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The LP spaces are probably the most important function
spaces in analysis. This section gives basic facts about
LP spaces for general measures. These include Holder’s
inequality, Minkowski’s inequality, the Riesz-Fischer the-
orem which shows that LP is a complete space and the
corresponding facts for the L°° space.

L? spaces

In this section we study the LP spaces in order to be able to capture quantitative
information on the average size of measurable functions and boundedness of
operators on such functions. The casesO0<p<1,p=1,p=2,1<p<ocoand p =co
are different in character, but they all play an important role in in Fourier analysis,
harmonic analysis, functional analysis and partial differential equations. The
space L! of integrable functions plays a central role in measure and integration
theory. The Hilbert space L? of square integrable functions is important in the
study of Fourier series. Many operators that arise in applications are bounded in

LP for 1< p < oo, but the limit cases L1 and L™ require a special attention.

1.1 LP functions

Definition 1.1. Let y be an outer measure on R”, A c R” a y-measurable set and
f A —[-o0,00] a u-measurable function. Then f € LP(A), 1 < p < oo, if

/Ifl”du<oo-
A

THE MORAL: For p=1, f e L1(A) if and only if |f| is integrable in A. For
1<p<oo, feLP(A)if and only if |[f|? is integrable in A.

Remark 1.2. The measurability assumption on f essential in the definition. For
example, let A <[0,1] be a non-measurable set with respect to the one-dimensional
Lebesgue measure and consider f :[0,1] — R,

1, x€A,
-1, x€[0,1]1\A.

fx)=

Then f2 = 1 is integrable on [0, 1], but f is not a Lebesgue measurable function.
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Example 1.3. Let f :R" —[0,00], f(x) =|x|™" and assume that p is the Lebesgue
measure. Let A = B(0,1) = {x e R" : |x| < 1}, Q, = |B(0,1)| and denote A; =
B(0,27"*1)\ B(0,27%), i =1,2,.... Here |A| denotes the n-dimensional Lebesgue

outer measure of A c R"”. Then

o0
/ lx|"Pdx = Z/ lx| P dx
B(0,1) i=1JA;

(o] . . .
Z/ 2"Pldx (x€A; = |x| =27 = |x| P < 2™PY)
1/A4;

N

~.
I

2ﬂpllAl| < Z 2npl|B(0’2—l+1)|

18

i=1 i=1

=Q, Y 2" )" (Q, =IB(0,1)
i=1
[e.0] (o]

— Qn Z 2npi—ni+n — 2nQn Z zin(p—l) < 00,
i=1 i=1

if n(p—1)<0 < p < 1. Thus f € LP(B(0,1)) for p < 1.
On the other hand,
[e.0]
/ lx|"Pdx = Z lx| P dx
B(0,1) i=1JA;

o8} .
¥ [ amrivgy
i=1/A;

(xeA; = |x| <271 = || 7P > 2P~y

— 2np(l—1)|Ai| — Qn(2n _ 1)2—np Z onpig=in
i=1 i=1

(14; = |B(0,27" 1) - |B(0,27%)|
= Qn(z(—i+l)n _ z—in) — Qn(zn _ 1)2—”7,)
=C(n,p) ), 2P~ = oo,
i=1

ifn(p—1)=0<= p =1. Thus f ¢ LP(B(0,1)) for p = 1. This shows that
feL?(B0,1)<—p<]1.

If A =R\ B(0,1), then we denote A; = B(0,2/)\ B(0,2"1), i =1,2,..., and a

similar argument as above shows that
feLP(R*\B(0,1)) = p>1.

Observe that f ¢ L1(B(0,1)) and f ¢ L1(R* \ B(0,1)). Thus f(x) = |x|™" is a
borderline function in R” as far as integrability is concerned.

THE MORAL: The smaller the parameter p is, the worse local singularities
an L? function may have. On the other hand, the larger the parameter p is, the

more an L? function may spread out globally.
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Example 1.4. Assume that f :R" — [0,00] is radial. Thus f depends only on |x|
and, with a slight abuse of notation, it can be expressed as f(|x|), where f is a

function defined on [0,00). Then

o0
flxDdx = w,-1 / fayrtdr, (1.5)
R™ 0
where .
_ 2m?2
“n-1= Tm2)

is the (n — 1)-dimensional volume of the unit sphere B(0,1) = {x e R" : |x| = 1}.
Let us show how to use this formula to compute the volume of a ball B(x,r) =
{y e R":|y—x| <r}, with x € R” and r > 0. By the translation and scaling invariance,

we have
r"Q, =r"|B(0,1)| = |B(x,r)| = |B(0,7)|
= / xBo.»H(Y)dy = / xXonyDdy
[RIL Rn
r 1 rn
:wnfl/ Pn_ dp=wp-1—.
0 n
In particular, it follows that w,—1 = nQ, and

oms " b
mB&r) = ro Ty T T(Z+1)

Let r > 0. Then

1 1
/ —dx= / —— XR"\B(0,r)(x) dx
RPAB(O,r) 1% i OE]

1
=r" n (rx)dx
- Irxl"‘)m \B(0,r)

_ 1
= rn a/ —)(Rn\B(O’D(x)dx
R

n |x|®

_ 1
=r" 0‘/ —dx<oo, a>n,
Ri\B(0,1) ¥l

and, in a similar way,

1 n-a 1 n—-a 1
/ dezr / Wdy:r de<oo, a<n.
B(0,r) 1¥ B, 1Y B(0,1) 1X

Observe, that here we make a change of variables x =ry.
On the other hand, the integrals can be computer directly by (1.5). This gives

1 o0 1
—dxzw,l/ " d
/[r\en\B(o,r) x|® S pop P

00
_ Wn-1 _ Wn-1 poatn

a—n

Catn <oo, a>n

T —a+n

r
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and
1 o _
/ ——dx=wp1 [ p “p" Ydp
B(0,r) |x] 0
.
Wp-1 _ Wp-1 ,_
=17 pretn) — TRTL o g <n.
—-a+n 0 a-n
Remarks 1.6:

Formula (1.5) implies following claims:

1) If|f(x)| <clx|™% in a ball B(0,r), r > 0, for some a < n, then f € L1(B(0,r)).
On the other hand, if |f(x)| = c¢|x|™® in B(0,r) for some a > n, then f ¢
LY(B(0,r)).

2) If |f(x)] < clx|™® in R*\ B(0,r) for some « > n, then f € LY®R" \ B(0,r)).
On the other hand, if |f(x)| = c|x|~® in R* \ B(0,r) for some « < n, then
f & LY(®R™ \ B(0,r)).

Remark 1.7. If f € LP(A), then |f(x)| < oo for y-almost every x € A.
Reason. Let A; ={xeA:|f(x)|=i},i=1,2,.... Then
oo
{xre A:|f(x) =00} =[)Ai.
i=1
By Chebyshev’s inequality

px € At |f(x) = oo}) < u(A;) =/ ldu

i

sA(@fdu (f1=iinA;)

1
S

/lflpdpp—w>0' -
A
<00

The converse is not true, as the previous example shows.

Remark 1.8. If f € LP(A), then {x € R" : |f(x)| # 0} is o-finite with respect to u.
Reason. Let A;={xeA:|f(x)| = %}, i=1,2,.... Then
tea:ifeI20)= U A
i=
By Chebyshev’s inequality
WA =pxeA:|f(x) = 1) = / _ ldp

sip/ IflPdu<oo  (IfI>7inA;)
A

for every i =1,2,.... [ ]
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1.2 LP norm

Let A cR" a y-measurable set and 1< p <oo. The L? norm of f € LP(A) is the
number

;1)
Iy =1 e = [ 1117 i)
A
We shall see that this norm has the usual properties of the norm:

(1) (Nonnegativity) 0< [|f |, < oo,

(2) Ifll, =0 <= f =0 p-almost everywhere,

(3) (Homogeneity) lafllp =lallflp, a €R,

(4) (Triangle inequality) [If' + gllp <Iflp + 18llp-

The claims (1) and (3) are clear. For p =1, the claim (4) follows from the
pointwise triangle inequality |f(x) + g(x)| < |f(x)| +|g(x)|. For p > 1, the claim (4)
is not trivial and we shall prove it later in this section.

Let us recall how to prove (2). Recall that if a property holds except on a set of
1 measure zero, we say that it holds p-almost everywhere.

Assume that f =0 p-almost everywhere in A. Then

/ P du=/ 1P du+/ FIPdu=0.
A An{|f1=0} ) An{|fI>0}

~~

20, ZO?
Ifl=0p-ae  wAN{fI>0)=0

Thus [|f, =0.
Assume that [|[fll, =0. Let A; = {x eA:|f(x) = %}, 1=1,2,.... Then

(o0}
{xeA:|f(x)>01=JA;.
i=1
By Chebyshev’s inequality

u(Ai>=/ 1dus/ |if|Pdu<iP/|f|Pdu=o. (i1f1>1in A)
Aj A; A

=0
Thus p(A;)=0 for every i =1,2,... and

,u(UAi) <Y wAN=o.
i=1

In other words, f =0 p-almost everywhere in A.
For u-measurable functions f and g on a p-measurable set A, we are interested
in the condition f(x) = g(x) for u-almost every x € A, which means that

plix e A: f(x) # g@) =0.
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In the case f = g y-almost everywhere, we do not usually distinguish f from g.
That is, we shall regard them as equal. We could be formal and consider the

equivalence relation
f~g<f=g p-almost everywhere in A

but this is not necessary. In practice, we are thinking f as the equivalence class
of all functions which are equal to f p-almost everywhere in A. Thus L?(A)
actually consists of equivalence classes rather than functions, but we shall not
make the distinction. In measure and integration theory we cannot distinguish f
from g, if the functions are equal p-almost everywhere. In fact, if f = g p-almost
everywhere in A, then f € LP(A) < g€ LP(A) and ||f —gll, = 0. In particular,
this implies that |fl, = llgll,. On the other hand, if ||f —gll, =0, then f =g
p-almost everywhere in A.

Another situation that frequently arises is that the function f is defined only
almost everywhere. Then we say that f is measurable if and only if its zero
extension to the whole space is measurable. Observe, that this does not affect the
L? norm of f.

Next we show that L?(A) is a vector space.

Lemma 1.9.
() If feLP(A), thenaf e LP(A), a eR.
Gi) If f,ge LP(A), then f + g€ LP(A).

Proof / |af|Pdu=|a|P/ 1P dpu < co.
A A
The triangle inequality |f + g| < |f| + |g| implies that

/|f+g|d,U</Ifldu+/lg|dp<oo.
A A A

The elementary inequality

(a +b)? < (2max{a, b})? = 2 max{a?,b?}

<2P(a? +bP), a,b=0, 0<p<oo (1.10)

implies that

/|f+gl”du<2”(/ Ifl”du+/|g|”du)<oo.
A A A O

Remark 1.11. Note that the proof applies for 0 < p < co. Thus LP(A) is a vector
space for 0 < p < oco. However, it will be a normed space with the L? norm only for

p =1 as we shall see later.
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Remark 1.12. A more careful analysis gives the useful inequality

(a+b)? <2P"YaP +bP), a,b=0, 1<p<oo. (1.13)

Remarks 1.14:

(1

2)

3

If f: A — Cis a complex-valued function, then f is said to be y-measurable
if and only if Ref and Imf are y-measurable. We say that f € L1(A) if
Ref eL1(A) and Imf € L1(A), and we define

/Afd,u:/ARefdy+i/AImfdp,

where i is the imaginary unit. This integral satisfies the usual linearity

properties. It also satisfies the important inequality

‘/Afdu S/Alfldu-

The definition of the LP spaces and the norm extends in a natural way

to complex-valued functions. Note that the property lafll, = lallfl, for

every a € C and thus L? is a complex vector space.

The space L2(A) is an inner product space with the inner product

<f,g>=/Af§du, f.ge LA (A).

Here g is the complex conjugate which can be neglected if the functions

are real-valued. This inner product induces the standard L? norm, since

IIfIIz:(/AIde/J)%=(/Af7du);=<f,f>5.

In the special case that A =N and p is the counting measure, the LP(N)

spaces are denoted by /? and

lpz{(xi):ZIxi|p<oo}, l1<p<oo.
i1

1

Here (x;) is a sequence of real (or complex) numbers. In this case,

/xdu: ix(i)
N 4

=1

for every nonnegative function x on N. Thus

1

0o D

lellp = | Y lil? |
i=1

Note that the theory of L? spaces applies to these sequence spaces as well.
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Definition 1.15. Let 1 < p < co. The Hélder conjugate p’ of p is the number

which satisfies
1 1
—+ - = 1
p D

For p =1 we define p’ = oo and if p = oo, then p’ = 1.

Remark 1.16. Note that

p=2=p'=2,
l<p<2=p'>2,
2<p<oco=1<p' <2,
p—1=p' —oo,

(" =p.

Lemma 1.17 (Young’s inequality). Let 1 < p <co. Then for everya =0, b =0,

with equality if and only if a? = bP "

THE MORAL: Young’s inequality is a very useful tool in splitting a product to

a sum. Morever, it shows where the conjugate exponent p’ comes from.

Proof. The claim is obviously true, if a =0 or & = 0. Thus we may assume that
a>0and b > 0. Clearly

/ p
P pp la? 1 . 1 1
absa—+—(:>—a—,+——abl_p 20= — i, +—=-
D pbr p p\,2 D'

|=

- =20

18

p

b
Let t = a/bP’P and ¢ :(0,00) = R,

1 1
p)=—tP + — —t.
p p

Then 1
9(0)=—=, limg{#)=oco and ¢'(t)= L
p t—o0

Note that ¢'(¢) =0 < t =1, from which we conclude

1 1
(p(t)B(p(l)Zl—)+l7—1:O for every t > 0.

Moreover, ¢(t) > 0, if ¢ # 1. It follows that ¢(¢) = 0 if and only if a/bPP =¢t=1. O
Remarks 1.18:

(1) Young’s inequality for p = 2 follows immediately from

2 2
(a—b)2>0<=>a2—2ab+b2>0<=>%+3>ab>0.
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(2) Young’s inequality can be also proved geometrically. To see this, consider

the curves y = x?~! and the inverse x =y~ = yp/_l. Then

@ aP b / bp/
/ " ldx="— and / yP 71dy:—,.
0 p 0 p

By comparing the areas under the curves that these integrals measure, we

have .
PP

a b, a
abs/ xp_ldx+/ yP ldy=—+—.
0 0 p b

Theorem 1.19 (Hélder’s inequality). Let 1 < p <oo and assume that f € LP(A)
and g ELP,(A). Then fg e L1(A) and

/AlfglduS(/Alfl”du);(/Alglp/du)pl’-

Moreover, an equality occurs if and only if there exists a constant ¢ such that
[f ()P = clg(x)lp/ for p-almost every x € A.

THE MORAL: Hélder’s inequality is very useful tool in estimating a product
of functions.

Remark 1.20. Holder’s inequality states that |[fgll1 < |flpllgll,, 1< p <oo. Ob-
serve that for p = 2 this is the Cauchy-Schwarz inequality [{f,g)| < [Ifll2llgll2-

Proof. If |1, =0, then f =0 p-almost everywhere in A and thus fg =0 u-almost
everywhere in A. Thus the result is clear, if | f||, =0 or [gll,» = 0. The result is
also clear if u(A) = 0. Thus we may assume that ||fll, >0, [[gll,» >0 and u(A)>0.
Let

e ~ 8
F= £ el
Then f I£1
. Cifl, o
”f""_Hufnp T and 1€l =1

By Young’s inequality

1 _
L [ \teid :/|||~|d
||f||p||g||p//Afg w= ), \flgldp
1 -~ 1
S/(—Iflp+—,|g|p)d,u
A
1
!

p p
1 ~ 1 o 1
— > [ raps [ g du= -1
pbJa b Ja p p
=1 =1

An equality holds if and only if

1~ 1 _ ~
/(—Ifl"+—,|g|p —Ifgl)du=0,
A\D p )

-~
=0
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which implies that
1 1 o~
—IfI”P+— 18" -1fgl=0
b b

p-almost everywhere in A. An equality occurs in Young’s inequality if and only if

| f |P = |§|p’ p-almost everywhere in A. In this case, we have

1715

!
lgliy,

If@IP = lgGolP’

for u-almost every x € A. g
WARNING: feLP(A)and g€ LP(A) does not imply that fg € LP(A).

Reason. Let

1
f(O;l)_)IR: f(x)—ﬁ’ g_f’

and assume that u is the Lebesgue measure. Then f € L1((0,1)) and g € L1((0,1)),
but 1
(feXx)=fx)glx)=— and fg¢ LY((0,1).

Remarks 1.21:
(1) For p =2 we have the Cauchy-Schwarz inequality

/AlfglduS(/Aldeu)%(/Algl2du)é.

(2) Holder’s inequality holds for arbitrary measurable functions with the

interpretation that the integrals may be infinite. (Exercise)

Lemma 1.22 (Jensen’s inequality). Let 1 < p < g <oo and assume that A c R"
is a y-measurable set with 0 < u(A) < co. Then

1 1

1 ? 1 q
- p < | — q

(u(A)/A'f' d“) \(MA)/A'ﬂ d”) :

THE MORAL: An integral average is an increasing function of the power.

!
Proof. By Hélder’s inequality with the exponents % and (%) = %, we have

q-p

fra [ ([
= (/A|f|qdp)§

Remark 1.23. If 1< p <q <oco and p(A) < oo, then LY(A) c LP(A).

1-2
u(A) a. O

WARNING: Let1<p<qg<oo.Ingeneral, LA)Z LP(A) or LP(A)# L9(A).
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Reason. Let f:(0,00) = R, f(x) =x® and assume that p is the Lebesgue measure.
Then
feL'(0,1)) < a>-1 and feLY(1,00)<a<-1.

