Statistical language model (SLM)

- Content today:
 - 1. Basic SLM methods (n-grams)
 - 1. Maximum likelihood estimation
 - 2. Smoothing methods
 - 3. Class-based methods
 - 2. Advanced SLM methods
 - 1.Maximum entropy methods
 - 2. Continuous vector space methods
 - 3.Introduction to Neural LMs

Goals of today

- 1.Learn how to model language by statistical methods
- 2. Learn basic idea of neural language modeling
- 3. Know some typical SLM methods and applications

About scores, points and grades in 2023

- Max score in home exercises was 161 => 50p
- Max score in lecture activity was 25 => 10p
- Exam points could substitute max 20p of missed points
- In 2023 the points corresponded to non-rounded grades like this:
 - 60p gave 5.6
 - ² 53p gave 4.6
 - ² 46p gave 3.6
 - 38p gave 2.5
 - 31p gave 1.5
 - 24p gave 0.6
 - 20p or less gave 0
- The final grade is the average of this (60%) and the project (40%) grade

Statistical Language Model

- Model of a natural language that predicts the probability distribution of words and sentences in a text
- Often used to determine which is the most probable word or sentence in given conditions or context
- Estimated by counting word frequencies and dependencies in large text corpora
- Has to deal with: big data, noisy data, sparse data, computational efficiency

Some historical landmarks of SLMs

- Markov chains (Markov, 1913)
- N-grams (Shannon, 1948)
- Predicting unseen events (Good, 1953)
- Landmarks at Aalto University (Helsinki Univ. of Technology)
 - Dynamically expanding context (Kohonen, 1986)
 - Self-organizing semantic maps (Ritter and Kohonen, 1989)
 - WEBSOM for organizing text collections (Kohonen, 1996)
 - Morfessor for unsupervised analysis of words (Lagus. 2002)
 - Varigram LM for sequencies of words (Siivola, 2005)
 - Unlimited vocabulary LMs for speech recognition (Hirsimäki, 2006)
 - Class n-gram models for very large vocabulary speech recognition of Finnish and Estonian (Varjokallio, 2016)

Mikko Kurimo / Statistical Natural Language Processing 2024 5/58 An Extensible Toolkit for Neural Network LMs (Enarvi, 2016)

A simple statistical language model

- Limited domain models, constructed by hand
- Transition probabilities can be estimated statistically
- Only a very limited set of sentences are recognized

N-gram language model

- Stochastic model of the relations between words
 - Which words often occur close to each other?
- The model predicts the probability distribution of the next word given the previous ones
- A conditional probability of word given its context
- Estimated from a large text corpus (count the contexts!)
- Smoothing and pruning required to learn compact longspan models from sparse training data

N-gram models

- E.g. trigram = 3-gram:
- Word occurrence depends only on its immediate short context
- A conditional probability of word given its context
- Estimated from a large text corpus (count the contexts!)

```
the united states of ???
P(states | the united)
→ P(of | united states)
→ P(America | states of) = . . .
 P(Belgium | states of) = ...
```

Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(\text{"eggplant"})}$$

- Bigram example:
 - Start from a maximum likelihood estimate
 - probability of *P("stew"* | "eggplant") is computed from **counts** of "eggplant stew" and "eggplant"

	1	want	to	eat	Chinese	food	lunch
1	8	1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	17 Ini gram	0 counto	0	0	0
lunch	4	0	o graffi	Courts	0	1	0

Data from Berkeley restaurant corpus (Jurafsky & Martin, "Speech and language processing").

Calculate missing bi-gram probabilities

	1	want	to	eat	Chinese	food	lunch
1	.0023		0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	X
to	.00092	0	.0031	.26		0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.056	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

1	3437
want	1215
to	3256
eat	938
Chinese	213
food	1506
lunch	459

	1	want	to	eat	Chinese	food	lunch
1	8	_/ 1087	0	13	0	0	0
want	3 /	0	786	0	6	8	6
to	3	0	10	860	3	0	12
eat	0	0	2	0	19	2	52
Chinese	2/	0	0	0	0	120	1
food	19	0	Jn¹¹ ⁷ gram	2ounts	0	0	0
lunch /	4	0	0	0	0	1	0

Data from Berkeley restaurant corpus (Jurafsky & Martin, "Speech and language processing").

