) is fed. The total memory for a
convolutional encoder is defined as

∑k−1
i=0 mi .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 181 / 298

Convolutional Codes (1)

Fractional Rate Loss

Asymptotically, the ratio between the number of input bits and output bits
tends to R = k/n. For an input stream of length L, the ratio is not exactly
R, but we have a fractional rate loss

γ =
R − Reff

R
=

(
k

n

)−1
{(

k

n

)
−

[
L(

n
k

)
L + nm

]}
=

km

L + km
.

Example. For the encoder in [Wic, Fig. 11-1] we have k = 1 and m = 3,
so with an input of length L = 5 (as in an earlier example), we get

γ =
km

L + km
=

1 · 3
5 + 1 · 3

= 0.375.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 182 / 298

Convolutional Codes (1)

Convolutions of Sequences

An output stream can be expressed as a function of the input streams and
the generator sequences

y
(i)
j =

k−1∑
t=0

(
m∑
l=0

x
(t)
j−lg

(i)
t,l

)
,

which is a sum of discrete convolutions of pairs of sequences:

y(i) =
k−1∑
t=0

x(t) ∗ g
(i)
t .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 183 / 298

Convolutional Codes (1)

Convolutional Generator Matrix

The previous expressions can be re-expressed as a matrix multiplication
operation, thus obtaining a semi-infinite generator matrix.

For a rate-1/2 code, the generator matrix is formed from the two
generator sequences as follows:

G =

 g
(0)
0 g

(1)
0 g

(0)
1 g

(1)
1 · · · g

(0)
m g

(1)
m

g
(0)
0 g

(1)
0 g

(0)
1 g

(1)
1 · · · g

(0)
m g

(1)
m

. . .
. . .

. . .
. . .

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 184 / 298

Convolutional Codes (1)

Example: Convolutional Generator Matrix

The sequence x = (1011) is to be encoded using the rate-1/2 encoder in
[Wic, Fig. 11-1]. For this code, g(0) = (1011) and g(1) = (1101), so

y = xG = (1011)


11 01 10 11 00 00 00
00 11 01 10 11 00 00
00 00 11 01 10 11 00
00 00 00 11 01 10 11

 =

(11, 01, 01, 01, 11, 01, 11).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 185 / 298

Convolutional Codes (1)

The Delay Transform (1)

An appropriate transform will provide a simpler multiplicative
representation for encoding. In this case, we apply the delay transform
(also called the D-transform):

x(i) = (x
(i)
0 , x

(i)
1 , . . .) ↔ X(i)(D) = x

(i)
0 + x

(i)
1 D + · · · ,

y(i) = (y
(i)
0 , y

(i)
1 , . . .) ↔ Y(i)(D) = y

(i)
0 + y

(i)
1 D + · · · ,

g
(i)
j = (g

(i)
j ,0 , g

(i)
j ,1 , . . .) ↔ G

(i)
j (D) = g

(i)
j ,0 + g

(i)
j ,1D + · · · .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 186 / 298

Convolutional Codes (1)

The Delay Transform (2)

The encoding operation can now be represented as

Y(i)(D) =
k−1∑
j=0

X(j)(D)G
(i)
j (D),

or as (the matrix G(D) is called a transfer-function matrix)

Y(D) = X(D)G(D) = (X(0)(D) X(1)(D) · · · X(k−1)(D))·
G

(0)
0 (D) G

(1)
0 (D) · · · G

(n−1)
0 (D)

G
(0)
1 (D) G

(1)
1 (D) · · · G

(n−1)
1 (D)

...
...

...
...

G
(0)
k−1(D) G

(1)
k−1(D) · · · G

(n−1)
k−1 (D)

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 187 / 298

Convolutional Codes (1)

Example: The Delay Transform

The rate-2/3 encoder in [Wic, Fig. 11-2] is used to encode the message
x = (11, 10, 11). Then X(0)(D) = 1 + D + D2 and X(1)(D) = 1 + D2, so

Y(D) = (1 + D + D2 1 + D2)

[
1 + D3 D + D2 + D3 1 + D
D + D2 1 + D2 D

]
=

(1 + D5 1 + D + D3 + D4 + D5 1 + D).

Hence y(0) = (100001), y(1) = (110111), and y(2) = (110000), and the
output word is y = (111, 011, 000, 010, 010, 110).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 188 / 298

Convolutional Codes (1)

Systematic Convolutional Codes
A convolutional code is said to be systematic if the input data is
reproduced unaltered in the output codeword.

A rate-1/2 systematic convolutional encoder is shown in [Wic, Fig. 11-3].
In a rate-k/n systematic encoder, k of the n output coded data streams
are identical to the k input streams. The matrix G(D) of a systematic
encoder contains the k × k identity matrix Ik .

Note: Not every convolutional code has a systematic encoding (which is
the case for block codes). In fact, many good convolutional codes are not
systematic.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 189 / 298

Convolutional Codes (1)

Properties of Convolutional Codes

Convolutional codes differ from block codes in several ways, some
mentioned earlier. Most of the techniques used for analyzing and
comparing block codes cannot be applied to convolutional codes. For
example, what about minimum distance?

There are two important graphical techniques for analyzing convolutional
codes:

1. State diagrams.
2. Trellis diagrams.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 190 / 298

Convolutional Codes (1)

State Diagrams (1)

A convolutional encoder is a finite-state automaton, where the next output
depends only on the input bits and the contents of its memory cells. With
k memory cells, the finite-state automaton has 2k states.

Example. The encoder in [Wic, Fig. 11-1] has 8 states, which can be
associated with the memory contents as follows:

S0 ↔ (000), S4 ↔ (001),
S1 ↔ (100), S5 ↔ (101),
S2 ↔ (010), S6 ↔ (011),
S3 ↔ (110), S7 ↔ (111).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 191 / 298

Convolutional Codes (1)

State Diagrams (2)

Example. (cont.) The state diagram of this encoder is shown in [Wic,
Fig. 11-4]. Each branch in the state diagram has a label of the for X/YY ,
where X is the input bit that causes the state transition and YY is the
corresponding pair of output bits.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 192 / 298

Convolutional Codes (1)

Some Graph Concepts

graph Consists of vertices (nodes) and edges (branches) that
connect the vertices.

directed graph A graph where the edges have an associated direction.

weighted graph A graph where (usually nonnegative integer) values are
associated with the edges.

path A sequence of vertices in which consecutive vertices are
connected with an edge (in the correct direction if the graph
is directed).

circuit A path that starts and stops at the same vertex.

cycle A circuit in which the only repeated vertex is the first one.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 193 / 298

Convolutional Codes (1)

State Diagrams (3)

We may consider the state diagram as a weighted directed graph, where
the weight of an edge is the Hamming weight of the output bits. State
diagrams are therefore also called encoder graphs.

The encoding process begins and ends in the all-zero state, so every
convolutional codeword is associated with a circuit through the encoder
graph that starts and stops at state S0.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 194 / 298

Convolutional Codes (1)

Catastrophic Convolutional Codes

A convolutional code is said to be catastrophic if its corresponding state
diagram contains a cycle in which a nonzero input sequence corresponds
to an all-zero output sequence.

With a catastrophic code, a small number of channel errors can cause an
unlimited number of errors in the decoded data stream.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 195 / 298

Convolutional Codes (1)

Example: Catastrophic Code (1)

The encoder graph of a catastrophic code is shown in [Wic, Fig. 11-5]
(and the corresponding encoder is depicted in [Wic, Fig. 11-6]):

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 196 / 298

Convolutional Codes (1)

Example: Catastrophic Code (2)

The loop about state S7 shows that the code is catastrophic. With this
encoder, an all-zero word (0, 0, . . . , 0) is encoded as

(00, 00, . . . , 00),

and an all-one word (1, 1, . . . , 1) is encoded as

(11, 00, 11, 00, 00, . . . , 00, 00, 11, 00, 11).