Assume that 1 < p < ¢ <oo. Choose b such that % <b< %. Then the func-

tion x’bx(o’l)(x) belongs to LP((0,00)), but does not belong to L4((0,00)). On the
other hand, the function x~° X(1,00)(x) belongs to L?((0,00)), but does not belong to
LP((0,00)). [ ]

Examples 1.24:
(1) Let A=1(0,1), u be the Lebesgue measure and 1< p <oo. Let f:(0,1) - R,

1
f&)=—F—"7

5
xP (log%)l’

Then f € LP((0,1)), but f ¢ L9((0,1)) for any q > p. Thus for every p with
1 < p < oo, there exists a function f which belongs to L?((0,1)), but does
not belong to any L9((0,1)) with g > p. (Exercise)

(2) Let 1< p < q <oo. Assume that A contains y-measurable sets of arbitrarily
small positive measure. Then there exist pairwise disjoint y-measurable
sets AjcA,i=1,2,..., such that u(A;) >0 and p(A;) — 0 as i — co. Let

[e.°]
f=2 aixa,
i=1
where a; =0 with a; — oo as i — oo are chosen so that
oo o0
Y alwA)=oc0 and Y a?u(A;)<oco.
i=1 i=1

Then f € LP(A)\L9(A). It can be shown, that L?(A) is not contained in
Li(A)if and only if A contains measurable sets of arbitrarily small positive
measure. (Exercise)

(3) Let 1< p < g <oo. Assume that A contains y-measurable sets of arbitrarily

large measure. Then there exist pairwise disjoint y-measurable sets A;
A,i=1,2,..., such that u(A;)>0 and u(A;) — oo as i — oo. Let

f=) aixa,
i-1

where a; =0 with a; — 0 as i — oo are chosen so that

(e 0] [e.e]

Y alu(A) <oco and ) aPu(A;)=oo.

i=1 i=1
Then f € L1(A)\ LP(A). It can be shown, that L?(A) is not contained
in LP(A) if and only if A contains measurable sets of arbitrarily large

measure. (Exercise)
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Remark 1.25. There is a more general version of Jensen’s inequality. Assume
that A c R" is a u-measurable set with 0 < (A) < co. Let f € L(A) such that

a<f(x)<b for every x € A. If ¢ is a convex function on (a, b), then

1 1
— du|l<s — ofdu.
w(u(A)/Af u)<u(A)/A<p fdu

The cases a = —oco and b = co are not excluded. Observe, that in this case may

happen that ¢ o f is not integrable. We leave the proof as an exercise.

Theorem 1.26 (Minkowski’s inequality). Assume 1<p <ooand f,ge LP(A).
Then f + g€ LP(A) and
If+glp<Ifip+Iglp.

Moreover, an equality occurs if and only if there exists a positive constant ¢ such
that f(x) = cg(x) for u-almost every x € A.

THE MORAL: Minkowski’s inequality is the triangle inequality for the L”
norm. It implies that the L? norm, with 1 < p < oo, is a norm in the usual sense
and that LP(A) is a normed space if the functions that coincide almost everywhere
are identified.

Remark 1.27. Elementary inequalities (1.13) and (1.30) imply that

If+glp= (/A |f+g|”du)'1’

1
<27 (/(|f|p+|g|")du)p
A

szppl((/Alfl"du ;+(/A|glpdu);)

p-1
=272 (Ifllp +1glp), 1<p<oo.

Observe that the factor 2~V is strictly greater than one for p > 1 and Minkowski’s

inequality does not follow from this.

Proof. : The triangle inequality, as in the proof of Lemma 1.9, shows that
If+glli<lfla+lgls.

: If | +glp =0, there is nothing to prove. Thus we may assume



CHAPTER 1. L? SPACES 13

that ||f + gll, > 0. By Holder’s inequality, we have
/|f+g|Pdus/|f+g|P-1|f+g|du
A A
< /A If + &P f 1+ lghdp

=/|f+g|p‘1|f|du+/|f+g|”‘1lg|du
A A

s(/AIf+g|“"1""du)plr(/Alflpdﬂ);
o[ ad ([ rad
A A

Since (p—1)p' =p and 0 < ||f + gll, < oo, we have

(/A|f+g|pdu)1_p;1s(Alflpdu);+(Alglpdu);-

It remains to consider when an equality occurs. This happens if there is an

equality in the pointwise inequality
IF )+ g)IP = |f () + g)P T F(x) + g(@)] < |f (x) + )P f ()] + g ()

for p-almost every x € A as well as an equality in the application of Hélder’s

inequality. An equality occurs in Holder’s inequality if
cilf@IP = |f(x) + g@)P = calgx)|?

for u-almost every x € A. Equality occurs in in the pointwise inequality above if
f(x) and g(x) have the same sign. This completes the proof. d

Remark 1.28. 1t is possible to prove Minkowski’s inequality directly by Young’s
inequality instead of Hélder’s inequality (exercise).

Note that the normed space LP(A), 1 < p < 0o, is a metric space with the metric

a(f,e)=IIf —glp-

1.3 L?spacesforO<p<l1

It is sometimes useful to consider L? spaces for 0 < p < co. Observe that Definition
1.1 makes sense also when 0 < p < 1 and the space is a vector space by the same

argument as in the proof of Lemma 1.9. However, [|f|, is not a norm for 0 < p < 1.
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Reason. Let f,g :R—R, f = Xi0,1) and g = Xty Then f + g = xjo0,1) so that
If +glp =1. On the other hand,

_1 _1
Iflp=2"7 and lglp=2 7.

Thus

_1 1-1
Ifllp+lgl,=2-2"7 =25 <1,
when 0 < p < 1. This shows that ], +lgll, <If +&lp. -

Thus the triangle inequality does not hold true when 0 < p < 1, but we have
the following result.

Lemma 1.29. If f,ge LP(A) and 0< p <1, then f + g€ L?(A) and
If+glp <IfI5+lglp.
Proof. The elementary inequality
(@a+b)’ <a?+bP, a,b=0, O0<p<l1, (1.30)

implies that
If+glly =/ If +gl” duS/ \f1P du+/ lglPdu=1fI5+Igl5-
A A A
However, LP(A) is a metric space with the metric
atf.9)=1f -y = [ 1f - du
A

This metric is not induced by a norm, since ||f |I§ does not satisfy the homogeneity
required by the norm. On the other hand, |||, satisfies the homogeneity, but not
satisfy the triangle inequality.
Remarks 1.31:

(1) By (1.10), we have

1 1
If+glp< (||f||§ + IIgllﬁ)E <22(Ifllp +lglp), O0<p<l.
Thus a quasi triangle inequality holds with a multiplicative constant.
@) If f,ge LP(A), f =20, g =0, then
If+gllp=Iflp,+lgly, O0<p<l1.

This is the triangle inequality in the wrong direction (exercise).

Remark 1.32. Itis possible to define the L? spaces also when p < 0. A p-measurable
function is in L?(A) for p <0, if

O</ If1P du < co.
A

If f € LP(A) for p <0, then f # 0 py-almost everywhere and |f| < co p-almost

everywhere in A. However, this is not a vector space.
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1.4 Completeness of L?

Next we prove a famous theorem, which is not only important in the theory of L?
spaces, but has a historical interest as well. The result was found independently
by F. Riesz and E. Fisher in 1907, primarily in connection with the Fourier series
which culminates in showing completeness of L2.

Recall that a sequence (f;) of functions f; € LP(A), i = 1,2,..., converges in
LP(A) to a function f € LP(A), if for every € > 0 there exists i, such that

Ifi—fllp<e when i=i,.

Equivalently,
lim ||f; = fll, =0.
1—00
A sequence (f;) is a Cauchy sequence in LP(A), if for every € > 0 there exists i,

such that
Ifi—fill,<e when i,j=i,.

WARNING: Thisis not the same condition as
Ifis1—filp<e when i=i,.

Indeed, the Cauchy sequence condition implies this, but the converse is not true

(exercise).
CLAIM: Iffj— fin LP(A) as i — oo, then (f;) is a Cauchy sequence in L?(A).

Reason. Let € > 0. Since f; — f in LP(A) as i — oo, there exists i, such that

Ifi = fllp < § when i >i.. Minkowski’s inequality implies that
Wfi=Filp<Ifi=flp+If-filp<§+5=¢
when i,j=i,. [ ]

Theorem 1.33 (Riesz-Fischer). For every Cauchy sequence (f;) in LP(A), 1 <
p < oo, there exists f € LP(A) such that f; — f in LP(A) as i — oco.

THE MORAL: LP(A), 1< p<oo, is a Banach space with the norm | -|,. In
particular, L2(A) is a Hilbert space.

Proof. Assume that (f;) is a Cauchy sequence in L?(A). We construct a subse-

quence as follows. Choose i1 such that
Ifi—filp <% when i,j=iy.
We continue recursively. Suppose that i1,i9,...,i; have been chosen such that

1 .. .
Ifi—fjllp <5 when i,j=>ip.
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Then choose i1 > i such that
||fi—fj||p<2k% when i,j=ipq1.
For the subsequence (f;,), we have
”fik_fik+1”p<2ik, k:1,2,....
Let
l 00
gl:Z|fik+1_fik| and gzzlfik+1_fik|-
k=1 k=1
Then
l 00
hmgl = llm Z |fik+1 _fikl = Z |fik+1 _fikl =8
l—o0 l—»ookzl Ee1

p-almost everywhere in A and as a limit of y-measurable functions g is a u-

measurable function. Fatou’s lemma and Minkowski’s inequality imply

1 1

p p

(/ g? du) = (/ liminfg? d[,t)
A A 1=
1
< liminf(/ gf du)p
l—00 A

I
Z |fik+1 _fikl
k=1

=liminf
l—o0

Lr(A)
!
< liminfz fiper = firlLpca)
I=oo 27

Thus g € LP(A) and consequently g(x) < oo for p-almost every x € A. It follows
that the telescoping series

fir @)+ Y (fipy () = fi, (X))
k=1

converges absolutely for u-almost every x € A. Denote the sum of the series by
f(x) for those x € A at which it converges and set f(x) = 0 in the remaining set of
measure zero. Then

F@)=Fi,@)+ D (fip ) = fi, (x))
k=1

-1
:lhm Fir @)+ Y (fip () = fi, (x))
- k=1
= Jim f;,) = Jim f;, ()
for u-almost every x € A. Thus there is a subsequence (f;,) which converges

p-almost everywhere in A. Next we show that the original sequence converges to
fin LP(A).

CLAIM: fij—finLP(A)asi— oco.
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Reason. Let € >0 and let (f;,) be a subsequence which converges to f p-almost
everywhere in A. Since (f;) is a Cauchy sequence in LP(A), there exists i, such
that |f;, — fill, <& when i,i; = i.. For a fixed i > i,, we have f;, —fi —  — fi

p-almost everywhere in A as i, — co. By Fatou’s lemma

( /A - fil? du)‘l’ - /A liminflf;, ~ fi1 alu)’£

1
sliminf(/ Ifik—fi|pdu)p<£. -
k—o0 A

This shows that f — f; € LP(A) and thus f = (f — f;) + f; € LP(A). Moreover, for
every € > 0 there exists i, such that ||f; — fl, <& when i = i,. This completes the

proof. O

WARNING: In general, if a sequence has a converging subsequence, the
original sequence need not converge. In the proof above, we used the fact that we

have a Cauchy sequence.

We shall often use a part of the proof of the Riesz-Fisher theorem, which we
now state.

Corollary 1.34. If f; — f in LP(A), then there exist a subsequence (f;,) such that
klim fi,(x)=f(x) p-almost every x€A.
—00

Proof. The proof of the Riesz-Fischer theorem gives a subsequence (f;,) and a
function g € L?(A) such that

klim fi,(x)=g(x) p-almost every x€A
—00

and f;, — g in LP(A). On the other hand, f; — f in L”(A), which implies that
fi, — f in LP(A). By the uniqueness of the limit, we conclude that f = g u-almost

everywhere in A. O

Let us compare the various modes of convergence of a sequence (f;) of functions
in LP,
Remarks 1.35:

(1) If f; —» f in LP(A) as i — oo, then

Lim [|fill, = 1flp.
1—00
Reason. By Minkowski’s inequality
Wfilp=Mfi=F+flp<Ifi=Fllp+1flp,

which implies || fill, — I, <|fi — flp. By switching the roles of f and f;,
we have [|fl, = Ifillp < |fi = flp. Thus

il =1 £ 1| <I1fi = Fllp, —0,
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from which it follows that

lim 1fill, = 1£1.

]
(2) If f; — f in LP(A) as i — oo, then f; — f in measure.
Reason. By Chebyshev’s inequality
px e A:lfi(x) - fx) = e} < gip/AVi —fiPdu
=8ip||fi—f||,‘;i“—°°»0. .

(3) If f; — f in measure as i — oo, then there exist a subsequence (f;,) such
that
klim fi,(x)=f(x) p-almost every x€A.
—00

Reason. The convergence in measure implies the existence of an almost ev-
erywhere converging subsequence. This gives another proof of the previous

corollary. n

(4) In the case p =1, f; — f in L1(A) as i — co implies not only that

.lim/|fi|dl~t=/|f|d#
i—oo J4 A

tim [ fidy= [ fap.

but also that

Reason.

/(f""f’d“ s/|fi-f|du=||f,-—f||1"”—"f’o.
A A

The following example shows that pointwise convergence almost everywhere
does not imply L? convergence and LP convergence does not imply pointwise

convergence almost everywhere.

Example 1.36. In the following examples we assume that u is the Lebesgue mea-

sure.

(1) fi; — f almost everywhere as i — oo does not imply f; — f in LP. Let
fi ' R—=R, fi(x) = x1i-1,)(®), i = 1,2,..., and f = 0. Assume that p is the
Lebesgue measure. Then f;(x) — 0 for every x € R. However, ||f;[l, = 1 for
every 1 =1,2,... and |||, = 0. Thus the sequence (f;) does not converge to
fin LP(R), 1 < p <oco.
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(2) fi — f almost everywhere as i — oo does not imply f; — f in LP. Let
fi:R—R,
fi(x)=i2)([0,;)(x), i=1,2,....
Then

/lei(x”pdx:i2p/RXfO’%)(x)dx:i2p%:i2p71<00.

Thus f; € LP(R), 1 < p < oo, f;(x) — 0 for every x € R, but
1 i
Ifillp =177 i == o0,

Thus (f;) does not converge in L?(R).

3) fi— fin L? as i — oo does not imply f; — f almost everywhere. Consider

the sliding sequence of functions f; :R — R,
f2k+,(x)=kX[L ji](x), k=0,1,2,..., j=0,1,2,...,2F 1.
2k’ ok

Then

_k pooo

| lp =R27P

which implies that f; — 0 in LP(R), 1 < p < o0, as i — co. However, the

0,

sequence (fj(x)) fails to converge for every x € [0, 1], since
limsupfi(x)=co and liminff;(x)=0
i—00 =00
for every x € [0,1]. Note that there are many converging subsequences. For
example, for_ ;(x) — O for every x € [0,1] as & — oo.
(4) A sequence can converge in L? without converging in LY. Consider f; : R —
R,
file) = Fxion@), i=1,2,..

1
Then [Ifill, =i "7, i=1,2.... Thus f — 0 in L(R), 1 < p < o0, as i — oo,
but || f;ll1 = 1 forevery i =1,2..., so that the sequence (f;) does not converge
in L1(R).

The following discussion clarifies the difference between the pointwise conven-

gence and L? convergence.

Theorem 1.37. Let 1 < p <oco. Assume that f; € LP(A), i =1,2,..., fi — f u-
almost everywhere in A as i — oco. If there exists g € LP(A), g = 0, such that
|fil < g u-almost everywhere in A for every i =1,2,...,then fe LP(A) and f; — f

in LP(A) as i — co.

THE MORAL: Pointwise convergence implies the norm convergence in L”
if the sequence is uniformly bounded by a function in L?. This is a dominated

convergence theorem in LP.
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Proof. Since f; — f p-almost everywhere in A as i — oo and |fj| < g y-almost

everywhere in A for every i =1,2,..., we conclude that
IfI=1lim fi| = lim |fi| < g
p-almost everywhere in A. Moreover, we have
Ifi = FIP <Ufil +1FIP <(g+ @) =2PgP e L'(4)

p-almost everywhere in A. By the dominated convergence theorem

1im/ Ifi—flpdu=/ lim |;  £17 dpu = 0.
1—00 A A 1—00 D
Theorem 1.38. Assume that f; e LP(A),i=1,2,... and f € LP(A), 1< p <oco. If
fi — [ p-almost everywhere in A and lim || f;ll, = f|, then f; — f in LP(A) as
1—00
i — oo.
Proof. Since |f;] <oco and |f| < oo p-almost everywhere in A, by (1.10), we have
2PAfi1P +1fIP)=1fi—fIP =0

p-almost everywhere in A. The assumption f; — f p-almost everywhere in A
implies

Hm @P(IfilP +1f1P) = |fi = FIP) =22 LI F 1P

1—00

p-almost everywhere in A. By Fatou’s lemma, we obtain
/2P+1|f|pdpsliminf/ @PAfilP +1f1P)=1fi = fIP) dp
A = JA

sli_minf(/ 2p|filpdu+/2”|f|pdu—/Ifi—flpd/u)
A A A

1—00

= lim 2p|fi|pd,u+/2p|f|pd,u—limsup/Ifi—flpd,u
1—00JA A A

i—00
= / 2"|f|"du+/ 2"|f|”du—limsup/ Ifi — fIP dp.
A A i—00 A
Here we used the facts that if (a;) is a converging sequence of real numbers and
(b;) is an arbitrary sequence of real numbers, then

liminfla; + b;) = lim a; +liminfb; and liminf(-b;)=—-limsupb;.
i—00 i—00 1—00 1—00 i—00

Subtracting f A 9P+l f1? du from both sides, we have
1imsup/ Ifi = f1Pdu<0.
1—00 A
On the other hand, since the integrands are nonnegative
liminf/ Ifi —fIPdu=0.
1—00 A
Thus
lim/ Ifi=f1Pdu=0.
1—00 A
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Remark 1.39. Let 1 < p <oco. Assume that f; € LP(A), 0 < f; < f;+1 p-almost
everywhere in A, i =1,2,.... Then the pointwise limit f = lim;_., f; exists pu-
almost everywhere in A. The monotone convergence theorem implies that

tim [ f7du= [ tim 7= [ 2 an
A Al—>® A

1—00

Theorem 1.38 (or Theorem 1.37) implies f; — f in L?(A) as i — oo.

