Statistical language model (SLM)

- Content today:
1.Basic SLM methods (n-grams)

1. Maximum likelihood estimation
2. Smoothing methods
3. Class-based methods
2.Advanced SLM methods
1.Maximum entropy methods
2.Continuous vector space methods
3.Introduction to Neural LMs

Goals of today

1.Learn how to model language by statistical methods
2.Learn basic idea of neural language modeling
3.Know some typical SLM methods and applications

About scores, points and grades in 2023

- Max score in home exercises was $161=>50 p$
- Max score in lecture activity was $25=>10 p$
- Exam points could substitute max 20p of missed points
- In 2023 the points corresponded to non-rounded grades like this:
~ 60p gave 5.6
~ 53p gave 4.6
~ 46p gave 3.6
~ 38p gave 2.5
~ 31p gave 1.5
~ 24p gave 0.6
~ 20p or less gave 0
- The final grade is the average of this (60%) and the project (40%) grade

Statistical Language Model

- Model of a natural language that predicts the probability distribution of words and sentences in a text
- Often used to determine which is the most probable word or sentence in given conditions or context
- Estimated by counting word frequencies and dependencies in large text corpora
- Has to deal with: big data, noisy data, sparse data, computational efficiency

Some historical landmarks of SLMs

- Markov chains (Markov, 1913)
- N-grams (Shannon, 1948)
- Predicting unseen events (Good, 1953)
- Landmarks at Aalto University (Helsinki Univ. of Technology)
~ Dynamically expanding context (Kohonen, 1986)
~ Self-organizing semantic maps (Ritter and Kohonen, 1989)
~ WEBSOM for organizing text collections (Kohonen, 1996)
~ Morfessor for unsupervised analysis of words (Lagus. 2002)
~ Varigram LM for sequencies of words (Siivola, 2005)
~ Unlimited vocabulary LMs for speech recognition (Hirsimäki, 2006)
~ Class n-gram models for very large vocabulary speech recognition of Finnish and Estonian (Varjokallio, 2016)
Mikko Kurimo / Statistical Natural Language Processing 2024 An Extensible Toolkit for Neural Network LMs (Enarvi, 2016)

A simple statistical language model

- Limited domain models, constructed by hand
- Transition probabilities can be estimated statistically
- Only a very limited set of sentences are recognized

N-gram language model

- Stochastic model of the relations between words
- Which words often occur close to each other?
- The model predicts the probability distribution of the next word given the previous ones
- A conditional probability of word given its context
- Estimated from a large text corpus (count the contexts!)
- Smoothing and pruning required to learn compact longspan models from sparse training data

N-gram models

- E.g. trigram = 3-gram:
- Word occurrence depends only on its immediate short context
- A conditional probability of word given its context
- Estimated from a large text corpus (count the contexts!)
... the united states of ???

Estimation of N-gram model

$$
P\left(w_{i} \mid w_{j}\right)=\frac{c\left(w_{j}, w_{i}\right)}{c\left(w_{j}\right)} \quad \begin{aligned}
& c(\text { "eggplant stew") } \\
& c(\text { "eggplant") }
\end{aligned}
$$

- Bigram example:

Start from a maximum likelihood estimate

 probability of P ("stew"| "eggplant") is computed from counts of "eggplant stew" and "eggplant"| | I | want | to | eat | Chinese | food | lunch |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| I | 8 | 1087 | 0 | 13 | 0 | 0 | 0 |
| want | 3 | 0 | 786 | 0 | 6 | 8 | 6 |
| to | 3 | 0 | 10 | 860 | 3 | 0 | 12 |
| eat | 0 | 0 | 2 | 0 | 19 | 2 | 52 |
| Chinese | 2 | 0 | 0 | 0 | 0 | 120 | 1 |
| food | 19 | 0 | Uni-gram counts | 0 | 0 | 0 | |
| lunch | 4 | 0 | 0 | 0 | 0 | 1 | 0 |

Data from Berkeley restaurant corpus (Jurafsky \& Martin, "Speech and language processing").