Then there are situations with a small number of channel errors where
maximum-likelihood decoding will lead to a huge number of errors.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 197 / 298

Convolutional Codes (1)

Avoiding Catastrophic Codes (1)

To avoid the weight-zero loop about the all-ones state, one need only
assure that at least one of the output streams is formed through the
summation of an odd number of terms. This condition is not sufficient,
however, as shown by the encoder and the encoder graph given in
[Wic, Fig. 11-8] and [Wic, Fig. 11-7], respectively:

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 198 / 298

Convolutional Codes (1)

Avoiding Catastrophic Codes (2)

Fortunately, catastrophic codes are relatively infrequent (for example, only
1/(2n − 1) of all convolutional codes of rate 1/n and a given constraint
length are catastrophic).

A set of necessary and sufficient conditions for a convolutional code to be
noncatastrophic has been proved by Massey and Sain.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 199 / 298

Convolutional Codes (1)

Conditions for Catastrophic Codes

1. Let C be a rate-1/n convolutional code with transfer-function
matrix G(D) whose generator sequences have the transforms
G(i)(D), 0 ≤ i ≤ n − 1. Then C is not catastrophic iff for some
nonnegative integer j ,

GCD(G(0)(D),G(1)(D), . . . ,G(n−1)(D)) = D j .

2. Let C be a rate-k/n convolutional code with transfer-function
matrix G(D). Then C is not catastrophic iff for some
nonnegative integer j ,

GCD(∆i (D) | i ∈ I) = D j ,

where ∆i (D) is the determinant of the ith k × k submatrix of
G(D) and I contains the indexes of all such submatrices.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 200 / 298

Convolutional Codes (1)

Example: Conditions for Convolutional Codes

The generator sequences for the encoder in [Wic, Fig. 11-8] are

g(0) = (0111),

g(1) = (1110),

and the corresponding D-transforms are

G(0) = D + D2 + D3,

G(1) = 1 + D + D2.

Then GCD(G(0),G(1)) = 1 + D + D2, and since 1 + D + D2 6= D j for any
integer j , the code is catastrophic.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 8 201 / 298

Convolutional Codes (2)

Performance Measures for Convolutional Codes

Whereas there is one main performance measure for block codes,
minimum distance, there are several possible performance measures for
convolutional codes. The following three are considered here:

1. The column distance function.
2. Minimum distance.
3. Minimum free distance.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 202 / 298

Convolutional Codes (2)

The Column Distance Function (1)

Consider a rate-k/n code C with constraint length K . Let the input
sequence x and the output sequence y for an encoder for C be truncated
at length i :

[x]i = (x
(0)
0 , . . . , x

(k−1)
0 , x

(0)
1 , . . . , x

(k−1)
1 , . . . , x

(0)
i−1, . . . , x

(k−1)
i−1),

[y]i = (y
(0)
0 , . . . , y

(n−1)
0 , y

(0)
1 , . . . , y

(n−1)
1 , . . . , y

(0)
i−1, . . . , y

(n−1)
i−1).

The column distance function (CDF) di is the minimum Hamming
distance between all pairs of output sequences truncated at length i given
that the input sequences differ in the first k bits:

di := min{d([y′]i , [y
′′]i) | [x′]1 6= [x′′]1}.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 203 / 298

Convolutional Codes (2)

The Column Distance Function (2)

If the convolutional code is linear, the CDF can be defined in the following
way:

di := min{w([y]i) | [x]1 6= 0}.

Example. The CDF for the code in [Wic, Fig. 11-1] is shown in [Wic, Fig.
11-13].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 204 / 298

Convolutional Codes (2)

Minimum Distance

The minimum distance dmin of a rate-k/n convolutional code with
constraint length K is dK (that is, the CDF evaluated at i = K).

Example. The minimum distance for the code defined by the decoder in
[Wic, Fig. 11-1] is dmin = d4 = 3.

The parameter dmin is useful for methods that use nK bits of a received
word to decode a single bit.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 205 / 298

Convolutional Codes (2)

Minimum Free Distance (1)

The minimum free distance dfree is the minimum Hamming distance
between all pairs of complete convolutional codewords,

dfree := min{d(y′, y′′) | y′ 6= y′′}
= min{w(y) | y 6= 0}.

The minimum free distance is important in particular for the Viterbi
decoder (to be considered), which uses the entire codeword to decode a
single bit. It can be obtained by finding a cycle of minimum weight in the
encoder graph starting and stopping at S0.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 206 / 298

Convolutional Codes (2)

Minimum Free Distance (2)

Example. The minimum free distance for the code defined by the decoder
in [Wic, Fig. 11-1] is dfree = 6.

This and a previous example show the expected result that better
performance is provided by techniques that use the entire word instead of
nK bits to decode a single bit (dfree = 6 > dmin = 3).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 207 / 298

Convolutional Codes (2)

Some Results on Distance Parameters

B For noncatastrophic codes, limi→∞ di = dfree.

B Unlike linear block codes, nonsystematic convolutional codes often
offer a higher minimum free distance than systematic codes of
comparable constraint length and rate (cf.
[Wic, Tables 11-1 and 11-2]).

Lists of nonsystematic rate-1/4, rate-1/3, rate-1/2, rate-2/3, and rate-3/4
convolutional codes with largest possible minimum free distance for small
constraint lengths are listed in [Wic, Tables 11-3 to 11-7].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 208 / 298

Convolutional Codes (2)

The Viterbi Decoding Algorithm

I In 1967, Viterbi proposed an algorithm for “asymptotically optimal”
decoding of convolutional codes in memoryless noise.

I It turned out that the algorithm had been invented in operations
research ten years earlier, when Minty presented an algorithm for a
shortest-route problem.

I The Viterbi algorithm provides both a maximum-likelihood (ML) and
a maximum a posteriori (MAP) decoding algorithm for convolutional
codes.

The ML version of the algorithm will be considered here.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 209 / 298

Convolutional Codes (2)

Trellis Diagrams

A trellis diagram is an extension of the state diagram of a convolutional
code, which explicitly shows the passage of time.

Example. A rate-1/3 encoder with two memory cells is shown in [Wic,
Fig. 12-1] and its associated state diagram (which has 22 = 4 states) in
[Wic, Fig. 12-2]. In [Wic, Fig. 12-3], the state diagram is extended in time
to form a trellis diagram. The edges of the trellis diagram are labeled with
the corresponding output bits.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 210 / 298

Convolutional Codes (2)

Some Properties of Trellis Diagrams (1)

B Every codeword in a convolutional code is associated with a unique
path through the trellis diagram, starting and stopping at S0.

B With total memory M and maximal memory order m, the trellis
diagram has 2M vertices at each time increment after time t = m.

B There are 2k edges leaving each vertex. After time t = m, there are
2k edges entering each vertex.

B Given an input sequence of kL bits, the trellis diagram has L + m
stages, and codewords have n(L + m) bits.