THE MORAL: An increasing sequence of nonnegative functions in L? con-
verges in L? | if the limit function belongs to L?. This is a monotone convergence
theorem in LP.

1.5 L*™ space

The definition of the L*° space differs substantially from the definition of the
LP space for 1 < p <oo. The main difference is that instead of the integration
the definition is based on the almost everywhere concept. The class L™ consists
of bounded measurable functions with the interpretation that we neglect the

behaviour of functions on a set of measure zero.

Definition 1.40. Let A c R” be a p-measurable set and [ : A — [-o0,00] a pu-
measurable function. Then f € L®°(A), if there exists M, 0 < M < oo, such that

[f(x)I <M for u-almost every x € A.

Functions in L™ are sometimes called essentially bounded functions. The essential

supremum of f is
esssup f(x) =inf{M : f(x) < M for u-almost every x € A}
x€A
=inf{M : p({x € A : f(x) > M}) = 0}

and the essential infimum of f is

essliénff(x) =sup{m : f(x) = m for y-almost every x € A}
=sup{m:pu({x€ A: f(x)<m})=0}.

The L* norm of f is
I/ lloo = esssup|f(x)l.

x€A

It is clear that f € L°°(A) if and only if ||f|lcc < co. Note also that if f € L°(A),
then there exists M, 0 < M < oo, such that |f(x)| < M for u-almost every x € A.
This implies

-M < f(x)sM for yu-almost every x € A.
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and thus esssup,4 f(x) <oo and essinfyec4 f(x) > —oo.

THE MORAL: L% consists of measurable functions that can be redefined
on a set of measure zero so that the functions become bounded. The essential
supremum is supremum outside sets of measure zero. Observe that the standard
supremum of a bounded function f is

supf(x)=inf{M :{x€ A : f(x) > M} = p}.
x€A

WARNING: The LP norm for 1 < p < co depends on the average size of the
function, but L* norm depends on the pointwise values of the function outside
a set of measure zero. More precisely, the L? norm for 1 < p < oo depends very
much on the underlying measure ¢ and would be very sensitive to any changes
in u. The L*™ depends only on the class of sets of u measure zero and not on the
distribution of the measure u itself.

Remark 1.41. In the special case that A = N and p is the counting measure,

the L°(N) space is denoted by /°° and [ = {(x;) : sup;ep |xi| < 0o}. Here (x;) is a

sequence of real (or complex) numbers. Thus [ is the space of bounded sequences.

Example 1.42. Assume that u is the Lebesgue measure.

(1) Let f:R—R, f(x) = xg(x). Then [|fllc =0, but sup e |fx)| = 1.
(2) Let f:R* - R, f(x) = ﬁ Then f(x) < co for almost every x € R", but
f &€ L°(R").
Remarks 1.43:
(1) If lloo < sSupgeq If ().
(2) Let f € L*°(A). By the definition of infimum, for every ¢ > 0, we have

px e A:If > Ifloo+€D=0 and p(xeA:|fx)]>lfllew—eh>0.
Lemma 1.44. Assume that f € L*°(A). Then

(1) f(x)<esssup,cy f(y) for u-almost every x € A and

(2) f(x)=essinfyea f(y) for u-almost every x € A.
THE MORAL: If fe L®(A), then |f(x)| < [ f |l for u-almost every x € A.

Proof: For every i = 1,2,... there exists M; such that

M; <esssupf(y)+1
yeA

and f(x) < M; for p-almost every x € A. Thus there exists N; c A with u(N;) =
0 such that f(x) < M; for every x € A\N,;. Let N = U;’ZlNi. Then pu(N) <
221 HN;) = 0. Observe that
(o]

o0
NA\N)=A\[JN;=A\N.
i=1 i=1
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Then

f(x)sMi<esssupf(y)+% forevery x€ A\N, i=12,....
yeA

Letting i — oo, we obtain f(x) < esssup,c4 () for every x€e A\N.
(2)| (Exercise) O

Remark 1.45. Let f € L°°(A). Lemma 1.44 implies that
Iflloo = min{M : |f(x)| < M for pu-almost every x € A}.
Note that infB = minB <= infB € B where B c R is bounded from below.

Lemma 1.46 (Minkowski’s inequality for p =o0). If f, g € L°°(A), then

I +8lloo < I1flloo + 1€ lloo-

THE MORAL: Thisis the triangle inequality for the L°°-norm. It implies that
the L* norm is a norm in the usual sense and that L>°(A) is a normed space if

the functions that coincide almost everywhere are identified.

Proof By Lemma 1.44, we have |f(x)| < ||f |l for p-almost every x € A and |g(x)| <
llglleo for p-almost every x € A. Thus

If @)+ g < [f @ +18@) < I flloo + 18 lloo

for u-almost every x € A. By the definition of the L™ norm, we have ||f + glloo <
£ lloo + & lloo- U

Theorem 1.47 (Holder’s inequality for p=coand p’'=1). If fe L1(A)jage
L*®(A), then fge L1(A)
Ifgli<lgleolflly.

THE MORAL: Inpractice, we take the essential supremum out of the integral.

Proof. By Lemma 1.44, we have |g(x)| < ||glloo for py-almost every x € A. This
implies

f (x)g(x) < lIglloolf ()]

for u-almost every x € A and thus

/If(x)g(x)ldu< lglloollfIl1-
A O

Remark 1.48. There is also an L? version [|fgll, < lgllwllfll, of the previous

theorem.

Next result justifies the notation ||f |l as a limit notion of | £, as p — co.



CHAPTER 1. L? SPACES 24

Theorem 1.49. If f € LY(A) for some 1 < g < oo, then
lim [|£lp = 1flco-
p—o0

THE MORAL: In this sense, L°(A) is the limit of LP(A) spaces as p — oo.
Moreover, this gives a useful method to show that f € L*°: it is enough find a
uniform bound for the L? norms as p — oco. This gives a method to pass from
average the information [f|, to the pointwise information | fllo outside a set of

measure zero.
Proof. Assume that ||f|l; < oo for some 1< g <ooandlet p >gq. Let
Ay={xeA:|fx)>A}, A=0.

Assume that 0 < A < ||f|lco. By the definition of the L* norm, we have p(A,) > 0.
By Chebyshev’s inequality

(A)</(m)pd —i/|f|1’d <o
wAns | ) ar=75 |, 1

1
and thus |||, = Au(A,)?. Since 0 < u(A,) < oo, we have u(A;L)l/p —1as p— oo.
This implies
liunlinfllfllp =21 whenever 0<A<|foo-

By letting A — ||f|lco, we have
1ip11lg}f||f||p 2 £ llco-

On the other hand, for 1 < ¢ < p <oo, we have

1fl, = (/Alflpdu)i - (/A Iflqlflp“’du)g <IFISPIFIE.

Since [|fll4 < oo for some g, this implies

limsup[If1lp < 1f lloo-

p—oo

We have shown that

limsup I llp < If oo < liminf| £,
p—o0 p—o0

which implies that the limit exists and
J}Lngollfllp =1 lloo- O
Remarks 1.50:

(1) The assumption f € L?(A) for some 1 < p < co can be replaced with the

assumption u(A) < oo.
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(2) Recall that by Jensen’s inequality, the integral average

(ﬁ/AIflp du);

is an increasing function of p.

(3) If 0 < u(A) < 00, then for every p-measurable function

1

1
P P
u(A)/AW du) —eSSEuplfl,

lim (

p—o00

I ( ! /Ifl"’d ) inf|f|
m | ——- = essin
p—oo\ WA) Ja K A

and

1
1 » 1
lim [ —— Pdul = — |1 dul.
plﬂ)(u(A)A'f' u) eXP(“(A)/A oglf| u)

Theorem 1.51. L*>°(A) is a Banach space.

THE MORAL: The claim and proof is the same as in showing that the space of
continuous functions with the supremum norm is complete. The only difference is

that we have to neglect sets of zero measure.

Proof. Let (f;) be a Cauchy sequence in L*°(A). By Lemma 1.44, we have
Ifi@) = Fil < Ifi—filloo
for y-almost every x € A. Thus there exists N; ; ¢ A, u(N; j) = 0 such that
Ifi(x) =i <|fi—filloc foreveryx€e A\N;, ;.

Since (f;) is a Cauchy sequence in L>*(A), for every k£ = 1,2,..., there exists i
such that
Ifi—fillo<% when 1i,j>ip.

This implies
Ifi(x) = fi(x)l < % for every x€e A\N; j, i,j=1.

LetN=U‘i’21 ;‘;IN,-J. Then

pN)< Y Y N =0
i=1j=1
and
Ifitx)—fj(x)| <+ foreveryxe A\N, i,j=ip.

Thus (f;(x)) is a Cauchy sequence for every x € A\ N. Since R is complete,
there exists
lim fj(x) = f(x) forevery x€A\N.
1—00
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We set f(x) =0, when x € N. Then f is measurable as a pointwise limit of

measurable functions. Letting j — co in the preceding inequality gives
Ifix)-fx)| <} foreveryxeA\N, i=iy,

which implies

“fi_f”oo<% when i=ip.

Since [|f lloo < lfilloo + Ifi = flloo < 00, we have f € L*(A) and f; — f in L™(A) as

i — oo. ]

Remark 1.52. The proof shows that f; — f in L°°(A) as i — oo implies that f; — f
uniformly in A\ N with p(N) = 0. This means that L convergence is uniform
convergence outside a set of measure zero. Uniform convergence outside a set
of measure zero implies immediately pointwise convergence almost everywhere,

compare to Corollary 1.34 for L? with 1< p <oo.
Example 1.53. Assume that y is the Lebesgue measure. Let f; :R— R,

0, x € (—00,0),

filx) =1 ix, xE[Ol ,

for i =1,2,... and let f = y(,00). Then f;(x) — f(x) for every x € R as i — oo,
Ifilloo =1 for every i =1,2,..., |Iflloo = 1 so that

Lim (| filleo = I f lloos
1—00
but |f; — flleo =1 for every i =1,2,.... Thus
lim [|f; = flloo=1#0.
1—00

This shows that the claim of Theorem 1.38 does not hold when p = co.

1.6 Density of contfinuous functions

We discuss approximation of L? functions by compactly supported continuous
functions. We assume that the underlying measure p is the Lebesgue measure on
R™ throughout this section.

Definition 1.54. The support of a function f : R"” — [—o0,00] is
suppf ={x e R”: f(x) # 0}.

If f € C(R") and supp f is a compact set, then we denote f € Cyp(R"?) and say that f

is a compactly supported continuous function.
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THE MORAL: A function is compactly supported if and only if it is zero in the
complement of a sufficiently large ball. Thus a compactly supported function is

identically zero far way from the origin.

Remark 1.55. Let f,g:R" — R. Support of a function of has the following proper-

ties (exercise):

(1) supp(f +g) <suppf Usuppg,
(2) supp(af)=suppf,ifa#0 and
(3) supp(fg) csuppf Nsuppg.

Remark 1.56. Cy(R") c LP(R") for every 1 < p < oco. Thus compactly supported

continuous functions belong to every LP(R") with 1 < p < co.

If(x)lpdx:/ I[f@IPdx< sup [f(x)|P|suppf]|<oo,
R suppf xesupp f

since a continuous function assumes its maximum in a compact set and a compact
set has finite Lebesgue measure.
p =00

If)l< sup |f(x)<oo,
xesupp f

from which it follows that ||f o < co. -
Theorem 1.57. Assume that 1< p <oo. Then Cy(R") is dense in LP(R").

THE MORAL: This means that for every € > 0 there is a function g € Co(R")
such that ||f — gll, < €. Equivalently, any function f € LP(R") can be approximated
by functions f; € Co(R") in LP(R"), that is, ||f; — fll, — 0 as i — co.

WARNING: Cop(R") is not dense in L°°(R"), because the limit of continuous
functions in L°°(R") is a continuous function. If this would be true, then this would
imply that all functions L>°(R") are continuous, which is not the case. There is
also another reson why this is not true. The constant function f:R” - R, f(x)=1
cannot be approximated by compactly supported functions in L*°(R").

Proof. Assume f € LP(R"), 1< p <oo.
Let f; = fXB(O,i), 1=1,2,.... Then

lim fij(x)=f(x) for every xeR".
1—00

Observe that
Ifi—FIP <Ufil+1FDP <2PIfI1P, i=1,2,....
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Since |f|? € Li(r™), by the dominated convergence theorem (Theorem 1.37), we

have

_lim/ |f,»—f|de=/ lim |f; — fIPdx =0.
1—00 JRn R7 100

Thus compactly supported functions in LP(R") are dense in L?(R") and we
may assume that f is such a function.

Since f = f* — f~, we may assume that f = 0 and that f = 0 outside a
compact set. Indeed this set can be chosen to be a closed ball B(0,i) for i large
enough.

Since f =0 is measurable, there exists an increasing sequence of simple

functions s; such that

lim s;(x) = f(x) for every xeR".

1—00
Since 0 <s; <f, we have

/ sf dx < fPdx<oo
R~ R"
and thus s; e LP(R"), i =1,2,.... Observe that
Isi = FIP <(s;| +IfDP <2PIfI1P, i=1,2,....

Since |f|? € LL(R"), by the dominated convergence theorem (Theorem 1.37), we
have
lim Isi—flpdxz/ lim |s; — f|P dx =0.
R

i—oco Jpn n i—00
Thus we may assume that f is a nonnegative simple function with a compact
support.

A simple function can be represented as the finite sum f = Zleai XA;»
where the sets A; are bounded, measurable and pairwise disjoint, a; = 0. Thus we
may assume that f = y4, where A is a bounded measurable set.

By an approximation result for measurable sets, there exist an open set

G o A and a closed set F' c A such that |G \FI% < e, where € > 0. The set F is
compact, since it is closed and bounded.

We recall the following version of the Urysohn lemma. Assume that G c R”
is an open set and that F < G a compact set. Then there exists a continuous

function g : R" — R such that

(1) 0<g(x)<1forevery x e R",
(2) g(x)=1for every x € F' and
(3) suppg is a compact subset of G.

Reason. Let
U = {x e R" : dist(x,F) < 3 dist(F,R" \ G}
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Then F cU cU c@, U is open and U is compact. Let g :R" — R,
dist(x,R* \U)

dist(x, F) + dist(x,R* \U)’

where dist(x,A) =inf{|x — y| : y € A} is the distance of x from A.

glx)= (1.58)

It is clear that 0 < g(x) < 1 for every x € R”.

Let x € F. Then dist(x,F) = 0. Since F c U, there exists r > 0 such that
B(x,r)cU. This implies dist(x,R* \U) = r > 0 and thus g(x) = 1.

Moreover, suppg = {x € R" : g(x) # 0} « U, which is a closed and bounded set
and thus compact.

We claim that x — dist(x, A) is continuous for every A # @. Let x, x’' € R”. Then

dist(x,A) < |x -yl < |x—x'| +|x — y]

for every y € A. This implies dist(x,A) — |x — x'| < dist(x’,A) and thus dist(x,A) —
dist(x',A) < |x —«x'|. By switching the roles of x and x' we have dist(x',A) —

dist(x,A) < |x —«'|, from which we conclude
|dist(x, A) — dist(x’, A)| < |x — x|

Note that dist(x,A) is even Lipschitz continuous with the constant 1. This implies

that g is continuous. Thus g has all the required properties. n

THE MORAL: This shows that there exists a continuous function g which
satisfies yr < f < yg. Note that it is easy to find semicontinuous functions with

this property, since yr and yg will do.

Let g be a function as in (6). Note that y4(x)— g(x) =1-1 =0 for every
x€F, yalx)—g(x)=0-0=0 for every x e R* \ G and |[y4 — g| < 1. Thus

1
P 1
”f_g”p:(/ IXA—glpdx) <|G\F|? <e.
Rn

Remarks 1.59:
(1) The proof above shows that Co(R") is dense in LP(R"*;u), 1 < p < oo, for
every Radon measure p on R”.
(2) The proof above shows that simple functions are dense in LP(R") for

1< p<oo.

Remark 1.60. Let us briefly discuss the question of separability of the L? spaces.
Recall that a metric space is separable, if there is a countable dense subset of
the space. The spaces LP(R") with 1 < p < oo are separable, since the collection
of rational linear combinations of the characteristic functions of those sets that
are finite unions of intervals with rational endpoints (or dyadic cubes) gives a
countable dense subset (exercise). However, for other measures than the Lebesgue
measure separability depends on the measure. The space L°°(R") is not separable,
since {YB(x,r) : x €R™, r > 0} € L°°(R™) is an uncountable set, but there does not exist

a countable dense subset. Observe that || yp(x,r) — XB(x,s)llco = 1 for r # s (exercise).
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1.7 Continuity of translation

We assume that the underlying measure p is the Lebesgue measure on R” through-
out this section. We discuss a useful continuity property of the integral. This result
will be an important tool in proving that convolution approximations converge to
the original function. Moreover, it can be used to prove the Riemann-Lebesgue
lemma, which asserts that the Fourier transform F(¢) of a function f € L1(R")
has the property limj¢—. f (&) = 0 (exercise). For the Fourier transform, see [7,
Chapter 13].