1087 / 3437=.32

Calculate missing bi-gram probabilities

	1	want	to	eat	Chinese	food	lunch
1	.0023		0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	X
to	.00092	0	.0031	.26		0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.056	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

+	3437
want	1215
to	3256
eat	938
Chinese	213
food	1506
lunch	459

	1	want	to	eat	Chinese	food	lunch
1	8	_/ 1087	0	13	0	0	0
want	3	0	786	0	6	8	6
to	3	0	10	860	3 \	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0 U	n1 ⁷ gram	Counts	0	0	0
lunch /	4	0	0	0	0	1	0

3 / 3256 = .00092

Data from Berkeley restaurant corpus (Jurafsky & Martin, "Speech and language processing").

1087 / 3437=.32

Calculate missing bi-gram probabilities

	1	want	to	eat	Chinese	food	lunch
1	.0023	.32↓	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	X
to	.00092	0	.0031	.26		0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.056	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

want 1215
to 3256
eat 938
Chinese 213
food 1506
lunch 459

	1	want	to	eat	Chinese	food	lunch
1	8	_/ 1087	0	13	0	0	0
want	3	0	786	0	6	8	6 \
to	3	0	10	860	3 \	0	12
eat	0	0	2	0	19	2	52
Chinese	2	0	0	0	0	120	1
food	19	0	Jr1 ¹⁷ gram	Counts	0	0	0
lunch /	4	0	0	0	0	1	0

3 / 3256 = .00092

Data from Berkeley restaurant corpus (Jurafsky & Martin, "Speech and language processing").

1087 / 3437=.32

Calculate missing bi-gram probabilities

	1	want	to	eat	Chinese	food	lunch
1	.0023	.32√	0	.0038	0	0 /	0
want	.0025	0	.65	0	.0049	0066	.0049 🔨
to	.00092	0	.0031	.26	.00092 V	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.056	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

 I
 3437

 want
 1215

 to
 3256

 eat
 938

 Chinese
 213

 food
 1506

 lunch
 459

6 / 1215 = .0049

Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(\text{"eggplant"})}$$

- Bigram example:
 - Start from a maximum likelihood estimate
 - probability of *P("stew" | "eggplant")* is computed from **counts** of *"eggplant stew"* and *"eggplant"*
 - works well for frequent bigrams
 - why not for rare bigrams?

P("want"|"I") = 1087 / 3437 = 0.32

P("Chinese"|"to") = 3 / 3256 = 0.00092

Where do we need SLMs?

 List tasks where you need the probability or to find the most probable word or sentence given some background information!

Some applications of SLMs

- 1. Spelling correction, text input
- 2. Optical character recognition, e.g. scanning old books
- 3. Automatic speech recognition
- 4. Statistical machine translation
- 5.Text-to-speech
- 6. Automatic question answering
- 7. Chatbots

Data sparsity

- Words and many other linguistic units follow a power-law distribution:
 - Zipf's law: kth frequent word occurs ∝ 1/k
 - "Long tail": few frequent words, lots of very rare words
- E.g. within the first 1.5 million words 23% subsequent trigrams were previously unseen (IBM laser patent text corpus)
- Maximum likelihood estimate overestimates frequencies of ngram that occurred rarely, and underestimates those that did not occur at all. (why?)
- One needs a systematic approach to assign some non-zero probability to unseen words and sequences. This is called smoothing.

Zero probability problem

- If an N-gram is not seen in the corpus, it will get probability = 0
- The higher N, the sparser data, and the more zero counts there will be
- 20K words => 400M 2-grams => 8000G 3-grams, so even the largest corpora have MANY zero counts!
- Solutions:
- Equivalence classes: Cluster several similar n-grams together to reach higher counts
- Smoothing: Redistribute some probability mass from seen Ngrams to unseen ones

Equivalence classes

- Divide features (e.g. words) into equivalence classes a.k.a.
 bins
- Assume equal statistical properties within a bin
- Estimate a SLM for the bin as a whole
- The more bins, the more data is needed for model estimation
- The fewer bins, the lower prediction accuracy, because the model becomes too general

