Applications of Partial Derivatives **Optimization**

Lecture 6: Optimization - Extreme values

Learning goals:

- **1** What are extreme values?
- 2 What are necessary conditions for extreme values?
- ³ How to classify critical points?

Where to find the material?

[Corral 2.5](http://www.mecmath.net/VectorCalculus.pdf) [Guichard et friends 14.7](https://www.whitman.edu/mathematics/calculus_online/chapter14.html) Active Calculus 10.7

Adams-Essex 14.1

Extreme values

$f\colon D\to\mathbb{R},$ where $D\subset\mathbb{R}^n,$ has

- a local maximum at the point x_0 in its domain D if $f(x) < f(x_0)$ for all points x in the domain D that are sufficiently close to the point x_0
- a global maximum (or absolute maximum) at the point x_0 in its domain D if $f(\mathbf{x}) \leq f(\mathbf{x}_0)$ for all points x in the domain D
- a local minimum at the point x_0 in its domain D if $f(x) \ge f(x_0)$ for all points x in the domain D that are sufficiently close to the point x_0
- a global minimum (or absolute minimum) at the point x_0 in its domain D if $f(\mathbf{x}) \geq f(\mathbf{x}_0)$ for all points x in the domain D

Necessary conditions for extrema values

- Recall: for single variable $f: I \to \mathbb{R}$ extremas can occur
	- \bullet at the critical points of the function f: i.e. at the points where $f'(x) = 0$,
	- 2 at points where the derivative is not defined, and
	- 3 on the edge of the set I
- Next, we generalize the conditions of the function $f: D \subset \mathbb{R}^n \to \mathbb{R}$ to the case of $f: D \subset \mathbb{R}^n \to \mathbb{R}$.
- For multivariable function extrema values can occur:
	- \bullet at the critical points of the function f i.e. at the points where $\nabla f(\mathbf{x}) = \mathbf{0}$,
	- 2 at points where ∇f is not defined, and
	- ³ on the boundary of the domain D
- A critical point that is not maximum or minimum is a saddle point

The function $f(x,y)=1-x^2-y^2$ has a local maximum $f(0,0)=1$ at point $(0, 0)$. This point is a critical point of the function f , because

$$
\nabla f(0,0) = (-2x,-2y)\Big|_{(0,0)} = \mathbf{0}.
$$

 \mathbf{I}

Function $f(x, y) = y^2 - x^2$ has a saddle point at $(0, 0)$. The point is a critical point, because

$$
\nabla f(0,0) = (-2x,2y)\Big|_{(0,0)} = \mathbf{0}.
$$

ï

All the points on the line $x = 0$ are saddle points for a function $f(x, y) = -x^3$.

$$
\nabla f(0, y) = (-3x^2, 0)\Big|_{(0, y)} = \mathbf{0} \text{ for all } y \in \mathbb{R}.
$$

Function $f(x,y)=\sqrt{x^2+y^2}$ has a global minimum $f(\hspace{.02cm}0,0)=0$ at the point (0, 0). The function f is continuous, but its gradient ∇f is not defined at $(0, 0)$.

The function $f(x, y) = 1 - x$ does not have extremes, if it is defined in the whole plain $D=\mathbb{R}^2$. If we take $D = \{(x, y) : x^2 + y^2 \le 1\}$, then the function has maximum $f(-1, 0) = 2$ and minimum $f(1, 0) = 0$ at the boundary of D.

Classification of critical values: introduction

• Consider the quantity

$$
\Delta f = f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x})
$$

at the critical point $x \in D$.

If Δf takes only positive values (when $\|\mathbf{h}\|$ is small), the point **x** is a (local) minimum, and if it takes only negative values, the point x is a (local) maximum. If Δf changes sign, then the point x is neither a minimum nor a maximum $(=$ saddle point).

The second derivative test

- We want to see how the change of function changes \rightarrow second derivative test
- The single variable second derivative test:
	- If $f''(x) < 0$, the function f has a local maximum at the point x .
	- **2** If $f''(x) > 0$, the function f has a local minimum at the point x.
	- **3** If $f''(x) = 0$, the test does not give an answer and the question must be solved in another way.
- Next, we will generalize this idea to the multivariable case.

Second derivative for multivariable function

- Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a function $f: D \subset \mathbb{R}^n \to \mathbb{R}$ with continuous second-order partial derivatives.
- \bullet The natural derivative of the function f is a gradient which is itself a vector-valued function $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$.
- \bullet Thus the second derivative of a function f is a matrix, which we call the Hessian matrix

$$
H_f(\mathbf{x}) = \begin{bmatrix} \frac{\partial^2}{\partial x_1^2} f(\mathbf{x}) & \frac{\partial^2}{\partial x_2 \partial x_1} f(\mathbf{x}) & \dots & \frac{\partial^2}{\partial x_n \partial x_1} f(\mathbf{x}) \\ \frac{\partial^2}{\partial x_1 \partial x_2} f(\mathbf{x}) & \frac{\partial^2}{\partial x_2^2} f(\mathbf{x}) & \dots & \frac{\partial^2}{\partial x_n \partial x_2} f(\mathbf{x}) \\ \vdots & \vdots & & \vdots \\ \frac{\partial^2}{\partial x_1 \partial x_n} f(\mathbf{x}) & \frac{\partial^2}{\partial x_2 \partial x_n} f(\mathbf{x}) & \dots & \frac{\partial^2}{\partial x_n^2} f(\mathbf{x}) \end{bmatrix}
$$

 \bullet Since all second order partial derivatives of f are continuous, the order of the derivation can be changed, and the matrix is symmetric.