Calculate missing bi-gram probabilities

	I	want	to	eat	Chinese	food	lunch
I	.0023	X	0	.0038	0	0	0
want	.0025	0	.65	0	.0049	.0066	X
to	.00092	0	.0031	.26	X	0	.0037
eat	0	0	.0021	0	.020	.0021	.055
Chinese	.0094	0	0	0	0	.056	.0047
food	.013	0	.011	0	0	0	0
lunch	.0087	0	0	0	0	.0022	0

l	3437
want	1215
to	3256
eat	938
Chinese	213
food	1506
lunch	459

| | l | want | to | eat | Chinese food | lunch | Data from Berkeley |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	I	want	to	eat	Chinese	food	lunch	Data from Berkeley restaurant corpus	
1	8	, 1087	0	13	0	0	0		
want	3	0	786	0	6	8	6	(Jurafsky \& Martin, "Speech and language processing").	
to	3	0	10	860	3	0	12		
eat	0	0	2	0	19	2	52		
Chinese	2	0	0	0	0	120	1		
food	19	0	Un17 ${ }_{\text {gram }}$	Counts	0	0	0		
lunch	4	0	0	0	0	1	0		
$10 \text { 号 } / 34 \hat{3} 7=.32 \quad 3 / 3256=.00092$									3437
								want	1215
Calculate missing bi-gram probabilities								to	3256
	I	want	to	eat	Chinese	food	lunch	eat	938
I	. 0023	\downarrow	0	. 0038	0	0	0	Chinese	213
want	. 0025	0	. 65	0	. 0049	. 0066	X	food	1506
to	. 00092	0	. 0031	. 26	. 00092	0	. 0037	lunch	459
eat	0	0	. 0021	0	. 020	. 0021	. 055		
Chinese	. 0094	0	0	0	0	. 056	. 0047		
food	. 013	0	. 011	0	0	0	0		
lunch	. 0087	0	0	0	0	. 0022	0		

	1	want	to	eat	Chinese	food	lunch	Data from Berkeley restaurant corpus
1	8	,1087	0	13	0	0	0	
want	3	0	786	0	6	8	6	(Jurafsky \& Martin,
to	3	0	10	860	3	0	12	language
eat	0	0	2	0	19	2	52	processing").
Chinese	2	0	0	0	0	120	1	
food		0	$\cup n^{17}$	Counts	0	0	0	
lunch		0	0	0	0	1	0	
$1087 / 34 \grave{3} 7=.32$ Calculate missing bi-gram probabilities								- 3437
								want \| 1
								to 3256
		want	to	eat		food	lunch	eat 938
I	. 0023	$2 \downarrow$	0	. 0038			0	Chinese
want	. 0025	0	. 65	0	. 0049	0066	. 0048	food 1506
to	. 00092	0	. 0031	. 26	. 00092 r 0		. 0037	lunch 459
eat	0	0	. 0021	0	. 020	. 0021	. 055	
Chinese	. 0094	0	0	0	0	. 056	. 0047	
food	. 013	0	. 011	0	0	0	0	6 / 1215 = . 0049
lunch	. 0087	0	0	0	0	. 0022	0	

Estimation of N-gram model

$$
P\left(w_{i} \mid w_{j}\right)=\frac{c\left(w_{j}, w_{i}\right)}{c\left(w_{j}\right)} \quad \begin{aligned}
& c(\text { "eggplant stew") } \\
& c(\text { "eggplant") }
\end{aligned}
$$

- Bigram example:

Start from a maximum likelihood estimate

 probability of P ("stew"| "eggplant") is computed from counts of "eggplant stew" and "eggplant"$P($ "want"|"l") $=1087$ / $3437=0.32$
works well for frequent bigrams
$P($ "Chinese""|"to") $=3 / 3256=0.00092$ why not for rare bigrams?

Where do we need SLMs?

- List tasks where you need the probability or to find the most probable word or sentence given some background information!

Some applications of SLMs

1.Spelling correction, text input
2.Optical character recognition, e.g. scanning old books
3.Automatic speech recognition
4.Statistical machine translation
5.Text-to-speech
6.Automatic question answering
7.Chatbots

Data sparsity

- Words and many other linguistic units follow a power-law distribution:

Zipf's law: kth frequent word occurs $\propto 1 / k$
"Long tail": few frequent words, lots of very rare words

- E.g. within the first 1.5 million words 23% subsequent trigrams were previously unseen (IBM laser patent text corpus)
- Maximum likelihood estimate overestimates frequencies of n gram that occurred rarely, and underestimates those that did not occur at all. (why?)
- One needs a systematic approach to assign some non-zero probability to unseen words and sequences. This is called smoothing.