Theorem 1.61. Assume f € LP(R"), 1 < p <oo. Then
lim | |f(x+y)—Ffx)IPdx=0.
y**O R7
THE MORAL: Let7,f(x)=f(x+y), y€R", be the translation. Then
lim|zyf - fllp, =0.
y—0

Thus the translation 7, f depends continuously on y at y =0.

WARNING: The claim does not hold when p = co. In fact, if f € L>°(R")
satisfies limy_.q |7, f — flloo = 0, then f can be redefined on a set of measure zero

so that it becomes uniformly continuous (exercise).

Reason. Let f:R—R, f = x[0,00)- Then

esssup|f(x+y)—f(x)|=1 forevery y#O0.
xeR ]

Proof. Let € >0 and y € R”. By Theorem 1.57, there exists g € Co(R") such that

( () - g dx)” <
- 3

The translation invariance of the Lebesgue integral implies that

1 1
p p
( If(x+y)—g(x+y)|pdx) =( If(x)—g@)Pdx| .
R™ R™

Since g € Co(R"), there exists r > 0 such that g(x) = 0 for every x € R" \ B(0,r) and
thus g is uniformly continuous in R"”. Here we used the fact that a continuous
function is uniformly continuous on compact sets. Thus there exists 0 < § <1 such
that

lglr+y) - gl < ————— forevery xeR", Iyl<s.
3|B(0,r +1)|»
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Since g(x + y) — g(x) = 0 for every x € R” \ B(0,r + 1), we have

1 1
( lg(x +y) — g(x)IP dx)” = / g+ y)— g dux|”
R™ B(0,r+1)

& 1 E
<— " _IBO,r+ D)7 ==,
31B(0,r +1)|7 3

Therefore

( / G+ 9)— FGP dx)E
Rn

—

1 1
"y ( lgx+y)—gx)” dx :
Rﬂ

s( If(x+y)—glx+y)Pdx
Rﬂ

1
. ( 8()— FGIP dx) ’
[Rn
€
3

1.8 Local L? space

If we are interested in pointwise properties of functions, it is not necessary to
require integrablity conditions over the whole underlying domain. We assume
that the underlying measure p is the Lebesgue measure on R” throughout this
section.

Definition 1.62. Let Q c R” be an open set and assume that f : Q — [—o00,00] is

a measurable function. Then f € L} (Q), if

/Iflpdx<oo, 1< p<oo,
K

and

esssupl|f|<oo, p=o0
K

for every compact set K c Q.

Examples 1.63:

LP(Q)c Lﬁ) (), but the reverse inclusion is not true.

(1) Let f:R® =R, f(x) = 1. Then f ¢ LP(R") for any 1< p < oo, but f € L? (R")

loc
for every 1< p <oo.

(2) Let f:R" —R, f(x)=|x|"2. Then f ¢ L'®"), but f € L} ®").

(3) Let f:R" — R, f(x)=e!l. Then f ¢ LX(R"), but f € L], (R™).

(4) Let £: B0, 1)\ {0} =R, f(x)= le_%. Then f ¢ LP(B(0,1)\{0}) for 1 < p < oo,
but f € L (B(0,1)\{0}) for 1< p < oco. Moreover, f ¢ L*(B(0,1)\ {0}), but
f € LS (B(0, 1)\ {0}).
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(5) For p =00, let f:R* = R, f(x)=|x|. Then f ¢ L>°(R"), but f € LS (R").

loc

Remarks 1.64:
(1) Ifl1<sp<g<oo,then L®(Q)cLi (Q)cL? (Q)cL: (Q).

loc loc loc loc

Reason. By Jensen’s inequality

1 1
1 1 ? 1 q
— [ | Idxs(—/ de) s(—/ qu) <esssu ,
|K|/Kf & ) & /M supf|

where K is a compact subset of Q with |K|> 0. n
(2) C(Q) <L} (Q) for every 1< p <oo.

Reason. Since |f| € C(Q2) assumes its maximum in the compact set K and

K has a finite Lebesgue measure, we have

/ IfIPdx < |K|(esssup |f )P < |K|(max|f |}’ <oo.
K K K ]

8) feL? (R") < f eLP(B(0,r)) for every 0 < r < co < f € LP(A) for every

loc
bounded measurable set A c R”.

1
sup ( / PP dx)P
KcRr K

is not a norm in Lﬁ)c([ﬂin), since it may be infinity for some f € Lﬁ)C(IR”).

(4) In general, the quantity

Consider, for example, constant functions on R”.



The Hardy-Littlewood maximal function is a very useful
tool in analysis. The maximal function theorem asserts
that the maximal operator is bounded from LP to LP for
p >1and for p =1 there is a weak type estimate. The weak
type estimate is used to prove the Lebesgue differentiation
theorem, which gives a pointwise meaning for a locally
integrable function. The Lebesgue differentiation theorem
is a higher dimensional version of the fundamental theorem
of calculus. It is applied to the study of the density points
of a measurable set. As an application we prove a Sobolev

embedding theorem.

The Hardy-Littlewood maximal
function

In this section we restrict our attention to the Lebesgue measure on R"”. We prove
Lebesgue’s theorem on differentiation of integrals, which is an extension of the
one-dimensional fundamental theorem of calculus to the n-dimensional case. This
theorem states that, for a (locally) integrable function f : R” — [—o0,00], we have

f(dy=f(x)

lim ——
r—0 |B(x,r)| B(x,r)

for almost every x € R". Recall that B(x,r) ={y e R" : |y — x| < r} is the open ball
with the center x and radius r > 0. In proving this result we need to investigate
very carefully the behaviour of the integral averages above. This leads to the
Hardy-Littlewood maximal function, where we take the supremum of the integral
averages instead of the limit. The passage from the limiting expression to a
corresponding maximal function is a situation that occurs often. Hardy and
Littlewood wrote that they were led to study the one-dimensional version of the
maximal function by the question how a score in cricket can be maximized: “The
problem is most easily grasped when stated in the language of cricket, or any other
game in which the player complies a series of scores of which average is recorded.”As

we shall see, these concepts and methods have a universal significance in analysis.

2.1 Definition of the maximal function

We begin with the definition of the maximal function.

Definition 2.1. The centered Hardy-Littlewood maximal function Mf : R* —

33
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[0,00] of f € L{, (R")is defined by

Mf(x) = sup

Ifldy,
r>0 |B(x,r)| B(x,r) fldy

where B(x,r) ={y e R" : |y — x| < r} is the open ball with the radius r > 0 and the
center x € R™.

THE MORAL: The Hardy-Littlewood maximal function gives the maximal
integral average of the absolute value of the function on balls centered at a point.
As we shall see later, the maximal function is used to give bounds for other more
complicated operators. Instead of the precise value at a given point, we are
interested in estimates for the maximal function.
Remarks 2.2:
(1) It is enough to assume that f :R” — [—00,00] is a measurable function in
the definition of the Hardy-Littlewood maximal function. The assumption

fe Llloc([R”) guarantees that the integral averages are finite.

(2) Mf is defined at every point x € R". If f = g almost everywhere in R”, then
Mf(x) = Mg(x) for every x € R".

(3) It may happen that M f(x) = oo for every x € R”. For example, let  : R” — R,
f(x) =|x|. Then M f(x) = oo for every x € R"™.

Reason. Let x # 0 and r > 2|x|. Then B(O,%) < B(x,r). To see this, let
y € B(0,5). Then |y—x|<|yl+|x| < §+5 =r. It follows that y € B(x,r).
Thus we have

1
lfldy =
[B(x,7)| JB(x,r) fldy IB(x, )l JB(0,5)

1 2 n-1
= — —_ d
Qnrnwn 1/0 pp o

Q 3
—n”/op"dp

Qprt

n 1 (r)n+1

lyldy

S rrn+1\2
. n r r—oo
Shrip o ® "
(4) There are several seemingly different definitions, which are comparable.
Let

~ 1
Mf(x)zsup—/|f(y)|dy
B>x |B| B

be the noncentered maximal function, where the supremum is taken over

all open balls B containing the point x € R?, then

Mf(x)<Mf(x) forevery xecR".
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On the other hand, if B = B(z,r) 3 x, then B(z,r) c B(x,2r) and

1 |B(x,2r)| 1
— dy < d
|B|/B'f WIEY < B ) Ba2m] Jawan ! Y
1
L — d
B Jog TN
<2"Mf(x).

This implies that Mf(x) < 2"Mf(x) and thus
Mf(x)<Mf(x)<2"Mf(x) forevery xeR".

(5) It is possible to use cubes in the definition of the maximal function and
this will give a comparable notion as well.

Examples 2.3:
(1) Let f:R—R, f = ¥[4,5]- Then Mf(x) =1, if x € (a,b). For x = b a calculation
shows that the maximal average is obtained when r = x —a. Similarly,

when x < a, the maximal average is obtained when r = b — x. Thus

b-—

_Z\x—abv x<a,
Mf(x)=11, x€(a,b),

b—a

el x=b.

Note that the centered maximal function M f has jump discontinuities at
x=aandx=5b.
THE MORAL: feLYR)does notimply Mf € L1(R).

(2) Consider the noncenter maximal function Mf of f :R—R, f = Xla,b]- Again
Mf(x) =1, if x € (a,b). For x > b a calculation shows that the maximal
average over all intervals (z—r,z +r) is obtained when z = %(x +a) and
r= %(x —a). Similarly, when x < a, the maximal average is obtained when
z=13(b+x)and r= (b —x). Thus

b-a

Pl x<a,
Mfx)=11, x€(a,b),

b_

ﬁ, x=b.

Note that the uncentered maximal function M f does not have discontinu-
ities at x =a and x = b.

Lemma 2.4. If f € C(R"), then |f(x)| < Mf(x) for every x € R".

THE MORAL: This justifies the terminology, since the maximal function is

pointwise larger or equal than the absolute value of the original function.
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Proof. Assume that f € C(R") and let x € R”. Then for every € > 0 there exists
6 >0 such that |f(x)— f(y)| < e if |[x—y| <. It follows that

1
_1 o
’IB(x,r)l /B(m'f Wldy -1f @)

1
~|iB@,nI ~1f@hd
' |B(x,r) B(x’r)(lf(y)l Ifhdy

<

B B(x’r)||f(y)|—|f(x)||dy

1
[B(x,)| JBx,r)

<

lf(y)—fx)ldy <e,

if 0 <r<¢. Thus

|[f(x)] = lim lf(»)dy <Mf(x) forevery xeR".
r=0|B(x,")| JB@,r) O
The next thing we would like to show is that M f : R* — [0,00] is a measurable
function. Recall that a function f : R” — [—-o0o0,00] is lower semicontinuous, if
the distribution set {x € R" : f(x) > A} is open for every A € R. Since open sets
are Lebesgue measurable, it follows that every lower semicontinuous function is

Lebesgue measurable.

Lemma 2.5. Assume that f € Llloc([R”). Then Mf is lower semicontinuous.

Proof. Let Ay ={xeR": Mf(x)> A}, 1> 0. For every x € A, there exists r > 0 such

that
1

[B(x,7)| JBx,r)

If)ldy > A.

Since the volume of a ball is a continuous function of the radius of a ball, we have

1
lfldy =lim —— liflady,
|B(x,r)| B(x,,.)fy Y r’/—»r |B(x,r")| B(x’r)fy Y
r'>r

which implies that there exists r’ > r such that

—_ dy > A.
B B(x’r)lfyl y

If |x—x'| <r'—r, then B(x,r) c B(x',r'), since |y—x'| < |y—x|+|x—x'| <r+ (' -r)=71'
for every y € B(x,r). Thus

1 1
A< ——0n lfWldy € ———— If»id
IB(x,r’)I B(x,r) f Y Y IB(x,r’)l B!, f Y Y
1

=——— WMIdy<sMfx), if |x—«|<r' —r.
IB(x', )| B(x’,r/)|fy| y f | |

This shows that B(x,r' —r) c A, and thus A is an open set. a
Example 2.6. Let R >0 and [ :R* — R, f(x) = xp(o,r)(x) for every x € R*. Then

M{f(x)=1 for every x € B(O,R) and Mf(x) <1 for every x € B(0,R). Thus Mf is
not continuous on dB(0,R).



CHAPTER 2. THE HARDY-LITTLEWOOD MAXIMAL FUNCTION 37

Reason. Let x € B(0,R). Since B(0,R) is open, there exists r > 0 such that B(x,r) c
B(0,R). Thus

1
M > — dy=1.
flx)= B o lf()ldy

On the other hand, we have

1
[B(x,")| JBx,r)

fMldy<lflleo=1

for every r > 0. This shows that

Mf(x)=sup

If(yldy =1.
r>0 1BG, )| JB@,r) Fyldy

This proves the first claim.
To prove the second claim, let x € dB(0,R) and r > 0. Then there exists
y € B(x,r)\ B(0,R) such that B(y, %) cB(x,r)\ B(0,R). Thus

_ |B(x,r)nB(0,R)|

fMldy = —— ,
fldy |B(x,r)] B(x,r)nB(0,R) |B(x,r)]

[B(x,r)| B(x,r)

where

|B(x,r)nB(0,R)| = |B(x,r)| - |B(x,r)\ B(0,R)|
<|B(x,r)| = |B(y, 5)| = |B(x,r)| - |B(x, 5)

1\" 2 -1
=IB(x,r))|—(§) IBlx, )l = —-—|B(x, ). ]
This shows that
Mf(x) Foldy<Zt <1
X)=Ssu <
r>(I)) [B(x,)| JB(x,r) INey n

for every x € B(0,R).

2.2 Hardy-Littlewood-Wiener maximal func-
fion theorems

Another point of view is to consider the Hardy-Littlewood maximal operator

f— Mf. We shall list some properties of this operator below.
Lemma 2.7. Assume that f,g€ Llloc(lRZ”).

(1) (Positivity) M f(x) = 0 for every x € R".
(2) (Sublinearity) M(f + g)(x) < M f(x) + M g(x).
(3) (Homogeneity) M(af)(x)=|a|Mf(x), a € R.
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(4) (Translation invariance) M(z,f)(x) = (t,Mf)(x), y € R", where 7, f(x) =

flx+y).
(5) (Scaling invariance) M (6,1 )(x) = (6o M[)(x), where 6,1 (x) = f(ax) with
a>0.
Proof. Exercise. U

Example 2.8. Let 0 < @ <n and define f: R” \ {0} — R, f(x) = |x|"%. Let x € R” \ {0}
and write z = IJ;_I By Lemma 2.7 (5) and (3), we have

Mf(x)=Mf(lxlz) = (61 Mf)(2)
=M@ f)2)=|x|""Mf(2).

Thus M f(x) =M f(2)|x|~“ for every x € R" \ {0}, where z € dB(0,1). Since f is radial,
the value M f(z) is independent of z € dB(0,1). Moreover,

Mf(z)=su lf(y»ld
P& =8 el Joy T
< sup If(y»)|dy +sup ———— lf(y)ldy
0<r<} [B(z,7)| JB(z,r) rsl [B(z,7)| JB(z,r)
_ 1
s(%) a+C(n)sup— lyI~%dy

rsl [B(O,r + DI JB0,r+1)

1 r+1 1
<2%+ —_— " d
C(n)ill;) (r+1)"/0 p-p P
=2

<2%+c(n,a)sup(r +1)"% < co.
rzi

This shows that M f is a constant multiple of f.

We are interested in behaviour of the maximal operator in L? spaces. The
following results were first proved by Hardy and Littlewood in the one-dimensional
case and extended later by Wiener to the higher dimensional case. We begin with
an L estimate, which follows directly form the definitions.

Lemma 2.9. If f € L°(R"), then M f € L°(R") and IMf oo < I lloo-

THE MORAL: The maximal function is essentially bounded, and thus finite
almost everywhere, if the original function is essentially bounded. Intuitively this
is clear, since the integral averages cannot be larger than the essential supremum

of the function.

Proof. For every x € R" and r > 0 we have

1 1

dy <
IB(x,r)I B(x’r)|f(y)| Y s |B(x,r)|

1/ llool B2, Pl = (I f lloo-

Thus M f(x) < |If oo for every x € R” and | Mf lloo < || f llco- O
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Another way to state the previous lemma is that M : L°(R") — L°(R") is
a bounded operator. As we have seen before, f € L(R) does not imply that
Mf € LY(R) and thus the Hardy-Littlewood maximal operator is not bounded in
LY(R™). We give another example of this phenomenon.

Example 2.10. Let r > 0. Then there are constants ¢; = ¢1(n) and cg = ca(n) such

that " "
cir cor
— <M - < —=
G+ SMOson) @ < g7

for every x € R" (exercise). Since these functions do not belong to LL(R"), we see
that the Hardy-Littlewood maximal operator does not map L1(R") to L1(R").

