
 

 

ELEC-E8116 Model-based control systems 
Full exam 12. 12. 2023 / Solutions                  

 

 

 

1.     Explain briefly the following concepts in control theory (shortly, only what they are and what 

they mean from control viewpoint) 

 

- SVD     (2 p.) 

- LQ     (2 p.) 

- IMC     (2 p.) 

 

2.a. Consider a MIMO system.  Draw a schema of the ”one-degrees-of-freedom” control     

configuration.     Define the concepts loop transfer function,  sensitivity function and 

complementary sensitivity   function  for it.   (3 p.) 

         

 2.b. Consider a SISO-case.  Determine the region in the complex plane where 1/ 2S = .  Then 

determine the region where 1/ 2T = .  Do these regions have common points?  If they do, 

what are these points?  Interpretation from control perspective?   (3 p.) 
 

 

3.   a. Explain briefly the following concepts 

 

- Principle of Optimality   (1 p.) 

- Dynamic programming   (1 p.) 

- Waterbed effect    (1 p.) 

 

3. b.  State the ”Push through rule” and prove it.  Remember to give the general matrix 

dimensions involved.    (3 p.)  

  

 

4. a. Explain the Receding Horizon Principle in Model Predictive Control. (2 p.) 

 

4. b. Explain shortly what is meant by the Relative Gain Array (RGA) and what is 

      its meaning in control engineering.   (2 p.) 

 

4.c.  Consider a linear SISO system.  Explain shortly what different definitions there exist for the 

concept bandwidth.  Explain these shortly.  How can they be characterized in terms of 

control performance?    (2 p.) 

 

 

5. Consider the system 
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The criterion to be minimized is 
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Determine the optimal control law and the optimal cost.  (6 p.) 

 

Hint.  Remember that the solution matrix of the Riccati equation is symmetric and positive 

definite.   

 

Some formulas that might be useful: 

 

0, ttBuAxx +=  

( )
0

0

1 1
( ) ( ) ( ) ( )

2 2

ft

T T T

f f f

t

J t x t S t x t x Qx u Ru dt= + +  

( ) 0, 0, 0fS t Q R    

 
1( ) , , boundary condition ( )T T

fS t A S SA SBR B S Q t T S t−− = + − +   

 

SBRK T1−=  

 

Kxu −= ,  )()()(
2

1
)( 0000

* txtStxtJ T=  

 

( )

i

10

1
1 0

0

0 0

log ( ) Re (p )

( ) 1
1 1/

( ) 1 1 1/

M

i

T

S

S i d

p
W p

T

W z S z

  







=

=

  
−

   −



 

 

 

Solutions: 

 

1. 

 

SVD:  Every n x m matrix A (real or complex-valued) has the singular value decomposition (SVD) 

 *A U V=   

 

where dim(U) = nxn, dim(V) = mxm and dim( ) = nxm.  The matrices U and V are unitary (
* *,U U I V V I= = ) and  is a real-valued matrix containing the non-negative singular values of 

matrix A in its main diagonal.  The gain of the matrix is between the maximum and minimum 

singular values, which occur at the output directions given by the columns of matrix U and input 

directions given by the columns of matrix V.  That information can be used in multivariable control 

theory, where the matrix A is the frequency-dependent transfer function matrix of a MIMO system. 

 

LQ:  Optimal control with Linear System and Quadratic Criterion. 
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IMC:  Internal model control, where the model of the process is an essential component on the 

control structure.  The topology of the control system in IMC is 
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where G denotes the process model.  The controller is parameterized by the transfer functions Q 

and pre-compensator 
rF .  For details, see lecture slides, Chapter 6. 

 

2a.   For example, the below figure shows a one-degree-of-freedom control structure.  (The pre-

compensator can be left out and the controller 
yF is often denoted by K in the literature.) 
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The loop transfer function L, sensitivity function S and complementary sensitivity function T are 

given as follows 
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2b.  
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 The magnitudes of both sensitivity functions are circles on the complex plane.  The 

center points are (-1,0) and (1,0), respectively.  Both have the radius 2 1.4 .   
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The common points are observed easily from the figure.  They can also be obtained from 

the equations 
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Subtracting the second equation from the first one (or vice versa) it is easily deduced that 

the common solutions are 0, 1x y= =  , which agree with the figure. 