Zero probability problem

- If an N -gram is not seen in the corpus, it will get probability $=0$
- The higher N, the sparser data, and the more zero counts there will be
- 20K words => 400M 2-grams => 8000G 3-grams, so even the largest corpora have MANY zero counts!
- Solutions:
- Equivalence classes: Cluster several similar n-grams together to reach higher counts
- Smoothing: Redistribute some probability mass from seen N grams to unseen ones

Equivalence classes

- Divide features (e.g. words) into equivalence classes a.k.a. bins
- Assume equal statistical properties within a bin
- Estimate a SLM for the bin as a whole
- The more bins, the more data is needed for model estimation
- The fewer bins, the lower prediction accuracy, because the model becomes too general

Ways to form classes

- Transforming inflected word forms into the baseform: 'saunan', 'saunalle', 'saunojemme', etc. \rightarrow 'sauna'
- Grouping by part-of-speech tags (the same syntactic role: noun, verb, etc)
- Grouping by semantics (a similar meaning)
- Important is that the words in a bin should really behave similarly! E.g. february, may, august

Ways to use classes

- using equivalence classes only for previous words (Virpioja and Kurimo, 2006):
- $p(w i \mid w i-2, w i-1)=p(w i \mid t(w i-2, w i-1))$
- using class-based n-gram models:
- $p(w i \mid w i-2, w i-1)=p(\boldsymbol{t}(\mathbf{w i}) \mid \boldsymbol{t}(\mathbf{w i} \mathbf{- 2}, \mathbf{w i}-1))$
-

$$
\times p(w i \mid t(w i), \ldots)
$$

Combining estimators

- So far, the probability was estimated for all n-grams of a particular length
- How about improving the estimate using shorter sequences that are more frequent?
- The motivation is further smoothing of the estimates by combining different information sources.
- The additional models could also be other n-grams trained on different data, e.g. background models vs topical models
- determine bin-specific interpolation weights for model combination (Broman and Kurimo, 2005)

Backing-off

- In principle: Look for the most specific model that gives sufficient information from the current context
- In practice: Back off from using (too) long contexts to shorter ones that have more samples in the corpus.

Some smoothing methods

1. Add-one: Add 1 to each count and normalize => gives too much probability to unseen N -grams
2. (Absolute) discounting: Subtract a constant from all counts and redistribute this to unseen ones using $\mathrm{N}-1$ gram probs and back-off (normalization) weights
3. Witten-Bell smoothing: Use the count of things seen once to help to estimate the count of unseen things
4. Good Turing smoothing: Estimate the rare n-grams based on counts of more frequent counts
5. Best: Kneser-Ney smoothing: Instead of the number of occurrences, weigh the back-offs by the number of contexts the word appears in
6. Instead of only back-off cases, interpolate all N -gram counts with $\mathrm{N}-1$ counts

Add-1 smoothing

$$
c_{i}^{*}=\left(c_{i}+1\right) \frac{N}{N+V}
$$

Probability $\mathrm{p}=\mathrm{c} / \mathrm{N}$:
$p_{i}^{*}=\frac{c_{i}+1}{N+V}$

Ci*: new count
Ci : original count
N : Num of tokens
V : Total vocab size

	I	want	to	eat	Chinese	food	lunch
I	9	1088	1	14	1	1	1
want	4	1	787	1	7	9	7
to	4	1	11	861	4	1	13
eat	1	1	3	1	20	3	53
Chinese	3	1	1	1	1	121	2
food	20	1	18	1	1	1	1
lunch	5	1	1	1	1	2	1

Figure 6.6 Add-ond Smoothed Bigram counts for 7 of the words (out of 1616 total word types) in the Berkeley Restaurant Project corpus of ${ }^{\sim} 10,000$ sentences.

