
An abridged version of this paper appears in the proceedings of PKC 2017,
DOI: 10.1007/978-3-662-54388-7_12. This is the full version.

A Modular Security Analysis of EAP
and IEEE 802.11

Chris Brzuska1 and Håkon Jacobsen∗,2

1Hamburg University of Technology, Hamburg, Germany
brzuska@tuhh.de

2Norwegian University of Science and Technology, Trondheim, Norway
hakoja@item.ntnu.no

March 19, 2017

Abstract

We conduct a reduction-based security analysis of the Extensible Au-
thentication Protocol (EAP), a widely used three-party authentication
framework. EAP is often found in enterprise networks where it allows a
client and an authenticator to establish a shared key with the help of a
mutually trusted server. Considered as a three-party authenticated key
exchange protocol, we show that the general EAP construction achieves a
security notion we call 3P-AKEw. The 3P-AKEw security notion captures
the idea of weak forward secrecy and is a simplified three-party version
of the well-known eCK model in the two-pass variant. Our analysis is
modular and reflects the compositional nature of EAP.

Additionally, we show that the security of EAP can easily be up-
graded to provide full forward secrecy simply by adding a subsequent
key-confirmation step between the client and the authenticator. In prac-
tice this key-confirmation step is often carried out in the form of a 2P-AKE
protocol which uses EAP to bootstrap its authentication. A concrete ex-
ample is the extremely common IEEE 802.11 protocol used in WLANs. In
enterprise settings EAP is often used in conjunction with IEEE 802.11 in
order to allow the wireless client to authenticate itself to a wireless access
point (the authenticator) through some centrally administrated server.
Building on our modular results for EAP, we get as our second major
result the first reduction-based security result for IEEE 802.11 combined
with EAP.

∗Håkon Jacobsen was supported by a STSM Grant from COST Action IC1306.

mailto:brzuska@tuhh.de
mailto:hakoja@item.ntnu.no

Contents

1 Introduction 3

2 Formal models 9
2.1 Notation . 9
2.2 A unified execution model . 9
2.3 2P-AKE and 3P-AKE . 14
2.4 ACCE . 17
2.5 Explicit entity authentication . 19

3 Generic composition results 20
3.1 2P-AKE + 2P-ACCE + channel binding =⇒ 3P-AKEw 20
3.2 3P-AKEw + 2P-AKEstatic =⇒ 3P-AKE 31

4 Security of EAP 37
4.1 EAP with channel binding . 37
4.2 Channel-binding scope . 38
4.3 EAP without channel binding . 39

5 Security of IEEE 802.11 39
5.1 Description of the IEEE 802.11 protocol 39
5.2 Analyzing the 4-Way-Handshake 40
5.3 Security of IEEE 802.11 with upper-layer authentication 51

A Additional definitions 52
A.1 Pseudorandom functions . 52
A.2 Message Authentication Codes 52

B Proof of Lemma 7 53

C Partner function parsing rules 58

References 64

2

1 Introduction
The Extensible Authentication Protocol (EAP), specified in RFC 3748 [4], is a
widely used authentication framework for network access control. It is partic-
ularly common in wireless networks, being used by protocols like IEEE 802.11
(Wi-Fi), IEEE 802.16 (WiMAX) and various 3G/4G mobile networks. The
typical use case of EAP is in settings where a client seeks to gain access to a
network controlled by an authenticator, but where the client and authenticator
do not share any common credentials. EAP allows the client and authentica-
tor to authenticate each other based on a mutually trusted server. Technically,
EAP is not a specific authentication mechanism on its own, rather it specifies
a generic three-party framework for composing other concrete authentication
protocols. This provides applications of EAP the freedom to choose whatever
concrete instantiation is suitable for their own specific setting. The success of
this approach is apparent by the huge and diverse set of real-life deployments
using the EAP framework.

Surprisingly then, given its prevalence and importance, there has been no
formal reduction-based provable security analysis of EAP. One reason for this
might be due to the general nature of EAP itself. As mentioned above, EAP
is not a single protocol on its own, but relies on other sub-protocols to instan-
tiate it. As such, many things in the EAP specification are left unspecified
or considered out of scope. On the other hand, in order to conduct a formal
security analysis of EAP, these details matter and require a careful treatment.
More generally, the need to make assumptions on protocols outside of the EAP
standard makes it harder to analyze as described by Hoeper and Chen [23].

Another reason for the lack of reductionist-based security results on EAP
might be due to the fact that it is a three-party protocol. As pointed out by
Schwenk in his recent work on Kerberos [41], apart from a few papers like [10,
3, 37, 5, 41] relatively little work has been done on three-party protocols1 in the
computational setting compared to the huge literature on two-party protocols.

In this paper we aim to remedy this state-of-affairs by providing a formal
reductionist analysis of EAP in the computational setting. Our result is mod-
ular and reflects the compositional nature of EAP. Building upon this result
we extend our analysis to cover a very common application of the EAP frame-
work: network authentication and access control in enterprise and university
networks. In particular, we focus on wireless networks based on the IEEE 802.11
standard [2] when combined with EAP for centralized authentication. This set-
ting is often referred to as WPA2-Enterprise. Current results on IEEE 802.11
have so far only focused on the much simpler WPA2-PSK setting where the
client and access point (authenticator) already share a pre-established long-
term key. WPA2-PSK is typically used in wireless home-networks and small
offices where sharing a single long-term key among many users is feasible, while
WPA2-Enterprise is used in larger organizations and businesses where central
authentication is necessary. Based on our result on EAP we can now provide a

1Considered distinct from group-key exchange protocols.

3

Client Authenticator Server

EAP method (EAP-TLS)

Key-transport (RADIUS-over-TLS)

Link-layer protocol (IEEE 802.11)

←− Link-addresses −→ ←− IP-addresses −→

Figure 1: The three-party EAP architecture. Concrete example protocols
shown in parenthesis.

reduction-based analysis of WPA2-Enterprise as well.

Review of EAP and IEEE 802.11. The general EAP architecture is shown
in Fig. 1. The exchange begins when a client wants to connect to some access-
controlled service protected by an authenticator. For most practical purposes
the service is simply getting network access (e.g., to the Internet), and the
authenticator is a wireless access point or link-layer switch. The client and
authenticator do not share any common secrets a-priori but instead share cre-
dentials with a mutually trusted server. The purpose of EAP is to allow the
client to authenticate itself to the server using whatever authentication protocol
they like, for instance TLS or IPsec, and then having the server “vouch” for
the client to the authenticator. In order to do this in a generic and uniform
manner across different authentication protocols, EAP defines a frame format
as well as a set of generic messages known as Request/Response messages. The
Request and Response messages are used to encapsulate the concrete authen-
tication protocol being used between the client and the server. This frees the
authenticator—which often operates in so-called pass-through mode between the
client and the server, meaning that all their messages pass through it—from hav-
ing to support all the concrete authentication mechanisms itself. Instead, the
authenticator only needs to inspect the generic EAP messages. This is valuable
in settings where it can be difficult to update the authenticator(s).

The combination of a concrete authentication protocol, like TLS, together
with the EAP encapsulation is called an EAP method. Numerous EAP methods
have been defined, with EAP-TLS [44] being one of the most widely supported.
In EAP-TLS the client and server mutually authenticate each other based on
certificates. Besides authentication, the EAP method usually also supports the
derivation of a shared key between the client and the server. In this paper we
will assume that all EAP methods derive keys. The server will forward this key
to the authenticator over some separate channel, where the choice of channel
protocol is orthogonal to the choice of EAP method used between the client

4

and the server. While the EAP standard does not specify the protocol to use
between the server and the authenticator, the de-facto standard in practice is
RADIUS [39].2

Once the key is transported from the server to the authenticator the EAP
exchange is technically complete. Still, at this point the client does not actually
have any guarantee that the authenticator is in possession of the same key
as itself, since the communication between the server and the authenticator
happens over a completely separate channel. Thus, in practice the client and
the authenticator now typically run some link-layer specific protocol in order to
prove mutual possession of the key distributed by EAP. Additionally, this also
serves to implicitly authenticate the client and the authenticator to each other,
since in order to get the same key they must have been able to authenticate
themselves to the mutually trusted server.

Again, the subsequent link-layer protocol run between the client and the
authenticator is outside the scope of EAP and could in principal be any one of
a number of different protocols. In this paper we are going to focus particularly
on the a very common setting of wireless LANs provided by the IEEE 802.11
protocol[2]. In this case the “key-confirmation” protocol run between the client
and the authenticator (i.e., access point) is known to as the “4-Way-Handshake”
(4WHS). The 4WHS is both an authentication protocol as well as a key-exchange
protocol, meaning that the client and the access point also derive fresh session
keys. This session key is used to protect the bulk data transfer between the
client and the access point on the WLAN. Although technically incorrect, the
security part of the IEEE 802.11 wireless standard is also commonly referred
to by the name “WPA2”. When EAP and IEEE 802.11 are combined, then the
entire exchange is referred to as “IEEE 802.11 with upper-layer authentication”
or WPA2-Enterprise.

On the difficulty of modeling EAP. In this paper we analyze the secu-
rity of EAP both when considered on its own as well as when combined with
IEEE 802.11 in a formal reduction-based setting. We do this in a modular way:
first considering the security properties provided by EAP and IEEE 802.11 in
isolation, then using a composition theorem to link them together. However,
since EAP inherently depends on other protocols, assessing the exact security
guarantees it provides is in one sense harder than for “standalone” protocols
like TLS, IKE and SSH. While the EAP specification defines the security re-
quirements of each EAP method ([4, §7]), this only covers the communication
between the client and the server. It leaves unspecified how, for example, the
derived key should be transferred from the server to the authenticator. Hence,
solely using the security claims from RFC 3748 is not sufficient to decide the
security of EAP considered as a three-party protocol. In fact, it is impossible
to talk about “the” EAP and its security without making further assumptions

2Within the EAP standard lingo, the protocol run between the server and authenticator
is generally referred to as an Authentication, Authorization and Accounting (AAA) protocol.
Besides RADIUS is Diameter [18] another common AAA protocol.