Ways to form classes

- Transforming inflected word forms into the baseform: 'saunan', 'saunalle', 'saunojemme', etc. → 'sauna'
- Grouping by part-of-speech tags (the same syntactic role: noun, verb, etc)
- Grouping by semantics (a similar meaning)
- Important is that the words in a bin should really behave similarly! E.g. february, may, august

- using equivalence classes only for previous words (Virpioja and Kurimo, 2006):
- $p(wi \mid wi-2, wi-1) = p(wi \mid t(wi-2, wi-1))$
- using class-based n-gram models:
- $p(wi \mid wi-2, wi-1) = p(t(wi) \mid t(wi-2, wi-1))$
- $\times p(wi \mid t(wi), \ldots)$

Combining estimators

- So far, the probability was estimated for all n-grams of a particular length
- How about improving the estimate using shorter sequences that are more frequent?
- The motivation is further smoothing of the estimates by combining different information sources.
- The additional models could also be other n-grams trained on different data, e.g. background models vs topical models
- determine bin-specific interpolation weights for model combination (Broman and Kurimo, 2005)

Backing-off

- In principle: Look for the most specific model that gives sufficient information from the current context
- In practice: Back off from using (too) long contexts to shorter ones that have more samples in the corpus.

Some smoothing methods

- **1. Add-one**: Add 1 to each count and normalize => gives too much probability to unseen N-grams
- 2. (Absolute) discounting: Subtract a constant from all counts and redistribute this to unseen ones using N-1 gram probs and back-off (normalization) weights
- 3. Witten-Bell smoothing: Use the count of things seen once to help to estimate the count of unseen things
- **4. Good Turing smoothing**: Estimate the rare n-grams based on counts of more frequent counts
- 5. Best: **Kneser-Ney smoothing**: Instead of the number of occurrences, weigh the back-offs by the number of contexts the word appears in
- 6. Instead of only back-off cases, interpolate all N-gram counts with N-1 counts 24/58

Add-1 smoothing

$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Probability p = c / N:

$$p_i^* = \frac{c_i + 1}{N + V}$$

Ci*: new count

Ci: original count

N: Num of tokens

V: Total vocab size

	I	want	to	eat	Chinese	food	lunch
I	9	1088	1	14	1	1	1
want	4	1	787	1	7	9	7
to	4	1	11	861	4	1	13
eat	1	1	3	1	20	3	53
Chinese	3	1	1	1	1	121	2
food	20	1	18	1	1	1	1
lunch	5	1	1	1	1	2	1

Figure 6.6 Add-one Smoothed Bigram counts for 7 of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of ~10,000 sentences.

$$c_i^* = (c_i + 1) \frac{N}{N + V}$$

Probability p = c / N:

$$p_i^* = \frac{c_i + 1}{N + V}$$

N: Num of tokens

T: Num of types (seen)

Z: Num of types (unseer

V: Total vocab size

$$c_i^* = \begin{cases} \frac{T}{Z} \frac{N}{N+T}, & \text{if } c_i = 0\\ c_i \frac{N}{N+T}, & \text{if } c_i > 0 \end{cases}$$

	I	want	to	eat	Chinese	food	lunch
I	9	1088	1	14	1	1	1
want	4	1	787	1	7	9	7
to	4	1	11	861	4	1	13
eat	1	1	3	1	20	3	53
Chinese	3	1	1	1	1	121	2
food	20	1	18	1	1	1	1
lunch	5	1	1	1	1	2	1

Figure 6.6 Add-one Smoothed Bigram counts for 7 of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of ~10,000 sentences.

	I	want	to	eat	Chinese	food	lunch
h)	8	1060	.062	13	.062	.062	.062
want	3	.046	740	.046	6	8	6
to	3	.085	10	827	3	.085	12
eat	.075	.075	2	.075	17	2	46
Chinese	2	.012	.012	.012	.012	109	1
food	18	.059	16	.059	.059	.059	.059
lunch	4	.026	.026	.026	.026	1	.026

Figure 6.9 Witten-Bell smoothed bigram counts for 7 of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of ~10,000 sentences.