B There are 2kL different paths through a trellis diagram with L + m
stages.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 211 / 298

Convolutional Codes (2)

Some Properties of Trellis Diagrams (2)

Example. The input sequence x = (011) to the encoder in
[Wic, Fig. 12-1] is shown in [Wic, Fig. 12-4]. Since L = 3, n = 3, and
m = 2, the codeword has n(L + m) = 3(3 + 2) = 15 bits and is
y = (000, 111, 000, 001, 110).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 212 / 298

Convolutional Codes (2)

The Viterbi Algorithm (1)

In a communication system, an information stream x is encoded into a
convolutional codeword y, which is transmitted across a (noisy) channel.
At the receiving end, we want to find a good estimate y′ of the
transmitted word given the received word r. Analogously to an earlier
discussion for block codes,

B a maximum a posteriori (MAP) decoder selects an estimate y′ that
maximizes p(y′ | r),

B a maximum likelihood (ML) decoder selects an estimate y′ that
maximizes p(r | y′), and

B these two decoders are identical when the distribution of the source
words {x} is uniform.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 213 / 298

Convolutional Codes (2)

The Viterbi Algorithm (2)

With a rate-k/n convolutional encoder and an input sequence x composed
of L k-bit blocks

x = (x
(0)
0 , x

(1)
0 , . . . , x

(k−1)
0 , x

(0)
1 , x

(1)
1 , . . . , x

(k−1)
1 , . . . , x

(k−1)
L−1),

the output sequence y will consist of L + m n-bit blocks (where m is the
maximal memory order)

y = (y
(0)
0 , y

(1)
0 , . . . , y

(n−1)
0 , y

(0)
1 , y

(1)
1 , . . . , y

(n−1)
1 , . . . , y

(n−1)
L+m−1).

The corrupted word r that arrives at the receiver is

r = (r
(0)
0 , r

(1)
0 , . . . , r

(n−1)
0 , r

(0)
1 , r

(1)
1 , . . . , r

(n−1)
1 , . . . , r

(n−1)
L+m−1)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 214 / 298

Convolutional Codes (2)

The Viterbi Algorithm (3)

The decoder generates a maximum likelihood estimate

y′ = (y ′0
(0)
, y ′0

(1)
, . . . , y ′0

(n−1)
, y ′1

(0)
, y ′1

(1)
, . . . , y ′1

(n−1)
, . . . , y ′L+m−1

(n−1)
).

We assume that the channel is memoryless, that is, that the noise process
affecting a given bit is independent of the noise process affecting any other
bits. Then

p(r | y′) =
L+m−1∏
i=0

n−1∏
j=0

p(r
(j)
i | y

′
i
(j)

)

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 215 / 298

Convolutional Codes (2)

The Viterbi Algorithm (4)

For easier calculations, we take the logarithm of the previous expression
(note that logarithms are monotonically increasing and
log xy = log x + log y) and transform it x → a(x + b) to get the path
metric

M(r | y′) =
L+m−1∑
i=0

n−1∑
j=0

M(r
(j)
i | y

′
i
(j)

)

 ,

where
M(r

(j)
i | y

′
i
(j)

) = a[log p(r
(j)
i | y

′
i
(j)

) + b].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 216 / 298

Convolutional Codes (2)

The Viterbi Algorithm (5)

The sth partial path metric is defined as

Ms(r | y′) =
s∑

i=0

n−1∑
j=0

M(r
(j)
i | y

′
i
(j)

)

 .

Until we reach the point in the trellis where more than one path enters
each node, we assign to a node the value Ms(r | y′) of the only possible
path. From that point on, the optimal partial path metric among the
metrics for all of the entering paths is chosen. This is shown in
[Wic, p. 296].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 217 / 298

Convolutional Codes (2)

The Complete Viterbi Algorithm (1)

Let the vertex corresponding to state Sj at time t be denoted Sj ,t . Each
such vertex is assigned a value V (Sj ,t) in the following way.

1. Set V (S0,0) = 0 and t = 1.
2. At time t, compute the partial path metrics for all paths entering

each vertex.
3. Set V (Sk,t) equal to the best partial path metric entering a

vertex corresponding to state Sk at time t. One best edge
survives (ties are randomly broken); the others are deleted from
the trellis.

4. If t < L + m, t := t + 1 and goto Step 2; otherwise Stop.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 218 / 298

Convolutional Codes (2)

The Complete Viterbi Algorithm (2)

Once all vertex values have been computed, the vector y′ is obtained by
starting at state S0, time t = L + m and following the surviving edges
backward through the trellis.

Theorem 12-1. The path selected by the Viterbi decoder is the maximum
likelihood path.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 219 / 298

Convolutional Codes (2)

Hard-Decision Decoding

In hard-decision decoding each received bit is examined and a decision is
made whether it represents a 0 or a 1. A binary memoryless channel
model is depicted in [Wic, Fig. 12-6]. If p(0 | 1) = p(1 | 0), we have a
binary symmetric channel (BSC).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 220 / 298

Convolutional Codes (2)

The Viterbi Algorithm for the BSC (1)

For the BSC we have p(0 | 1) = p(1 | 0) = p and
p(0 | 0) = p(1 | 1) = 1− p. By letting a = (log2 p − log2(1− p))−1

(which is negative when p < 1/2) and b = − log2(1− p),

M(r
(j)
i | yi

(j)) =
1

log2 p − log2(1− p)
[log2 p(r

(j)
i | yi

(j))− log2(1− p)],

and we get the following table.

M(r
(j)
i | y

(j)
i) r

(j)
i = 0 r

(j)
i = 1

y
(j)
i = 0 0 1

y
(j)
i = 1 1 0

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 221 / 298

Convolutional Codes (2)

The Viterbi Algorithm for the BSC (2)

Since a < 0, we have a minimizing problem. For the BSC case, the path
metric is simply the Hamming distance!

To get a maximizing problem, we can instead choose
a = (log2(1− p)− log2 p) and b = − log2 p; then we get the following
metric.

M(r
(j)
i | y

(j)
i) r

(j)
i = 0 r

(j)
i = 1

y
(j)
i = 0 1 0

y
(j)
i = 1 0 1

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 222 / 298

Convolutional Codes (2)

Example: Viterbi Decoding for the BSC (1)

When the encoder in [Wic, Fig. 12-1] is used, the sequence x = (110101)
results in the codeword

y = (111, 000, 001, 001, 111, 001, 111, 110).

Assume that when the word y is transmitted over a noisy channel, the
following word is received:

r = (101, 100, 001, 011, 111, 101, 111, 110).

In the expression of r, a bar over a bit indicates an error. Using the second
set of bit metrics for the BSC case, the result of the decoding is shown in
[Wic, Fig. 12-8]. Several ties occur during decoding (for example, for S3 at
times t = 3 and t = 5); however, these have no impact on the path
selected by the decoder.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 223 / 298

Convolutional Codes (2)

Example: Viterbi Decoding for the BSC (2)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 224 / 298

Convolutional Codes (2)

Soft-Decision Decoding (1)

In soft-decision decoding the receiver takes advantage of side
information in a received bit. Instead of assigning a 0 or a 1, as in
hard-decision decoding, a more flexible approach is taken through the use
of multibit quantization (cf. fuzzy logic!).

Four or more decision regions are established, ranging from a strong one
to a strong zero.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 225 / 298

Convolutional Codes (2)

Soft-Decision Decoding (2)

Let the transmitted bits {y (j)
i } take the values ±1. The path metric for

the AWGN channel are then the inner product of the received word and
the codeword. The individual bit metrics are

M(r
(j)
i | y

(j)
i) = r

(j)
i y

(j)
i .

Maximization of the path metric is equivalent to finding the codeword y
that is closest to r in terms of Euclidean distance (note: for the BSC,
Hamming distance was considered).