5

on the various protocols that make up EAP. Consequently, in order to be able
to analyze EAP, we will have to make some assumptions on these protocols.

Firstly, in this paper we are going to assume that the communication between
the authenticator and the server takes place over a secure channel. Specifically,
we model the link as a two-party authenticated channel establishment protocol
(2P-ACCE) based on symmetric long-term pre-shared keys3 (see Section 2.4
for a formal definition). Since most key-transport protocols used between the
server and the authenticator support to be run inside a secure channel (see e.g.
RADIUS-over-TLS [45] and Diameter [18]), this assumption seems reasonable.

Second, since the authenticator often works in pass-through mode, a well-
known issue with the EAP architecture is the so-called “lying authenticator
problem”. Namely, a malicious authenticator may present false or inconsis-
tent identity information to the client and the server. Unless the EAP method
provides a feature known as channel binding [21], there is no way for the
client and server to verify that they are in fact talking to the same authen-
ticator (see [21, §3] for examples of attacks that this may enable). Hence,
in this paper we are generally going to assume that EAP provides channel
binding. However, we will also briefly explore the (in)security of EAP with-
out channel binding in Section 4.3. While there are a couple of suggested
ways to achieve channel binding in EAP (see [21, §4.1]), here we are only go-
ing to focus on the cryptographically simplest one, described in RFC draft
draft-ohba-eap-channel-binding-02 [38]. In this approach, the client and
authenticator identities are being input to the key-derivation step of EAP, cryp-
tographically binding the session key to the right pair of identities (see Sec-
tion 4.2 for details).

Our contributions. The main contributions of this paper are the following.

• We provide the first reduction-based security result for EAP assuming it
employs channel binding.

• We show how the security guarantees of EAP can be upgraded by adding
an additional key-confirmation step (modeled as a 2P-AKE). This corre-
sponds to the common scenario where EAP is first used to bootstrap the
establishment of a common key among the client and the authenticator,
then some link-layer specific protocol is run between the client and the
authenticator in order to prove mutual possession of that key (in addition
to establishing session keys for the lower-layer link).

• Our technical means for obtaining the above results are two modular com-
position theorems which may be of separate interest. Namely, the two
theorems consider a fairly generic way of constructing a 3P-AKE proto-
col, using generic 2P-AKEs and secure channels as building blocks. For

3There is nothing fundamental about our assumption on symmetric PSKs here. The
choice is made simply because the trust-relationship between the server and authenticator is
commonly based on symmetric PSKs in practice. Our results work just as well for certificate-
based authentication.

6

draft-ohba-eap-channel-binding-02

instance, both Kerberos and the AKA protocol used within the UMTS
and LTE mobile networks, fit the description of our 3P-AKE construc-
tion. In particular, for the latter protocol, our theorems might enable a
more general and modular analysis than the one recently provided by Alt
et al. [5].

• As a stepping stone towards our final result, we provide a reduction-based
security result for the IEEE 802.11 4-Way-Handshake protocol in the pre-
shared key setting without the use of EAP (i.e., WPA2-PSK). This corre-
sponds to the setting typically found in home WLANs. To the best of our
knowledge, we are the first do to such an analysis using standard game-
based definitions of AKE. Previous analyses of WPA2-PSK have either
been based on formal methods [22] or on universal composition frame-
works [32, 33].

• Finally, the results above combine to provide the first reduction-based
security result for EAP combined with IEEE 802.11 (WPA2-Enterprise).
This corresponds to the setting usually found in enterprise and university
WLANs. For instance, the eduroam network4, which is used to provide
wireless roaming services to university and research institutions, uses EAP
and IEEE 802.11.

The structure of our paper is as follows. In Section 2 we provide our formal
security definitions, including 2P/3P-AKE, ACCE (secure channels) and explicit
entity authentication. In Section 3 we prove our two composition results for
two generic protocol constructions. In Section 4 we show how the security of
standalone EAP follows directly from our first composition result by making
appropriate assumptions on the concrete protocols used to instantiate the EAP
framework. Finally, in Section 5, we prove the security of the IEEE 802.11
4WHS protocol. Combined with our result on EAP in Section 4 and our second
composition result, this immediately yields a result for IEEE 802.11 combined
with EAP.

Technical overview of our results. The main technical contributions of
this paper are two fairly generic composition theorems which correspond to the
“cryptographic core” of EAP with or without a subsequent key-confirmation
step, respectively. To obtain these theorems we first have to provide an ap-
propriate security model. Our starting point is the original 3P-AKE model of
Bellare and Rogaway [10]. However, due the different security guarantees pro-
vided by standalone EAP, EAP combined with IEEE 802.11 and standalone
IEEE 802.11, we in fact define three different models of varying strength. The
main difference between these models lays in the level of adaptivity afforded to
the adversary in terms of long-term key leakage, capturing full, weak and no
forward secrecy, respectively. The distinction between full and weak forward
secrecy follows the definition given in the eCK model5 [34].

4https://www.eduroam.org
5We do not consider ephemeral key-leakage in this paper however.

7

https://www.eduroam.org

Briefly, the only difference between the strongest security model (full forward
secrecy) and the intermediate one (weak forward secrecy) depends on what
happens if the test-session does not have a partner. When this happens in the
strongest model the adversary is still allowed to learn the long-term keys of the
parties involved, provided this happens after the test-session accepted. On the
other hand, in the intermediate model, if the test-session does not have a partner
then the adversary is forbidden from learning these long-term keys. Finally, if
the test-session does have a partner, then there is no difference between the two
models: the adversary is allowed to learn any long-term key at any time. The
formal definitions of these models are provided in Section 2.3.

Preempting our own results a bit, we show that standalone EAP can achieve
weak forward secrecy, while IEEE 802.11 without upper-layer authentication
achieves no forward secrecy at all (this is natural since the 4WHS relies exclu-
sively on symmetric primitives). However, when EAP and IEEE 802.11 are com-
bined, the security is upgraded to achieve full forward secrecy in our strongest
corruption model.

Intuitively, the reason why standalone EAP does not achieve full forward
secrecy is because it does not provide key confirmation. Namely, after com-
pleting the EAP method with the server, the client has no guarantee that the
key-transport protocol between the server and the authenticator actually took
place. Specifically, the following attack illustrates why EAP does not provide
full forward secrecy. Suppose that after the client accepted, but before the
key-transport protocol between the server and authenticator starts running, an
adversary learns the long-term PSK of the server and the authenticator. Now
the adversary simply impersonates the authenticator towards the server and
have it send over the session key it previously established with the client. Ac-
cording to the full forward secrecy model this attack would be valid since the
exposure of the PSK happened after the client accepted. On the other hand,
in the weak forward secrecy model the attack is not considered valid because
client session doesn’t have a partner, hence the PSK cannot be exposed.

Essentially, the purpose of the link-layer protocol is to provide key-
confirmation to the standalone EAP protocol, which ensures that the client
will always have a partner before it accepts. This is similar to how the security
of the two-flow variant of HMQV can be upgraded from only providing weak
forward secrecy to providing full forward secrecy simply by adding a third flow
to it (see [28, §3]). While the property of key confirmation was recently formal-
ized in [19], in this paper we model the key-confirmation step by assuming that
the link-layer protocol provides explicit entity authentication (formally defined
in Section 2.5).

Besides the introduction of the three different corruption models, we only
provide a few other changes to the original 3P-AKE model of Bellare and Rog-
away [10]. For example, we support both asymmetric and symmetric long-term
keys, and dispense with the explicit SendS query to the server (now modeled
simply as a regular Send query).

One thing we do keep from [10] however, is the concept of partner functions.
Interestingly, the use of partner functions has seen rather limited adoption when

8

compared to partnering based on matching conversations [9] or session identifiers
(SIDs) [8]. However, when modeling EAP, we are in the peculiar situation
that the parties that we need to partner (the client and the authenticator) do
not have any messages in common! Naturally, this makes partnering based on
matching conversations more difficult, but it also severely limits our choice of
SIDs: we are essentially forced to pick their session keys as the SID. While using
the session key as the SID is reasonable in many settings (cf. [25]), it does not
necessarily guarantee public partnering (see [13]). This is important for modular
composition proofs like our own. While partnering functions have been criticized
for being non-intuitive and hard to work with (even by Rogaway himself [40, §6]),
they generalize more naturally to the three-party setting than SIDs. Essentially,
this is because partner functions can take global transcript information into
consideration rather than only the local views of the two partners.

2 Formal models

2.1 Notation

For m,n ∈ N and m ≤ n, let [m,n] def= {m,m + 1, . . . n}. We use v ← x to
denote the assignment of x to the variable v, and x←←X to denote that x is
assigned a value randomly according to the distribution X. If S is a finite set,
then x←←S means to sample x uniformly at random from S. Algorithms are in
general randomized, and we let y←←A(x1, . . . , xn) denote running A on inputs
x1, . . . , xn with random coins r, and assigning its output to the variable y. A
function g : N → R is negligible if for every c ∈ N there is an integer nc such
that g(n) ≤ n−c for all n ≥ nc.

2.2 A unified execution model
Protocol participants. A protocol is carried out by a set of parties U ∈ P.
Each party U can either take on the role of initiator, responder or server, i.e.,
P is partitioned into three disjoint sets I, R and S, consisting of the initiators,
responders and servers, respectively. In the two-party case there are no servers,
in which case S = ∅.

Our model includes both long-term asymmetric keys as well as a symmet-
ric pre-shared keys (PSKs). While there are in general many ways in which
asymmetric and symmetric long-term keys could be combined in a three-party
protocol, in this paper we are going to limit ourselves to the configuration typ-
ically found in EAP. That is, we assume that only initiators and servers are
in possession of a long-term private/public key-pair, while all responders and
servers share a symmetric PSK. On the other hand, for two-party protocols we
assume that the long-term keys are either strictly based on asymmetric keys or
strictly based on PSKs. For every U party holding a public key pkU , we assume
that all other parties have an authenticated copy of it.

