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Lecture 6: Optimization - Extreme
values

Learning goals:
1 What are extreme values?

2 What are necessary conditions for extreme values?

3 How to classify critical points?

Where to find the material?
Corral 2.5
Guichard et friends 14.7
Active Calculus 10.7
Adams-Essex 14.1
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http://www.mecmath.net/VectorCalculus.pdf
https://www.whitman.edu/mathematics/calculus_online/chapter14.html


Extreme values
f : D → R, where D ⊂ Rn, has

a local maximum at the point x0 in its domain D if f (x) ≤ f (x0) for
all points x in the domain D that are sufficiently close to the point x0
a global maximum (or absolute maximum) at the point x0 in its
domain D if f (x) ≤ f (x0) for all points x in the domain D
a local minimum at the point x0 in its domain D if f (x) ≥ f (x0) for
all points x in the domain D that are sufficiently close to the point x0
a global minimum (or absolute minimum) at the point x0 in its
domain D if f (x) ≥ f (x0) for all points x in the domain D
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Necessary conditions for extrema values

Recall: for single variable f : I → R extremas can occur
1 at the critical points of the function f : i.e. at the points where

f ′(x) = 0,
2 at points where the derivative is not defined, and
3 on the edge of the set I

Next, we generalize the conditions of the function f : D ⊂ Rn → R to
the case of f : D ⊂ Rn → R.
For multivariable function extrema values can occur:

1 at the critical points of the function f i.e. at the points where
∇f (x) = 0,

2 at points where ∇f is not defined, and
3 on the boundary of the domain D

A critical point that is not maximum or minimum is a saddle point
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Example 1

The function f (x , y) = 1− x2 − y2 has a local maximum f (0, 0) = 1 at
point (0, 0). This point is a critical point of the function f , because

∇f (0, 0) = (−2x ,−2y)
∣∣∣
(0,0)

= 0.
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Example 2

Function f (x , y) = y2 − x2 has a saddle point at (0, 0). The point is a
critical point, because

∇f (0, 0) = (−2x , 2y)
∣∣∣
(0,0)

= 0.
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Example 3

All the points on the line x = 0 are saddle points for a function
f (x , y) = −x3.

∇f (0, y) = (−3x2, 0)
∣∣∣
(0,y)

= 0 for all y ∈ R.

January 25, 2024 7 / 19



Example 4

Function f (x , y) =
√
x2 + y2 has a global minimum f (0, 0) = 0 at the

point (0, 0). The function f is continuous, but its gradient ∇f is not
defined at (0, 0).

January 25, 2024 8 / 19



Example 5

The function f (x , y) = 1− x does not have extremes, if it is defined in the
whole plain D = R2.
If we take D = {(x , y) : x2 + y2 ≤ 1}, then the function has maximum
f (−1, 0) = 2 and minimum f (1, 0) = 0 at the boundary of D.
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Classification of critical values: introduction

Consider the quantity

∆f = f (x+ h)− f (x)

at the critical point x ∈ D.

If ∆f takes only positive values (when ∥h∥ is small), the point x is a
(local) minimum, and if it takes only negative values, the point x is a
(local) maximum. If ∆f changes sign, then the point x is neither a
minimum nor a maximum (= saddle point).
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The second derivative test

We want to see how the change of function changes → second
derivative test

The single variable second derivative test:
1 If f ′′(x) < 0, the function f has a local maximum at the point x .
2 If f ′′(x) > 0, the function f has a local minimum at the point x .
3 If f ′′(x) = 0, the test does not give an answer and the question must

be solved in another way.

Next, we will generalize this idea to the multivariable case.
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Second derivative for multivariable function

Let f : D ⊂ Rn → R be a function f : D ⊂ Rn → R with continuous
second-order partial derivatives.

The natural derivative of the function f is a gradient which is itself a
vector-valued function ∇f : Rn → Rn.

Thus the second derivative of a function f is a matrix, which we call
the Hessian matrix

Hf (x) =


∂2

∂x21
f (x) ∂2

∂x2∂x1
f (x) . . . ∂2

∂xn∂x1
f (x)

∂2

∂x1∂x2
f (x) ∂2

∂x22
f (x) . . . ∂2

∂xn∂x2
f (x)

...
...