In dealing with Euclidean distance and real numbers, finite precision of
digital computers will have an impact on the result. In practice, however,
this impact turns out to be negligible.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 226 / 298

Convolutional Codes (2)

Discrete Symmetric Channels
The fact that the received signal can take more than two values is modeled
as a discrete symmetric channel. Such a channel with four values for
the received signal is depicted in [Wic, Fig. 12-10]. The four values are

0 strong 0,

0 weak 0,

1 weak 1, and

1 strong 1.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 227 / 298

Convolutional Codes (2)

Example: Soft-Decision Viterbi Decoding (1)

Decoding is performed almost exactly as in the hard-decision case, the only
difference being the increased number (and resolution) of the bit metrics.

We consider the following conditional probabilities in [Wic, Fig. 12-10].

p(r | y) r = 0 r = 0 r = 1 r = 1

y = 0 0.50 0.32 0.13 0.05
y = 1 0.05 0.13 0.32 0.50

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 228 / 298

Convolutional Codes (2)

Example: Soft-Decision Viterbi Decoding (2)

log2 p(r | y) r = 0 r = 0 r = 1 r = 1

y = 0 −1.00 −1.64 −2.94 −4.32
y = 1 −4.32 −2.94 −1.64 −1.00

With M(r | y) = 1.5[log2 p(r | y)− log2(0.05)], we get the following table.

M(r | y) r = 0 r = 0 r = 1 r = 1

y = 0 5 4 2 0
y = 1 0 2 4 5

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 229 / 298

Convolutional Codes (2)

Example: Soft-Decision Viterbi Decoding (3)

As in a previous example, assume that the word

y = (111, 000, 001, 001, 111, 001, 111, 110)

is transmitted, and that the received word is

r = (101, 100, 001, 011, 110, 110, 111, 110).

The soft-decoding trellis diagram and the result of the decoding are shown
in [Wic, Fig. 12-11].

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 230 / 298

Convolutional Codes (2)

Example: Soft-Decision Viterbi Decoding (4)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 9 231 / 298

Modern Coding Methods

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 232 / 298

Modern Coding Methods

Background

The material in the sequel is based on

[MF] J. C. Moreira and P. G. Farrell, Essentials of Error-Control
Coding, Wiley, Chichester, 2006, pp. 209–325.

I Traditional paradigm: Try to construct codes with large minimum
distance.

I Shannon: Random codes are good.

I Modern paradigm: “Distance isn’t everything”. Two code types with
good practical performance are turbo and LDPC codes. Iterative
decoding.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 233 / 298

Modern Coding Methods

Background

The material in the sequel is based on

[MF] J. C. Moreira and P. G. Farrell, Essentials of Error-Control
Coding, Wiley, Chichester, 2006, pp. 209–325.

I Traditional paradigm: Try to construct codes with large minimum
distance.

I Shannon: Random codes are good.

I Modern paradigm: “Distance isn’t everything”. Two code types with
good practical performance are turbo and LDPC codes. Iterative
decoding.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 233 / 298

Modern Coding Methods

Background

The material in the sequel is based on

[MF] J. C. Moreira and P. G. Farrell, Essentials of Error-Control
Coding, Wiley, Chichester, 2006, pp. 209–325.

I Traditional paradigm: Try to construct codes with large minimum
distance.

I Shannon: Random codes are good.

I Modern paradigm: “Distance isn’t everything”. Two code types with
good practical performance are turbo and LDPC codes. Iterative
decoding.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 233 / 298

Modern Coding Methods

Background

The material in the sequel is based on

[MF] J. C. Moreira and P. G. Farrell, Essentials of Error-Control
Coding, Wiley, Chichester, 2006, pp. 209–325.

I Traditional paradigm: Try to construct codes with large minimum
distance.

I Shannon: Random codes are good.

I Modern paradigm: “Distance isn’t everything”. Two code types with
good practical performance are turbo and LDPC codes. Iterative
decoding.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 233 / 298

Modern Coding Methods

Turbo Engines

Turbo(charger): A supercharger driven by a turbine powered by the
engine’s exhaust gases.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 234 / 298

Modern Coding Methods

Turbo Codes

The term turbo in the coding context origins from some similarity between
decoding and the turbo engine principle (and not from the fact that turbo
can be imagined as something better and/or faster, although these codes
indeed have good practical performance).

Turbo codes were discovered in 1993 by Berrou, Glavieux and
Thitimajshima.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 235 / 298

Modern Coding Methods

Turbo Encoder

A basic turbo encoder is the following rate-1/3 systematic encoder:

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 236 / 298

Modern Coding Methods

Turbo Encoder (cont.)

The shown turbo encoder consists of three parallel parts whose output is

1. the data stream unaltered,
2. data from a convolutional encoder,
3. data from a convolutional encoder combined with a random

interleaver.

Puncturing (which is usually not applied to the systematic bits) can be
used to obtain higher rates than 1/3.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 237 / 298

Modern Coding Methods

Turbo Encoder (cont.)

The shown turbo encoder consists of three parallel parts whose output is

1. the data stream unaltered,
2. data from a convolutional encoder,
3. data from a convolutional encoder combined with a random

interleaver.

Puncturing (which is usually not applied to the systematic bits) can be
used to obtain higher rates than 1/3.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 237 / 298

Modern Coding Methods

Turbo Encoder (cont.)

The shown turbo encoder consists of three parallel parts whose output is

1. the data stream unaltered,
2. data from a convolutional encoder,
3. data from a convolutional encoder combined with a random

interleaver.

Puncturing (which is usually not applied to the systematic bits) can be
used to obtain higher rates than 1/3.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 237 / 298

Modern Coding Methods

Turbo Encoder (cont.)

The shown turbo encoder consists of three parallel parts whose output is

1. the data stream unaltered,
2. data from a convolutional encoder,
3. data from a convolutional encoder combined with a random

interleaver.

Puncturing (which is usually not applied to the systematic bits) can be
used to obtain higher rates than 1/3.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 237 / 298

Modern Coding Methods

Turbo Encoder (cont.)

The shown turbo encoder consists of three parallel parts whose output is

1. the data stream unaltered,
2. data from a convolutional encoder,
3. data from a convolutional encoder combined with a random

interleaver.

Puncturing (which is usually not applied to the systematic bits) can be
used to obtain higher rates than 1/3.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 237 / 298

Modern Coding Methods

Turbo Decoder

Turbo codes are decoded in an iterative soft-decision decoding process.
Two different decoders—corresponding to the two different encoders—get
progressively better estimates of the message bits through an iterative
exchange of information.

More precisely, each of the decoders obtain a new estimate based on

I the systematic bits,

I the parity bits (produced by the corresponding encoder),

I the previous estimate of the other decoder.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 238 / 298

Modern Coding Methods

Turbo Decoder

Turbo codes are decoded in an iterative soft-decision decoding process.
Two different decoders—corresponding to the two different encoders—get
progressively better estimates of the message bits through an iterative
exchange of information.

More precisely, each of the decoders obtain a new estimate based on

I the systematic bits,

I the parity bits (produced by the corresponding encoder),

I the previous estimate of the other decoder.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 238 / 298

Modern Coding Methods

Turbo Decoder

Turbo codes are decoded in an iterative soft-decision decoding process.
Two different decoders—corresponding to the two different encoders—get
progressively better estimates of the message bits through an iterative
exchange of information.

More precisely, each of the decoders obtain a new estimate based on

I the systematic bits,

I the parity bits (produced by the corresponding encoder),

I the previous estimate of the other decoder.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 238 / 298

Modern Coding Methods

Turbo Decoder

Turbo codes are decoded in an iterative soft-decision decoding process.
Two different decoders—corresponding to the two different encoders—get
progressively better estimates of the message bits through an iterative
exchange of information.