9

Syntax. A protocol is a tuple Π = (KG,Σ) of probabilistic polynomial-time
algorithms, where KG specifies how long-term keys are generated for each party,
and Σ specifies how (honest) parties behave. Each party U ∈ P can take part in
multiple executions of the protocol, both concurrently and subsequently, called
a session. We use an administrative label πiU to refer to the ith session at user
U . This will sometimes be simplified to π . Associated to each session πiU , there
is a collection of variables that embodies the (local) state of πiU during the run
of the protocol.

• skU , pkU – the (possibly empty) long-term private/public key of party U ,

• peers – a list of the identities of the intended communication peers of πiU ,

• PK[·] – a map taking party identities to (possibly empty) public keys for
each V ∈ πiU .peers, i.e, PK[V] 7→ pkV /⊥,

• PSK[·] – a map taking party identities to (possibly empty) PSKs for each
V ∈ πiU .peers, i.e, PSK[V] 7→ KUV /⊥,

• #»α = (α1, . . . , αn) – a vector of accept states αi ∈ {running, accepted,
rejected},

• k ∈ {0, 1}λ ∪ {⊥} – the symmetric session-key derived by πiU .

Only initiators and responders accept sessions keys, i.e., if S ∈ S, then we
always have πiS .k = ⊥. Note that this is pure formalism: we certainly expect
many protocols in which the server might be in possession of the session key—in
fact, the server might be the one that choses and distributes it—we simply do
no not associate it with the variable k.
Remark 1. We use a list of acceptance states #»α rather than a single acceptance
state more commonly found in other formal protocol models. We do this in order
to model protocols that are logically built out of sub-protocols. The individual
acceptance states αi provides a convenient way to signal to the adversary that a
session has accepted in some intermediate sub-protocol Πi of the full protocol Π.
By convention, we will let αn represent the acceptance state of the full protocol,
and use αF

def= αn to denote this state. A session is said to be running, accepted
or rejected, based on the value of αF . Thus, αF has the same role as the single
acceptance state variable α used in other protocol models.

We require the following semantics of the variables #»α = (α1, . . . , αn) and k:

αi = accepted =⇒ αi−1 = accepted, (1)
αi = rejected =⇒ αi+1 = rejected, (2)
π.αn = accepted =⇒ π.k 6= ⊥ . (3)

By convention, whenever we set αi = rejected, we also automatically set αj =
rejected for all i < j, in accordance with (2). Moreover, we assume that the
session key π.k is set only once.

10

ExpΠ,Q,A(λ):
1: Long-term key set-up:
2: 3P: For every U ∈ I ∪ S create (skU , pkU)←←Π.KG(1λ)
3: For every (U, V) ∈ R× S define KUV = KV U←←{0, 1}λ
4: Define pks← {(U, pkU) | U ∈ I ∪ S}
5:
6: 2P-Public-Key: for every U ∈ I ∪R create (skU , pkU)←←Π.KG(1λ)
7: Define pks← {(U, pkU) | U ∈ I ∪R}
8:
9: 2P-PSK: For every (U, V) ∈ I ×R define KUV = KV U←←{0, 1}λ

10: Define pks← ∅
11:
12: out←←AQ(1λ, pks)

Figure 2: Unified experiment used to simultaneously define AKE and ACCE
security, including three-party and two-party settings as well as protocols using
asymmetric and symmetric long-term keys.

Protocol correctness. It is required that an AKE protocol satisfies the fol-
lowing correctness requirement. In an honest execution of the protocol between
an initiator πiA, a responder πjB and a server πkS (if in the three-party setting)—
meaning that all messages are faithfully transmitted between them according
the protocol description—then all sessions end up accepting with the correct
intended peers, and πiA and πjB both hold the same session key k 6= ⊥.

A unified security experiment. To define the security goals of both AKE
and ACCE protocols we use the unified experiment shown in Fig. 2. Experi-
ment ExpΠ,Q,A(λ) is parameterized on the protocol Π, a query set Q, and the
adversary A. While the query sets used to define AKE and ACCE security will
be different, they will both contain the following “base” query set Qbase:

• NewSession(U, [V,W]): This query creates a new session πiU at party U ,
optionally specifying its intended communication peers V and W . It is
required that U , V and W all have different roles.
The variables k and #»α are initialized to πiU .k = ⊥ and πiU .

#»α =
(running, . . . , running), respectively. Additionally, depending on the type of
protocol (two-party/three-party, symmetric/asymmetric long-term keys),
as well as the roles of U , V and/or W , the variables sk, pk, peers, PK and
PSK are initialized accordingly.
Finally, if U ∈ I, then πiU also produces its first message m according to
the specification of protocol Π. Both the administrative label πiU and m
are returned to A.

• Send(πiU ,m): If πiU .αF 6= running, return ⊥. Otherwise, πiU creates a

11

response message m∗ according to the specification of protocol Π. This
depends on πiU ’s role and current internal state. Both m∗ and πiU . #»α are
returned to A.

• Reveal(πiU): If π.αF 6= accepted or U ∈ S, return ⊥. Else, return πiU .k.
From this point on πiU is said to be revealed. Note that πiU is not considered
revealed if the Reveal query was made before πiU accepted.

• LongTermKeyReveal(U, [V]): Depending on the second input parameter,
this query returns a certain long-term key of party U .

– LongTermKeyReveal(U): If U has an associated private-public key-
pair (skU , pkU), return the private key skU .

– LongTermKeyReveal(U, V): If U and V share a symmetric long-term
key KUV , return KUV .

After a long-term key has been leaked we say that it is exposed and the
corresponding party corrupted.

Remark 2. We are working in the post-specified peer model [15], meaning that
the identities of a session’s peers might not necessarily be known by the session
at the beginning of the protocol run, but are rather learned as the protocol
progresses.

Note that experiment ExpΠ,Q,A(λ) does not provide any output and does
not define any “winning condition” for A. Instead, it provides a single execution
experiment on which we can define many different winning conditions. This is
convenient since it allows an easy way of specifying the many different security
models needed in this paper in a uniform manner. Common for all of the security
models will be the notion of freshness which decides whether A has managed to
satisfy a winning condition in a non-trivial way. Our definition(s) of freshness
further depends on the notion of partnering, defined next. Partnering is used
to formalize the intuition that for any session π that ends up holding a session
key, there will (possibly) be some other session π ′ whose loss of session key will
also compromise that of π .

Transcripts and partner functions. To define partnering in our security
models we will use the concept of partner functions as introduced by Bellare
and Rogaway [10]. However, to simplify our later analysis, we will limit our-
selves only to symmetric and monotonic partner functions. Basically, a partner
function is symmetric if it is its own inverse (up to ⊥), and monotonic if it
never “changes its mind”, i.e., once two sessions become partners they remain
so forever. Bellare and Rogaway did not demand these properties directly in
their original definition, but instead claimed that they could be inferred from
the definition (see [10, §6]). We find it easier to require these properties at the
definitional level.

12

To formally define partner functions, we first the need the notion of a pro-
tocol transcript, which is essentially records the public communication of a pro-
tocol run. More precisely, consider a run of experiment ExpΠ,Q,A(λ). Let T be
the ordered transcript consisting of all the Send and NewSession queries made
by A, together with their responses. A transcript T is a prefix of another tran-
script T ′, written T ⊆ T ′, if the first |T | entries of T ′ are identical to T . Let
T denote the set of all possible transcripts generated from running experiment
ExpΠ,Q,A(λ). We can now define partner functions.

Definition 1 (Partner functions). A symmetric and monotonic partner func-
tion is a polynomial-time function f : T × (P \ S)× N→ ((P \ S)× N) ∪ {⊥},
subject to the following requirements:

1. f(T,U, i) = (V, j) =⇒ f(T, V, j) = (U, i), (symmetry)

2. f(T,U, i) = (V, j) =⇒ f(T ′, U, i) = (V, j) for all T ⊆ T ′. (monotonicity)

Instead of f(T,U, i) = (V, j), we also write fT (πiU) = πjV , or even just fT (π) =
π ′ if the exact identities of the sessions are irrelevant.

Since all partner functions in this paper are required to be both symmetric
and monotonic, we drop these qualifiers from now on and simply talk about
“partner functions”. Note that both requirements are straightforwardly met by
partner functions based on SIDs.

Definition 2 (Partnering). Let f be a partner function. A session π ′ is a
partner to π if fT (π) = π ′.

Of course, by the symmetry requirement above, if π ′ is the partner to π ,
then π will also be a partner to π ′. Hence, we can simply talk about π and π ′
being partners.
Remark 3. Partnering is only defined between initiators and responders. Servers
are not considered partners to any session.
Remark 4. The use of partner functions to analyze key exchange protocols is
rare in the literature. To the best of our knowledge, besides the original paper
by Bellare and Rogaway [10], it has only been used in one other paper by Shoup
and Rubin [43]. In a currently unpublished manuscript [12], we provide a more
detailed treatment of partner functions in general.

Partnering soundness. For a security analysis based on partner functions
to be meaningful, the partner function needs to satisfy certain soundness prop-
erties. Briefly, soundness demands that partners should: (1) end up with the
same session key, (2) agree upon who they are talking to, (3) have compatible
roles, and (4) be unique. However, since we are limiting our attention to sym-
metric partner functions in this paper, the last requirement follows directly so
we omit it.

Definition 3 (Partner function soundness). A partner function is sound if the
following holds for all transcripts T . If sessions fT ′(πiU) = πjV then:

13

1. πiU .αF = πjV .αF = accepted =⇒ πiU .k = πjV .k 6= ⊥,

2. πiU .peers = {V,W}, πjV .peers = {U,W}, and W ∈ S,

3. U ∈ I ∧ V ∈ R or U ∈ R ∧ V ∈ I,

Soundness is essentially the partner function equivalent of the Match-security
notion introduced by Brzuska et al. [13], used for partnering based on SIDs.
However, unlike Match-security, we demand that properties (1)–(3) hold un-
conditionally instead of only with overwhelming probability. We note that this
requirement is not fundamental, and only used to simplify our later analysis.