Good-Turing smoothing

- How to compute the probability of an unseen event, e.g. an out-of-vocabulary word?
- Idea invented by Alan Turing during World War 2 when he was working to break German cipher
- Published later by his student (Good, 1953)
- Set: N = Num of words
 - N₁ = Num of words that occur only once
 - N_c = Num of words that occur c-times (freq. of freq.)
- Estimate prob of unseen things = N₁/N
- Estimate count of things seen once = 2*N₂/N₁
- Smoothed count c* for all c: $c^* = (c+1) \frac{N_{c+1}}{N_c}$ Mikko Kurimo / Statistical Natural Language Processing 20

Exercise 2: Good-Turing smoothing

- Watch a video where Prof. Jurafsky (Stanford) explains Good-Turing smoothing (between 02:00 – 08:45)
 - Click: http://www.youtube.com/watch?v=GwP8gKa-ij8
 - Or search:"Good Turing video Jurafsky"
- Work in groups and submit answers for these 3 questions in MyCourses > Lectures > Lecture 2 exercise return box:
- 1. Estimate the prob. of catching next any new fish species, if you already got: 5 perch, 2 pike, 1 trout, 1 zander and 1 salmon?
- 2. Estimate the prob. of catching next a salmon?
- 3. What may cause practical problems when applying Good-Turing smoothing for rare words in large text corpora?

Hints for solving the exercise

- 1.Estimate the prob of unseen things using the prob of things seen only once N₁/N
- 2. The counts must be smoothed. The new count for things seen once is (c+1)*N₂/N₁
- 3.What if $N_c = 0$ for some c?

Estimation of N-gram model

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)} \qquad \frac{c(\text{"eggplant stew"})}{c(\text{"eggplant"})}$$

- Bigram example:
 - Start from a maximum likelihood estimate
 - probability of *P("stew" | "eggplant")* is computed from **counts** of *"eggplant stew"* and *"eggplant"*
 - works well for frequent bigrams

Backing off

$$P(w_i \mid w_j) = \frac{c(w_j, w_i)}{c(w_j)}$$
 if $c(w_j, w_i) > c$
= $P(w_i)b_{w_j}$ otherwise

- Divide the room of rare bigrams, e.g. "eggplant francisco", in proportion to the unigram P("francisco")
- The sum of all these rare bigrams "eggplant [word j]" is b("eggplant") which is called the back-off weight

Absolute discounting and backing off

$$P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)} \quad \text{if } c(w_j, w_i) > c$$
$$= P(w_i)b_{w_i} \quad \text{otherwise}$$

- If bigram is common: Subtract constant D from the count
- If not: Back off to the unigram probability normalized by the back-off weight
- Similarly back off all rare N-grams to N-1 grams

Kneser-Ney smoothing

$$P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)} \quad \text{if } c(w_j, w_i) > c$$
$$= \mathbf{V}(w_i) b_{w_j} \quad \text{otherwise}$$

- Instead of the number of occurrences, weigh the back-offs by the number of contexts V(word) the word appears in:
 - In this case the context is the previous word, thus, how many different previous words the corpus has for that word
 - E.g. *P(Stew | EggPlant)* is high, because stew occurs in many contexts
- But *P(Francisco | EggPlant)* is low, because Francisco is Mikko Kooman francisco | EggPlant) is low, because Francisco is Picture by B.Pellom 33/58

Smoothing by interpolation

$$P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)}$$
+
$$P(w_i)b_{w_j}$$

- Like backing off, but always compute the probability as a linear combination (weighted average) with lower order (N-1)gram probabilities
- Improves the probabilities of rare N-grams
- Discounts (D) (and interpolation weights) can be separately optimized for each N using a held-out data

N-gram example

eggplant X) X = stew sue san francisco	1G freq 10 20 40 30	1G prob 0.1 0.2 0.4 0.3	2G freq 0 0 0 0	2G prob 0 0 0		
SUM	100	1	0 10/100	0		
$P(w_i)$	$ w_j) =$	$c(w_j, c)$	(w_i)	_		