Good-Turing smoothing

- How to compute the probability of an unseen event, e.g. an out-ofvocabulary word?
- Idea invented by Alan Turing during World War 2 when he was working to break German cipher
- Published later by his student (Good, 1953)
- Set: $\mathrm{N}=$ Num of words
- $\mathrm{N}_{1}=$ Num of words that occur only once
- $\mathrm{N}_{\mathrm{c}}=$ Num of words that occur c-times (freq. of freq.)
- Estimate prob of unseen things $=\mathrm{N}_{1} / \mathrm{N}$
- Estimate count of things seen once $=2^{*} \mathrm{~N}_{2} / \mathrm{N}_{1}$
- Smoothed count c* for all c:

Mikko Kurimo / Statistical Natural Language Processing 2 C

$$
c_{c}^{*}=(c+1) \frac{N_{c+1}}{N_{c}}
$$

Exercise 2: Good-Turing smoothing

- Watch a video where Prof. Jurafsky (Stanford) explains GoodTuring smoothing (between 02:00-08:45)

Click: http://www.youtube.com/watch?v=GwP8gKa-ij8
Or search:"Good Turing video Jurafsky"

- Work in groups and submit answers for these 3 questions in MyCourses > Lectures > Lecture 2 exercise return box:

1. Estimate the prob. of catching next any new fish species, if you already got: 5 perch, 2 pike, 1 trout, 1 zander and 1 salmon?
2. Estimate the prob. of catching next a salmon?
3. What may cause practical problems when applying GoodTuring smoothing for rare words in large text corpora?

Hints for solving the exercise

1.Estimate the prob of unseen things using the prob of things seen only once $\mathrm{N}_{1} / \mathrm{N}$
2.The counts must be smoothed. The new count for things seen once is $(\mathrm{c}+1)^{*} \mathrm{~N}_{2} / \mathrm{N}_{1}$
3. What if $\mathrm{N}_{\mathrm{c}}=0$ for some c ?

Estimation of N-gram model

$$
P\left(w_{i} \mid w_{j}\right)=\frac{c\left(w_{j}, w_{i}\right)}{c\left(w_{j}\right)} \quad \begin{aligned}
& c(\text { "eggplant stew") } \\
& c(\text { "eggplant") }
\end{aligned}
$$

- Bigram example:

Start from a maximum likelihood estimate

 probability of P ("stew"| "eggplant") is computed from counts of "eggplant stew" and "eggplant" works well for frequent bigrams
Backing off

$$
\begin{aligned}
P\left(w_{i} \mid w_{j}\right) & =\frac{c\left(w_{j}, w_{i}\right)}{c\left(w_{j}\right)} \quad \text { if } c\left(w_{j},\right. \\
& =P\left(w_{i}\right) b_{w_{j}} \quad \text { otherwise }
\end{aligned}
$$

- Divide the room of rare bigrams, e.g. "eggplant francisco", in proportion to the unigram \boldsymbol{P} ("francisco")
- The sum of all these rare bigrams "eggplant [word j]" is b("eggplant") which is called the back-off weight

Absolute discounting and backing off

$$
\begin{aligned}
P\left(w_{i} \mid w_{j}\right) & =\frac{c\left(w_{j}, w_{i}\right)-D}{c\left(w_{j}\right)} \quad \text { if } c\left(w_{j}, w_{i}\right)>c \\
& =P\left(w_{i}\right) b_{w_{j}} \quad \text { otherwise }
\end{aligned}
$$

- If bigram is common: Subtract constant D from the count
- If not: Back off to the unigram probability normalized by the back-off weight
- Similarly back off all rare N -grams to N -1 grams

Kneser-Ney smoothing

$$
\begin{aligned}
P\left(w_{i} \mid w_{j}\right) & =\frac{c\left(w_{j}, w_{i}\right)-D}{c\left(w_{j}\right)} \quad \text { if } c\left(w_{j}, w_{i}\right)>c \\
& =\mathbf{V}\left(w_{i}\right) b_{w_{j}} \quad \text { otherwise }
\end{aligned}
$$

- Instead of the number of occurrences, weigh the back-offs by the number of contexts V (word) the word appears in:

In this case the context is the previous word, thus, how many different previous words the corpus has for that word
E.g. P (Stew | EggPlant) is high, because stew occurs in many contexts
~ But P (Francisco \mid EggPlant) is low, because Francisco is

Smoothing by interpolation

$$
\begin{aligned}
P\left(w_{i} \mid w_{j}\right) & =\frac{c\left(w_{j}, w_{i}\right)-D}{c\left(w_{j}\right)} \\
& +P\left(w_{i}\right) b_{w_{j}}
\end{aligned}
$$