2.3 2P-AKE and 3P-AKE
Syntax. A 2P/3P-AKE protocol has the same syntax as the general protocol
defined in Section 2.2. Note that is also no syntactical difference between a
2P-AKE protocol and a 3P-AKE protocol, apart from the fact that the former
has no server session S ∈ S. Consequently, in the two-party case the session
variables peers, PK and PSK contain at most a single entry.

AKE security. A secure AKE protocol is supposed to provide secrecy of the
distributed session keys. To capture this, the base query set Qbase is extended
with the following query.

• Test(πiU): If πiU .αF 6= accepted or U ∈ S, return ⊥. Otherwise, draw a
random bit b, and return πiU ’s session key if b = 0, or a random key if
b = 1. We call πiU the test-session and the returned key the test-key. The
Test query can only be made once.

Let QAKE = Qbase∪{Test}. Experiment ExpΠ,Q,A(λ) stops when A outputs
a bit b′. The goal of the adversary is to correctly guess the secret bit b used
to answer the Test query. However, A is only given “credit” if the chosen
test-session was fresh. A session is fresh if the adversary did not learn its
session key by trivial means, for example by revealing it or by impersonating
its peers after having obtained their long-term keys etc. Formally, in Fig. 3,
we specify three freshness predicates FreshAKE, FreshAKEw , and FreshAKEstatic , of
various permissiveness with respect to long-term key leakage. Each freshness
predicate gives rise to a corresponding security model, denoted AKE, AKEw
and AKEstatic respectively. We describe the three models in more detail below
and summarize their main differences in Table 1.

AKE with forward secrecy: the AKE and AKEw models. The AKE model is
our “partner function analogue” of the standard eCK model (as defined in the
updated version [34] of the original paper [35]), with the main difference being
that we do not consider leakage of ephemeral values. In particular, the AKE
model captures both key-compromise impersonation (KCI) attacks and forward
secrecy. KCI attacks are captured since the test-session’s own long-term private

14

FreshM (πiU):
1: fresh← true
2: {V,W} ← πiU .peers
3: LTKeys← {πiU .PK[V], πiU .PK[W], πiU .PSK[V], πiU .PSK[W],KVW }
4:
5: fresh← fresh ∧ (πiU .αF = accepted)
6: fresh← fresh ∧ (πiU not revealed)
7: fresh← fresh ∧ (fT (πiU) not revealed)
8: fresh← fresh ∧ (corruptM = false)
9:

10: return fresh

- corruptAKE/ACCE = true⇐⇒ (fT (πiU) = ⊥) ∧ (a key in LTKeys was exposed before πiU accepted)

- corruptAKEw = true⇐⇒ (fT (πiU) = ⊥) ∧ (a key in LTKeys is exposed)
- corruptAKEstatic = true⇐⇒ a key in LTKeys is exposed

Figure 3: Freshness predicate for security modelM ∈ {AKE,AKEw,AKEstatic,
ACCE}. Some of the keys in LTKeys might be undefined, e.g., if W ∈ S,
then πiU .PK[W], πiU .PK[W] and KVW are undefined in the two-party case, and
πiU .PK[V] is undefined if V is a responder party in the three-party case. Unde-
fined keys are ignored.

key can always be exposed by the adversary. Forward secrecy is captured since
the adversary can additionally learn the long-term keys of the peers of the test-
session after it accepted.

The forward secrecy guarantees provided by the AKE model are rather
strong: if a session has a partner, then the adversary is allowed to expose any
long-term key it wants, while if the session does not have a partner, then the
adversary must wait until after the session accepted before it can expose the
relevant keys. Note that partnering is used to model passiveness by the adver-
sary in the test-session. Intuitively, even if the adversary knew all the long-term
keys before the test-session started, if the test-session ends up with a partner,
then the adversary cannot actually have exploited its knowledge of the keys.

Compared to the AKE model, the AKEw model is more restrictive with
respect to forward secrecy: if the test-session does not have partner, then the
adversary is disallowed from exposing any of the relevant long-term keys. The
AKEw model is similar to the two-pass variant of the eCK model (see [34,
Def. 3]). As mentioned in the introduction, standalone EAP does not achieve
security in the AKE model, but we will show that it is secure in the AKEw
model.

AKE without forward secrecy: the AKE static model. To accommodate proto-
cols that does not provide forward secrecy we introduce the AKEstatic model.
Unlike the AKE and AKEw models, the AKEstatic model disallows the adversary

15

Table 1: Summary of the three AKE security models in terms of the amount
of corruption allowable by the adversary (i.e., long-term key reveals). The table
assumes πiA is the test-session having peers B and S (in the three-party case).

Corrupt B or S
Model Corrupt A if πiA has a partner if πiA has no partner
AKE allowed allowed allowed1

AKEw allowed allowed ×
AKEstatic × × ×

1 Only after πiA accepted.

from exposing the long-term keys altogether, no matter whether a session has
a partner or not (of course, the adversary is allowed to expose long-term keys
unrelated to the test-session and its peers).

On the other hand, for technical reasons (see the explanation following
Lemma 9 in Section 3.2), we slightly strengthen the AKEstatic model compared
to the AKE and AKEw-models along a different axis. Namely, we give the
adversary the capability of key registration. That is, when creating a new ses-
sion, the adversary is allowed to (optionally) specify the long-term key(s) that
the session will use in its protocol run. Of course, any session for which the
adversary supplies the long-term keys will be considered unfresh, so the key
registration capability does not substantially strengthen the model.

Technically, key registration in the AKEstatic model is handled by modifying
the NewSession query. Furthermore, since we are only going to use the AKEstatic

model to analyze PSK-based two-party protocols in this paper, we specialize the
definition to this specific case:

• NewSession(U, [V], [K̂]): This query works exactly like the NewSession
query defined in Section 2.2, except that if the adversary supplies an
optional long-term key K̂, then the newly created session πiU stores K̂
in πiU .PSK[V] rather than KUV . In this case πiU .PSK[V] is considered
exposed.

If the adversary makes a NewSesssion query where it provides a long-term
key, then the key is nevertheless omitted from the NewSession query that gets
added to the protocol transcript T . Thus, the protocol transcripts generated
from the AKEstatic model are syntactically the same as those generated from the
AKE and AKEw models, even if the latter does not include key registration.

Security definitions. Let QAKE denote the query set either used in the AKE or
AKEw models (having NewSession queries without key registration), or in the
AKEstatic model (having NewSession queries with key registration).

16

Definition 4 (AKE winning event). Suppose π was the test-session chosen
by A in a run of experiment ExpΠ,QAKE,A(λ), b was the random bit used in
answering the Test query, and suppose b′ was the final output of A. Fix a
partner function f and let AKE∗ ∈ {AKE,AKEw,AKEstatic} be the following
random variable defined on experiment ExpΠ,QAKE,A(λ):

AKE∗ def=
{

(b = b′), if Fresh∗AKE(π) = true

true with probability 1/2, if Fresh∗AKE(π) = false
(4)

Let ExpAKE∗
Π,QAKE,A(λ)⇒ 1 denote the event that AKE∗ = true .

Definition 5 (AKE security). For AKE∗ ∈ {AKE,AKEw,AKEstatic} and some
partner function f , define the AKE ∗-advantage of adversary A to be

AdvAKE∗
Π,A,f (λ) def= 2 · Pr[ExpAKE∗

Π,QAKE,A(λ)⇒ 1]− 1 (5)
A protocol Π is AKE ∗-secure, if there exists a sound partner function f , such
that for all PPT adversaries A, its advantage AdvAKE∗

Π,A,f (λ) is negligible in se-
curity parameter λ.

If we want to emphasize that a protocol is two-party or three-party, we write
Adv2P-AKE∗

Π,A,f (λ) or Adv3P-AKE∗
Π,A,f (λ), respectively.

Remark 5. Note that in our formulation of security we are quantifying over all
PPT adversaries, not only those that satisfy the freshness predicate. Instead, if
the adversary violates the freshness predicate, we “penalize” it in the winning
condition (Def. 4) by having the challenger output a random bit on its behalf.
This penalty-style of formulating security has previously been used in other
papers like e.g., [7] and [20].

2.4 ACCE
In this section we define authenticated and confidential channel establishment
(ACCE) protocols. Intuitively, an ACCE protocol combines an ordinary 2P-
AKE protocol with a stateful authenticated encryption (sAE) scheme, where
the session keys of the 2P-AKE protocol are used to key the sAE scheme.

Syntax. An ACCE protocol is a two-party-protocol as defined in Section 2.2,
together with an associated sAE scheme stE = (stE.Init, stE.Enc, stE.Dec) (fol-
lowing [24]6). The notion of a session is the same as before, but the (local)
state is extended with two additional variables stE and stD in order to store the
encryption/decryption state of the sAE scheme.

Correctness of the sAE scheme demands that if the deterministic algorithm
st.Init produced initial states st0E , st0D; and the ACCE session key k was used to
produce a sequence of ciphertext/state pairs (Ci, sti+1

E) ← stE.Enc(k,mi, st
i
E)

such that Ci 6= ⊥ for all i ≥ 0; then one must have, for all i ≥ 0, that m′i = mi

in the sequence of decryptions (m′i, sti+1
D)← stE.Dec(k,Ci, stiD).

6For simplicity, we omit the properties of length-hiding and associated data in our treat-
ment of ACCE. This omission is immaterial for the results established in this paper.

17

Definition 7 (ACCE security). Let f be a partner function. The ACCE-
advantage of an adversary A is

AdvACCE
Π,A,f (λ) def= 2 · Pr[ExpACCE

Π,Q,A(λ)⇒ 1]− 1 (7)

A protocol Π is ACCE-secure, if there exists a sound partnering function f , such
that for all PPT adversaries A, its ACCE-advantage AdvACCE

Π,A,f (λ) is negligible
in security parameter λ.