Next we show even a stronger result that Mf ¢ L1(R") for every nontrivial
feLi ®).
Remark 2.11. Mf € LY(R") implies f =0.
Reason. Let r >0 and let x € R” such that |x| = r. Since |y —x| < |yl +|x| <r+|x| <
2|x| whenever |y| < r, we conclude that B(0,r) c B(x,2|x|). This implies

1
M > d
vl AL

1
s— 1 [ty
1B, 21D /a0, T 1V

C
- [ oy,
lxI™ /B0,

For a contradiction, assume that f # 0. Choose r > 0 large enough that

/ FWIdy>0.
B(0,r)

Then M f(x) = c/|x|* for every x € R* \ B(0,r). Since c/|x|" ¢ LY®"\ B(0,r)) we
conclude that Mf ¢ L1(R"). This is a contradiction and thus f = 0 almost every-

where. [ ]

The remark above shows that the maximal function is essentially never in L1,
but the essential issue for this is what happens far away from the origin. The next

example shows that the maximal function does not need to be even locally in L'.

Example 2.12. Let f:R— R,

Then f € L1(R), since

J : 1 LIS
/le(x)l x—/o og x= 0__10gx<00
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For 0 < x < L, we have

2’
1 2x 1 X
Mf@)> - / Fndy > — / F)dy

2x 0 2.96 0
1 /x 1 17 1

= —_— —dy:— -_
2x o y(logy)? 2x|, logy

1

=— L0, 1y).

leogxe: (0,3))
Thus Mf ¢ L (R).

After these considerations, the situation for L1 boundedness looks rather
hopeless. However, there is a substituting result, which says that if f € L, then
M belongs to a weak L! space.

Definition 2.13. A measurable function f : R” — [—0c0,00] belongs to weak L1(R"),

if there exists a constant ¢, 0 < ¢ < oo, such that

Hx e R™:|f(x)| > A} < for every A>0.

>0

Remarks 2.14:
(1) L1(R") c weak L1(R™).

Reason. By Chebyshev’s inequality

1
i €R” £ 1F GOl > )| < - / FG)Idy
A JxeRm 1 F@)I> A
1
$/—1||f||1 for every A >0. -

(2) Weak L1(R") ¢ L1(R").
Reason. Let f :R" — [0,00], f(x) = |x|™™. Then f ¢ LY (R"), but

1
{x e R™ :|f(x)| > A} = |B(0,A"7)|
= Qn(/r%)" =Q,A71 forevery A>0.

Here Q,, =|B(0,1)|. Thus f belongs to weak Li®"). =

(8) The weak L! space is sometimes denoted by L1*°(R") and it can be
equipped with a seminorm

I£ | proony = sup Al{x € R™ : | £ (x)] > A}
A>0

The seminorm has the properties (exercise)
(@ Ifllg1eo@n) =0 < f(x) =0 for almost every x € R",

(b) laflpieomn) = lalllfllLLeo@gn) for every a € R and
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© If + 8l 1c0Rny < 2(||f||L1,OO(Rn) + ||g||L1,oo([Rgn))-

Next we discuss an L! estimate for the Hardy-Littlewood maximal operator.
By Remark 2.11, we recall that the Hardy-Littlewood maximal is integrable only
if the function is zero almost everywhere. In particular, this shows that there is
no hope to show that the Hardy-Littlewood maximal operator would be bounded
on L. Our goal is to show that the Hardy-Littlewood maximal operator maps L'

to weak L1. The proof is based on the extremely useful covering theorem.

Theorem 2.15 (Covering lemma). Let & be a collection of open balls B such
that

diam( U B) < oo.
Bes

Then there is a countable (or finite) subcollection of pairwise disjoint balls B(x;,r;) €
F,1=1,2,..., such that
U Bc GB(xi,57‘l‘).
BeF i=1
THE MORAL: Let A be abounded subset of R” and suppose that for every
x € A there is a ball B(x,r,) with the radius r, > 0 possibly depending on the
point x. We would like to have a countable subcollection of pairwise disjoint balls
B(x;,r;), i =1,2,..., which covers the union of the original balls. In general, this

is not possible, if we do not expand the balls. Thus

(e8] (e e}
A < U B(x,ry)| < UB(xi,5ri) < Z |B(x;,5r;)|
x€A i=1 i=1
=5" Y |B(x;,r;)l =5"||JB(xi,ri)| <5"| | Blx,rx)|.
i=1 i=1 x€A

Note the measure of A can be estimated by the measure of the union of the balls

and the measures of Uyca B(x,7y), U‘i’ilB(xi, 5r;) and U‘L?ZlB(xi ,Ii) are comparable.

THE STRATEGY OF PROOF: The greedy principle: The balls are selected
inductively by taking the largest ball with the required properties that has not

been chosen earlier.

Proof. Assume that B(x1,r1),...,B(x;_1,ri—1) € & have been selected. Let

i-1
di= sup{r :B(x,r)e&F and B(x,r)n|JB(xj,rj)= ¢}.
j=1
Observe that d; < oo, since sup r <oo. If there are no balls B(x,r) € & such
B(x,r)eF
that
i-1
B(x,r)n | B(xj,r;) =9,
=1
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the process terminates and we have selected the balls B(x1,7r1),...,B(x;-1,7i-1).
Otherwise, we choose B(x;,r;) € & such that
i-1
ri> %di and B(xl-,r,-)ﬂ UB(xj,rj): @.
j=1
We can also choose the first ball B(x1,r1) in this way.

The selected balls are pairwise disjoint. Let B € & be an arbitrary ball in
the collection %. Then B = B(x,r) intersects at least one of the selected balls
B(x1,r1),B(x9,r2),..., since otherwise B(x,r)NB(x;,r;) = ¢ for every i =1,2,...
and, by the definition of d;, we have d; = r for every i =1,2,.... This implies

ri>ldi >1r50 forevery i=1,2,...,
2 2 y

and by the fact that the balls are pairwise disjoint, we have

oo [e.e]
)UB(xi,ri) = Z |B(x;,r;i)| = oo.
i=1 i=1
This is impossible, since 72, B(x;,r;) is bounded and thus |U‘;§1B(x,~,ri)| < oo.
Since B(x,r) intersects some ball B(x;,r;), i =1,2,..., there is a smallest index
i such that B(x,r)nB(x;j,r;) # @¢. This implies
i-1
B(x,r)n |JB(xj,rj)=9

J=1
and by the selection process r <d; < 2r;. Since B(x,r)NB(x;,r;) # ¢ and r < 2r;,
we have B(x,r) c B(x;,5r;).

Reason. Let z € B(x,r)nB(x;,r;) and y € B(x,r). Then

ly—x;|<|y—z|+|z—x;| <2r+r; <5r;.

This completes the proof. d

Remarks 2.16:
(1) The factor 5 in the coverin lemma is not optimal. In fact, the same proof
shows that this factor can be replaced with 3.

(2) A similar covering lemma holds true for cubes as well.

(3) The condition
diam( U B) < oo
BeF

in the covering lemma can be replaced by
sup{diam(B) : B € ¥} < oo,

see [4, Theorem 1, p. 27] and [9, Theorem 2.1].

(4) Some kind of boundedness assumption is needed in the covering lemma.
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Reason. Let B(0,i), i =1,2,.... Since all balls intersect each other, the
only subfamily of pairwise disjoint balls consists of one single ball B(0, )
and the enlarged ball B(0,5:) does not cover U‘;ZIB(O, i)=R". =

Next we discuss a weak type estimate for the Hardy-Littlewood maximal

operator. One might want to apply Chebyshev’s inequality and conclude that

1
|{x€|R”:Mf(x)>M|s—/ Mf(y)dy
A J xern:M 0> 1)

1
s; Mf(y)dy forevery A>0.
Rn

However, this estimate is not useful, since Remark 2.11 shows that the Hardy-
Littlewood maximal is integrable only if the function is zero almost everywhere.

Thus the right-hand side is infinity unless the function is zero almost everywhere.

Theorem 2.17 (Hardy-Littlewood I). Let f € LY(R"). Then

n

5
Hx e R™ : Mf(x)> A} < 7||f||1 for every A>0.

THE MORAL: The Hardy-Littlewood maximal operator maps L' to weak L!.
It is said that the Hardy-Littlewood maximal operator is of weak type (1,1).

Proof. Let Ay ={xeR" : Mf(x)> A}, A>0. For every x € A, there exists ry, >0
such that
1

_— dy>2 2.18
B B(x’rx)lf(y)l y> (2.18)

We would like to apply the covering lemma, but the set Uyea, B(x,7y) is not
necessarily bounded. To overcome this problem, we consider the sets Ay N B(0,k),
k=1,2,.... Let & be the collection of balls for which (2.18) and x € Ay nB(0,k). If
B(x,ry) € %, then

1 1
Qan=IB(x,rx)I<Z/ If(y)ldyszllfllb

Blx,ry)

so that

diam( ) Blxro)<oo
x€ANB(0,k)

By the covering lemma, we obtain pairwise disjoint balls B(x;,r;), i =1,2,..., such
that

o0
Ay nB(0,k)c U B(x;,b5r;).
i=1

This implies

o0
142 NB(O, k)| < ’UB(xi,5ri)
i=1

(o] o0
< ) IB(x;,5r;)| =5" ) |B(x;,ry)|
i=1 i=1

5noo

5" 5"
X ironay=2 [ Fldy< Zifhn.
A 3B A Juz B A
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Finally,
. 5"
[Axl =kllm |AxNB(0,k) < 7“)“”1-

Remark 2.19. f € LY(R™) implies M f < oo almost everywhere in R”.

Reason.

n

5
[ €R": Mf ()= coll < [we R : Mf()> M < —Ifl1 =0 as A—oco. m

The next goal is to show that the Hardy-Littlewood maximal operator maps
LP? to L? if p > 1. We recall the following Cavalieri’s principle.

Lemma 2.20. Assume that y is an outer measure, A c R” is y-measurable set
and f: A — [-00,00] is a y-measurable function. Then

/|f|pdu=p/ WP luxe A |f(x)>A)dA, 0<p<oo.
A 0

Proof Fubini’s theorem implies

[ @l
/Iflpd,u=/ )(A(x)p/ AP dAd p(x)
A " 0

=p / / XA@10,£nMAP ! dAd ()
R:o 0
» [ ta@oirenwi duoar
0oo R”
=P/0 ﬂp_l/ﬂn XAX) Y (rerr:| f) >0 () dp(x) d A

:p/ WP lu(lx e A1 f(x) > A dA. O
0

Remark 2.21. More generally, if ¢ :[0,00) — [0,00) is a nondecreasing continuously
differentiable function with ¢(0) =0, then

/<P°|f|dﬂ=/ @'Muxe A:|f(x) > AD)dA.
A 0

(Exercise)

Now we are ready for the Hardy-Littlewood maximal function theorem.

Theorem 2.22 (Hardy-Littlewood II). Let f € LP(R"), 1 < p <oco. Then Mf €
LP(R") and there exists ¢ = c(n, p) such that |Mf|, <clfl,.

THE MORAL: The Hardy-Littlewood maximal operator maps LP to L? if p > 1.
It is said that the Hardy-Littlewood maximal operator is of strong type (p, p).

WARNIN G : The result is not true p = 1. Then we only have the weak type
estimate.
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Proof. Let f = f1+ fo, where f1 = fX{\f|>4}’ that is,
2

. { F@), If@)]>

A
2
0, Ifl<i.

’

Then |£1(x)| > 4 if |f(x)| > 4 and thus

Ifl(x)ldx=/ If1@P1f1(0)11 P dx
R" {weR™If(©)>§)

<3)"PIFIL < oo,

This shows that f; € LL(R?). On the other hand, |fa(x)| < % for every x € R", which
implies || f2lloo < % and f2 € L°°(R"™). Thus every L? function can be represented as

a sum of an L! function and an L™ function. By Lemma 2.9, we have

o[>

”Mf2”oo < ||f2||oo <

From this we conclude using Lemma 2.7 that
Mf(x)=M(f1+ fo)x) < Mf1(x)+ Mfo(x) < Mf1(x)+ %

for almost every x € R* and thus M f(x) > A implies M f1(x) > % for almost every
x € R™. It follows from Theorem 2.17 that

e eR™ : Mf(x)> M < [{x e R" : Mf1(x) > 4}

5n
N £l

2-5™
= / [f(x)ldx
A Jwerr:i 1> 2)

for every A > 0. By Cavalieri’s principle and Fubini’s theorem, as in the proof of

<

Lemma 2.20, we obtain

o0
|Mf|pdx=p/ AP ix e R™ : MF(x)> A} dA
R2 0

sp-2~5”/ /113’2/ If ()| dxd A
0 {xeR™:|f (x)|> 4}

2[f ()|
=p-2-5”/ If(x)l/ AP 2dAdx
R” 0

2.5"
_P / FI2F P dx
p - 1 R™
.9pP .5
P2 P da.
p-1 Jgn

This completes the proof. d
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Remarks 2.23:
(1) The proof above gives

n

1
p
1) Iflp, 1<p<oo

p5

IMFI SQ(
P\ p

for the operator norm of M : LP(R") — LP(R"™). Note that it blows up as

p — 1 and converges to 2 as p — oo.

(2) As a byproduct of the proof we get the following useful result. Let 1< p <
r < g <oo. Then for every f € L"(R") there exist g € LP(R") and h € L1(R")

such that f = g +h. Hint: g = fyr>1-

(3) The proof above is a special case of the Marcinkiewicz interpolation the-

orem, which applies to more general operators as well. In this case, we

interpolate between the weak type (1,1) estimate and the strong type

(00, 00) estimate.

2.3 The Lebesgue differentiation theorem

The Lebesgue differentiation theorem is a remarkable result, which shows that

a quantitative weak type estimate for the maximal function implies almost ev-

erywhere convergence of integral averages using the fact that the convergence is

clear for a dense class of continuous functions. This result holds at every point for

a continuous function, see the proof of Lemma 2.4.

Theorem 2.24. Assume f EL%OC(R”). Then

f-f@ldy=0

lim
r—0|B(x,7)| JB(xr)

for almost every x € R".

Remark 2.25. In particular, it follows that

fndy=f(x)

lim ———
=0 |B(x,7)| JB(xr)

for almost every x € R".

Reason.
' ! / Fn)d —f(x)—' ! / (F5) - fGnd
|B(x,r)| B(x,r) Yy B |B(x,7)| B(x,r) Y Y
1

<

- dy —0
B B(x’r)lf(y) fldy

for almost every x e R" as r — 0.
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Note that this implies

|f ()] = lim lfidy

r—0|B(x,7)| JB(xr)

< sup lf»ldy =M f(x)
>0 |B(x,r)| B(x,r)
for almost every x € R". For a continuous function the inequality above holds at

every point, see Lemma 2.4.

THE MORAL: Alocally integrable function is a limit of the integral aver-
ages at almost every point. Observe, that Lebesgue’s differentiation tells that
the limit of the integral averages exists and that it coincides with the function
almost everywhere. This gives a passage from average information to pointwise

information.

Proof We may assume that f € L1(R"), since the theorem is local. Indeed, we may
consider the functions f; = fxp(,i), i = 1,2,.... Define an infinitesimal version of

the Hardy-Littlewood maximal function as

f¥(x)=limsup If(y)-f&)ldy.

r—0 1B, ")l /B,

We shall show that f*(x) = 0 for almost every x € R". The proof is divided into six
steps.

Clearly f* = 0.
@|(f+e) <f+g".

Reason.

1

1BGx, )| - d
\B(x,r)| B(x,r)|(f+g)(y) (f + ) )| dy

<

lg)—g®)dy. =

- d
B B(x’r)lf(y) f@l y+|B(x,r)| e

If g is continuous at x, then g*(x) =0.

Reason. For every € > 0 there exists § > 0 such that |g(y) — g(x)| < € whenever
|x —y| <&. This implies

— lgy)—gx)dy<e, if 0<r<é.
BG, Jppy o0 £ .

If ge C(R"), then (f —g)* =f*.

Reason. By (2) and (3), we have
(f-g"'<f " +(-g"=f" and f"<(f-g)"+g =(f-2)",

so that the equality holds. n
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B £+ <Mf+If1.

Reason.

1 1
—f@ldy< —— d
BGer) B(x,r)lf(y) f@l S B B(x,r)(lf(y)l+|f(x)|) y

SBGr)| d
B Jpie, [N+ V@)

<SMf(x)+If ()l n

If f*(x) > A, by (5) we have M f(x)+|f(x)| > A, from which we conclude that
MfF (x) > 2 or |f(x) > . By Theorem 2.17 and Chebyshev’s inequality, we have

e eR™: f*(x) > M < [{x eR": Mf(x) > 3}| + [{x e R : |f ()| > 4}

2-5" 2
< Tl

2(5" +1)
—Ifl1.

Finally, we are ready to prove the theorem. Recall from the measure and
integration theory that compactly supported continuous functions are dense in
LY(R"), see Theorem 1.57. Thus for every € > 0 there exists g € Co(R"?) such that
If —gll1 <e. Then

M eR™: F*(x) > A =[x eR":(f —g)*(x)>A}|  (Property (4))

25” 1
< (67 )Ilf gli  (Property (6))

2(5” +1)
<——=¢.
A
Letting € — 0, we conclude that [{x € R"” : f*(x) > A}| = 0 for every A > 0. It follows
that

R @ >0 = | fre R £ @) > 3}
i=1
<)

i=1%

=0.

{xeR": f*x)> 1}

=0

This shows that f*(x) < 0 for almost every x € R* and (1) implies f*(x) = 0 for

almost every x € R". a

Definition 2.26. A point x € R” is a Lebesgue point of f € Llloc(R"), if there exists
a € R such that

lim (y)-aldy=0.
r—0 |B(x,7)| B(x,r)|fy @

THE MORAL: The Lebesgue differentiation theorem asserts that almost every
point is a Lebesgue point for a locally integrable function. Thus a locally integrable

function can be defined pointwise almost everywhere.
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Remarks 2.27:

(1) We would like to define the Lebesgue point so that a is replaced with f(x),
but there is a problem with this definition since the equivalence class of f
is defined only up to a set of measure zero. If f = g almost everywhere, the
functions have the same Lebesgue points. Thus the notion of a Lebesgue
point is independent of the representative in the equivalence class in
Ly (™).