More precisely, each of the decoders obtain a new estimate based on

I the systematic bits,

I the parity bits (produced by the corresponding encoder),

I the previous estimate of the other decoder.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 238 / 298

Modern Coding Methods

Turbo Decoder (cont.)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 239 / 298

Modern Coding Methods

Log Likelihood Ratio

The estimates are usually communicated from one decoder to the other in
the form of log likelihood ratio (LLR).

Instead of elements from {0, 1}, it is often more convenient to consider
elements from {−1, 1}. The LLR is defined as

L(bi) = ln

(
P(bi = +1)

P(bi = −1)

)
.

The sign of the LLR can be used as the hard decision of the estimate; the
absolute value gives the reliability of the estimate.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 240 / 298

Modern Coding Methods

BCJR Algorithm

The BCJR algorithm (Bahl-Cocke-Jelinek-Raviv) determines an estimate
for a given sequence element by observing the output sequence of a
discrete memoryless channel that corresponds to a given input sequence.

The BCJR algorithm is the core part of iterative decoding of turbo codes.
We omit the details here.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 241 / 298

Modern Coding Methods

Iterative Decoding

We shall next show one scheme for iterative decoding of turbo codes.

A priori information: Information provided by the other encoder. (In the
beginning P(bi = +1) = P(bi = −1) = 0.5 so the a priori LLR is 0 for the
first encoder in the first iteration.)

Extrinsic information: The component of the generated reliability value
that depends on redundant information introduced by the considered
constituent code.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 242 / 298

Modern Coding Methods

Scheme for Iterative Decoding

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 243 / 298

Modern Coding Methods

Example: Iterative Decoding

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 244 / 298

Modern Coding Methods

Example: Iterative Decoding (cont.)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 245 / 298

Modern Coding Methods

Interleavers for Turbo Codes

Interleavers, which permute positions in a stream of symbols, are useful for
several purposes in coding, for example, to

I combat burst errors by distributing adjacent symbols (and thereby
errors) among many words;

I obtain statistically independent sequences of symbols for turbo
encoders.

Major types are block, convolutional, random, and linear interleavers.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 246 / 298

Modern Coding Methods

Interleavers for Turbo Codes

Interleavers, which permute positions in a stream of symbols, are useful for
several purposes in coding, for example, to

I combat burst errors by distributing adjacent symbols (and thereby
errors) among many words;

I obtain statistically independent sequences of symbols for turbo
encoders.

Major types are block, convolutional, random, and linear interleavers.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 246 / 298

Modern Coding Methods

Interleavers for Turbo Codes

Interleavers, which permute positions in a stream of symbols, are useful for
several purposes in coding, for example, to

I combat burst errors by distributing adjacent symbols (and thereby
errors) among many words;

I obtain statistically independent sequences of symbols for turbo
encoders.

Major types are block, convolutional, random, and linear interleavers.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 246 / 298

Modern Coding Methods

Interleavers for Turbo Codes

Interleavers, which permute positions in a stream of symbols, are useful for
several purposes in coding, for example, to

I combat burst errors by distributing adjacent symbols (and thereby
errors) among many words;

I obtain statistically independent sequences of symbols for turbo
encoders.

Major types are block, convolutional, random, and linear interleavers.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 246 / 298

Modern Coding Methods

Block Interleavers

In a block interleaver, the symbols are written row-wise into an M × N
matrix and read column-wise. With a table

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15
16 17 18 19 20

the symbols are output in the order 1→ 6→ 11→ 16→ 2→ · · · .

Design rule: Let M = N and let M and N be odd.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 247 / 298

Modern Coding Methods

Convolutional Interleavers

A convolutional interleaver is implemented using N shift registers, of
length 0, L, 2L, . . . , (N − 1)L:

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 248 / 298

Modern Coding Methods

Convolutional Interleavers (cont.)

With N = 3 and L = 1, the symbols are output in the order
0→ −2→ −4→ 3→ 1→ −1→ 6→ 4→ · · · .

Easy implementation is a strength of convolutional interleavers. Note that
no block of consecutive symbols is mapped to consecutive symbols.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 249 / 298

Modern Coding Methods

Random Interleavers

A random interleaver gives a random permutation of a block of symbols.
The permutation of a (pseudo-)random interleaver needs to be stored in
memory.

I Performance improves when interleaver size increases.
Note. Applications do not always allow large interleavers, implying
long delays.

I If the interleaver size is small, then block interleavers are generally
better than random interleavers.

I If the interleaver size is large, then random interleavers are generally
better than block interleavers.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 250 / 298

Modern Coding Methods

Example: Imapct of Interleaver

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 251 / 298

Modern Coding Methods

Linear Interleavers

A permutation of an interleaver given by a concise mathematical formula
can save a lot of memory. A linear interleaver of length L maps a symbol
in position i , 0 ≤ i ≤ L− 1, into position

pi + s (mod L).

for some 0 ≤ p, s ≤ L− 1. It is required that gcd(p, L) = 1.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 252 / 298

Modern Coding Methods

A Practical Aspect of Decoding

Implementing decoding algorithms (for turbo and other codes) often
means handling values of very different orders of magnitude ⇒ overflow
and underflow problems may occur.

Solution: Convert the values as well as the calculations into logarithmic
form. Then

eA × eB = eA+B ,

eA + eB = emax(A,B)+ln(1+e−|A−B|).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 253 / 298

Modern Coding Methods

Performance of Turbo Codes

The performance of turbo codes depends on the signal-to-noise ratio
(SNR):

I At low values of SNR, iterative decoding performs worse than
uncoded transmission, even for a large number of iterations.

I At low to medium values of SNR, iterative decoding is very effective.
The performance increases with an increase in the number of
iterations.

I A medium to high values of SNR, iterative decoding converges in few
iterations. Performance increases only slowly as SNR increases.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 254 / 298

Modern Coding Methods

Performance of Turbo Codes

The performance of turbo codes depends on the signal-to-noise ratio
(SNR):

I At low values of SNR, iterative decoding performs worse than
uncoded transmission, even for a large number of iterations.

I At low to medium values of SNR, iterative decoding is very effective.
The performance increases with an increase in the number of
iterations.

I A medium to high values of SNR, iterative decoding converges in few
iterations. Performance increases only slowly as SNR increases.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 254 / 298

Modern Coding Methods

Performance of Turbo Codes

The performance of turbo codes depends on the signal-to-noise ratio
(SNR):

I At low values of SNR, iterative decoding performs worse than
uncoded transmission, even for a large number of iterations.

I At low to medium values of SNR, iterative decoding is very effective.
The performance increases with an increase in the number of
iterations.

I A medium to high values of SNR, iterative decoding converges in few
iterations. Performance increases only slowly as SNR increases.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 254 / 298

Modern Coding Methods

Performance of Turbo Codes

The performance of turbo codes depends on the signal-to-noise ratio
(SNR):

I At low values of SNR, iterative decoding performs worse than
uncoded transmission, even for a large number of iterations.

I At low to medium values of SNR, iterative decoding is very effective.
The performance increases with an increase in the number of
iterations.

I A medium to high values of SNR, iterative decoding converges in few
iterations. Performance increases only slowly as SNR increases.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 254 / 298

Modern Coding Methods

Background

In addition to turbo codes, LDPC codes is a class of codes decoded
iteratively and with good practical performance. LDPC codes were
originally discovered by Gallager in the early 1960s and rediscovered by
MacKay and Neal in 1996.