2.5 Explicit entity authentication
Explicit entity authentication, as opposed to implicit entity authentication, adds
“aliveness” guarantees to a protocol in the sense that if a session at party A
accepts with peer B, then A can be certain that there exists a corresponding
session at B that contributed to this protocol run. While the need for AKE
protocols to provide explicit entity authentication has been somewhat disputed
in the literature (see e.g. [10, §1.6], [40, §6] or [27, §2.1]), our use of it in this
paper mostly serve as an approximation of the (intuitively) simpler notion of
key confirmation (see [19] for a detailed treatment of this property). On the
other hand, explicit entity authentication has always been part of the security
requirements of an ACCE protocol [24, 30, 26], and we are going to assume that
in this paper too.

Since the definition of explicit entity authentication is formulated identically
for both AKE and ACCE protocols, we give a merged definition here. Let
QAKE denote the query set of the AKE experiment (in any of the three security
models), and let QACCE denote the query set of the ACCE experiment.

Definition 8 (Entity authentication predicate). For X ∈ {AKE,ACCE}, let T
be the transcript of experiment ExpΠ,A,QX

(λ). Predicate Auth is true if and
only if the following holds for all fresh sessions π :

π.αF = accepted =⇒ ∃π ′ such that fT ′(π) = π ′. (8)

Let ExpX-Auth
Π,QX,A(λ)⇒ 1 denote the event that Auth is true. A fresh session that

accepts without a partner is said to have accepted maliciously.

Definition 9 (Explicit entity authentication). A protocol Π provides explicit
entity authentication if there exists a sound partner function f , such that for all
PPT adversaries A, it holds that

1. Π is X-secure, and

2. AdvX-EA
Π,A,f (λ) def= 1 − Pr[ExpX-Auth

Π,QX,A(λ) ⇒ 1] is negligible in security pa-
rameter λ,

where X ∈ {AKE,AKEw,AKEstatic,ACCE}.

Remark 6. Note that the explicit entity authentication of an AKE (resp. ACCE)
protocol needs to hold with the same partner function as used to prove its AKE
(resp. ACCE) security.

19

4.3 EAP without channel binding
Since the “cryptographic core” of EAP is modeled by protocol Π3 in Section 3.1,
if EAP does not employ channel binding it is vulnerable to exactly the same
UKS attack that was described for protocol Π3 without channel binding in Re-
mark 9. Namely, since the identities being communicated from the client to
the server are without any integrity protection (see the A–S link in Fig. 5), an
adversary can modify them so that the server will distribute the derived session
key to the wrong authenticator. Less abstractly, this attack is an instance of
the lying authenticator problem: since the communication between the client
and server is normally routed through the authenticator, this allows the au-
thenticator to easily modify the information presented to the two sides. Thus,
without channel binding it suffices to compromise a single authenticator in order
to compromise an entire network. Moreover, since authenticators are typically
low-protected devices, such as wireless access points, the lying authenticator
problem is a substantial attack vector on enterprise networks. As explained
in the previous section, even if the channel binding only included the network
name, it would clearly be an upgrade over EAP without channel binding, and
comes at essentially no cost.

Interestingly, a situation very similar to that of EAP without channel binding
can be found in the UMTS and LTE mobile networks. In particular, UMTS and
LTE employ a key exchange protocol called AKA which is structured almost
identically to the EAP protocol11: a mobile client that wants to connect to a
base station first has to authenticate to its home operator. The home operator
then transmits so-called authentication vectors (which in particular includes a
session key) to the base station in much the same way as the server forwards
the session key to the authenticator in EAP. Moreover, similar to many EAP
methods, the AKA protocol also lacks channel binding for its authentication
vectors. In their recent analysis of the AKA protocol, Alt et al. [5, §5] noted
this lack of channel-binding, and suggested a fix which is essentially identical to
the key-derivation approach analyzed in this paper.

5 Security of IEEE 802.11

5.1 Description of the IEEE 802.11 protocol
IEEE 802.11 [2] is the most widely used standard for creating WLANs. It
supports three modes of operation depending on the network topology: in-
frastructure mode, ad-hoc mode, and mesh network mode. In ad-hoc mode
and mesh-networking mode there is no central infrastructure, and the wireless
clients talk directly to each other. On the other hand, in infrastructure mode
the clients only communicate through an access point, which usually also pro-
vides connectivity to a larger WAN. In this paper we only cover IEEE 802.11
in infrastructure mode which is by far the most common mode.

11In fact, EAP is widely used within mobile networks.

39

The IEEE 802.11 protocol is a link-layer protocol, aiming to secure the
wireless link between the client and the access point. It defines two main security
protocols: the 4-Way-Handshake (4WHS), used to authenticate and establish
session keys between the client and the access point; and the Counter Mode
CBC-MAC protocol (CCMP), used to secure the actual application data. We
will only cover the 4WHS in this paper.

The 4WHS is based on a symmetric Pairwise Master Key (PMK) shared
between the client and the access point. The PMK can either be pre-configured
at the client and access point or distributed through some other means, like
for instance EAP. The first alternative is most typically found in wireless home
networks where a static PMK is manually configured at the access point and at
every connecting device.12 This variant is also commonly referred to as WPA2-
PSK. The second alternative, often referred to as WPA2-Enterprise, is normally
used in large organization like universities and big companies where there are
many users and access points. In this setting it is infeasible for every user and
access point to share the same PMK. Instead, a central authentication server
is used to manage authentication as well as distributing new PMKs for every
established session. Usually the protocol used to access the authentication server
is EAP.

In Section 5.2 we analyze the pre-shared key variant of the 4WHS, while in
Section 5.3 we analyze it when combined with EAP.

5.2 Analyzing the 4-Way-Handshake
The 4WHS is shown in Figure 6. It depends on a pseudorandom function
PRF and a MAC scheme Σ = (MAC,Vrfy); see Appendix A for their formal
definitions. We use the notation [x]k

def= x‖σ to denote a message x together with
its MAC tag σ ← MAC(k, x). Identities in the 4WHS are based on the parties’
48-bit link-layer addresses which makes it possible to compare them based on
their corresponding numerical values. Particularly, the functions max{A,B}
and min{A,B} returns, respectively, the largest and the smallest of two link-
layer addresses A and B when interpreted as 48-bit integers.

In our modeling we will mostly ignore the exact encoding of the IEEE 802.11
packets as used by the 4WHS. For our purposes it sufficient to model them as
consisting of a nonce plus a fixed constant pi that uniquely determines each
handshake message mi. If a received message does not match the expected
format, including the value of the constant pi, it is silently discarded. The
4WHS proceeds as follows:

1. The 4WHS begins with the access point AP sending the message m1 =
ηAP ‖p1 to the client C, where ηAP is a nonce and p1 a constant.

2. On receiving m1, C generates its own nonce ηC and derives a so-called
pairwise transient key (PTK) using the pseudorandom function PRF and

12Usually the PMK is not configured directly, but instead derived from a password using
a password-based KDF. We ignore this distinction here.

40

the long-term key it shares with AP . Specifically, PTK def= kµ‖kα ←
PRFK(P‖η), where P‖η = min{AP,C}‖max{AP,C}‖min{ηAP , ηC}‖
max{ηAP , ηC}. The sub-key kα will be the session key eventually output
by the client, while the sub-key kµ will be used in the MAC Σ to protect
the handshake messages. After deriving PTK, C creates and sends the
next protocol message m2 = [ηC‖p2]kµ .

3. On receiving m2 = [ηC‖p2]kµ , AP uses the containing nonce ηC to derive
kµ‖kα ← PRFK(P‖η). With the sub-key kµ, it verifies the MAC tag of
m2. If the verification succeeds, then AP stores PTK ← kµ‖kα as its
PTK and sends out the third protocol message m3 = [ηAP ‖p3]kµ . If the
verification fails, then AP silently discards m2, as well as the derived keys
kµ, kα, and continues running.

4. On receiving m3 = [η′AP ‖p3]kµ , C first verifies its MAC tag with key kµ,
and checks that η′AP equals the nonce ηAP that C previously received
in message m1. If the verification succeeds then C sends out the final
handshake message m4 = [p4]kµ . Additionally, it sets its own acceptance
state to α = accepted. If the verification fails, C silently discards m3 and
continues running.

5. On receiving m4, AP verifies its MAC tag using the key kµ. If the veri-
fication succeeds, it sets its own acceptance state to α = accepted. If the
verification fails, AP silently discards m4 and continues running.

Remark 10. An adversary can freely modify messagem1 since it has no integrity
protection. However, since every recipient of an m1 message will check that it
matches the excepted format of “x‖p1”, the adversary is in reality limited to only
modifying the value of the nonce. Of course, this is a simplification compared
to the real IEEE 802.11 header, where there are actually multiple different bit
fields which the adversary could manipulate—in principle. Still, the fact is that
except for the nonce ηAP , all bit fields in the IEEE 802.11 header of the first
m1 message have pre-determined values. Thus, the attacker does not have more
opportunities to manipulate the real IEEE 802.11 m1 message as opposed to in
our simplified modeling of it.

On the other hand, in the IEEE 802.11 header of messages m2, m3 and m4,
there are bit fields that the adversary could potentially influence. But since
these messages are protected by a MAC, the adversary will be unable to modify
them. Whether we model p2, p3 and p4 as constants or as arbitrary distinct
values makes no difference for our analysis.
Remark 11. The fourth handshake message m4 serves no cryptographic purpose
and could safely have been omitted. However, to stay true to the actual 4WHS,
we leave it in.