(2) If x is a Lebesgue point of f, then

fydy=a.

lim

=0 |B(x,7)| /B,

In particular, the limit exists and it is independent of the representative in
the equivalence class f. Thus we may uniquely define the pointwise value
of f by the above limit at a Lebesgue point.

(3) Whether x is a Lebesgue point of f is completely independent of the value
f(x). In fact, the function f does not even need to be defined at x. By the
Lebesgue differentiation theorem, almost every point x € R" is a Lebesgue
point of f € Llloc([R”). Moreover, if f is a specific function in the equivalence
class in LIIOC(IR”), then for almost every x the number a is f(x).

Example 2.28. Let f : R — R be the Heaviside function

1, x>0,
fx)= %, x=0,
0, x<0
Then
1 xX+r
lim — f(y)dy=f(x) forevery xeR,

r—=02r J .,

but 0 is not a Lebesgue point of f.

1 /" 1 [0 1 [T
— —_ = — _ 1_
2r/_rlf(y) aldy 2r/_r|a|dy+2r/0 [1-aldy

1 1
=§|a|+§|1—a|;ﬁ0 for every a€R,r>0. n

Reason.

Next we remark that the use of balls is not crucial in the Lebesgue differentia-
tion theorem. The theory of maximal functions can be done with cubes instead
of balls, for example. As we shall see, the geometry of the sets does not play role
here.

Definition 2.29. A sequence of measurable sets A;, i =1,2,..., converges regu-
larly to a point x € R”, if there exist a constant ¢ > 0 and a sequence of positive
numbers r;, i =1,2,..., such that
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(1) A;cBG,ry),i=1,2,...,
(2) limr; =0 and

1—00

(3) |A;l<|B(x,r)l<clA;l,i=1,2,....
THE MORAL: The conditions (1) and (2) ensure that the sets A; converge to
x. The condition (3) ensures that the convergence is not too fast with respect to
the Lebesgue measure: the volume of each A; is at least certain percentage of the
volume of B(x ;). Note that x does not have to belong to the sets A;.
Examples 2.30:

(1) Let

Qx,l)= {yelR” Hyi—xil< L 5, 1= 1,...,n}

be an open cube With the center x € R* and the side length [ > 0.
CLAIM: Q( X, =T )cB(x r).

Reason. Let y € Q(x, \/—ﬁr). Then |y; —x;| < 2= f’ i=1,...,n, which implies
- ? 2\3
ly ==l = (;b’i _xi|2) < (n(\/—ﬁ) ) =7,
1=

Thus y € B(x,r). [ ]

CLAIM: |B(x,r) = C‘Q(x,\%r)‘.
Reason.

|B(x,r)| = M ‘Q (x %r)‘

|Q(x ,fr)l
‘(;;):,,n Qx.Zr)| @ =1BO,DD
cfofetr)]. emem= .

Thus the the cubes Q(x, 2 TaTi ) converge regularly to x if r; — 0 as i — co.

(2) Let AcB(0,1) be arb1trary measurable set with |[A| > 0 and denote
Ar(x)=x+rA={yeR":y=x+rz, z€ A}.

Then A,(x) cx+rB(0,1) = B(x,r) and

_ |B(x, 1) _ r*|B(0,1)]
|B(x,r)| = A0l |A-(x)] = Al [A ()l

1B(0,1)|
Al

Thus the the sets A,, converge regularly to x if »; — 0 as i — oco. This

=clA, ()|, c=c(n)=

means that we can construct a sequence that converges regularly from an
arbitrary set A < B(0,1) with [A]|>0.

For example, if A = B(0,1)\ B(0, 1), then A,(x) = B(x,r)\ B(x,%) and x ¢
A, (x) for any r > 0.



CHAPTER 2. THE HARDY-LITTLEWOOD MAXIMAL FUNCTION 51

Theorem 2.31. Assume that f € Llloc([R{”) and let x be a Lebesgue point of f. If

the sequence A;, i =1,2,..., converges regularly to x, then
. 1
lim / If(y)—fx)Idy=0.
i—oo |Ajl A,

THE MORAL: The Lebesgue differentiation theorem holds for any regularly

converging sets.
Proof:

1
|A;]

C i—o00
- dys ———— — dy —— 0.
/Ai = FDNEY < B0l S, T~ @My 0

Remark 2.32. The converse of the previous theorem is valid. Assume that f €
Ll

loc
regularly to x, there exists

(R™) and let x € R*. If for every sequence A;, i = 1,2,..., that converges

1
lim

dy,
Jim |Ai|Aif(y) y

then x is a Lebesgue point of f. (Exercise)

Hint: By interlacing two sequences, show that the limit is independent of the
sequence. Then show that we may assume that the limit is zero. Then assume
that r; — 0 and take

A;=B,r))n{yeR":f(y) =0} or A;=B(x,r;)n{yeR":f(y)<0}

depending on which choice satisfies |A;| = |B(x,r;)l/2. Show that

im——- ¥)dy=0.
i—oo |B(x,r;)| B(x,"i)f ne

2.4 The fundamental theorem of calcu-
lus

As an application of the Lebesgue differentiation theorem, we prove the following

theorem of Lebesgue in the one-dimensional case.

Theorem 2.33. Assume that f € L1([a,b]) and let F : [a,b] — R,

F(x)= fydy.
[a,x]
Then F'(x) exists and F'(x) = f(x) for almost every x € [a, b].

THE MORAL: Thisis ageneral version of the fundamental theorem of calculus,

which is elementary in the case f € C([a, b]).
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Proof. Define f(x) =0 for every x € R\ [a,b]. Let r; >0 with lim;_,,7; =0 and
denote A; = (x,x+r;), i =1,2,.... Then the sets A; converge regularly to x. By
Theorem 2.31

lim w = lim i Fndy = f(x)

t=o0 ri 1= Ty J(x,x4r;)

for almost every x € R. Since the sequence is arbitrary, we conclude that F’ (x)
exists and F', (x) = f(x) for almost every x € R.
Similarly, by choosing A; = (x —r;,x), i =1,2,..., we obtain

. Flx-r)-F(x)
lim ——=

i—00 ri

=f(x)

and F’ (x) = f(x) for almost every x € R. Therefore F’(x) exists and F’(x) = f(x) for
almost every x € [a, b]. a

Remark 2.34. Assume that f € L1([a,b]) and define F : [a,b] — R,

F(x)=F(a)+ fndy.

[a,x]

Then F'(x) = f(x) for almost every x € [a,b] and thus

F(x)=F(a)+ / F'(y)dy. (2.35)

[a,x]
PROBLEM: What do we have to assume about the function F to guarantee
that (2.35) holds?

(1) If F € C'([a,b]), then (2.35) holds.
(2) If F = y[_1,1; then F' = 0 almost everywhere in R, but (2.35) does not hold.
(3) It is not enough that F is differentiable everywhere.

Reason. Let F:R— R,
2 i L
x“sin=, x#0
F(x)= x
0, x=0.

Then F'(x) exists for every x € R, but F’ ¢ L1(R) (exercise). Thus (2.35) does

not make sense. [ ]

(4) It is not enough that F € C([a,b]), F'(x) exists for almost every x € [a,b]
and F' € L1([a, b]).

Reason. For the Cantor-Lebesgue function (see Measure and Integral)

F()=1#0=F(0)+ / F'(y)dy.
[0,1] n
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THE FINAL ANSWER: The formula (2.35) defines an important class
of functions: A function F :[a,b] — R is absolutely continuous if there exists
f € LY([a,b)) such that

F(x)=F(a)+ fdy

[a,x]

for every x € [a,b]. It follows that f(x) = F'(x) for almost every x € [a, b].

2.5 Points of density

We discuss a special case of the Lebesgue differentiability theorem. Let A cR” a

measurable set and consider f = y4. By the Lebesgue differentation theorem

|ANB(x,r)|
o = XAl

lin(l) 1a(y)dy =1lim

[B(x, )| JB(x,r) -0 |B(x,r)|

for almost every x € R™. In particular,

|ANB(x,r)|

lim B =1 for almostevery xe€A

and
[ANB(x,r)|

lim B =0 for almost every xeR"\A.

Definition 2.36. Let A be an arbitrary subset of R”. A point x € R” is a point of

density of A, if
i |ANB(x,r)|
m— =
r—0 |B(x,r)|

THE MORAL: Density points are measure theoretic interior points of the set.
Loosely speaking, the small balls around x are almost entirely covered by A. The
points with zero density belong to the measure theoretic complement of the set. In
this case, the small balls around x are almost entirely covered by the complement
of A. The Lebesgue differentiation theorem asserts that almost every point of a
measurable set is a density point and almost every point of the complement of

measurable set is a point of zero density.

Examples 2.37:
(1) Let I; = [2—(2i+1)’2—2i]’ i=1,2,.... Then |I;| = 9-2i _ 9—(2i+1) _ 2—(2i+1)’
i=1,2,.... Let A =U, I;. Then

AnB(0,272%) = I,
i=k

and thus

1 4 1

o0
—2ky| _ - =
|[AnB(0,27°")| = Z 92i+1 ~ 3 92k+1’

i=k

k=12,....
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This implies
JAnB(0,27%) 4 1 2% 1
|B(0,2_2k)| T3 22k+1 9 ~3
and
A 03(0’27(2k+1))l ~ 4 1 22k+1 ~ 1
|B(0,2-2k+D)|  322%k+3 2 6
Thus the limit

|[ANnB(0,r)
im——
r—0 |B(0,r)|
does not exist and x = 0 is not a density point of A.

(2) Let A={xeR?:|x;|<1, i=1,2}. Then

X€EA,
x€0AN{(1,1),(-1,1),(-1,-1),(1,-1)},
x€{(1,1),(-1,1),(-1,-1),(1,-1)},
xeRZ\A.

m |[ANB(x,r)|
1 _— =
r—0 |B(x,r)|

O A= MR

(3) Let A={x=re? :r>0, 0<0<2na},0<a<1. Then
|AnB(0,r)] .. 27«
im——— =lim— =
r—0 |B(O,r)| r—0 271
Remarks 2.38:
(1) There does not exist a Lebesgue measurable set A < R" such that
|[ANB(x,r)| = %IB(x,r)l for every xe€A,r>0.
Reason. Assume that there exists such a set A. Note that

|A| = |ANB(x,r)| = §|B(x,r)| >0, if r>0.

By the Lebesgue differentiation theorem

[ANB(x,r)|
m-———=
r—0 |B(x,r)|

for almost every x € A and thus on a set of positive measure in A. This
contradicts with the fact that

|[AnB(x,r)] 1
im— ==
r—0 |B(x,r)| 2
for every x € A. n

(2) Let A cR" be a measurable set. Then

|A]| >0 <= A has a Lebesgue point.
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3

(4)

(5)

Reason. By the Lebesgue differentiation theorem the a set of Lebesgue
points of f = y4 in the set A has positive measure. Thus there exists at
least one point with the required property.

Assume that there exists x € A such that

’ |ANB(x,r)
im— =
r—0  |B(x,r)|

Then for every € > 0 there exists § > 0 such that

|[ANB(x,r)

>1-¢ when O<r<é.
|B(x,7)|
This implies

|Al=|AnB(x,r)| >0 -¢)|B(x,r)| >0, O<e<]l.

If A cR" is a measurable set such that

|[ANB(x,r)
m—————— <1
r—0 |B(x,r)|

for every x € A, then |A| =0.
Assume that QO cR” is an open set. If there exists y, 0 <y <1, such that

QN B(x,r)| = y|B(x,r)| forevery xe€dQ,r>0,

then |0Q| =0.
Recall that the complement of a fat Cantor set is an open set whose bound-

ary has positive measure. This shows that the claim above is nontrivial.

Reason. Since Q c R” is open, we have dQ2 c R* \ Q. By the Lebesgue
differentiation theorem

QnB(x,
lim ﬁ =0 for almost every x € dQ.
On the other hand,
QN B(x,r)|
rlir(l)lBT,r)l =2y>0 forevery xe0Q.
Thus [0Q| =0. ]

Let A be an arbitrary subset of R*. Then

A NB(x,
}%ﬁzl for almost every x€A.

Note that this holds without the assumption that A is measurable. More-
over, a set A cR" is measurable if and only if
[ANB(x,r)|
im——=
r—0 |B(x,r)|
For the proof, see [7, p. 464] and [9, Remarks 2.15 (2)].

=0 for almost every x€R"\A.
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2.6 The Sobolev embedding

This section discusses an application of the Hardy-Littlewood-Wiener theorem, see
Theorem 2.22. We begin with considering the one-dimensional case. If u € Cé(IR),
there exists an interval [a,b] c R such that u(x) = 0 for every x € R\ [a,b]. By the

fundamental theorem of calculus,

u(x)=u(a)+/ u'(y)dyz/ u'(y)dy, (2.39)

o0

since u(a) =0. On the other hand,

b 00
0=u(b)= u(x)+/ u'(y)dy = u(x) +/ u'(y)dy,

so that o
u(x)z—/ u'(y)dy. (2.40)

Equalities (2.39) and (2.40) imply

2u(x)=/ u'(y)dy—/ u'(y)dy

(o0]

:/ u(y)(x—y)dy+/ u(y)(x—y)dy
N x [x =yl
! —
:/u(y)(x ¥) dy,
R lx—yl

from which it follows that

1 [ u(y)x—
u(x)=—/wdy for every xe€R.
2Jr  lx—yl

Next we extend this to R”.
Lemma 2.41. Ifu e C(l)([R”), then

1 / Vu(y)-(x—y)

| o dy forevery xeR”,
x=y

u(x) =
Wn-1

where w,_1 = n ), is the (n — 1)-dimensional measure of dB(0,1) and
v ( u ou )
u=|—,...,—
Ox1 Oxp,
is the gradient of u.

THE MORAL: Thisis a higher dimensional version of the fundamental theo-

rem of calculus
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Proof. If x e R™ and e € dB(0, 1), by the fundamental theorem of calculus
o0 6 o0
u(x)z—/ —(u(x+te))dt=—/ Vu(x +tv)-edt.
o Ot 0
By the Fubini theorem

wp_1u(x) = u(x) 1dS(e)
0B(0,1)

o0
:-/ / Vu(x +te)-edtdS(e)
0B(0,1) JO

o0
= —/ / Vu(x +te)-edS(e)dt (Fubini)
0 0B(0,1)

=— Vulx+y)-= dS(y)dt
/o /BB(O,t) T R

(y =te,dS(e) =t1""dS(y))

© y
=—/ / Vu(x+y)- ——dS(y)dt
0 JoB,) ly|™

Vu(x+y)-
- _ / % dy (polar coordinates)
n y

:_/ Mdz (z=x+y,dy=dz)
[Rn

|z —x|?
_/ Vu(y)~(x—y)d
noo le—yI?

By the Cauchy-Schwarz inequality and Lemma 2.41, we have
1 / Vu(y)-(x—y)

Wn-1 n lx—y|™
1 Vuy)llx -yl

Wn-1 Jrn  lx—yI"

1 Vu(y)l
— dy
Wn-1 Jpn lx—yI"

1
I (IVu|)(),

lu(x)| = dy

dy

N

(2.42)

n—-1

where I,f, 0 < a <n, is the Riesz potential

Tof(x)= / EACI (2.43)
R

n X =y

Lemma 2.44. If 0 < a <n, there exists a constant ¢ = ¢(n,a) > 0, such that

/ MdySW“Mf(x)
B

@) ="

for every x e R* and r > 0.

THE MORAL: Some other operator, in this case the Riesz potential, can be
bounded by the maximal operator.
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Proof Let x € R* and denote A; = B(x,r27%). Then

/ £l dy= i/ IF I dy
B, lx—y1"7¢ icoJana;,, lx—yItTe

sz(z—"l) /A'|f(y)|dy

=0

[e.e] 1 a—n r a r —-n

ingo(é) (5) Q, (5) /Ai Ifidy

o0 1 a—n r a 1
ZQn = - d

Zo(z) (2) |Ai|/Ai'f(y)' Y
sch(x)r“oi (2%)

=0

=cr®Mf(x). O

Theorem 2.45 (The Sobolev inequality for the Riesz potentials). Assume that
1<p<nandO0<a<n/p. Then there exists a constant ¢ = ¢(n, p,a) >0, such that
for every f € LP(R") we have

Iofllp <clfllp, where p*= )
n-ap

THE MORAL: The proof applies the Hardy-Littlewood-Wiener theorem to

conclude a norm estimate for some other operator, in this case the Riesz potential.

Proof: If f =0 almost everywhere, there is nothing to prove, and thus we may
assume that f > 0 on a set of positive measure. This implies M f(x) > 0 for every
x € R". By Holder’s inequality

1 1
/ %dys (/ If(y)l”dy)p (/ e -y @ P dy|"
RA\B(x,r) 1€ — VI RP\B(x,r) RPA\B(x,r)

where

{o0]
/ e — y|(@mP dy:/ / = y@TP dS(y)dp
R?\B(x,r) r 0B(x,p)

(o0}
= / pla—mPp / 1dS(y)dp
r 0B(x,p)
N et

=Wn-1 pn—l

o0 , 1
=wn-1/ ple P Hrlqp
r

Wn-1 (o ’
n g (n a)p.

- (n—-a)p’'—-n
The exponent can be written in the form

n—(n—a)p':n—(n—a)L:ap—_n,
p-1 p-1
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and thus

/ MG < b1,
RA\B(x,r) [ — ¥

Lemma 2.44 implies

()]
|Iaf(x)|</ V—y’ley:/ ...dy+/ ..dy
n X =yl B(x,r) RPA\B(x,r)

<c (r“Mf(x)+r“‘% I f||,,).

