Lecture 4: Linear approximation
and the chain rule

Learning goals:
© How is the linear approximation used?

@ How do derivation calculation rules generalise to multivariable
functions?

© In particular, how does the chain rule work for multivariable functions?

Where to find the material?

Guichard et friends 14.4 (does not contain linear approximation)
Active Calculus 10.4, 10.5

Adams-Essex 13.5, 13.6
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https://www.whitman.edu/mathematics/calculus_online/chapter14.html

Before we move on few remarks about differentiability and partial
derivatives.



The existence of partial derivatives does not even
guarantee continuity
The existence of partial derivatives is a weaker condition than
differentiability:

Q@ R R

F(x.y) 0, whenx=0 or y=0
x,y) =
Y 1, elsewhere

both partial derivatives are at the origin, but the function is not
continuous at the origin (This function is in Round 2 exercises)

Q@ R2R

(. y) = {Xffyz, when (x,y) # (0,0)
0, when (x,y) = (0,0)

In lecture 2 it was calculated that this does not have limit at the
origin, so it is not continuous at the origin, but still both partial
derivatives exists at the origin.
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If the partial derivatives are continuous, then...

o If all partial derivatives are continuous around the point xp, then the
function itself is differentiable at the point xg and the Jacobian matrix
can be calculated using the partial derivatives

@ almost all functions discussed in this course are of this type
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Linear approximation when f: R? — R

e Consider a function f: R? — R, all partial derivatives of which are
continuous.

@ The Jacobian matrix of this is
Df(x) = [01f(x) 0af(x)]

@ Thus the linear approximation near the point x (i.e. h is small = near

the origin)
f(x 4+ h) = f(x) + Df (x)(h) + ¢(h)

f(x+h) = f(x)+ Df(x)h

= f(x) + [O1f(x) 02f(x)] m

f(x) + 01 (x)h1 + Oaf (x) h2
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Example of linear approximation when f: R> — R

Task: Find an approximation for the value of the function
f(x,y) = V2x2 + €% at the point (2.2, —0.2) without using calculator.

Solution: Now f(2,0) = 3 and h = (0.2, —0.2). The partial derivatives of
the function are

2x 4
e? 1

Hence the desired approximation using linear approximation is
4 1
f(2.2,-0.2) ~ 3+ 50.2 + 5(_0'2) =3.2.

Comparison: Using calculator we find that the value of the function at
the point (2.2, —0.2) is about 3.2172.
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Linear approximation when f: R3 — R

Similarly if f: R® — R, all partial derivatives of which are continuous. The
Jacobian matrix is

Df(x) = [01f(x) O2f(x) O3f(x)]
Linear approximation near the point x (i.e. h is small = near the origin)

f(x +h) = f(x) + Df(x)(h) + ¢(h)

f(x+h) = f(x) + Df(x)h

h
= f(x) + [01f(x) 0O2f(x) O3f(x)] |:h2]

h3
= f(X) + 01 f(x)h1 + 82f(x)h2 + 83f(x)h3
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Another look to the linear approximation - differentials

e The quantity Df (x)h is called the differential of f, and denoted by df
@ It approximates the change of the function Af = f(x + h) — f(x)
e Common notation: if f: R? — R, then df = f,dx + f,dy
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Example

L
Estimate the percentage change in the period T = 27r\/> of a simple
g

pendulum if the length, L, of the pendulum increases by 2% and the
acceleration of gravity, g, decreases by 0.6%.

. AT
@ So we need to estimate -

T
o With differential AT =~ dT = 8—TdL + idg
oL og

e dL =0.02L and dg = —0.006g
@ Do all the needed calculations

@ Answer: the period T of the pendulum increases approximately 1.3%
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Calculation rules for derivatives

Just as for the derivative of a single-variable function, so for a Jacobian
matrix:

Basic claculation rules
f,g: R" — R™.
o D(f + g)(x) = Df(x) + Dg(x) for all x € R"

@ D(cf)(x) = cDf(x) for all c € R and all x € R”
Thus the derivation is a linear operation.

v

The chain rule also holds: f: R” — R™ and g: R™ — R¥

D(g o f)(x) = Dg(f(x))Df(x) Note! Matrix multiplication

January 17, 2024 10/15



The idea of the proof for the chain rule 1/2

f:R" — R™ and g: R™ — R¥ such that f is differentiable at the
point x and g is differentiable at the point y = f(x)

@ By the definition of differentiability, we find a linear map
Tr: R" — R™ and a function ¢¢: R” — R™ such that

¢r(h)
[[h]

f(x+h) = f(x) + T¢(h) + ¢r(h) and to0 when h — 0.

o Similarly, we find a linear map T,: R™ — R¥ and a function
¢g: R™ — RK such that

¢g(h)

— 0 kun h — 0.
i

g(y + h) =g(y) + Tg(h) + ¢g(h) ja
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The idea of the proof for the chain rule 2/2

(z)gof(h)

Thl — 0 when h = 0.

It can be shown that

Thus, the derivative of the composition function is obtained by taking the
composition of linear maps T, o T¢. As matrices Ty = Dg(f(x)) and

Tr = Df(x) Written in matrices (and remembering that the multiplication
of matrices gives the matrix of the composition of linear maps) we get

D(f o g)(x) = Dg(f(x))Df (x)
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Chain rule - example 1

Let f: R — R2, f(t) = (2t,t?) and g: R? = R, g(x,y) = x> + y2.

Calculate what is D(g o f)(t) (= (gof)(t))
a) by substitutions
b) by the chain rule

D(f o g)(t) = Dg(f(x))Df(t)

- [uelr(0) oae(r)] [0

=[2-(2t) 2-(¢?)] [2215] = 8t + 4¢3
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Chain rule - example 1 (other notations)

Let f: R — R2, f(t) = (2t,t?) and g: R? = R, g(x,y) = x> + y2.

Let's write z = g(x,y) = x> + y2, where x(t) = 2t and y(t) = t.
Calculate what is %.
Calculated above

D¢ = )(6) = Da(F()DF(1)
= [01g(f(t)) D5(f(1))] [ggﬂ

= 01g(f(1))f(t) + Dag(f(x))F (1)

Using the other notations we obtain:

dz_Dgdx  dgdy
dt  Oxdt Oy dt

e e 2t
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Chain rule - example 2

If z=sin(x%y), where x = st? and y = 5% + % find % and % using the

chain rule.



