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What is new?
functions of more than one variable

3D-thinking

connecting geometric thinking to calculus
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Why useful?

real world problems are usually multivariable problems

examples

profit of a company
volume of cylinder
kinetic energy

or we like to investigate surfaces or curves

examples

path of a particle
path of a robot hand
soap bubles
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Lecture 1: Vector valued functions

Learning goals:
1 What are vector valued functions?

2 How limits, continuity and derivative are defined for vector valued
functions?

3 What is a curve?

Kinematic point of view (velocity, acceleration, distance travelled)
Geometric point of view (tangent, arclength)

Where to find the material?
Corral 1.8, 1.9
Guichard 13.1, 13.2 and partially 13.3, 13.4
Active Calculus 9.5 - 9.8
Adams-Essex 12.1, 12.3

January 8, 2024 4 / 22



Vector valued functions

f : I → Rn where I ⊂ R interval

Example:

r(t) =

[
et

−4t

]
= et i− 4tj = (et ,−4t)
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Coordinate functions

f : I → Rn where I ⊂ R interval

f(t) = (f1(t), f2(t), . . . , fn(t))

Functions f1, f2, . . . fn are called coordinate functions

Example:

r(t) =

[
et

−4t

]
= et i− 4tj = (et ,−4t)

Coordinate functions r1(t) = et , r2(t) = −4t

Typically we deal with funtions where n = 2 (or 3) then it is
customary to denote them f (t) = (x(t), y(t))
(or f (t) = (x(t), y(t), z(t)) )
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Limits, continuity and derivative

lim
t→a

f(t) = (lim
t→a

f1(t), . . . , lim
t→a

fn(t))

vector valued function is continuous if all its coordinate functions are
continuous

f′(t) =
df

dt
= lim

h→0

f(t + h)− f(t)

h
=

( lim
h→0

f1(t + h)− f1(t)

h
, . . . , lim

h→0

fn(t + h)− fn(t)

h
)

if the limit exists
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What is a curve?

Continuous vector valued functions are called curves (or parametric
presentations of curves)

kinematic point of view -
particle moving in a space

geometric point of view - curve
as a fixed set
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Kinematic point of view

natural interpretation: the function give the position of a ”particle” at
the time t

position: r(t) = (x(t), y(t), z(t)) = x(t)i+ y(t)j+ z(t)k

average velocity:
△r

△t
=

r(t +△t)− r(t)

△t
velocity:

v(t) =
d

dt
r(t) = lim

△t→0

r(t +△t)− r(t)

△t
= (x ′(t), y ′(t), z ′(t))

speed: v(t) = ∥v(t)∥
accelaration: a(t) = v′(t)
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Example

The position of the particle is given by r(t) = (t3, t2)
Find the velocity and acceleration vectors at the point (8, 4).
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Geometric point of view

Definition

Curve means a set of C ⊂ Rn, n ≥ 2, which can be represented as

C = {r(t) : t ∈ I} = r(I ) = the set of the values of r,

where I ⊂ R is an interval, and the function r : I → Rn is continuous.

Here r = r(t) is the parameterization of the curve C and I is the
parameter interval corresponding to the parameterization.

Same curve (as a set) can have different parametrizations

The parameter interval I can be open (a, b), closed [a, b], or even
semi-open (a, b], [a, b). Most often it is closed.
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About notation

The parameterization of space curve (i.e. n = 3) can be given as

r(t) = (x(t), y(t), z(t)) ∈ R3 when t ∈ I ,

or it can be given in the so-called coordinate form
x = x(t),

y = y(t), when t ∈ I ,

z = z(t),

or the vector form can be used

r(t) = x(t)i+ y(t)j+ z(t)k when t ∈ I ,

where i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) are the natural basis
vectors of R3.
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Examples

Circle in plane

textbfv(t) = (x0 + rcos(t), y0 + rsin(t)) ∈ R2,

where t ∈ [0, 2π], r > 0 is the radius of the circle and (x0, y0) is the
center of the circle.

Helix curve (helical spring)

r(t) = (a cos(t), a sin(t), bt) ∈ R3,

where a, b > 0 are parameters: a is the radius of the spring and b can
be thought of as the elongation of the spring.

The graph of the real valued one variable function

r(t) = (t, f (t)) ∈ R2
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Tangent of the curve 1/3

We study a space curve with a continuously derivable parametrization
r(t)

The secant of the curve corresponding to the parameter interval
[t, t +∆t] is the vector

∆r = r(t +∆t)− r(t).

As ∆t → 0, then ∆r turns more and more tangent to the curve, but
...
at the same time its length decreases towards zero.
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Tangent of curve 2/3

The problem is solved by dividing the expression by ∆t:

∆r

∆t
=

r(t +∆t)− r(t)

∆t
=

(
x(t +∆t)− x(t)

∆t
,
y(t +∆t)− y(t)

∆t
,
z(t +∆t)− z(t)

∆t

)
Now if we set ∆t → 0, we get:

lim
t→0

∆r

∆t
= (x ′(t), y ′(t), z ′(t))
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Curve tangent 3/3

Definition

If the curve C ⊂ R3 is continuously derivable parametrization r, then at
the point r(t),

r′(t) = (x ′(t), y ′(t), z ′(t))

is the tangent vector of the curve and the functions x , y , z are the
coordinate functions of the parametrization.

The z coordinate is omitted in the case of the plane.

Compare this to the kinematic point of view

What happens to the tangent vector if the parametrization of the
curve is changed?
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Example - Cycloid

https://en.wikipedia.org/wiki/Cycloid

The parameterization of the cycloid (using angle t) is of the form{
x = a(t − sin t),

y = a(1− cos t).

Calculate the tangent vector.
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Arclength of a curve

Let r : [a, b] → Rn be a continuously derivable one to one
parametrization of the curve C .

Approximate the curve by line segments ∆ri

The length of the curve is approximately∑
i

∥∆ri∥ =
∑
i

∥∆r(ti )

∆ti
∥∆ti

Let the approximation compress. Replacing the sum by an integral we
obtain a formula for the length of the curve:

ℓ(C ) =

∫ b

a
∥r′(t)∥ dt.

January 8, 2024 18 / 22



Remarks

Actually parametrization could have finitely many points were one to
one property fails. For example think the sign ∞ as a curve. Reason:
a single point does not have a length.

If the parameterization of the curve is only piecewise continuously
derivable, we get the total curve length by summing the curve lengths
of the continuosly derivable parts.

Although there are always infinitely many different one-to-one
continuously derivable parametrizations of a curve, it can be shown
that the length of the curve does not depend on the length of the
curve of such a parametrization.
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Example - circle

Circle with radius R can be parametrized by
r(t) = (R cos(t),R sin(t)) where t ∈ [0, 2π]. Calculate its perimeter.

Make an another paramterization for the same circle and calculate the
perimeter using this new parametrization.
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Example - graph of a function

For the length of the graph of a continuously derivable function y = f (x)
between [a, b] there is a formula already known from high school:

ℓ =

∫ b

a

√
1 + f ′(t)2 dt.

Where does this come from?

The graph of the function could be parameterized r(t) = (t, f (t)).

Now calculate the length of the graph between [a, b] using what we
have learned.
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Back to kinemetic point of view

The distance travelled by a particle from the time a to time b can be
obtained by the formula:

distance travelled =

∫ b

a
∥r′(t)∥ dt
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