
Introduction

f : Rn → R
derivative?

partial derivative
directional derivative
total derivative

Why needed?

optimization:
max/min
linear approximation
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Lecture 3: Partial derivatives and
differentiability
Learning goals:

1 What are partial derivatives?

2 What is tangent plane and normal for a graph?

3 How to find the tangent plane and the normal by partial derivatives?

4 What are higher order partial derivatives?

5 How is differentiability defined in multivariable calculus?

6 What is the Jacobian matrix?

Where to find the material?
Corral 2.2, 2.3
Guichard et friends 14.3, 14.6 (does not contain tangent planes)
Active Calculus 10.2, 10.3 and 10.4
Adams-Essex 13.3, 13.4, partially 13.6
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http://www.mecmath.net/VectorCalculus.pdf
https://www.whitman.edu/mathematics/calculus_online/chapter14.html


Partial derivatives

are the simplest derivatives that we have in multivariable calculus

they mimic the one variable case by keeping all except one variable
fixed
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Partial derivatives, intro example

Let’s consider
f (x , y) = x2y + cos(x)

idea of partial derivative was
keep all except one variable fixed

If we keep y fixed, let’s say it is 1, then we have just a normal single
variable function x 7→ x2 · 1 + cos(x), whose derivative we can calculate.
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Partial derivatives

Let D ⊂ Rn, n ≥ 2 and f : D → R be a function.

Partial Derivative

For all j = 1, . . . , n, the partial derivative of the function f at the point
x = (x1, x2, . . . , xn) ∈ D with respect to the variable xj is

lim
h→0

f (x1, x2, . . . , xj + h, . . . , xn)− f (x1, x2, . . . , xj , . . . , xn)

h

= lim
h→0

f (x+ hej)− f (x)

h

if this limit exists.
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Notations for partial derivatives

The partial derivative of the function f : D ⊂ Rn → R at point x with
respect to the variable xj is denoted usually by

∂

∂xj
f (x1, . . . , xn) = ∂xj f (x1, . . . , xn)

= ∂j f (x1, . . . , xn) = Dj f (x1, . . . , xn) = fxj (x1, . . . , xn).

In the case n = 2, we often write z = f (x , y), which allows us to use
the notation z = f (x , y).

∂x f (x , y) = ∂1f (x , y) =
∂z

∂x
, ∂y f (x , y) = ∂2f (x , y) =

∂z

∂y
.
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Example 1

Let the function f : R2 → R

f (x , y) = x2 sin y .

What are the partial derivatives of this (at the point (x,y))?

Its partial derivatives are:

∂x f (x , y) = 2x sin y

and
∂y f (x , y) = x2 cos y .
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Example 2

What are
∂z

∂x
and

∂z

∂y
,

when z = x3y2 + x4y + y4?

We get
∂z

∂x
= 3x2y2 + 4x3y

and
∂z

∂y
= 2x3y + x4 + 4y3.
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Example 3
What is ∂1f (0, π) when f (x , y) = exy cos(x + y)?

Let’s first calculate

∂1f (x , y) = yexy cos(x + y)− exy sin(x + y).

Thus
∂1f (0, π) = πe0 cos(π)− e0 sin(π) = −π.

Sometimes the value of the partial derivative at the point x0 is denoted by(
∂f

∂xj

) ∣∣∣∣
x0

In above example we could use notation

∂1f (0, π) =

(
∂f

∂x1

) ∣∣∣∣
(0,π)
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Tangents for a surface

In a single variable case, the derivative can be used to find the
tangent to the graph of the function at a given point.

Let D ⊂ R2, f : D → R and (a, b) ∈ D.

For a surface z = f (x , y), we get two tangent vectors at the point
(a, b):

Consider first the curve r1(t) = (t, b, f (t, b)) i.e. we are letting only
x-coordinate to move.
Derivative of this curve is r′1(t) = (1, 0, ∂1f (t, b)) and
its value when t = a gives the first tangent vector:

T1 = i+ ∂1f (a, b)k

Similarly, for the other consider the curve r2(t) = (a, t, f (a, t)) and
obtain

T2 = j+ ∂2f (a, b)k.
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Normal for a surface

A normal vector n = n(a, b) is perpendicular to both tangent vectors.
Therefore, it is obtained as the cross product:

n = T1 × T2 =

∣∣∣∣∣∣
i j k
1 0 ∂1f (a, b)
0 1 ∂2f (a, b)

∣∣∣∣∣∣
= −∂1f (a, b)i− ∂2f (a, b)j+ k.

We could have also calculated T2 × T1 and obtained a normal vector
pointing in the opposite direction.
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Tangent Plane

There is two usual ways to get the equation for the tangent plane: 1)
using the tangent vectors or 2) using a normal vector

Let’s calculate the tangent plane for a surface z = f (x , y) at point
(a, b) using both ways.