 

Control perspective:  If the Nyquist curve of the loop transfer function crosses the point 

0, 1x y= = −  or 0, 1x y= = + then the absolute value of the loop transfer function is 1 and 

the absolute values of the sensitivity functions are 1/ 2 as stated in the problem.  There is 

not necessarily anything special about this.  But if these gains are met for the first time in 



the Nyquist plot, then the angular frequencies , ,c B BT   coincide.  The different 

bandwidths then coincide as well.   

 

(Not required):  The figure also demonstrates the fact that under a mild condition (phase 

margin less than 90 degrees) it holds B c BT    , where B denotes the bandwidth, 

where L crosses 1/ 2 3 dBS =  − from below, c is the gain crossover frequency 1L =  

and BT denotes the bandwidth, where L crosses 1/ 2 3 dBT =  − from above. 

3a. 

 

Principle of Optimality:  The optimal trajectory has the property that irrespective of how a state in 

it has been reached, the remaining controls must be optimal from there on. 

 

 Dynamic Programming is a practical way of constructing optimal solutions by applying the 

Principle of Optimality. That leads to “calculation backwards in time”.  Starting from the end state 

we go back one time step and determine the possible states.  From there the optimal control (first 

control) is determined and the optimal cost to the end is recorded.  Then we go again one time step 

back.  From each possible state the optimal route is determined by evaluating all possible first 

controls, seeing where they lead.  Then the minimal first control is determined by minimizing the 

first controls plus the optimal cost after that (which was known).  The first control and the optimal 

cost are recorded.  The procedure continues to the beginning (initial state).   

 

Waterbed effect.  It comes from the function theoretic formula 
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where S is the sensitivity function and pi are RHP poles of the loop transfer function. 
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The integral states that if we apply a controller that “pushes down” the sensitivity function, it has 

to go up at some other frequency, because the integral (area) is a constant (zero, if there are no 

RHP poles in L).  The name waterbed formula comes from that. 

 

3b. Let A and B be n x m and m x n matrices, respectively. The push-through rule states that 

 

 1 1( ) ( )mxn nxnA I BA I AB A− −+ = +  

 

where it has been assumed that the inverse matrices exist.  A “direct” proof can be obtained by 

starting from the left hand side 
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An “indirect proof” is also possible (given in the exercises).  There you start from the guessed 

result, push-through rule, and go through equivalences to an identity (like I  = I).  This is Ok, but 

you have to use equivalences to be able to go from the identity back to the claim.  Be careful here.  

Note that if for matrices A and B it holds A=B, then for any compatible matrix Z 

 

 A B AZ BZ=  =  

 

But in order that  

 
 A B AZ BZ=  =  

 

would hold (equivalence, both ways must hold) the matrix Z has to be square matrix with full rank 

(=invertible). 

 

The “direct” proof is more beautiful than the “indirect” one. 

  

4a.  
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The Receding Horizon principle means that (see figure) at time t we estimate the state and output 

behaviour Np steps ahead, where Np is the prediction horizon.   Then we minimize a cost function 



assuming Nc control moves, where Nc is the control horizon.  Only the first control move is fed to 

the process input however.  At the next time step the same procedure is repeated.  The procedure 

can be regarded as a “window” that moves forward in time. 

 

 

4b.  In a multivariable system the Relative Gain Array measures the amount of couplings between 

the input and output channels. 
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The coupling of input channel i to output channel j is “large”, if the corresponding element in the 

RGA matrix is close to 1 (or (1,0) in the complex plane).  The RGA analysis has mostly been used 

to construct decentralized controllers, where the independent control loops are determined based 

on RGA.  RGA is a somewhat “heuristic” measure.  Earlier it was used mostly in stationary 

analysis (s = 0), but nowadays variable frequencies, especially the bandwidth frequencies, are also 

considered important. 

 

   4c.  Different definitions for bandwidth are for example c (gain crossover angular frequency), 

B (angular frequency where the sensitivity function reaches -3 dB from below), BT (angular 

frequency, where the complementary sensitivity function reaches -3 dB from above).  The 

bandwidth means generally the frequency band where control is effective, i.e. the closed loop 

performs well.  See for example the closed loop formulas 
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where the control error e should be kept small. See also the answer to problem 2b, last part. 

 

5.  LQ problem with 
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The optimization horizon is infinite, and therefore the static Riccati equation applies ( ( ) 0S t = ).  
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 (note: symmetric) and write the Riccati equation.  The following equations are 

obtained 
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Starting from the last equation the whole Riccati equation can be solved analytically.  Note that 

positive definite solution must be used (choose positive solutions in sii).  After some nasty 

calculations we obtain 
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The optimal control is   
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and the optimal cost  
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