Absolute discounting

	D=0.50							
eggplant X)	1G freq	1G prob	2G freq	2G prob	discount			
X = stew	10	0.1	0	0				
sue	20	0.2	0	0				
san	40	0.4	0	0				
francisco	30	0.3	0	0				
SUM	100	1	0	0	0.5			
P(w	; w _j) =	$=\frac{c(w_j,}{c}$	$\frac{w_i) - L}{(w_j)}$) - if <i>c</i>	(w_j, w_i)	> c		
					(C=	=0, D=0.5 sel	ected)	

Back-off

Back-off

		D=0.50						
eggplant X)	1G freq	1G prob	2G freq	2G prob	discount Ab	s back-off	normalize	
X = stew	10	0.1	0	0		0.1	0.05	
sue	20	0.2	0	0		0.2	0.1	
san	40	0.4	0	0		0.4	0.2	
francisco	30	0.3	0	0		0.3	0.15	
SUM	100	1	0	0	0.5		0.5	
$P(w_i \mid w_j) = \frac{c(w_j, w_i) - D}{c(w_j)}$ if $c(w_j, w_i) > c$								
$= P(w_i)b_{w_i} \qquad otherwise \qquad \qquad 0.1/1.0$								

Mikko Kurimo / Statistical Natural Language Processing 2024

38/58

Absolute discounting and back-off

(eggplant X)	1G freq	2G freq	Abs back-off	normalize	
X = stew	10	0	0.1	0	
sue	20	0	0.2	0	
san	40	0	0.4	0	
francisco	30	0	0.3	0	
SUM	100	0	1	0	
$P(w_i \mid$	$w_j) =$	$\frac{c(w_j, c_j)}{c_j}$	$\frac{(w_i)-L}{(w_j)}$) - if c(w _j	$(w_i) > c$
	=	$P(w_i)$	b_{w_j}	otherwise	(c=0, D=0.5 selected)

Mikko Kurimo / Statistical Natural Language Processing 2024

Kneser-Ney smoothing

(eggplant X)	1G freq	2G freq	Abs back-off	normalize	#contexts		
X = stew	10	0	0.1	0	10		
sue	20	0	0.2	0	5		
san	40	0	0.4	0	3		
francisco	30	0	0.3	0	1		
SUM	100	0	1	0	19		
$P(w_i \mid$	$w_j) =$	$\frac{c(w_j, c_j)}{c}$	$\frac{(w_i)-L}{(w_j)}$) - if c($w_j, w_i)$	> <i>c</i>	
$=\mathbf{V}(w_i)b_{w_j}$ otherwise (c=0, D=0.5 selected)							

Mikko Kurimo / Statistical Natural Language Processing 2024

40/58

Kneser-Ney smoothing

(eggplant X) X = stew sue san francisco	1G freq 10 20 40 30	2G freq 7	Abs back-off 0.1 0.2 0.4 0.3	normalize 0.05 0.1 0.2 0.15	#contexts 10 5 3 1	0.26 0.13 0.08 0.03	
\overline{SUM} $P(w_i)$	$ w_{j}) =$	$c(w_j,$	$w_i) - D$ (w_i)	0.5) - if c(v	v_j, w_i) 0.5 > <i>c</i>	
		$\mathbf{V}(w_i)$		otherwi	se (c:	=0, D=0.5 selo 10/	ected) 19*0.5

Mikko Kurimo / Statistical Natural Language Processing 2024

41/58

Weaknesses of N-grams

- Skips long-span dependencies:
 - "The girl that I met in the train was ..."
- Too dependent on word order:
 - "dog chased cat": "koira jahtasi kissaa" ~ "kissaa koira jahtasi"
- Dependencies directly between words, instead of latent variables, e.g. word categories

Some model variants

- Variable-length n-gram, aka. Varigram:
 - Span depends on particular context, optimized for the data, e.g. [Siivola, 2007]
 - Especially useful for short units (letters, morphemes)
- Class-based n-gram, e.g. [Brown, 1992]:
 - Cluster words into classes, find class sequences
 - Reduces sparsity, model size, and accuracy
- Bayesian n-gram:
 - **Computationally demanding**
 - Kneser-Ney smoothing approximates hierarchical Pitman-Yor process model [Goldwater, 2006; Teh, 2006]