AKEstatic-security. We begin by proving that the 4WHS constitutes a secure
2P-AKE in the AKEstatic model. Following that, we show that it also achieves

41

C AP

m1 = (ηAP , p1)

m2 = [ηC , p2]kµ

m3 = [η′AP , p3]kµ

m4 = [p4]kµ

ηAP ← {0, 1}λ
ηC ← {0, 1}λ

η = min{ηAP , ηC}‖max{ηAP , ηC}
P = min{AP,C}‖max{AP,C}

kµ‖kα ← PRF(PMK, P‖η)
η = min{ηAP , ηC}‖max{ηAP , ηC}
P = min{AP,C}‖max{AP,C}
kµ‖kα ← PRF(PMK, P‖η)
if Σ.Vrfy(kµ,m2) = 1:

continueif (Σ.Vrfy(kµ,m3) = 1) ∧ (η′AP = ηAP):
α = accepted

α = accepted

Legend: [x]kµ
def= x‖Σ.MAC(kµ, x)

Figure 6: The IEEE 802.11 4-Way-Handshake protocol. The client C and the
access point AP share a long-term symmetric key PMK.

explicit entity authentication. In the following, let PAP = I and PC = R, i.e.,
in the 4WHS protocol the access point has the initiator role while the client
has the responder role. According to the IEEE 802.11 standard, each client and
access point is allowed to share multiple long-term PMKs with each other. In the
following analysis we make the simplifying assumption that every client–access
point pair only shares a single PMK.

Theorem 4. The 4WHS protocol is AKE static-secure. In particular, for any
PPT adversary A, there exists a partner function f and an algorithm D, such
that

Adv2P-AKEstatic

4WHS,A,f (λ) ≤ 2 · |PC | · |PAP | ·Advprf
PRF(D) +

(nPnπ)2

2λ+1 , (23)

where nπ is the number of sessions at each party, and nP = |PC |+ |PAP |.

Proof. Recall that in the AKEstatic model the adversary is allowed to register the
PMK a session will use when creating it via the NewSession query. Of course,
in this case the session’s PMK will be considered exposed and the session will
thus not be fresh according to predicate FreshAKEstatic .

Defining the partner function f . For the analysis of the 4HWS it would
be natural to use SIDs as the partnering mechanism. Namely, the SID of a
session π would be the string P‖η that π input to its PRF in order to create its
session key (see Fig. 6).13 However, because our paper is phrased in terms of
partnering functions, we “synthetically” encode the SID as a partnering function
by saying that π ’s partner session is the first session—different from π—that
sets the same SID as π . Taking the first one is important because a partner
function is a function and not a relation.

13For an access point the SID would only be set if the verification of the received m2
message succeeded.

42

In more detail, suppose πiAP is an access point session having C ∈ PC as its
intended peer. If πiAP itself created the nonce ηAP for message m1, and later
successfully verified an incoming m2 message containing the nonce ηC , then
fT (πiAP) = πjC if and only if (1) πjC has AP as its indented peer and (2) πjC was
the first session at C that used the nonces ηC and ηAP to derive its PTK.

Similarly, suppose πiC is a client session having AP ∈ PAP as its intended
peer. If πiC used the nonces ηC and ηAP to derive its PTK after receiving
message m1 = (ηAP ‖p1), then fT (πiC) = πjAP if and only if (1) πjAP has C as its
intended peer, (2) πjAP created the nonce ηAP and (3) πjAP was the first session
at AP that successfully verified an m2 message containing the nonce ηC .

The soundness of f is immediate from its definition and PRF being a deter-
ministic function.

Game 0: This is the real 2P-AKE security game, hence

AdvG0
4WHS,A,f (λ) = Adv2P-AKEstatic

4WHS,A,f (λ) .

Game 1: This game proceeds as the previous one, but aborts if not all the
nonces in the game are distinct, hence

AdvG0
4WHS,A,f (λ) ≤ AdvG1

4WHS,A,f (λ) +
(nPnπ)2

2λ+1 . (24)

Game 2: This game implements a selective AKE security game where at the
beginning of the game the adversary has to “commit” to the pre-shared PMK
that will be used by the test-session.

Specifically, at the beginning the of the game, the adversary has to output
two party identities C ∈ PC and AP ∈ PAP . The game then proceeds as in
Game 1, except that it aborts if the test-session selected by the adversary did
not use the PMK shared between C and AP .

Lemma 11. AdvG1
4WHS,A,f (λ) ≤ |PAP | · |PC | ·AdvG2

4WHS,A′,f (λ) .

Proof. From an adversary A that wins against the adaptive game in Game 1,
we create an adversary A′ that wins against the selective game in Game 2 as
follows. First, A′ randomly selects two party identities C ∈ PC and AP ∈ PAP .
It outputs C and AP as its choice to the selective security game it is playing. A′
then runs A and answers all of its queries by forwarding them to its own selective
security game. When A stops with output b′, then A′ stops and outputs the
same bit as well.

Algorithm A′ perfectly simulates Game 1 for A, so A′’s choice of selective
security targets matches those of A with probability at least 1/(|PAP | · |PC |).
When A′’s guess is correct it wins with the same probability as A, while when
it is wrong, A′ gets penalized in its selective security game, hence wins with
probability 1/2.

43

In the remainder of the proof, let C and AP denote the parties that the
adversary commits to in Game 2, and let PMK∗ denote the PMK shared between
them. Note that by the requirements of the FreshAKEstatic predicate (Fig. 3),
PMK∗ cannot be exposed if the test-session is to be fresh. In particular, this
means that the adversary cannot make a LongTermKeyReveal(C,AP) query, nor
create the test-session via a NewSession query where it registers PMK∗ as its
long-term key.

Game 3: In this game the challenger replaces the pseudorandom function
PRF with a random function $(·) in all evaluations involving the pre-shared key
PMK∗. That is, calls of the form PRF(PMK∗, ·) are instead answered by $(·).

Lemma 12. AdvG2
4WHS,A,f (λ) ≤ AdvG3

4WHS,A,f (λ) + 2 ·Advprf
PRF,D(λ).

Proof. Algorithm D has access to an oracle O, which either implements the
function PRF(P̃MK, ·) for some independently and uniformly distributed key
P̃MK, or it implements a truly random function $(·). D begins by choosing
a random bit bsim and creating all the PMKs for all client-access points pairs
different from the selective security targets C and AP . It then runs A.

For all of A’s queries that does not involve computations with the PMK of
C and AP , D answers itself using the keys it created. On the other hand, for
queries that would normally involve computations with the PMK of C and AP ,
algorithm D uses its oracle O to do these computations, and the answers the
queries accordingly. Finally, when A stops with some output b′, then D stops
and outputs 0 to its PRF experiment if b′ = bsim, and 1 otherwise.

WhenO = PRF(P̃MK, ·), thenD perfectly simulates Game 2 since the PMKs
are chosen independently and uniformly at random; while when O = $(·), then
D perfectly simulates Game 3. The lemma follows.

Concluding the proof of Theorem 4. Suppose the test-session in Game 3
accepted with the “SID” P‖η. By Game 1 we know that the only sessions
that evaluated the pseudorandom function on this SID was the test-session and
possibly its partner. However, by Game 3 the PRF is now a truly random
function which is unavailable to the adversary provided the test-session is to
remain AKEstatic-fresh. In particular, this means that the PTK derived by
the test-session (and possibly its partner) is a truly random string P̃TK =
k̃µ‖k̃α ← {0, 1}2λ, and where k̃α is independent of all other values. Thus,
AdvG3

4WHS,A,f (λ) = 0, and Theorem 4 follows.

Explicit entity authentication. We now prove that the 4WHS also provides
explicit entity authentication. The proof of this fact follows the same outline
as for the key-indistinguishability part of the proof, using essentially the same
game hops. However, instead of bounding the key-indistinguishability advan-
tage of the adversary in the final game, we instead bound the probability that

44

Acknowledgments
We would like to thank Colin Boyd, Britta Hale and Cas Cremers for helpful
comments and discussions. Chris Brzuska is grateful to NXP for supporting his
chair for IT Security Analysis.

A Additional definitions

A.1 Pseudorandom functions
A pseudorandom function (PRF) is a family of polynomial-time functions
F : {0, 1}λ × {0, 1}` → {0, 1}L, having key-length key-length λ, input length
` and output length L. Let Func(`, L) denote the family of all functions from
{0, 1}` to {0, 1}L. The security of a PRF is defined by the experiments shown
in Fig. 8.

ExpPRF-0
PRF,A(λ):

1: K←←{0, 1}λ
2: b← APRF(K,·)(1λ)
3: return b

ExpPRF-1
PRF,A(λ):

1: f←←Func(`, L)
2: b← Af(·)(1λ)
3: return b

Figure 8: Experiments defining PRF security.

Definition 10 (PRF). Let PRF be a PRF. The PRF-advantage of an adversary
A is

Advprf
PRF,A(λ) def= Pr[ExpPRF-0

PRF,A(λ)⇒ 1]− Pr[ExpPRF-1
PRF,A(λ)⇒ 1] (29)

A PRF is (PRF-)secure if Advprf
PRF,A(λ) is negligible in security parameter λ for

all PPT adversaries A.

A.2 Message Authentication Codes
A message authentication code (MAC) is a pair of polynomial-time algorithms
Σ = (MAC,Vrfy), where

• MAC : {0, 1}λ × {0, 1}∗ → {0, 1}∗ is a deterministic tag-generation algo-
rithm that takes in a key K ∈ {0, 1}λ, a message m ∈ {0, 1}∗ and returns
a tag τ ∈ {0, 1}∗.

• Vrfy : {0, 1}λ × {0, 1}∗ × {0, 1}∗ → {0, 1} is a deterministic verification-
algorithm that takes in a key K ∈ {0, 1}λ, a message m ∈ {0, 1}∗ and a
candidate tag τ ∈ {0, 1}∗; and produces a decision d ∈ {0, 1}. Algorithm
Vrfy(K, ·, ·) works as follows on inputs m and τ : if τ = MAC(K,m) then
return 1 (ACCEPT) else return 0 (REJECT).