...
∂2

∂x1∂xn
f (x) ∂2

∂x2∂xn
f (x) · · · ∂2

∂x2n
f (x)

 .

Since all second order partial derivatives of f are continuous, the
order of the derivation can be changed, and the matrix is symmetric.
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Hessian matrix
Why are we interested in the Hessian matrix?

The Gradient allows us to write an linear (first-order) approximation
for the function f : D ⊂ Rn → R,
The Hessian matrix gives a quadratic refinement:

f (x+ h) ≈ f (x) + h · ∇f (x) +
1

2
hHf (x)h

T ,

where the (horizontal) vector h = (h1, h2, . . . , hn) is small.

This is actually just a new way of writing second-order Taylor
approximation

A term of the form zAzT is the quadratic form for a n × n-matrix A
where z is the n-row vector.

Thus for the point ∇f (x) = 0, we have approximation

∆f = f (x+ h)− f (x) ≈ 1

2
hHf (x)h

T .

and by thinking that h ≈ 0 we can use this to determinate the type of
the critical value.
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Definiteness of the matrix

What does the positivity or negativity of an symmetric matrix mean?
If A is a symmetric matrix, then

A is called positive definite if its all eigenvalues are positive.

A is said to be negative definite if its all eigenvalues are negative.

A is said to be indefinite, if it has at least one positive and one
negative eigenvalue.

A is a positive semidefinite if its eigenvalues are nonnegative.

A matrix A is negative semidefinite if all its eigevalues are nonpositive.

Positive/negative definite matrices have many of the same properties as
positive/negative real numbers.
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Definiteness of the matrix and the quadratic form

The definiteness or indefiniteness of a symmetric matrix A is inherited to
the corresponding quadratic form.

If A is a positive definite, then xAxT > 0 for all nonzero (horizontal)
vectors x ∈ Rn.

If A is a negative definite, then xAxT < 0 for all nonzero (horizontal)
vectors x ∈ Rn.

If A is an indefinite, then xAxT gets both negative and positive values.

These can be proved by diagonalizing the symmetric matrix A to the form
A = UTΛU, where the diagonal matrix Λ contains the eigenvalues of A
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Second derivative test for multivariable functions

Theorem

Let f : D ⊂ Rn → R be a function with continuous second partial
derivatives around the critical point x ∈ D. Then:

a) If Hf (x) is a positive definite, then f has a local minimum at x.

b) If Hf (x) is a negative definite, then f has a local maximum at x.

c) If Hf (x) is an indefinite, then f has a saddle point at x.

d) Otherwise, the test gives no information about the function f .

These follow from the approximation f (x+ h)− f (x) ≈ 1
2hHf (x)h

T when
h ≈ 0.
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Example when n = 2

Find and classify the critical points of the function

f (x , y) = x2 + y2 − 2xy

There is a simpler test for two variable functions based on the determinant
of the Hessian matrix, see Guichard et friends 14.7
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https://www.whitman.edu/mathematics/calculus_online/section14.07.html


Example when n = 3

Find and classify the critical points of the function

f (x , y , z) = x2y + y2z + z2 − 2x .

The equations for the critical points (∇f = 0) are

0 = ∂1f (x , y , z) = 2xy − 2,

0 = ∂2f (x , y , z) = x2 + 2yz ,

0 = ∂3f (x , y , z) = y2 + 2z .

Solving these we see that the only critical point of the function f is
P = (1, 1,−1/2).
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Example when n = 3 continues

The Hessian matrix is Hf (1, 1,−1/2) =
[
2 2 0
2 −1 2
0 2 2

]
.

Let’s calculate the eigenvalues of the matrix using MATLAB, for
example

>> a = [2 2 0 ; 2 −1 2 ; 0 2 2 ]
a =

2 2 0
2 −1 2
0 2 2

>> e i g ( a )
ans =
−2.7016
2 .0000
3 .7016

So the function f has a saddle point at the point P = (1, 1,−1/2).
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