- Like backing off, but always compute the probability as a linear combination (weighted average) with lower order ($\mathrm{N}-1$) gram probabilities
- Improves the probabilities of rare N-grams
- Discounts (D) (and interpolation weights) can be separately optimized for each N using a held-out data

N-gram example

Absolute discounting

Back-off

eggplant X)	1 G freq	1 G prob	2 G freq	2 Cprob	discount	Abs back-off	normalize
X = stew	10	0.1	0	0		0.1	0.05
sue	20	0.2	0	0		0.2	0.1
san	40	0.4	0	0		0.4	0.2
francisco	30	0.3	0	0		0.3	0.15
SUM	100						0.5
$P\left(w_{i}\right.$	$\left.w_{j}\right)$						

Back-off

eggplant X)	1 G freq	1G prob	2 G freq	2 G prob	discoun	Abs back-off	$\begin{array}{r} \text { normalize } \\ 0.05 \end{array}$
X = stew	10	0.1	0	0		0.1	
sue	20	0.2	0	0		0.2	0.1
san	40	0.4	0	0		0.4	0.2
francisco	30	0.3	0	0		0.3	0.15
SUM	100	1	0	0)	0.5
$P(n$	$\left.w_{j}\right)$	$c\left(w_{j}\right.$	$\left.w_{i}\right)-$	if	W_{j}, W^{\prime}	$>c$	
		$P(w$		other			0*0.5

Absolute discounting and back-off

Kneser-Ney smoothing

(eggplant X)	1G freq	2 Gfreq	Abs back-off	normalize	\#contexts
X = stew	10	0	0.1	0	10
sue	20	0	0.2	0	5
san	40	0	0.4	0	3
francisco	30	0	0.3	0	1
SUM	100	0	1	0	19
$\begin{aligned} P\left(w_{i} \mid w_{j}\right) & =\frac{c\left(w_{j}, w_{i}\right)-D}{c\left(w_{j}\right)} \quad \text { if } c\left(w_{j}, w_{i}\right)>c \\ & =\mathbf{V}\left(w_{i}\right) b_{w_{j}} \quad \text { otherwise } \quad(\mathrm{c}=0, \mathrm{D}=0.5 \text { selected }) \end{aligned}$					

Kneser-Ney smoothing

(eggplant X)	1G frea	2 G freq	Abs back-off	normalize	\#contexts	KN back-off
X = stew	10	0	0.1	0.05	10	0.26
sue	20	0	0.2	0.1	5	0.13
san	40	0	0.4	0.2	3	0.08
francisco	30	0	0.3	0.15	1	0.03
SUM	100	0	1	0.5		0.5
$P\left(w_{i}\right.$	$\left.w_{j}\right)=\frac{c\left(w_{j}\right)}{c}$			if c	$\left.w_{j}, w_{i}\right)$	$>C$
	$=\mathbf{V}\left(w_{i}\right) b_{w_{j}}$			otherw	se	$0, \mathrm{D}=0.5 \mathrm{se}$

Weaknesses of N-grams

- Skips long-span dependencies:
~ "The girl that I met in the train was ..."
- Too dependent on word order:
~ "dog chased cat": "koira jahtasi kissaa" ~ "kissaa koira jahtasi"
- Dependencies directly between words, instead of latent variables, e.g. word categories

Some model variants

Red text is

- Variable-length n-gram, aka. Varigram:
~ Span depends on particular context, optimized for the data, e.g. [Siivola, 2007]
~ Especially useful for short units (letters, morphemes)
- Class-based n-gram, e.g. [Brown, 1992]:

Cluster words into classes, find class sequences
Reduces sparsity, model size, and accuracy

- Bayesian n-gram:

Computationally demanding
Kneser-Ney smoothing approximates hierarchical Pitman-
Yor process model [Goldwater, 2006; Teh, 2006]
Mikko Kurimo / Statistical Natural Language Processing 2024
43/58

Sources and further reading

- Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing. The MIT Press. (Chapter 6)
- Jurafsky, D. and Martin, J. H. (2008). Speech and Language Processing. Prentice Hall. 3rd online edition. (Chapters 3 and 7)
- Chen, S. F. and Goodman, J. (1999). An empirical study of smoothing techniques for language modeling. Computer Speech and Language, 13(4):359-393.
- Goodman, J. T. (2001). A bit of progress in language modeling - extended version. Technical Report MSR-TR-2001-72, Microsoft Research.
- Virpioja, S. (2012). Learning Constructions of Natural Language: Statistical Models and Evaluations. Aalto University, Doctoral dissertations 158/2012. (Sections 4.1-4.3)
- Varjokallio, M. (2020). Improving very large vocabulary language modeling and decoding for speech recognition in morphologically rich languages.