52

ExpSUF-CMA
Σ,A (λ):

1: K←←{0, 1}λ
2: forgery← 0
3: T [·]← ∅
4:
5: AMAC(K,·),Vrfy(K,·,·)(1λ)
6: return forgery

MAC(K,m):
1: τ ← Σ.MAC(K,m)
2: T [m]← T [m] ∪ {τ}
3: return τ

Vrfy(K,m, τ):
1: d← Σ.Vrfy(K,m, τ)
2: if (d = 1) ∧ (τ /∈ T [m]):
3: forgery← 1
4: return d

Figure 9: Experiment defining SUF-CMA security for a MAC
Σ = (MAC,Vrfy).

The security of a MAC is defined by the experiment shown in Fig. 9.

Definition 11 (SUF-CMA security). Let Σ = (MAC,Vrfy) be a MAC. The
SUF-CMA-advantage of an adversary A is

AdvSUF-CMA
Σ,A (λ) def= Pr[ExpSUF-CMA

Σ,A (λ)⇒ 1]. (30)

We say that Σ is strongly-unforgeable against chosen-message attacks (SUF-
CMA), or simply SUF-CMA-secure, if AdvSUF-CMA

Σ,A (λ) is negligible in security
parameter λ for any PPT adversary A.

B Proof of Lemma 7
Lemma 7.

Pr[M] ≤ (nπ + 1)2 · |I ∪ R|2 ·
(

2 ·Adv3P-AKEw
Π3,B′1,f3

(λ) + Adv2P-AKEstatic-EA
Π4,B′2,f4

(λ)
)

Proof. In the following games, let Mi denote the event that a session accepts
maliciously in sub-protocol Π2 in Game i.

Game 0: This is original 3P-AKE security experiment, hence

Pr[M0] = Pr[M]. (31)

Game 1: This game implements a selective security game similar to Game 2
in the proof of Theorem 1. However, this time the adversary is required to
commit to the session that will accept maliciously first.

Specifically, at the beginning of the game the adversary must first choose
a pair (U, i), with i ∈ [1, nπ]. The game then proceeds as in Game 0, except
that if some session accepts maliciously before πiU , the challenger aborts the
game and outputs 0 (i.e., A loses). In particular, this includes the possibility

53

Table 2: Parsing rules for extracting transcripts T1 and T2 from a transcript
T3, assuming that A ∈ I, B ∈ R and S ∈ S in protocol Π3. Parsing is done
as follows. For each entry in T3, look up the row in the column marked “T3”
that matches this query. From this row, use the corresponding queries in the
columns marked “T1” and “T2” to create the entries on T1 and T2 respectively
(“−” means that no query should be created).

T3 T1 T2

(NewSession(A,B, S), πiA,m) (NewSession(A,S), πiA,m) −
(NewSession(B,A, S), πj

B
,⊥) − (NewSession(B,S), πj

B
,⊥)

(NewSession(S,A,B), πkS ,⊥) (NewSession(S,A), πkS ,⊥) −

(Send(πiA,m),m∗, (running, running, running)) (Send(πiA,m),m∗, (running)) −
(Send(πiA,m),m∗, (accepted, accepted, accepted)) (Send(πiA,m),m∗, (accepted)) −
(Send(πiA,m),⊥, (rejected, rejected, rejected)) (Send(πiA,m),⊥, (rejected)) −

(Send(πj
B
,m),m∗, (accepted, running, running)) − (Send(πj

B
,m),m∗, (running))

(Send(πj
B
,m),m∗, (accepted, accepted, running)) − (Send(πj

B
,m),m∗, (accepted))

(Send(πj
B
,m),⊥, (accepted, rejected, rejected)) − (Send(πj

B
,m),⊥, (rejected))

(Send(πj
B
, Ckey),⊥, (accepted, accepted, accepted)) − −

(Send(πj
B
, C′key),⊥, (accepted, accepted, rejected)) − −

(Send(πkS ,m),m∗, (running, running, running)) (Send(πkS ,m),m∗, (running)) −
(Send(πkS ,m),⊥, (rejected, rejected, rejected)) (Send(πkS ,m),⊥, (rejected)) −
(Send(πkS ,m),m∗, (accepted, running, running))† (Send(πkS ,m),⊥, (accepted)) (NewSession(S,B), πkS ,m

∗)
(Send(πkS ,m),m∗, (accepted, running, running)) − (Send(πkS ,m),m∗, (running))
(Send(πkS ,m), Ckey, (accepted, accepted, accepted)) − (Send(πkS ,m),⊥, (accepted))
(Send(πkS ,m),⊥, (accepted, rejected, rejected)) − (Send(πkS ,m),⊥, (rejected))

†This rule only applies if πkS .
#»α = (running, running, running) for all prior Send queries to πkS , i.e., if receiving

message m caused session πkS to accept in sub-protocol Π1.

[4] Bernard Aboba, Larry J. Blunk, John R. Vollbrecht, James Carlson, and
Henrik Levkowetz. Extensible Authentication Protocol. RFC 3748, RFC
Editor, June 2004. https://tools.ietf.org/html/rfc3748. (Cited on
pages 3, 5, and 37.)

[5] Stéphanie Alt, Pierre-Alain Fouque, Gilles Macario-Rat, Cristina Onete,
and Benjamin Richard. A cryptographic analysis of UMTS/LTE AKA. In
Mark Manulis, Ahmad-Reza Sadeghi, and Steve Schneider, editors, ACNS
16: 14th International Conference on Applied Cryptography and Network
Security, volume 9696 of Lecture Notes in Computer Science, pages 18–35,
Guildford, UK, June 19–22, 2016. Springer, Heidelberg, Germany. (Cited
on pages 3, 7, and 39.)

[6] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of ver-
ification queries in message authentication and authenticated encryption.
Cryptology ePrint Archive, Report 2004/309, 2004. http://eprint.iacr.
org/2004/309. (Cited on page 45.)

59

https://tools.ietf.org/html/rfc3748
http://eprint.iacr.org/2004/309
http://eprint.iacr.org/2004/309

[7] Mihir Bellare, Dennis Hofheinz, and Eike Kiltz. Subtleties in the definition
of IND-CCA: When and how should challenge decryption be disallowed?
Journal of Cryptology, 28(1):29–48, January 2015. (Cited on page 17.)

[8] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key
exchange secure against dictionary attacks. In Bart Preneel, editor, Ad-
vances in Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes
in Computer Science, pages 139–155, Bruges, Belgium, May 14–18, 2000.
Springer, Heidelberg, Germany. (Cited on page 9.)

[9] Mihir Bellare and Phillip Rogaway. Entity authentication and key distri-
bution. In CRYPTO, volume 773 of Lecture Notes in Computer Science,
pages 232–249. Springer, 1993. (Cited on page 9.)

[10] Mihir Bellare and Phillip Rogaway. Provably secure session key distribu-
tion: The three party case. In 27th Annual ACM Symposium on Theory
of Computing, pages 57–66, Las Vegas, NV, USA, May 29 – June 1, 1995.
ACM Press. (Cited on pages 3, 7, 8, 8, 12, 12, 13, and 19.)

[11] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo
Pironti, Pierre-Yves Strub, and Santiago Zanella Béguelin. Proving the
TLS handshake secure (as it is). In Juan A. Garay and Rosario Gen-
naro, editors, Advances in Cryptology – CRYPTO 2014, Part II, volume
8617 of Lecture Notes in Computer Science, pages 235–255, Santa Barbara,
CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany. (Cited on
page 37.)

[12] Chris Brzuska, Cas Cremers, Håkon Jacobsen, and Bogdan Warinschi.
Partner mechanisms in key exchange protocols. Unpublished manuscript,
2017. (Cited on page 13.)

[13] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C.
Williams. Composability of Bellare-Rogaway key exchange protocols. In
Yan Chen, George Danezis, and Vitaly Shmatikov, editors, ACM CCS 11:
18th Conference on Computer and Communications Security, pages 51–62,
Chicago, Illinois, USA, October 17–21, 2011. ACM Press. (Cited on pages 9
and 14.)

[14] Christina Brzuska, Håkon Jacobsen, and Douglas Stebila. Safely exporting
keys from secure channels: On the security of EAP-TLS and TLS key
exporters. In Marc Fischlin and Jean-Sébastien Coron, editors, Advances
in Cryptology – EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes
in Computer Science, pages 670–698, Vienna, Austria, May 8–12, 2016.
Springer, Heidelberg, Germany. (Cited on page 37.)

[15] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-
based key-exchange protocol. In Moti Yung, editor, Advances in Cryptol-
ogy – CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science,
pages 143–161, Santa Barbara, CA, USA, August 18–22, 2002. Springer,

60

Heidelberg, Germany. http://eprint.iacr.org/2002/120/. (Cited on
page 12.)

[16] T. Charles Clancy and Katrin Hoeper. Making the case for EAP channel
bindings. In 2009 IEEE Sarnoff Symposium, Princeton, NJ, March 30-31
& April 1, pages 1–5. IEEEXplore, March 2009. https://doi.org/10.
1109/SARNOF.2009.4850319. (Cited on page 38.)

[17] Morris J. Dworkin. SP 800-38B. Recommendation for Block Cipher Modes
of Operation: The CMAC Mode for Authentication. Technical report,
National Institute of Standards & Technology, Gaithersburg, MD, United
States, October 2016. https://dx.doi.org/10.6028/NIST.SP.800-38B.
(Cited on page 45.)

[18] Victor Fajardo, Jari Arkko, John Loughney, and Glen Zorn. Diameter Base
Protocol. RFC 6733, IETF RFC Editor, October 2012. https://tools.
ietf.org/html/rfc6733. (Cited on pages 5, 6, and 37.)

[19] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi.
Key confirmation in key exchange: A formal treatment and implications
for TLS 1.3. In 2016 IEEE Symposium on Security and Privacy, pages
452–469, San Jose, CA, USA, May 22–26, 2016. IEEE Computer Society
Press. (Cited on pages 8 and 19.)

[20] Wesley George and Charles Rackoff. Rethinking definitions of security for
session key agreement. Cryptology ePrint Archive, Report 2013/139, 2013.
http://eprint.iacr.org/2013/139. (Cited on page 17.)