.

Hessian matrix

Why are we interested in the Hessian matrix?

- The Gradient allows us to write an linear (first-order) approximation for the function $f: D \subset \mathbb{R}^n \to \mathbb{R}$,
- The Hessian matrix gives a quadratic refinement:

$$
f(\mathbf{x} + \mathbf{h}) \approx f(\mathbf{x}) + \mathbf{h} \cdot \nabla f(\mathbf{x}) + \frac{1}{2} \mathbf{h} H_f(\mathbf{x}) \mathbf{h}^T,
$$

where the (horizontal) vector $\mathbf{h} = (h_1, h_2, \ldots, h_n)$ is small.

- This is actually just a new way of writing second-order Taylor approximation
- A term of the form $\mathsf{z} A\mathsf{z}^{\mathsf{T}}$ is the quadratic form for a $n\times n$ -matrix A where z is the *n*-row vector.
- Thus for the point $\nabla f(\mathbf{x}) = 0$, we have approximation

$$
\Delta f = f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) \approx \frac{1}{2} \mathbf{h} H_f(\mathbf{x}) \mathbf{h}^T.
$$

and by thinking that $h \approx 0$ we can use this to determinate the type of the critical value.

Definiteness of the matrix

What does the positivity or negativity of an symmetric matrix mean? If A is a symmetric matrix, then

- A is called positive definite if its all eigenvalues are positive.
- A is said to be negative definite if its all eigenvalues are negative.
- A is said to be indefinite, if it has at least one positive and one negative eigenvalue.
- A is a positive semidefinite if its eigenvalues are nonnegative.
- \bullet A matrix A is negative semidefinite if all its eigevalues are nonpositive.

Positive/negative definite matrices have many of the same properties as positive/negative real numbers.

Definiteness of the matrix and the quadratic form

The definiteness or indefiniteness of a symmetric matrix A is inherited to the corresponding quadratic form.

- If A is a positive definite, then $\mathsf{x} A\mathsf{x}^{\mathcal{T}} > 0$ for all nonzero (horizontal) vectors $\mathbf{x} \in \mathbb{R}^n$.
- If A is a negative definite, then $\texttt{x} A \texttt{x}^{\mathcal{T}} < 0$ for all nonzero (horizontal) vectors $\mathbf{x} \in \mathbb{R}^n$.
- If A is an indefinite, then $\mathsf{x} A \mathsf{x}^\mathcal{T}$ gets both negative and positive values.

These can be proved by diagonalizing the symmetric matrix A to the form $A = U^{\mathsf{T}} \Lambda U$, where the diagonal matrix Λ contains the eigenvalues of A

Second derivative test for multivariable functions

Theorem

Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a function with continuous second partial derivatives around the critical point $x \in D$. Then:

- a) If $H_f(\mathbf{x})$ is a positive definite, then f has a local minimum at **x**.
- b) If $H_f(\mathbf{x})$ is a negative definite, then f has a local maximum at x.
- c) If $H_f(\mathbf{x})$ is an indefinite, then f has a saddle point at x.
- d) Otherwise, the test gives no information about the function f .

These follow from the approximation $f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) \approx \frac{1}{2}$ $\frac{1}{2}$ h $H_f(\mathsf{x})$ h $^{\mathcal{T}}$ when $h \approx 0$.

Find and classify the critical points of the function

$$
f(x,y) = x^2 + y^2 - 2xy
$$

There is a simpler test for two variable functions based on the determinant of the Hessian matrix, see [Guichard et friends 14.7](https://www.whitman.edu/mathematics/calculus_online/section14.07.html)

Example when $n = 3$

• Find and classify the critical points of the function

$$
f(x, y, z) = x^2y + y^2z + z^2 - 2x.
$$

• The equations for the critical points ($\nabla f = 0$) are

$$
0 = \partial_1 f(x, y, z) = 2xy - 2,
$$

\n
$$
0 = \partial_2 f(x, y, z) = x^2 + 2yz,
$$

\n
$$
0 = \partial_3 f(x, y, z) = y^2 + 2z.
$$

• Solving these we see that the only critical point of the function f is $P = (1, 1, -1/2).$

Example when $n = 3$ continues

- The Hessian matrix is $H_f(1, 1, -1/2) = \begin{bmatrix} 2 & 2 & 0 \\ 2 & -1 & 2 \\ 0 & 2 & 2 \end{bmatrix}$ i .
- Let's calculate the eigenvalues of the matrix using MATLAB, for example

>> a =
$$
[2 \ 2 \ 0 \ ; \ 2 \ -1 \ 2 \ ; \ 0 \ 2 \ 2]
$$
\n
\na = $2 \ 2 \ 0$ \n
\n $2 \ -1 \ 2$ \n
\n $0 \ 2 \ 2$ \n
\n $3 \times 2 \times 2$ \n
\n -2.7016 \n
\n 2.0000 \n
\n 3.7016

• So the function f has a saddle point at the point $P = (1, 1, -1/2)$.