Other language modeling approaches

- Maximum-entropy LM (Rosenfeld, 2007)

Combines different knowledge sources into a single model

- Good for adaptation (Alumäe and Kurimo, 2010)
- Continuous-space LM (a.k.a. Neural Network LM (NNLM))

Map words to continuous-valued vectors and models them using DNN (Bengio et al, 2003; Siivola and Honkela, 2003)

State-space models can use indefinitely long contexts, such as in Recurrent Neural Networks (Mikolov et al, 2010)

- Cache models and Topic models

Maximum entropy LMs

- Represents dependency information
- by a weighted sum of features $f(x, h)$

$$
P(x \mid h)=\frac{e^{\sum_{i} \lambda_{i} f_{i}(x, h)}}{\sum_{x^{\prime}} e^{\sum_{j} \lambda_{j} f_{j}\left(x^{\prime}, h\right)}}
$$

- Features can be e.g. n-gram counts
- Alleviates the data sparsity problem by smoothing the feature weights (lambda) towards zero
- The weights can be adapted in more flexible ways than n-grams

Adapting only those weights that significantly differ from a large background model (Alumäe and Kurimo, 2010)

- Normalization is computationally hard, but can be approximated effectively

Mapping words into continuous space

- Map words into a continuous vector space
- to learn a distributed representation known
- as word embedding
- The goal is to use a vector space that keeps

- similarly behaving words near each other
- Words can be clustered by context, e.g. n-gram probabilities word2vec (Mikolov, 2013) is one widely used option Other embeddings to reflect various contextual properties
- Set of words can be represented by a sum of the vectors
- N-gram can be represented by a sequence of vectors

Continuous space LMs

- Alleviates the data sparsity problem by representing words in a distributed way
- Various algorithms can be used to learn the most efficient and discriminative representations and classifiers
- The most popular family of algorithm is called (Deep) Neural Networks (NN)
can learn very complex functions by combining simple computation units in a hierarchy of non-linear layers
~ Fast in action, but training takes a lot of time and labeled training data
- Can be seen as a non-linear multilayer generalization of the maximum entropy model

A simple bigram NN LM

- Outputs the probability of next word $\mathrm{y}(\mathrm{t})$ given the previous word $\mathrm{x}(\mathrm{t})$
- Input layer maps the previous word as a vector $x(t)$
- Hidden layer has a linear transform $h(t)=A x(t)+b$ to compute a representation of linear distributional features
- Output layer maps the values by $\mathrm{y}(\mathrm{t})=\operatorname{softmax}(\mathrm{h}(\mathrm{t}))$ to range $(0,1)$. that add up to 1
- Resembles a bigram Maximum entropy LM

Softmax:

$$
\sigma(\mathbf{z})_{j}=\frac{e^{z_{j}}}{\sum_{k=1}^{K} e^{z_{k}}} \text { for } j=1, \ldots, K .
$$

A non-linear bigram NN LM

- The only difference to the simple NN LM is that the hidden layer $h(t)$ now includes a non-linear function $h(t)=U(A x(t)+b)$
- Can learn more complex feature representations
- C.nmmnn axamples of non-linear functions U :

$$
\mathrm{U}(\mathrm{t})=\tanh (\mathrm{t})
$$

Sigmoid

$$
U(t)=\frac{1}{1+e^{-t}}
$$

Common NN LM extensions

- Input layer is expanded over several previous words $\mathrm{x}(\mathrm{t}-1)$, $x(t-2), .$. to learn richer representations
- Deep neural networks have several hidden layers h1, h2, .. to learn to represent information at several hierarchical levels
- Can be scaled to a very large vocabulary by training also a class-based output layer c(t)
$\mathrm{x}(\mathrm{t}-2)$