LDPC codes are occasionally called Gallager codes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 255 / 298

Modern Coding Methods

LDPC Codes

Low-density parity check (LDPC) codes are

I linear block codes with

I a sparse parity check matrix H.

Sparse means that most of the elements are 0. Note that the direction of
constructing matrices is opposite to the normal one: design H and then
calculate a generator matrix G, not design G and then calculate H.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 256 / 298

Modern Coding Methods

LDPC Codes

Low-density parity check (LDPC) codes are

I linear block codes with

I a sparse parity check matrix H.

Sparse means that most of the elements are 0. Note that the direction of
constructing matrices is opposite to the normal one: design H and then
calculate a generator matrix G, not design G and then calculate H.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 256 / 298

Modern Coding Methods

LDPC Codes

Low-density parity check (LDPC) codes are

I linear block codes with

I a sparse parity check matrix H.

Sparse means that most of the elements are 0. Note that the direction of
constructing matrices is opposite to the normal one: design H and then
calculate a generator matrix G, not design G and then calculate H.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 256 / 298

Modern Coding Methods

LDPC Codes

Low-density parity check (LDPC) codes are

I linear block codes with

I a sparse parity check matrix H.

Sparse means that most of the elements are 0. Note that the direction of
constructing matrices is opposite to the normal one: design H and then
calculate a generator matrix G, not design G and then calculate H.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 256 / 298

Modern Coding Methods

LDPC Codes (cont.)

regular LDPC code An LDPC code with constant number of 0s per row
and per column.

irregular LDPC code An LDPC code that is not regular.

Alphabet for LDPC codes: GF(2), GF(4), GF(8), GF(16),. . . . Generally:
better performance with bigger alphabet.

(Pseudo-)randomness occurs in turbo and LDPC codes in the interleaver
and in the parity check matrix, respectively.

Irregular LDPC codes in general perform better than regular LDPC codes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 257 / 298

Modern Coding Methods

LDPC Codes (cont.)

regular LDPC code An LDPC code with constant number of 0s per row
and per column.

irregular LDPC code An LDPC code that is not regular.

Alphabet for LDPC codes: GF(2), GF(4), GF(8), GF(16),. . . . Generally:
better performance with bigger alphabet.

(Pseudo-)randomness occurs in turbo and LDPC codes in the interleaver
and in the parity check matrix, respectively.

Irregular LDPC codes in general perform better than regular LDPC codes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 257 / 298

Modern Coding Methods

Tanner Graph

bipartite graph A graph with vertex set V = V1 ∪ V2, where each edge
has one endpoint in V1 and one in V2.

A Tanner graph of an LDPC code with parity check matrix H has one
vertex in V1 for each row of H and one vertex in V2 for each column of H,
and there is an edge between two vertices i and j exactly when hij 6= 0.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 258 / 298

Modern Coding Methods

Tanner Graph

bipartite graph A graph with vertex set V = V1 ∪ V2, where each edge
has one endpoint in V1 and one in V2.

A Tanner graph of an LDPC code with parity check matrix H has one
vertex in V1 for each row of H and one vertex in V2 for each column of H,
and there is an edge between two vertices i and j exactly when hij 6= 0.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 258 / 298

Modern Coding Methods

Example: Tanner Graph

H =


1 1 1 0 0 0
1 0 0 1 1 0
0 1 0 1 0 1
0 0 1 0 1 1

 .

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 259 / 298

Modern Coding Methods

Cycles of Tanner Graphs

Short cycles of Tanner graphs have a negative impact on decoding. Cycles
necessarily have even length and length 2 is not possible.

Avoiding cycles of length 4: The intersection of positions in which two
columns have nonzero values should be at most 1.

The requirement that a Tanner graph should not have short cycles is an
intricate part in the construction of good LDPC codes.

Note. The degrading effect of short-length cycles diminishes as the code
length increases and is strongly reduced with length > 1000 bits.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 260 / 298

Modern Coding Methods

Obtaining Generator Matrices

To obtain the generator matrix, the parity check matrix is converted into
systematic form—for example, using Gaussian elimination—after which
the transformation is straightforward.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 261 / 298

Modern Coding Methods

LDPC Code Types

LDPC codes can be divided into

I random LDPC codes and

I structured LDPC codes.

The best known codes are of the former types. Structured LDPC codes
can be constructed from various types of combinatorial objects (designs,
geometries,. . .).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 262 / 298

Modern Coding Methods

LDPC Code Types

LDPC codes can be divided into

I random LDPC codes and

I structured LDPC codes.

The best known codes are of the former types. Structured LDPC codes
can be constructed from various types of combinatorial objects (designs,
geometries,. . .).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 262 / 298

Modern Coding Methods

Decoding LDPC Codes

Decoding LDPC codes is an iterative process of interchanging information
between the two types of nodes of the corresponding Tanner graph. If

I at some point of the iterative process the syndrome of the estimated
decoded vector is the all-zero vector, this result is output;

I the iterative process has not converged to a solution after a
predetermined number of iterations, decoding failure is declared.

See [MF, Fig. 8.5] for the impact of the maximum number on iterations on
the BER performance.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 263 / 298

Modern Coding Methods

Example: Impact of Number of Iterations

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 264 / 298

Modern Coding Methods

Calculating Estimates

The core part of the turbo decoding algorithm in the previous lecture is
the BCJR algorithm. The core part of the LDPC decoding algorithm is the
sum-product algorithm, or belief propagation algorithm.

These algorithms are maximum a posteriori (MAP) algorithm—recall that
the version of the Viterbi algorithm considered earlier is a maximum
likelihood (ML) algorithm.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 265 / 298

Modern Coding Methods

Some Practical Aspects of Decoding

I Polar format should be used instead of binary format.

I With logarithmic calculation, products and divisions are converted
into additions and subtractions, respectively (cf. turbo coding slides).

I Look-up tables for parts of the logarithmic calculations save a lot of
time and do not have a significant impact on the BER performance.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 266 / 298

Modern Coding Methods

Some Practical Aspects of Decoding

I Polar format should be used instead of binary format.

I With logarithmic calculation, products and divisions are converted
into additions and subtractions, respectively (cf. turbo coding slides).

I Look-up tables for parts of the logarithmic calculations save a lot of
time and do not have a significant impact on the BER performance.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 266 / 298

Modern Coding Methods

Some Practical Aspects of Decoding

I Polar format should be used instead of binary format.

I With logarithmic calculation, products and divisions are converted
into additions and subtractions, respectively (cf. turbo coding slides).

I Look-up tables for parts of the logarithmic calculations save a lot of
time and do not have a significant impact on the BER performance.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 266 / 298

Modern Coding Methods

Turbo vs. LDPC Codes

Turbo codes: Very good BER performance for intermediate block length.

LDPC codes: Very good BER performance for long block length (for
example, BER performance with length n = 10, 000 that is less than 0.1
dB from the Shannon limit).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 10 267 / 298

Modern Coding Methods

Erasure Channel

The code type to be discussed next is designed for the erasure channel
rather than AWGN, BSC, and similar channels assumed so far.

0

1

0

e

1

1−p

p

p

1−p

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 268 / 298

Modern Coding Methods

Encoding Fountain Codes

Consider a (binary) message consisting of K data packets of m bits each,
that is, of total length Km. (It is common that communication protocols
transmit information in packets.)

Fountain code: The transmitter continuously transmits packets of m bits
that are obtained by XORing—that is, adding modulo 2—subsets of the
packets. The receiver collects (just a little bit more than) K packets to
retrieve the original message.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 269 / 298

Modern Coding Methods

Decoding Fountain Codes

Decoding fountain codes means solving a system of equations. Call the
blocks B1,B2, . . . ,BK .