Sources and further reading

- Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing. The MIT Press. (Chapter 6)
- Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing.
 Prentice Hall. 3rd online edition. (Chapters 3 and 7)
- Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech and Language, 13(4):359–393.
- Goodman, J. T. (2001). A bit of progress in language modeling extended version. Technical Report MSR-TR-2001-72, Microsoft Research.
- Virpioja, S. (2012). Learning Constructions of Natural Language: Statistical Models and Evaluations. Aalto University, Doctoral dissertations 158/2012. (Sections 4.1–4.3)
- Varjokallio, M. (2020). Improving very large vocabulary language modeling and decoding for speech recognition in morphologically rich languages.
 Mikalkorliniversity apostoral dissertations 208/2020. (Seqtion 4.1)

Other language modeling approaches

- Maximum-entropy LM (Rosenfeld, 2007)
 - Combines different knowledge sources into a single model
 - Good for adaptation (Alumäe and Kurimo, 2010)
- Continuous-space LM (a.k.a. Neural Network LM (NNLM))
 - Map words to continuous-valued vectors and models them using DNN (Bengio et al, 2003; Siivola and Honkela, 2003)
 - State-space models can use indefinitely long contexts, such as in Recurrent Neural Networks (Mikolov et al, 2010)
- Cache models and Topic models

Maximum entropy LMs

- Represents dependency information
- by a weighted sum of features f(x,h)
- $P(x|h) = \frac{e^{\sum_{i} \lambda_{i} f_{i}(x,h)}}{\sum_{x'} e^{\sum_{j} \lambda_{j} f_{j}(x',h)}}$
- Features can be e.g. n-gram counts
- Alleviates the data sparsity problem by smoothing the feature weights (lambda) towards zero
- The weights can be adapted in more flexible ways than n-grams
 - Adapting only those weights that significantly differ from a large background model (Alumäe and Kurimo, 2010)
- Normalization is computationally hard, but can be approximated effectively

Mapping words into continuous space

- Map words into a continuous vector space
- to learn a distributed representation known
- as word embedding
- The goal is to use a vector space that keeps
- similarly behaving words near each other
- Words can be clustered by context, e.g. n-gram probabilities
 - word2vec (Mikolov, 2013) is one widely used option
 - Other embeddings to reflect various contextual properties
- Set of words can be represented by a sum of the vectors
- N-gram can be represented by a sequence of vectors

Continuous space LMs

- Alleviates the data sparsity problem by representing words in a distributed way
- Various algorithms can be used to learn the most efficient and discriminative representations and classifiers
- The most popular family of algorithm is called (Deep) Neural Networks (NN)
 - can learn very complex functions by combining simple computation units in a hierarchy of non-linear layers
 - Fast in action, but training takes a lot of time and labeled training data
- Can be seen as a non-linear multilayer generalization of the maximum entropy model

A simple bigram NN LM

- Outputs the probability of next word y(t) given the previous word x(t)
- Input layer maps the previous word as a vector x(t)
- **Hidden layer** has a linear transform h(t) = Ax(t) + b to compute a representation of *linear distributional features*

• Output layer maps the values by y(t) = softmax (h(t)) to range (0,1) that add up to 1

Resembles a bigram Maximum entropy LM

Softmax:

$$\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$
 for $j = 1, ..., K$.

A non-linear bigram NN LM

- The only difference to the simple NN LM is that the hidden layer h(t) now includes a non-linear function h(t) = U(Ax(t) + b)
- Can learn more complex feature representations

• Common examples of non-linear functions U:

$$U(t) = tanh(t)$$

Sigmoid

$$\bigcup (t) = \frac{1}{1 + e^{-t}}$$

Common NN LM extensions

- Input layer is expanded over several previous words x(t-1), x(t-2), .. to learn richer representations
- Deep neural networks have several hidden layers h1, h2, ... to learn to represent information at several hierarchical levels
- Can be scaled to a very large vocabulary by training also a class-based output layer c(t)

NN LM training

 Supervised training minimizes the output errors by training the weights for V by stochastic gradient descend

 Propagate the output error to hidden layer to train the weights for U

 In practice, a deep NN will require more complex training procedures, since the gradients vanish quickly

Recurrent Neural Network (RNN) LM

- Looks like a bigram NNLM
- But, takes an additional input from the hidden layer of the previous time step
- Hidden layer becomes a compressed representation of the word history
- Can learn to represent unlimited memory, in theory

RNN LM training

- Minimizes the output error by training the weights by stochastic gradient descend
- Propagates the output error to all layers and time steps (called backpropagation through time) to train the hidden layer
- Looks now like a very deep neural network with shared weights U and W

54/58

Feedback

Go to MyCourses > Lectures > Feedback for Lecture 2 and fill in the form.