NN LM training

- Supervised training minimizes the output errors by training the weights for V by stochastic gradient descend
- Propagate the output error to hidden layer to train the weights for U
- In practice, a deep NN will require more complex training procedures, since the gradients vanish quickly

Recurrent Neural Network (RNN) LM

- Looks like a bigram NNLM
- But, takes an additional input from the hidden layer of the previous time step
- Hidden layer becomes a compressed representation of the word history
- Can learn to represent unlimited memory, in theory

RNN LM training

- Minimizes the output error by training the weights by stochastic gradient descend
- Propagates the output error to all layers and time steps (called backpropagation through time) to train the hidden layer
- Looks now like a very deep neural network with shared weights U and W

Feedback

Go to MyCourses > Lectures > Feedback for Lecture 2 and fill in the form. Feedback from last week:

+ Captions going on with the teacher's speaking worked surprisingly well!
+ The group discussion was interesting and insightful
+ Nice to finally have a "normal" course and to see people in real life
- I found it difficult to hear from the back rows, please use mic
- The speed was too slow
- Need a break in the middle

Thanks for all the valuable feedback!

References (all)

- Markov, A. A. (1913). An example of statistical investigation of the text Eugene Onegin concerning the connection of samples in chains. (In Russian.) Bulletin of the Imperial Academy of Sciences of St. Petersburg 7(3):153-162.
- Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379-423, 623-656.
- Good, I.J. (1953). The population frequencies of species and the estimation of population parameters. Biometrika 40 (3-4): 237-264
- Kohonen, T. (1986). Dynamically Expanding Context, with application to the correction of symbol strings in the recognition of continuous speech", Proc. ICPR 1986, pp.1148-1151
- Ritter, H. and Kohonen, T. (1989). Self-organized semantic maps. Biol. Cybern. 61: 241-254
- Kohonen, Kaski, Lagus, Honkela (1996). Very large two-level SOM for the browsing of newsgroups. Proc. ICANN96.
- Kneser, R. and Kney, H. (1995). Improved backing-off for m-gram language

References (cont'd)

- Brown, P. F., DellaPietra, V. J., deSouza, P. V., Lai, J. C., and Mercer, R. L. (1992). Class-based n-gram models of natural language. Computational Linguistics, 18(4):467-479.
- Siivola, V., Hirsimäki, T. and Virpioja, S. (2007). On Growing and Pruning Kneser-Ney Smoothed N-Gram Models. IEEE Trans. ASLP, 15(5):1617-1624.
- Siivola, V., Pellom, B. (2005). Growing an n-gram model, Proc. Interspeech'05, pp. 1309-1312.
- Goldwater, S., Griffiths, T., and Johnson, M. (2006). Interpolating between types and tokens by estimating power-law generators. In Advances in NIPS 18, pp. 459-466. MIT Press.
- Teh, Y. W. (2006). A hierarchical Bayesian language model based on Pitman-Yor processes. Proc. ACL 2006, pp. 985-992.
- Roark, B. (2001). Probabilistic top-down parsing and language modeling. Computational Linguistics, 27(2):249-276.
- Creutz ,M., Lagus, K. (2003). Unsupervised discovery of morphemes. Proc.

- Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013). Efficient Estimation of Word

References (cont'd)

- Rosenfeld, R. (1996). A maximum entropy approach to adaptive statistical language modelling. Computer Speech and Language, 10(3):187-228.
- Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic language model. Journal of Machine Learning Research, 3:1137-1155.
- Siivola, V., Honkela, A. (2003). A State-Space Method for Language Modeling", IEEE Workshop on Automatic Speech Recognition and Understanding, pp 548-553.
- Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S. (2010). Recurrent neural network based language model. Proc. Interspeech 2010, pp. 10451048
- Alumäe, T., Kurimo, M. (2010) Domain adaptation of maximum entropy language models. Proc. ACL 2010.
- Broman, S., Kurimo, M. (2005). Methods for combining language models in speech recognition. Proc. Interspeech 2005, pp. 1317-1320.
- Virpioja, S., Kurimo, M. (2006) Compact n-gram models by incremental growing and clustering of histories. Proc. Interspeech 2006, paper 1231-12334
 vocabulary speech recognition with morph language models applied to Finnish.