Example. K = 3, m = 4. Assume that for the received blocks we have

B1 + B3 = 0100,

B2 + B3 = 1110,

B1 + B2 + B3 = 0000.

Adding the second and the third equation gives B1 = 1110, and then
B3 = 1010 and B2 = 0100.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 270 / 298

Modern Coding Methods

Random Fountain Codes

How to form the packets? One possibility: Random combinations/sums of
packets. The indices of the packets involved must be known also by the
receiver. When N such packets have been received

I if N < K , decoding is not possible,

I if N = K , decoding is possible with probability about 0.289,

I if N = K + ∆, decoding is possible with probability at least 1− 2−∆.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 271 / 298

Modern Coding Methods

Bipartite Graphs for Fountain Codes

Decoding fountain codes is about solving a system of equations, which can
be rather time-consuming if K is large.

As with LDPC codes, a bipartite graph may be useful in the decoding
process, with one set of nodes corresponding to the blocks (variables) and
the other to the received words.

Example. (cont.)

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 272 / 298

Modern Coding Methods

Luby Transform Codes

Luby transform (LT) codes are improved random fountain codes.

I Random combinations/sums have only a few packets.

I The number of packets in the sums are given by an optimized
distribution function.

I Decoding is straightforward due to equations of the form Bi =?
throughout the calculations.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 273 / 298

Modern Coding Methods

Luby Transform Codes

Luby transform (LT) codes are improved random fountain codes.

I Random combinations/sums have only a few packets.

I The number of packets in the sums are given by an optimized
distribution function.

I Decoding is straightforward due to equations of the form Bi =?
throughout the calculations.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 273 / 298

Modern Coding Methods

Luby Transform Codes

Luby transform (LT) codes are improved random fountain codes.

I Random combinations/sums have only a few packets.

I The number of packets in the sums are given by an optimized
distribution function.

I Decoding is straightforward due to equations of the form Bi =?
throughout the calculations.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 273 / 298

Modern Coding Methods

Luby Transform Codes

Luby transform (LT) codes are improved random fountain codes.

I Random combinations/sums have only a few packets.

I The number of packets in the sums are given by an optimized
distribution function.

I Decoding is straightforward due to equations of the form Bi =?
throughout the calculations.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 273 / 298

Modern Coding Methods

Background

In the basic coding framework, one assumes that there is one sender and
one receiver, and if there are intermediate nodes in the network between
the sender and the receiver, these simply forward the packets that they
receive.

However, with more than one sender and/or more than one receiver, and a
network of intermediate nodes processing packets actively, information can
often be transmitted at a higher rate than in the basic store-and-forward
setting. This topic has been coined network coding.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 274 / 298

Modern Coding Methods

References

The term network coding was coined in

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, Network information
flow, IEEE Transactions on Information Theory 46 (2000), 1204–1216.

Introductory text to this topic can be found in

[YLCZ] R. W. Yeung, S.-Y. R. Li, N. Cai, and Z. Zhang, Network Coding
Theory,

available electronically at

http://iest2.ie.cuhk.edu.hk/~whyeung/publications/tutorial.pdf

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 275 / 298

http://iest2.ie.cuhk.edu.hk/~whyeung/publications/tutorial.pdf

Modern Coding Methods

The Butterfly Network

The standard example network to demonstrate network coding is called
the butterfly network.

S

Z

X

Y

W

UT

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 276 / 298

Modern Coding Methods

Multicasting over a Communication Network

S

Z

X

Y

W

UT
a

a

a a b

a b S

Z

X

Y

W

UT
a

a b

b

aa b b

ab

S

Z

X

Y

W

UT
a

a b

b

a ba+b

a+b a+b

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 277 / 298

Modern Coding Methods

Properties of the Various Solutions

I The first method transmits 1.5 bits per receiver and transmission.

I The second and the third method transmit 2 bits per receiver and
transmission.

I The second method uses 10 channels within the network, whereas the
third method uses 9 channels.

Network coding minimizes energy consumption and maximizes bit rate.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 278 / 298

Modern Coding Methods

Example: Satellite Communication

Two ground stations can communicate with each other through a satellite
in the following way:

I The ground stations send the packets a and b, respectively to the
satellite.

I The satellite sends a + b back.

I The ground stations decode the unknown part.

I Simple coding, yet the downlink bandwidth can be reduced by 50%.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 279 / 298

Modern Coding Methods

Example: Satellite Communication

Two ground stations can communicate with each other through a satellite
in the following way:

I The ground stations send the packets a and b, respectively to the
satellite.

I The satellite sends a + b back.

I The ground stations decode the unknown part.

I Simple coding, yet the downlink bandwidth can be reduced by 50%.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 279 / 298

Modern Coding Methods

Example: Satellite Communication

Two ground stations can communicate with each other through a satellite
in the following way:

I The ground stations send the packets a and b, respectively to the
satellite.

I The satellite sends a + b back.

I The ground stations decode the unknown part.

I Simple coding, yet the downlink bandwidth can be reduced by 50%.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 279 / 298

Modern Coding Methods

Example: Satellite Communication

Two ground stations can communicate with each other through a satellite
in the following way:

I The ground stations send the packets a and b, respectively to the
satellite.

I The satellite sends a + b back.

I The ground stations decode the unknown part.

I Simple coding, yet the downlink bandwidth can be reduced by 50%.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 279 / 298

Modern Coding Methods

Example: Satellite Communication

Two ground stations can communicate with each other through a satellite
in the following way:

I The ground stations send the packets a and b, respectively to the
satellite.

I The satellite sends a + b back.

I The ground stations decode the unknown part.

I Simple coding, yet the downlink bandwidth can be reduced by 50%.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 279 / 298

Modern Coding Methods

Example: Wireless Relay Stations

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 280 / 298

Error Control for Channels with Feedback

Error Control Systems with Feedback

So far, only forward error correction (FEC) has been considered. With
information flow in both directions of a channel, other options become
available. The most important error control methods for channels with
feedback are as follows:

1. Automatic-repeat-request (ARQ) protocols.
2. Type-I hybrid-ARQ protocols.
3. Type-II hybrid-ARQ protocols.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 281 / 298

Error Control for Channels with Feedback

Pure ARQ Protocols

The objective of a pure ARQ protocol is a system that will detect an error
burst, discard the affected packet (the message is broken up into packets
of length k), and request a retransmission.

The most frequently used error-detecting codes in ARQ protocols are the
CRC codes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 282 / 298

Error Control for Channels with Feedback

Performance Measures for ARQ Protocols

The following two measures are often used to evaluate the performance of
an ARQ protocol.

accepted packet error rate The percentage of packets accepted by the
receiver that contain one or more bit/symbol errors.

throughput (η) The average number of encoded n-bit data packets
accepted by the receiver in the time it takes the transmitter
to send a single unencoded k-bit data packet.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 283 / 298

Error Control for Channels with Feedback

Average number of transmissions

Let Pr be the probability that a retransmission request is generated for a
received packet. If the random variable T is defined as the number of
times a packet must be transmitted before it is accepted, then according
to Eq. 15-3 in [Wic] its expectation Tr is given by

Tr = E[T] =
1

1− Pr
.