By choosing

(i) >0

we obtain
1-a2 “%
HofN<cMf) "“nlfl,".

By raising both sides to the power p* = np/(n — ap), we have
p” P %nP
Haf @ <cMfPIfl"" .

The Hardy-Littlewood theorem II (Theorem 2.22) implies
® P x P %
Laf@P dy<clfl,"” / Mf@)Pdx<clfly™ 115
Rn Rn

and thus

p,p

ab+ L
Iaflps <clfl,” * =clflp. O

Corollary 2.46 (The Sobolev inequality). If 1 < p < n, there exists a constant
¢ =c(n,p) such that
lwllp= < clllVulllp

for every u € Cé([R{”).

Proof. By (2.42), we have

lu(x)| < I1(|Vul)(x) for every xeR",
n-1
Thus Theorem 2.45 implies
lullps < cllI1(VuDlps < clliVulllp. ]

Remark 2.47. Let QQ cR" be an open set and u € C(l)(Q). By defining u(x) = 0 for

every x € R"\ Q, we have

1 1
(/ Iulp*dx)p SC(/ IVulpdx)p.
Q Q



In this section we consider the definition and properties
of convolution. Convolutions are used to approximate and
mollify LP functions. Moreover, many operators in har-
monic analysis and partial differential equations can be
written as a convolution. Approximations of the identity
converge in LP and pointwise almost everywhere under
appropriate assumptions. As an application we show that
C°(R™) is dense in LP (R") for 1 < p < oo. Solution to the
Dirichlet problem with LP boundary values for the Laplace
equation in the upper half space can be expressed as a
convolution against the Poisson kernel.

Convolutions

In this section we work with the Lebesgue measure on R”.

3.1 Convolution

We begin with a formal definition of convolution.

Definition 3.1. Assume that f, g :R" —[-00,00] are measurable functions. On a

formal level, the convolution f * g : R” — [—00,00] is defined by

(f*g)(x)=/ fglx-y)dy,
Rn

whenever this makes sense.

THE MORAL: The convolution becomes a standard product of functions after

taking the Fourier transform, see [7, Chapter 13].

WARNING: Itisnot clear that integral of the function y — f(y)g(x — y) exists.
This requires further analysis.

Remark 3.2. The function y — f(y)g(x — y) is a measurable function for a fixed

x €R”,

Reason. Let U R be an open set. The translation function @ : R” — R”, ®(y) =
x —y is invertible and its inverse mapping maps measurable sets to measurable
sets, so that

(go®) W)= (g7 U))

is a measurable set. This shows that y — (go®)(y) = g(x — y) is a measurable
function. Thus y — f(y)g(x — y) is a measurable function as a product of two

measurable functions. =

60
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THE MORAL: The convolution is well defined for nonnegative functions f and

g, but the integral may be infinite for every x € R".

A more careful analysis is needed to deal with sign changing functions. Then
we need conditions under which the integrals of the positive and negative parts
are finite. We begin with considering the measurability question with respect to
the product Lebesgue measure on R2? = R” x R". This is needed in the application
of Fubini’s theorem, which ensures almost everywhere finiteness of |f| * |g| under
appropriate conditions.

Remarks 3.3:
(1) Assume that f :R" — [-o00,00] is a Lebesgue measurable function on R”.
Then f : R" x R" — [—00,00], f(x,y) = f(x — y) is a Lebesgue measurable
function on R?".

Reason. For an arbitrary set E c R", let E = {(x,y) : x — y € E}. We show
that {(x,y): f (x,y) <a} is a Lebesgue measurable set in R?" for every a € R.
Let A={z€R":f(z)<a}. Since f is a Lebesgue measurable function, the

set A cR" is Lebesgue measurable for every a € R. Then

{(,): flx,y) <a} ={(x,y): flx—y) < a}
={(x,y):x—y€cA}=A.

Since A is a Lebesgue measurable set, there exists a G5 set G o A such

that G\ A is a set of n-dimensional Lebesgue measure zero. It follows that

E={,y):x—yeE}={(x,y):x—ye G\(G\E)}
={(x,y):x—yeGI\{(x,y):x—ye G\E}=G\G\E.

We claim that G is a G set and G \ E is a set of 2n-dimensional Lebesgue
measure zero. This implies that E is Lebesgue measurable in R?”. First
we note that if U < R" is an open set, then U < R?" is an open set. By
considering countable intersections of open sets we see that if G c R" is
a G set, then GcRisa G set. Since |G\ A| =0, there exist open sets
U; G\ A such that |U;| — 0 as i — co. By a slight abuse of notation we
denote both n-dimensional and 2n-dimensional Lebesgue measures by |- |.
We compute |l7i NB(0,k)|, k=1,2,..., by observing that

XT. B0 k)% Y) = XU, (X = ¥)XBO,#()
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for every (x,y) € R2*. By Fubini’s theorem we obtain
T N B0, k)] = / Xoemopey)dzdy
R n

- /Rzn XU, (x = y)xBo.p () dxdy

) / " (/R xui(x =y )dx) X8O dy
:/ (/ XUl(x)dx
n Rr

=|U;lIB(0,k)l, k=1,2,....

B,y

Here we also applied the translation invariance of the Lebesgue integral.
Since G\A NB(0,k) c U; nB(0,k) for every i,k =1,2,... and |U;| — 0 as
i — 0o, we conclude that

IG\ANB(O,k)| <|U; nB(O,k)| = U;||B(0, k)| — 0

as i — oo and thus Im NB(0,k)| =0 for every k£ =1,2,.... Finally, we

note that
IG\A|= G\NANB(,k)| < ZIG\AnB(O,k)I:O.
k=1 k=1 ]

(2) Assume that f :R* — [-00,00] is a Lebesgue measurable function on R”.
Then f : R2" — [—00,00] f(x,y) = f(v) is a Lebesgue measurable measurable
function on R?".

Reason. Since f is a Lebesgue measurable function, the set A ={y e R":

f(y) <a} is Lebesgue measurable in R” for every a € R. Since
{(x,y) eR?™ : f(xx,y) <a} =R" x A,

we conclude that the set is Lebesgue measurable for every a € R. Thus f is

a Lebesgue measurable function on R2". =

(3) Assume that f,g :R" — [—00,00] are Lebesgue measurable functions on
R”™. Then f : R2" — [—o0,00] f(x,y) = f(y)g(x—y) is a Lebesgue measurable
measurable function on R?".

Reason. The function (x,y) — f(y) is Lebesgue measurable by (2) and the
function (x,y) — g(x — y) is Lebesgue measurable by (1). As a product of
two measurable functions, the function (x,y) — f(y)g(x — y) is Lebesgue

measurable. ]

The next result settles the integrability questions in the definition of the

convolution under certain assumptions.
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Theorem 3.4 (Young’s theorem). Assume that f € LP(R?), 1< p<ooand g€
LY(R"). Then (f = g)(x) exists for almost every x € R™ and [|f * gll, < flplgll1.

THE MORAL: The convolution of an LP function and L! function is well

defined. Moreover, it is an L? function.

WARNING: f,geLYR") does not imply that the function y — f(y)g(x — y) is
in L1(R") for a fixed x € R". A product of integrable functions is not necessarily
integrable. However, ||f * gll1 < |Ifl1llgll1 and thus f * g e LY(RM).

Proof. First assume that f and g are nonnegative. Then f(y)g(x—y)is a
nonnegative measurable function on R2” and by Fubini’s theorem for nonnegative

functions and translation invariance of Lebesgue integral, we have
rrpwax= [ [ roew-yayds
Rn n Rn

:/ fglx—y)dxdy
R™ JR™

=/ f(y)(/ g(x—y)dx)dy
R® R™
:/ f(y)(/ g(x)dx)dy
R® R®
= / fdy / glx)dx.
R7 R

Thus ||f * gll1 = Ifll1llgll1 and the claim holds in this case.

Let us then consider the general case. By the begining of the proof |f]| * |g|
exists almost everywhere. Thus for almost every x the function y — |f(y)g(x — y)|
is integrable. This means that for almost every x the function y — f(y)g(x —y) is
integrable and we conclude that f * g exists almost everywhere. Since |f * g| <
If1+1gl, we have

If =gli<Ufl=lgla=1fl1lgls.

I(f * g)(x)] s/ Ifllgle—y)ldy
Rn
<esssupl|f(y)l lg(x—y)dy
yeRn R7

=flsollglli.

This implies that ||/ * gllco < [/ loollgll1-
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By Holder’s inequality

I(f*g)(x)ls/ If (Wllglx—yldy
Rn

1
= [ fD)llg-yI7 g -7 dy
Rn

1 1
P '

S( If(y)lplg(x—y)ldy) (/ Ig(x—y)ldy)
R™ R7

1 1

D I

=(/ If(y)lplg(x—y)ldy) (/ Ig(y)ldy)p.
R™ R

I(f * @IP < llgl? / IFWIPlgk - yldy
Rn

This implies that

and by Fubini’s theorem we have

/ (f * )P dx<ligl? / / IF@IPlg(x -y dydx
R” R”? JR™

= Ilgllf/ lfFIP (/ |g(x—y)|dx) dy
R7 Rr

=gl / If(y)l”( / |g(y)|dx)dy
R™ R™

p

= gl gl F15 = IgIZIF15. O

Remark 3.5. Let f € LY(R")\ L%(R") such that f(x) = f(—x). By Young’s inequality
(f * f)(x) < oo for almost every x € R”. However,
¢ +nO= | forepdy= [ 1Fordy=c,
R? R"
which shows that f = f blows up at x =0.

The following lemma shows that the convolution regarded as a multiplication
in L1(R") satisfies certain standard algebraic laws.

Lemma 3.6. Assume f,g,h € LY(R") and a,b € R. Then the following claims are
true:

(1) (Commutative law) fxg=g=*f.
(2) (Associative law)f * (g« h) =(f * g) * h.
(3) (Distributive law) (af +bg) * h =a(f * h)+ b(g * h).

Proof. (Exercise) a

Theorem 3.7. Assume that 1<p <oo, f € LP(R*)and g € LP'(R™). Then (f *g)x)
exists for every x € R" and ||f * gllco < I fllpllgll ,>. Moreover, the function f * g is

uniformly continuous in R”.
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THE MORAL: The convolution of an LP function and LP" function is well
defined. Moreover, it is a bounded and continuous function.

Proof. In the general case, either p or p’ is finite (or both). Assume that 1< p <oo.
By Holder’s inequality and translation invariance of Lebesgue integral, we have

I(f = g)x)| = ‘/ f(x—y)g(y)dy‘

<[] - y>|de) ([ e dly)
-(/ If(y)l"dy) ([ eww'as)”

=lflplglp <oo

=

for every x € R". This implies that | * gllcc < fllpllgl

By Hoélder’s inequality, and by reflection and translation invariances of Lebesgue
integral, we have

I(f * g)(x) = (f * g)=)| = ‘/ (f(x—y)—f(z—y))g(y)dy‘
Rﬂ

1
s( If(x—y)—f(z—y)l"dy) / g dy)p
[Rn

=

e

- /[R nlf(y—x)—f(y—z)lpdy) / g” ds)”

=( If(v+z—x)—f(v)|pdv)
[Rn,

(

=( Rnlf(y—x)—f(y—z)lpdy) ( / 18I dy)
(
.

1
lg)IP’ dy)p
=Te—af = flplglpy.

By Theorem 1.61, for every & > 0 there exists 6 > 0 such that ||7,_f — fll, <&
whenever |z —x| <§. Thus

I(f * 8)x) = (f * )2 <ellgll

for every x,z € R” with |z —x| < §. This shows that f * g is uniformly continuous.]

3.2 Approximations of the identity

The previous lemma, Riesz-Fischer theorem and Young’s theorem show that L1(R")
is a commutative Banach algebra with the convolution as a product. This algebra
does not have a multiplicative identity, that is, there does not exist ¢ € L1(R")
such that ¢ * f = f for every f € LL(R™).
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Reason. Assume that there exists such a ¢. Then, in particular, ¢ * f = f for
every f € L®(R") with a compact support. Theorem 3.7 implies that ¢ * f is
continuous. Since ¢ * f = f, this shows that every f € L*°(R") with a compact

support is continuous. This is not true, take f = yp(o,1), for example. n

However, there exists approximations of the identity in the sense that there
exists a collection of functions ¢, € L1(R") such that ¢, * f — f in L1(R") as € — 0.
In fact, the limit exists in LP(R") and pointwise under appropriate assumptions.

This gives a very useful method to produce approximations of functions in L?(R").

Definition 3.8. Assume that ¢ € L1(R"). For £ >0, let
1 (x n
belx) = £—n¢(;), xeR".
Such a collection of functions is called an approximation of the identity.

Remark 3.9. Let ¢p € Co(R").

(1) Since a continuous function attains its maximum value in a compact set,
we have

sup |¢p(x)| = max|p(x)| < co.
xeR® xeR™

The definition of ¢, implies
1 1
I$elloo = max|pe(x)] = — max|¢(x)| = —l¢lloo, £>0.
Unless ¢(x) =0 for every x € R”, we have
lgr(l)lgé%gd(/)g(x)l = 0o0.
For the supports we have

supp ¢, =esuppp, £>0.

Reason. Since
1
{xEIR”:(pE(x);éO}Z{xE[R":—n(/)(f) 750}:{x€[R" :p(5) %0}
e \e €
= {ex e R" : p(x) # 0} = efx € R : p(x) # O},

we have

supp Pe = {x € R" : p(x) # 0} = efx € R : p(x) # O}
=efx e R" : p(x) # 0} = esupp . m
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Since supp¢ is compact and supp ¢, is compact for every € > 0. Thus

|supp¢| < co and

lim | supp ¢, | = lim |e supp ¢| = lim " |supp¢| = 0.
e—0 e—0 e—0

(2) Let 1< p <oo. By the change of variables y = £, dx = £" dy, we have

| sorax=[ |Zo(5) o(5)| ax

et \g €
1
:Tpgn/ |¢(y)|p dy:e"(l’p)/ |(P(y)|p dy
& R~ R™

p

egnp R”

and thus

p-1
1\ 7
lpellp = g—n) lpllp-

THE MORAL: Smaller values of € > 0 produce higher peaks and smaller
supports. Convolution with approximations of the identity is expected to act as

the identity operator on a class of functions as € — 0.
Example 3.10. Let ¢ :R* — R,

_ XBo,n®)

dx) = —IB(O,l)I .

Then .
1 x80,(g) _ xB0.oX)

¢E(x):8" IB(0,1)]  [B(0,e)l’ >0
Assume f € L1(R"). Then
1
) = ew—ydy=——— d
(f * Ppe)x) /Rnf(y)sb (x—-y)dy B&.o) B(x’e)f(y) y

is the integral average of over the ball B(x,¢). By Young’s theorem (Theorem 3.4)

If *deli<Ifliligpelli=1fl1 forevery &>0,

since [¢¢ll1 = 1 for every € > 0. By the Lebesgue differentiation theorem (Theorem
2.24) we have

lir%(f * e )(x) = lim

dv =
e—0 |B(x,¢)| B(x,g)f(y) y=1e)

for almost every x € R*. Observe, that we have

I(f * pe))| = f(y)dy‘ < ——— If(ldy < Mf(x)

1
‘|B(X,€)| B(x,e) |B(x,€)| B(x,e)

for every x € R* and ¢ > 0. This implies

sup [(f * Ppe) )l < M f(x)

>0

for every x € R”. This kind of bound for a more general mollifier ¢ is discussed in
Theorem 3.13.
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We assumed that ¢ € L°(R") and supp¢ = B(0,1) in the previous example.
Next we discuss properties of a general approximation of the identity with ¢ €
LY®™).

Lemma 3.11. Let ¢ € L1(R").

1) / Pe(x)dx = / ¢(x)dx for every € > 0.
R” R”
(2) lim |pe(x)|dx =0 for every r > 0.

=0 /rn\B(0,r)

THE MORAL: The assertion (1) explains the scaling factors in the definition
of ¢.. These are chosen so that the integral of ¢, is independent of € > 0. The
assertion (2) tells that the integral of |¢p.| becomes as small as we please for € >0
small enough. This indicates that |¢.| concentrated in a small neighbourhood
of the point x. Note that assertions (1) and (2) hold for compactly supported

continuous functions.

Remark 3.12. The assertion (2) is clear, if the support of ¢ is a compact set.

Proof: By a change of variables y = £, dx = €" dy, we have

£’

1 x
E(>d=—/ —d:/()d.
Rnd) vax en Rn¢(8) x Rn¢y Y

By the same change of variables as above

1 x
|pe(x) | dx = — o|=||dx
/W\B(o,r) ‘ €" Jrn\B(0,r) (€)|

= / lp(»Idy
R?\B(0,%)

= |(P(x)|XRn\B(0,§)(x)de;0> 0
Rn

by the dominated convergence theorem with the integrable dominating function

|¢|XR"\B(O,§) <|¢| e L'[®R") for every £>0. 0O

3.3 Pointwise convergence

There is a connection between the approximations of the identity and the Hardy-
Littlewood maximal function. Recall that a function ¢ : R* — R is radial, if its
value only depends on |x|. Thus a nonnegative radial function is of the form
f(x) = (|x|) for some function ¢ : R* — R*. We say that a radial function is
decreasing, if |x| = |y| implies ¢(x) < ¢p(y). The next result generalizes the bound

in Example 3.10 for a more general mollifier ¢.
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Theorem 3.13. Assume that ¢ € L1(R?) is nonnegative, radial and decreasing
Then

sugl((ba * )l < Pl M f(x)

for every x € R™.