Feedback from last week:

- + Captions going on with the teacher's speaking worked surprisingly well!
- + The group discussion was interesting and insightful
- + Nice to finally have a "normal" course and to see people in real life
- I found it difficult to hear from the back rows, please use mic
- The speed was too slow
- Need a break in the middle

Thanks for all the valuable feedback!

References (all)

- Markov, A. A. (1913). An example of statistical investigation of the text Eugene
 Onegin concerning the connection of samples in chains. (In Russian.) Bulletin of the
 Imperial Academy of Sciences of St. Petersburg 7(3):153–162.
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379–423, 623–656.
- Good, I.J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40 (3–4): 237–264
- Kohonen, T. (1986). Dynamically Expanding Context, with application to the correction of symbol strings in the recognition of continuous speech", Proc. ICPR 1986, pp.1148-1151
- Ritter, H. and Kohonen, T. (1989). Self-organized semantic maps. Biol. Cybern. 61: 241-254
- Kohonen, Kaski, Lagus, Honkela (1996). Very large two-level SOM for the browsing of newsgroups. Proc. ICANN96.
- Kneser, R. and Kney, H. (1995). Improved backing-off for m-gram language Mikko Kuring JEEE Trans. ASSP 1:181–184.
 Mikko Kuring Statistical Natural Language Processing 2024

References (cont'd)

- Brown, P. F., DellaPietra, V. J., deSouza, P. V., Lai, J. C., and Mercer, R. L. (1992).
 Class-based n-gram models of natural language. Computational Linguistics, 18(4):467–479.
- Siivola, V., Hirsimäki, T. and Virpioja, S. (2007). On Growing and Pruning Kneser-Ney Smoothed N-Gram Models. IEEE Trans. ASLP, 15(5):1617-1624.
- Siivola, V., Pellom, B. (2005). Growing an n-gram model, Proc. Interspeech'05, pp. 1309-1312.
- Goldwater, S., Griffiths, T., and Johnson, M. (2006). Interpolating between types and tokens by estimating power-law generators. In Advances in NIPS 18, pp. 459–466.
 MIT Press.
- Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman-Yor processes. Proc. ACL 2006, pp. 985–992.
- Roark, B. (2001). Probabilistic top-down parsing and language modeling.
 Computational Linguistics, 27(2):249–276.
- Creutz, M., Lagus, K. (2003). Unsupervised discovery of morphemes. Proc. Mikkorkshop on Morphological and Phonological Learning of AGI₅₈02,pp.21–30
- Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient Estimation of Word

References (cont'd)

- Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical language modelling. Computer Speech and Language, 10(3):187–228.
- Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3:1137–1155.
- Siivola, V., Honkela, A. (2003). A State-Space Method for Language Modeling", IEEE Workshop on Automatic Speech Recognition and Understanding, pp 548-553.
- Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S. (2010).
 Recurrent neural network based language model. Proc. Interspeech 2010, pp. 1045–1048
- Alumäe, T., Kurimo, M. (2010) Domain adaptation of maximum entropy language models. Proc. ACL 2010.
- Broman, S., Kurimo, M. (2005). Methods for combining language models in speech recognition. Proc. Interspeech 2005, pp. 1317–1320.
- Virpioja, S., Kurimo, M. (2006) Compact n-gram models by incremental growing and clustering of histories. Proc. Interspeech 2006, paper 1231-12334
- •Mikkinskwiinking ChetitzicesiNethali kernne Pirphojana 202 bylkkönen (2006). Unlimited vocabulary speech recognition with morph language models applied to Finnish.