This expression is useful in calculating the throughputs of the basic ARQ
protocols.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 284 / 298

Error Control for Channels with Feedback

Retransmission Protocols

In selecting a retransmission protocol, the designer must strike a balance
between the complexity of the design and the throughput of the resulting
system. The three basic retransmission protocols are the following:

1. Stop-and-wait (SW-ARQ).
2. Go-back-N (GBN-ARQ).
3. Selective repeat (SR-ARQ).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 285 / 298

Error Control for Channels with Feedback

Stop-and-Wait (1)
In the stop-and-wait (SW-ARQ) protocol, the transmitter sends out a
packet and waits for an acknowledgment. The receiver responds by
sending an acknowledgment (ACK) if the packet was deemed error-free, or
it sends a retransmission request (RQ) if the packet contained a detectable
error pattern; see [Wic, Fig. 15-1]. The transmitter is idle while waiting for
the acknowledgment.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 286 / 298

Error Control for Channels with Feedback

Stop-and-Wait (2)

The primary benefit of the SW-ARQ protocol is that there is no need for
packet buffering at the transmitter or receiver. The primary disadvantage
of the protocol is that it provides poor throughput, in particular when the
propagation delays are long (satellite communications, etc.).

If Γ denotes the number of bits that could be transmitted during the idle
time of the transmitter, then the throughput of the SW-ARQ protocol is

ηSW =
k

Tr (n + Γ)
= R

(
1− Pr

1 + Γ/n

)
,

where R = k/n is the rate of the error-detecting code used in the protocol
and Γ is the number of bits that could have been transmitted during the
idle time.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 287 / 298

Error Control for Channels with Feedback

Go-Back-N (1)
If we are willing to allow for some buffering in the transmitter, the
go-back-N (GBN-ARQ) protocol can be implemented; see [Wic, Fig. 15-2].
In this protocol the transmitter sends packets in a continuous stream.

When the receiver detects an error, it sends an RQ for that packet and
waits for its second copy (and ignores all subsequent packets until the
second packet is received, so receiver buffering is avoided). The
transmitter responds by resending the requested packet and all subsequent
packets (so buffering is necessary in the sender).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 288 / 298

Error Control for Channels with Feedback

Go-Back-N (2)

Recall that Γ denotes the number of bits that can be transmitted during
the idle time. For the required size of the buffer, N, we get that

N =

⌈
Γ

n

⌉
+ 1,

since the the number of packets that can be transmitted (at least
partially) during the idle time is dΓ/ne (note that we disagree slightly with
Eq. 15-6 in [Wic]). The throughput of the GBN-ARQ protocol is

ηGBN =

(
k

n

)(
1

1 + (Tr − 1)N

)
= R

(
1− Pr

1 + Pr (N − 1)

)
.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 289 / 298

Error Control for Channels with Feedback

Selective Repeat

If we allow for buffering in both the transmitter and the receiver, we can
implement a selective-repeat (SR-ARQ) protocol; see [Wic, Fig. 15-3].
The transmitter sends a continuous stream of packets and responds to
retransmission requests by sending the requested packet and thereafter
resuming the transmission where it was stopped.

The throughput of the SR-ARQ protocol is simply

ηSR =

(
k

n

)(
1

Tr

)
= R(1− Pr).

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 290 / 298

Error Control for Channels with Feedback

Noisy Feedback Channels

The following additional protocols can be implemented for a noisy
feedback channel.

B Each time the transmitter sends out a packet, a timer for that packet
is started. If a response is not obtained for that packet after a given
period of time, it is assumed that the response is an RQ.

B When the receiver sends an RQ, the receiver starts a timer for that
RQ. If a new copy of the packet is not received after a given period of
time, the RQ is sent again.

B If the receiver receives a packet that has already been accepted, an
ACK is sent and the packet is discarded.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 291 / 298

Error Control for Channels with Feedback

Hybrid-ARQ Protocols

In hybrid-ARQ protocols, each packet is encoded for both error detection
and error correction. The FEC portion corrects the most common error
patterns. Hybrid protocols provide throughput similar to that of FEC
systems, while offering reliability performance typical of ARQ protocols.

Hybrid-ARQ protocols are divided into the simpler type-I protocols and the
more advanced type-II protocols.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 292 / 298

Error Control for Channels with Feedback

Type-I Hybrid-ARQ Protocols (1)

Type-I hybrid-ARQ protocols can be implemented using either one-code or
two-code systems. In a two-code system, the data is first encoded using a
high-rate error-detecting code (CRC codes are frequently used). The
encoded data is then encoded once again using a FEC code.

An example of a single-code type-I hybrid-ARQ protocol is given in [Wic,
Example 15-4]. In [Wic, Fig. 15-11] and [Wic, Fig. 15-12] the performance
of a pure ARQ protocol and a type-I hybrid-ARQ protocol are compared
with respect to reliability and throughput.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 293 / 298

Error Control for Channels with Feedback

Type-I Hybrid-ARQ Protocols (2)

The single-code type-I hybrid-ARQ protocols are based on the following
idea.

If the minimum distance of a linear block code satisfies the condition

dmin ≥ λ+ l + 1,

then the code is capable of correcting all error patterns with λ or fewer
errors and simultaneously detecting all error patterns with l (l > λ) or
fewer errors.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 294 / 298

Error Control for Channels with Feedback

Packet Combining Systems

These systems offer adaptive code rates for different channel conditions.
Two distinct types:

code combining The individual transmissions (of one data block) are
encoded at some rate R. If the receiver has N packets that
have caused retransmission requests, these packets are
concatenated to form a single packet encoded at rate R/N.

diversity combining Multiple identical copies of a packet are used to create
a single packet whose symbols are more reliable than those
of any of the individual copies. Symbol voting is used in
hard-decision systems and symbol averaging in soft-decision
systems.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 295 / 298

Error Control for Channels with Feedback

Type-II Hybrid-ARQ Protocols (1)

Type-II hybrid-ARQ protocols are code combining systems where N (the
number of combined packets) is limited to 2. They adapt to changing
channel conditions through the use of incremental redundancy. The
transmitter in these systems responds to retransmission requests by
sending additional parity bits to the receiver. These additional bits allow
for increased error-correction capability.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 296 / 298

Error Control for Channels with Feedback

Type-II Hybrid-ARQ Protocols (2)

The “original” type-II hybrid-ARQ protocol proposed by Wang and Lin:

1. A k-bit message is first encoded using a high-rate (n, k) error detecting
code C1 to form an n-bit packet P1.

2. P1 is encoded using a (2n, n) systematic invertible code C2.

3. The n parity bits (denoted by P2) from the C2 codeword are saved in a
buffer, while the C1 codeword P1 is transmitted.

4. If the initial transmission of P1 is found to contain errors, it is stored in
a buffer, a retransmission request is sent, and the transmitter responds by
sending P2.

A code is invertible if the parity-check symbols can be used by themselves
to uniquely determine the information symbols.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 297 / 298

Error Control for Channels with Feedback

Type-II Hybrid-ARQ Protocols (3)

5. The received version of P2 is first inverted and checked for errors. If
there are detected errors, the received noisy version of P2 is appended to
the earlier received (also noisy) version of P1 to form a noise-corrupted C2

codeword. After decoding, the resulting n-bit word is again checked for
errors using C1. If errors are detected, the process continues, with the
transmitter alternating transmission of P1 and P2 until the decoding/
error detection process is successful.

For example, shortened half-rate cyclic codes have been used as C2-codes.

Patric Österg̊ard (Aalto) ELEC-E7240 Lecture 11 298 / 298

	Introduction
	Algebra (1)
	Algebra (2)
	Linear Codes (1)
	Linear Codes (2)
	Cyclic Codes
	BCH and Reed-Solomon Codes
	Convolutional Codes (1)
	Convolutional Codes (2)
	Modern Coding Methods
	Error Control for Channels with Feedback