For this denote by P = (a, b, f (a, b)).
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Tangent plane using tangent vectors

The tangent plane for a surface z = f (x , y) at point (a, b):

A general point (x , y , z) of a tangent plane has to be form
P + λ1T1 + λ2T2 for some λ1 and 2

Solving λ1 and 2 from equation

(x , y , z) = (a, b, f (a, b)) + λ1T1 + λ2T2

we obtain z = f (a, b) + ∂1f (a, b)(x − a) + ∂2f (a, b)(y − b)

which is the equation for a tangent plane.
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Tangent plane using a normal vector

The tangent plane for a surface z = f (x , y) at point (a, b):

The tangent plane is always perpendicular to a normal vector.

Thus a vector from the point P to a general point (x , y , z) of the
tangent plane is perpendicular to the normal vector

So
((x , y , z)− P) · n = 0

Solving z from this yields

z = f (a, b) + ∂1f (a, b)(x − a) + ∂2f (a, b)(y − b)

i.e. the equation for the tangent plane.
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Example of calculating the normal vector and tangent
plane

Find the tangent plane and a normal for a surface z = sin(xy) at the
point (π/3,−1).
Let’s first compute the partial derivatives:

∂z

∂x
= y cos(xy) and

∂z

∂y
= x cos(xy).

At the point (π/3,−1) we get

∂z

∂x

∣∣∣∣
(π/3,−1)

= −1

2
and

∂z

∂y

∣∣∣∣
(π/3,−1)

=
π

6
.

Thus, on the surface in question, at the point (π/3,−1), there is a
normal vector

n = −(1/2)i+ (π/6)j− k.

The tangent plane at the point (π/3,−1) is

z =
−
√
3

2
− 1

2

(
x − π

3

)
+

π

6
(y + 1).
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Higher order partial derivatives

For the function f : Rn → R, we can define higher order partial derivatives.

If z = f (x , y), then, for example

∂2z

∂x2
=

∂

∂x

∂z

∂x
= fxx(x , y)

and
∂2z

∂x∂y
=

∂

∂x

∂z

∂y
= fyx(x , y).

Similarly, if w = f (x , y , z), we get, for example

∂5w

∂y∂x∂y2∂z
=

∂

∂y

∂

∂x

∂

∂y

∂

∂y

∂f

∂z
(x , y , z).
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Example of higher order partial derivatives

Compute all the second order partial derivatives of the function
f (x , y) = x3y4.

First order partial derivatives

fx(x , y) = 3x2y4 fy (x , y) = 4x3y3.

Thus

fxx(x , y) =
∂

∂x
3x2y4 = 6xy4, fyx(x , y) =

∂

∂x
4x3y3 = 12x2y3,

fxy (x , y) =
∂

∂y
3x2y4 = 12x2y3, fyy (x , y) =

∂

∂y
4x3y3 = 12x3y2.
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In above example
fxy (x , y) = fyx(x , y)

This is true in general for nice functions:

Schwarz’s Theorem

When the second order partial derivatives are continuous, the order of the
derivation can be changed.

A proof of this can be found, for example, in a Youtube video here.
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https://www.youtube.com/watch?v=HYNtT_mLIjQ&list=PLBh2i93oe2qv4G2AyarkbR3OKBml0hXEg&index=13


Summary of basic tools so far (before going into ”total
derivative”)

1 f : R → R
is a real-valued function of one variable
limits, continuity, derivative (Calculus 1)

2 f : R → Rn

single-variable vector-valued function
by looking coordinate functions returns to the case 1

3 f : Rn → R
a real-valued function of several variables
limits and continuity (previous lecture)
partial derivatives (”only one direction at a time”, so back to the case
1)
”total derivative”

4 f : Rn → Rm

a vector-valued function of several variables
by looking coordinate functions returns to the case 3 for limits,
continuity and partial derivatives
”total derivative”
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Review: definition of a derivative in a one-variable situation

f : R → R f is differentiable at the point x0 ∈ R (i.e. it has a derivative at
that point)

1 if the limit value

lim
h→0

f (x0 + h)− f (x0)

h
=: f ′(x0)

exists

OR EQUIVALENTLY

2 if there exists a ∈ R and a function ϕ : R → R such that

f (x0 + h) = f (x0) + ah + ϕ(h) for all h ∈ R and

limh→0
ϕ(h)
h = 0

The latter: linear approximation
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Differentiable multivariable function

Definition

f : Rn → Rm is differentiable at the point x0 ∈ Rn if there exits a linear
mapping T : Rn → Rm and a function ϕ : Rn → Rm such that

f (x0 + h) = f (x0) + T (h) + ϕ(h) on all h ∈ Rn and

limh→0
ϕ(h)
∥h∥ = 0

In other words, the function can be approximated near the point x0 by an
affine linear mapping
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Matrix presentation for a ”total derivative”

Matrix Algebra: A linear map can be presented by a matrix

If the function f is differentiable at the point x0, then a matrix
presentation of the linear mapping in the definition is obtained by
partial derivatives:

∂f1
∂x1

(x0)
∂f1
∂x2

(x0) · · · ∂f1
∂xn

(x0)
∂f2
∂x1

(x0)
∂f2
∂x2

(x0) · · · ∂f2
∂xn

(x0)
...

. . .
...

∂fm
∂x1

(x0)
∂fm
∂x2

(x0) · · · ∂fm
∂xn

(x0)



This matrix is called the Jacobian matrix of the function and is
denoted by Df (x0).
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