[21] Sam Hartman, T. Charles Clancy, and Katrin Hoeper. Channel-Binding
Support for Extensible Authentication Protocol (EAP) Methods. RFC
6677, RFC Editor, July 2012. https://tools.ietf.org/html/rfc6677.
(Cited on pages 6, 6, 6, and 38.)

[22] Changhua He, Mukund Sundararajan, Anupam Datta, Ante Derek, and
John C. Mitchell. A modular correctness proof of IEEE 802.11i and TLS.
In Vijayalakshmi Atluri, Catherine Meadows, and Ari Juels, editors, ACM
CCS 05: 12th Conference on Computer and Communications Security,
pages 2–15, Alexandria, Virginia, USA, November 7–11, 2005. ACM Press.
(Cited on page 7.)

[23] Katrin Hoeper and Lidong Chen. Where EAP security claims fail. In
Victor Leung and Sastri Kota, editors, 4th International ICST Conference
on Heterogeneous Networking for Quality, Reliability, Security and Robust-
ness, QSHINE 2007, Vancouver, Canada, August 14-17, 2007, page 46.
ACM, 2007. (Cited on pages 3 and 38.)

[24] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the
security of TLS-DHE in the standard model. In Reihaneh Safavi-Naini and
Ran Canetti, editors, Advances in Cryptology – CRYPTO 2012, volume

61

http://eprint.iacr.org/2002/120/
https://doi.org/10.1109/SARNOF.2009.4850319
https://doi.org/10.1109/SARNOF.2009.4850319
https://dx.doi.org/10.6028/NIST.SP.800-38B
https://tools.ietf.org/html/rfc6733
https://tools.ietf.org/html/rfc6733
http://eprint.iacr.org/2013/139
https://tools.ietf.org/html/rfc6677

7417 of Lecture Notes in Computer Science, pages 273–293, Santa Barbara,
CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany. (Cited on
pages 17, 19, and 37.)

[25] Kazukuni Kobara, SeongHan Shin, and Mario Strefler. Partnership in key
exchange protocols. In Wanqing Li, Willy Susilo, Udaya Kiran Tupakula,
Reihaneh Safavi-Naini, and Vijay Varadharajan, editors, ASIACCS 09: 4th
ACM Symposium on Information, Computer and Communications Secu-
rity, pages 161–170, Sydney, Australia, March 10–12, 2009. ACM Press.
(Cited on page 9.)

[26] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DH
and TLS-RSA in the standard model. Cryptology ePrint Archive, Report
2013/367, 2013. http://eprint.iacr.org/2013/367. (Cited on pages 19
and 37.)

[27] Hugo Krawczyk. SIGMA: The “SIGn-and-MAc” approach to authenticated
Diffie-Hellman and its use in the IKE protocols. In Dan Boneh, editor,
Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture Notes in
Computer Science, pages 400–425, Santa Barbara, CA, USA, August 17–21,
2003. Springer, Heidelberg, Germany. (Cited on page 19.)

[28] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman pro-
tocol. In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005,
volume 3621 of Lecture Notes in Computer Science, pages 546–566, Santa
Barbara, CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany.
(Cited on page 8.)

[29] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing
for Message Authentication. RFC 2104 (Informational), February 1997.
Available at http://www.ietf.org/rfc/rfc2104.txt. (Cited on page 45.)

[30] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security
of the TLS protocol: A systematic analysis. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, Part I, volume
8042 of Lecture Notes in Computer Science, pages 429–448, Santa Barbara,
CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. (Cited on
pages 19 and 37.)

[31] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security
of the TLS protocol: A systematic analysis. Cryptology ePrint Archive,
Report 2013/339, 2013. http://eprint.iacr.org/2013/339. (Cited on
page 23.)

[32] Ralf Küsters and Max Tuengerthal. Composition theorems without pre-
established session identifiers. In Yan Chen, George Danezis, and Vi-
taly Shmatikov, editors, ACM CCS 11: 18th Conference on Computer
and Communications Security, pages 41–50, Chicago, Illinois, USA, Oc-
tober 17–21, 2011. ACM Press. (Cited on page 7.)

62

http://eprint.iacr.org/2013/367
http://www.ietf.org/rfc/rfc2104.txt
http://eprint.iacr.org/2013/339

[33] Ralf Küsters and Max Tuengerthal. Ideal key derivation and encryption in
simulation-based security. In Aggelos Kiayias, editor, Topics in Cryptol-
ogy – CT-RSA 2011, volume 6558 of Lecture Notes in Computer Science,
pages 161–179, San Francisco, CA, USA, February 14–18, 2011. Springer,
Heidelberg, Germany. (Cited on page 7.)

[34] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of
authenticated key exchange. Cryptology ePrint Archive, Report 2006/073,
2006. http://eprint.iacr.org/2006/073. (Cited on pages 7, 14, and 15.)

[35] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger secu-
rity of authenticated key exchange. In Willy Susilo, Joseph K. Liu, and
Yi Mu, editors, ProvSec 2007: 1st International Conference on Provable
Security, volume 4784 of Lecture Notes in Computer Science, pages 1–16,
Wollongong, Australia, November 1–2, 2007. Springer, Heidelberg, Ger-
many. (Cited on page 14.)

[36] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and Jörg Schwenk. On
the security of the pre-shared key ciphersuites of TLS. In Hugo Krawczyk,
editor, PKC 2014: 17th International Conference on Theory and Prac-
tice of Public Key Cryptography, volume 8383 of Lecture Notes in Com-
puter Science, pages 669–684, Buenos Aires, Argentina, March 26–28, 2014.
Springer, Heidelberg, Germany. (Cited on page 37.)

[37] Junghyun Nam, Kim-Kwang Raymond Choo, Juryon Paik, and Dongho
Won. Two-round password-only authenticated key exchange in the three-
party setting. Cryptology ePrint Archive, Report 2014/017, 2014. http:
//eprint.iacr.org/2014/017. (Cited on page 3.)

[38] Yoshihiro Ohba, Mohan Parthasarathy, and Mayumi Yanagiya. Chan-
nel Binding Mechanism based on Parameter Binding in Key Deriva-
tion. RFC (Informational), IETF RFC Editor, December 2006. https:
//tools.ietf.org/html/draft-ohba-eap-channel-binding-02. (Cited
on pages 6, 37, and 38.)

[39] Carl Rigney, Allan Rubens, William Allen Simpson, and Steve Willens.
Remote Authentication Dial In User Service (RADIUS). RFC 2865, IETF
RFC Editor, June 2000. https://tools.ietf.org/html/rfc2865. (Cited
on page 5.)

[40] Phillip Rogaway. On the of role of definitions in and beyond cryptography.
In ASIAN, volume 3321 of Lecture Notes in Computer Science, pages 13–32.
Springer, 2004. (Cited on pages 9 and 19.)

[41] Jörg Schwenk. Nonce-based kerberos is a secure delegated AKE protocol.
Cryptology ePrint Archive, Report 2016/219, 2016. http://eprint.iacr.
org/2016/219. (Cited on pages 3 and 3.)

63

http://eprint.iacr.org/2006/073
http://eprint.iacr.org/2014/017
http://eprint.iacr.org/2014/017
https://tools.ietf.org/html/draft-ohba-eap-channel-binding-02
https://tools.ietf.org/html/draft-ohba-eap-channel-binding-02
https://tools.ietf.org/html/rfc2865
http://eprint.iacr.org/2016/219
http://eprint.iacr.org/2016/219

[42] Victor Shoup. Sequences of games: a tool for taming complexity in se-
curity proofs. Cryptology ePrint Archive, Report 2004/332, 2004. http:
//eprint.iacr.org/2004/332. (Cited on pages 23, 27, and 32.)

[43] Victor Shoup and Aviel D. Rubin. Session key distribution using smart
cards. In Ueli M. Maurer, editor, Advances in Cryptology – EURO-
CRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages 321–
331, Saragossa, Spain, May 12–16, 1996. Springer, Heidelberg, Germany.
(Cited on page 13.)

[44] Dan Simon, Bernhard Aboba, and Ryan Hurst. The EAP-TLS Authenti-
cation Protocol. RFC 5216 (Proposed Standard), March 2008. Available
at http://tools.ietf.org/html/rfc5216. (Cited on page 4.)

[45] Stefan Winter, Mike McCauley, Stig Venaas, and Klaas Wierenga. Trans-
port Layer Security (TLS) encryption for RADIUS. RFC 6614 (Experi-
mental), IETF RFC Editor, May 2012. https://tools.ietf.org/html/
rfc6614. (Cited on pages 6 and 37.)

64

http://eprint.iacr.org/2004/332
http://eprint.iacr.org/2004/332
http://tools.ietf.org/html/rfc5216
https://tools.ietf.org/html/rfc6614
https://tools.ietf.org/html/rfc6614

	A Modular Security Analysis of EAP and IEEE 802.11
	1 Introduction
	Review of EAP and IEEE 802.11.
	On the difficulty of modeling EAP.
	Our contributions.
	Technical overview of our results.

	2 Formal models
	2.1 Notation
	2.2 A unified execution model
	Protocol participants.
	Syntax.
	Protocol correctness.
	A unified security experiment.
	Transcripts and partner functions.
	Partnering soundness.

	2.3 2P-AKE and 3P-AKE
	Syntax.
	AKE security.
	AKE with forward secrecy: the AKE and AKEw models.
	AKE without forward secrecy: the AKE-static model.
	Security definitions.

	2.4 ACCE
	Syntax.

	2.5 Explicit entity authentication

	4.3 EAP without channel binding
	5 Security of IEEE 802.11
	5.1 Description of the IEEE 802.11 protocol
	5.2 Analyzing the 4-Way-Handshake
	AKE-static-security.

	A Additional definitions
	A.1 Pseudorandom functions
	A.2 Message Authentication Codes

	B Proof of Lemma 7
	Game 0:
	Game 1:

	References