THE MORAL: The Hardy-Littlewood maximal operator gives a pointwise
upper bound for many other operators as well. In this sense the maximal function
controls the weighted averages of a function with respect to any radial and

decreasing function.

Proof. First assume in addition to the given hypotheses that ¢ is a simple function

in the form

$=) aixBor)
i

with a; > 0. The sum here is over finitely many indices only. Then
lplls = / 2 @iXBo,)dx= Z/ aixBo,) dx =) a;lB,r;).
R i JR? i
By a change of variables z = %, y=¢z,dy=¢c"dz, we have

Ein/wﬂx—m(%)dy'

fx—€2)a;dz
i JBO,r;)

(e * f)x)] = '/ f(x—y)dk(y)dy‘ =
Rn

= '/ fx—ez)p(z)dz
Rﬂ

sZai/ |f(x—e2)|dz

i B(0,r;)

1
=) ai|BO,r))| ———
i

[f(x—¢€2)|dz.
IBO,ri)l JBo,r) !

Again, by a change of variables y=x—-¢z, z = %(y —x),z=¢ "dy, we have

1 1
—_— lf(x—e2)ldz = ———— lf(y)d
|B(0,r;)I B(o,,i)f e B(0,r;)| B(x,eri)fy Y
1

[ — dysM .
|B(x,er;)| B(x,sri)lf(y)l y=Mi

Thus
[(de * ) < Zai|B(O,ri)|Mf(x) = [lplli M f(x).

Then we consider the general case. Since ¢ is nonnegative, radial and decreas-

ing, there is an increasing sequence of nonnegative simple functions ¢; such that
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¢j(x) — ¢p(x) for every x € R® as j — oco. By the monotone convergence theorem

(e * )] < / G- DIpe()dy
Rn,
= [ 1FG= 2 im @)y
R —oo

:jlim |f (x = M(pj)e(y)dy
—00 Rn

Sjlij’lo lpilliMf(x)=llpllL M f(x)
for every x € R". d

The next result generalizes the pointwise convergence result in Example 3.10

for more general mollifiers.

Theorem 3.14. Assume that ¢ € L'(R") is nonnegative, radial and decreasing
and let f € LP(R"), 1 < p <oo. Then

lin(l)((Pg * f)(x) = pll1f(x) for almost every x€R".

THE MORAL: Thisisthe Lebesgue differentiation theorem for approximations
of the identity. This shows that the convolution approximations can be seen as
weighted averages of the function.

Proof. Define a maximal operator related to the approximation of the
identity by

Myf(x)= su%)) [(de * )],

By Theorem 3.13
Myf(x)<|plliMf(x) forevery xeR".

By the weak type estimate for the Hardy-Littlewood maximal function, see
Theorem 2.17, for f € L1(R"), we have

5" pll1

Hx eR™: Mpf(x) > A < l{x e R™ : |pll1 M f(x) > AH < Tllflll

for every A > 0.
On the other hand, by Chebyshev’s inequality and the strong type estimate
for the Hardy-Littlewood maximal function, see Theorem 2.22, for f € LP(R"),

1< p <oo, we have

Hx eR™ : Mpf(x) > A < l{x € R™ : |pll1 M f(x) > A}

lply
< Apl IMFI5 (3.15)
lpl?
<clnp) 21 I£15

AP
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for every A > 0. Thus (3.15) holds for 1 < p < co.

The proof of the claim is based on these two estimates and is somewhat similar
to the proof of Theorem 2.24. Let a = ||¢]l; and 1 > 0. Since compactly supported
continuous functions are dense in LP(R"), there exists g € Co(R") such that ||f —
gllp <n. Since g is continuous, there exists § > 0 such that |g(x —y) — g(x)| <7
whenever |y| < 6. By Lemma 3.11 (1), we have

agx)=g(x) / o) dy = g(x) / Ge(y)dy = / 8x)pe(y)dy.
R” R” R”
This implies

(e * @)(x) —ag(x)l = ‘/ 8x—y)pe(y)dy - / g(x)sbg(y)dy‘
RIL RI’L

(glx—y) - g(x))¢g(y)dy‘
Rn

< / g(x— ) — g@)Ipe(y)dy
Rn

=/ ...dy+/ ..dy
B(0,6) R™\B(0,5)

sn/ </>g(y)dy+2llglloo/ Pe(y)dy.
B(0,6) R”\B(0,6)

By Lemma 3.11
/ Pe)dy < ldelr = llpll1
B(0,6)

and
/ be(y)dy =2 0.
R”\B(0,5)

By letting first n — 0 and then £ — 0, we have
lims(l)lp [(pe * g)x)—ag(x)| =0 for every xeR".
£
This shows that
li_)mo((l)‘S x*g)(x)=ag(x) forevery xeR”,

that is, the claim of the theorem holds for g € Co(R") at every point.
Then we consider the corresponding claim for f € LP(R"). We note that

lims(;lpl((l)g * f)(x)—af(x)

< lim salp lpe * (f — g)(x) —a(f — g)(x)| +1lim S(l)lp (¢ * g)(x) —ag(x)]

-0
< My(f - g)x) +al(f — g)x)I.

Let
A= {xE[R" :limsup (¢ * ) (x) —af(x)] > %}, 1=1,2,....
e—0
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As in the proof of Theorem 2.24
Aic{xeR" : My(f - g)x)> £u{r eR": [f(0) - g)| > &}, i=1,2,...,
and by (3.15) and Chebyshev’s inequality we have

Al < |{x e R : My(f - @)@) > L]+ |{x e R : |f(x) - g®)] > £ ]
<ciP|lf —glh + )P If - gllb

=ciPlf —glb <ciPpP, i=1,2,...,

By letting n — 0, we conclude |A;| =0 for every i = 1,2,... and thus IU‘i’ZlAiI <
22,14l =0. This shows that

l{x € R™ : limsup |(¢e * F)(x) —af(x)| >0} =0,
e—0
from which we conclude that

limsup|(¢e * f)(x)—af(x)| =0 for almost every x€R".
E—

Let f € L®(R"). We show that

1in(1)(<pg * f)x)=af(x) for almost every xeB(0,r),r>0.
E—

Let f1=fxBo,r+1) and fo =f — f1. Then f1 € LY(R") and by the beginning of the
proof

lin%((bg * f)(x) =afi1(x) for almost every xe€R".

E—

We claim that
lin(l)((l)g * f)(x)=0 for almost every x€ B(0,r),r>0.
E—

To see this, let x € B(0,7) and |y| < 1. Then x —y € B(0,r + 1) and thus f2(x—y)=0.
This implies

[(pe * fo)(x) = ‘/ f2(x—y)<l>g(y)dy'
Rn

/ fz(x—y)¢>e(y)dy'
R”\B(0,1)

-0
=||f2||oo/ e(y)dy == 0. O
R7\B(0,1)

Remark 3.16. Under the assumptions of Theorem 3.14, if f € L°°(R") is continuous
at x, then

liir(l)((,bg * ) ) = lpllif ().

Moreover, if f € L*°(R") is uniformly continuous, the convergence is uniform.

(Exercise)
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Remark 3.17. Assume that the assumptions of Theorem 3.14 hold and let f €
LP(R"),1< p <oo. Let a =|¢ll1. By Theorem 3.14

lin(l)((pg * f)(x)=af(x) for almost every xeR".
f—

By Theorem 3.13
sup (P * f)(x)| <aMf(x)

>0

for every x € R”. Theorem 2.22 implies that M f € LP(R"). This shows that
sup |(pe * f)(x) —af (x)| < sup [(pe * )0 +alf (x)]
e>0 >0
<aMf(x)+alf(x)

for almost every x € R with a(M f +|f|) € LP(R"). Thus we may apply the domi-
nated convergence theorem to conclude

lir%/ (e * [)x)—af )P dx = / lin(l)l(gb‘g * ) x)—af(x)Pdx=0.
E— R” R™ E—

This shows that
l%“% *f—aflp=0.

THE MORAL: Inthis case almost everywhere pointwise convergence upgrades
to L? convergence by the Hardy-Littlewood maximal function theorem for 1 < p <
oo. However, this argument does not work for p = 1, since the Hardy-Littlewood
maximal operator is not bounded on L. Theorem 3.18 below gives a general
result that applies for 1< p < oo and for a general mollifier ¢ € L1(R").

3.4 Convergence in LP

Theorem 3.14 asserts that a convolution approximation of a L? function con-
verge almost everywhere, but in general almost everywhere convergence does not
imply convergence in L?. However, the next result shows that this is true for
approximations of the identity.

Theorem 3.18. Assume that ¢ € L1(R?), a = f[Ren ¢dx)dx and f e LP(R"), 1< p <
oco. Then

lim [|pe * f —afll, =0.
e—0
THE MORAL: Approximations of the identity converge in L? for 1 < p < co.

WARNING: The result does not hold true for p = co. In this case the corre-
sponding claim claim is the following: If f € L°°(R") is uniformly continuous, then
¢e * f — af uniformly in R”, that is,

lim [|pe * f —aflloo = 0.
e—0



CHAPTER 3. CONVOLUTIONS 74

Proof. By Lemma 3.11 (1), we have

af(x)= f(x)/w Py)dy = f(x)/Rn Pe(y)dy = /R f@)pe(y)dy.
We note that
(f * §e)@) — af ()] = ‘ /R (fla-y)- f(x))gbe(y)dy'
< [ - f@ledidy.
By Fubini’s theorem
/Rn |(f * pe)x) —af(x)| dx
< /R == re@lgcidyds
= [ 1pe ( / - - F @) dx) dy.
o -
We note that
I(f * @) —af )] = ' /qu (@3- f(x))¢>e(y)dy‘
< [ Ve~ F@NpeWIP g dy,

where 117 + 1% =1. By Holder’s inequality and Fubini’s theorem
/ |(F * p)@) - af ()| dx
Rn
L/
< / ( IFGe=3) = F@IPIge(y)] dy) ( / |¢>g(y>|dy)" dx
n [Rn, Rn

=||¢>||{7/ |<!>g(y)|(/ If(x—y)—f(x)lpdx)dy.
Re R~

For 1 < p < oo, we have

/I(l)g(y)l(/ If(x—y)—f(x)lpdx)dyz/ ...dy+/ dy
R™ R7 B(0,r) R?\B(0,r)

Let n>0. By Theorem 1.61 there exists r > 0 such that

n

m for every ye B(0,r).
1

Ifx—y)—f@)IPdx <
[Rn

This shows that
pa
IpI7 / e ( / =)~ FP dx)| dy
B(O,r) R™
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where we note that 1% +1=p.
By Lemma 3.11 (2), there exists £’ > 0 such that
/ [pe(dy < d ———, Whenever O<e<e'.
RIABO) 20°2(| FID 117 +1)

This shows that
p!
lplly / [pe(y)l (/ lf(x—y)— Fx)P dx) dy
R"\B(0,r) R”
p!
<|lply / [pe ()] (/ 2P(If (x—IP + |f(x)|p)dx) dy
R"\B(0,r) R”
<2? ||(l’||1}'7 / [pe()] (/ (If @)IP + |f(x)|p)dx) dy
R?\B(0,r) R

b
<22 Mol P IfID / lpe()dy
r)

RPAB(0,
< g, whenever O<e<¢'.
Thus -
— p_J T _
I/ * e af||p<2+2—77~ 0

Remark 3.19. An examination of the proof above shows that a more general result
holds as well. Let ¢; € L'(R"), i =1,2,..., be a sequence with the properties

(1) lim ¢i(x)dx=a,

1—00 JRn

(2) sup |¢p; (x)] dx < 0o and
i R

(3) lim |¢p; (x)| dx = O for every r > 0.
1—00 JR2\B(0,r)

Then
lim [|¢; * f —afl, =0.
1—00

Note that here ¢; do not have to be nonnegative or given by the formula for the

approximate identity.

3.5 Smoothing in the entire space

For a positive integer m, let C™(R") denote the class of functions f : R” — R, whose

partial derivatives

6a1+...+anf

Df = ————a
Ox " ...0x,"
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up to in including those of order m exist and are continuous. The subset of C™(R")
with functions of compact support is denoted by C{*(R"™). Moreover, C*°(R") is the

class of functions which have continuous partial derivatives of all orders, that is,

o0
C®R"M) = () C™(R"),
m=1
and C°(R") is the corresponding class of functions with a compact support. The
next example shows that there exist such functions.

Example 3.20. Let ¢ :R"* - R,
_1
(p(x): exP(Ix\2—1)’ |x| < 17
0, lx| = 1.

Let ¢¢, € > 0, be an approximation of the identity as in Definition 3.8. Then
¢ € Cop(R™) and thus ¢ e LY(R") with 0 < llplly < oo. Let

(/)(x)zM x eR".

llly”
Then ¢, € Co(R") and supp ¢ = B(0,¢). By a change of variables y = %, dx =" dy,
we have

¢g(x)dx=in/ (p(f)dx
R” I R® I

1
== / P(y)e" dy = / $(y)dy
£ R” R”

=/ o) e lel 5o
re ol lpll1

Young’s theorem (Theorem 3.4) implies that

If *Pelli <Iflillpelli =1fll1 for every &>0.

The function ¢, is called the standard mollifier. The function ¢ is not only
continuous, but is is a compactly supported smooth function, that is, ¢ € C3°(R")
with supp¢ = B(0,1) (exercise). In particular, this implies that ¢e € C(R™) with
supp ¢ =B(0,¢), £ >0. Hint: Let A :R— R,

0, t<0,
h(t)= L
exp(-7), ¢>0.

Then A € C*°(R). Prove by induction that Rm(¢) = Pm(%)exp(—%) for ¢ > 0, where
P,, is a polynomial of degree 2m. Then prove by induction that £7(0) = 0. Then
d(x) =h(1 - lx|2) belongs to C°(R") as a composed function of two functions in
C°(R™). Moreover, if |x| =1, then 1 - |x|2 < 0 and thus A(1 —|x|2) = 0. Therefore
this function belongs to C3°(R™).
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Theorem 3.21. If f € LP(R"), 1 < p < oo and ¢ € CP(R"), then f * ¢ € C°(R")
and

DU(f * pe)(x) = (f * D p)(x)

for every x e R*, £ >0, a =(aq,...,a,) e N,

THE MORAL: Convolution inherits smoothness of the mollifier, since we
differentiate under the integral sign. This is justified by the Lebesgue dominated

convergence theorem.

WARNING: In general f * ¢, ¢ C3°(R"), that is, the convolution approximation

does not have a compact support.

Remark 3.22. Theorem 1.57 asserts that Cy(R") is dense in LP(R") for 1 < p < oo.
Theorem 3.21 and Theorem 3.18 imply that C*°(R") n L?(R") is dense in LP(R")
for 1< p <oco.

Proof. Theorem 3.7 implies that f * ¢, is continuous. Let e; = (0,...,1,...,0),
i=1,...,n, be the standard ith basis vector in R” and let » € R with 0 < || < 1.
Then

(f*(/’g)(x"‘hehi)_(f*(pf)(x)=in/ 1 (x+hei_y)—¢(x_y)]f<y)dy,
E nh € £
1=1,...,n.

CLAIM:

I e

1
h € £ edx; \ €

Reason. Let
x—y
wr-o(22)
€
Then

6_¢x)_16_¢(x—y),

Ox; edx; \ € [ ]

Next we derive a bound so that we may apply the dominated convergence

theorem. By the fundamental theorem of calculus
]
@(x+he;)—@(x) = / a((p(x +te;))dt
0

h
:/ Dp(x+te;)-e;dt,
0
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S99 L
Ox1°°° " Oxp

where Do = ( ) is the gradient of ¢. This implies that

|h|
lo(x +he;)—@(x)l s/ [Dp(x +te;)-e;ldt
0

1 Al
=_/ D
€Jo

dt

e

(x+tei—y)
€

Ihl o
sl/ D¢(x+tel y)'dt
€ Jo €
A .
S_”D(,b”oo, l:1,...,n.

€
Let

+he;—y

x— x
K:{yeR”:—yewppgbor €suppgb,0<|h|<1}.
€

Since supp ¢ is compact, we see that K is a bounded set. By the estimate above,

we have
1

h
for almost every y € K and we note that %IIngIIOOIfI e LY(K). The dominated

convergence theorem implies that

Of xpe) . .. (f*pe)lx+he;)—(f *pe)x)
———(x)=lim
0x; h—0 h

o i 1 x+he;—y (XY
_ilzl—IT(IJE”/Kh ¢ £ ) ¢( £ )]f(y)dy

1 )
< ;||D¢||oo|f(y)l, i=1,...,n,

¢(x+hei—y)_¢(x—y)

£ €

)

3 1 x+he;—y (XY
_8_n Khll%z (P( £ ) ¢( £ )]f(y)dy
L[ 106y
T en Ksaxi( € )f(y)dy
Ope
=/ ¢ (x=nfy)dy
K 0x;
_(axi *f)(x), i=1,...,n.

Since this partial derivative is given by a similar convolution as in the definition
of f * ¢ itself, it is a continuous function. By induction it follows that f * ¢,

possesses continuous partial derivatives of all orders. a

Next we show that every function in L?(R") can be approximated by compactly
supported smooth functions for 1 < p < co. This result does not hold true for
p =oo. This is simply because the uniform limit of continuous functions is itself

continuous.

Remark 3.23. The closure of C3°(R™) in L>(R") is the subspace of C(R") consisting
of functions satisfying
lim f(x)=0.

|| =00

(Exercise)
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By Theorem 1.57 we know that Cy(R") is dense in LP(R") for 1 < p < oo and
by Remark 3.22 we know that C*°(R"*)n L?(R") is dense in L?(R") for 1 < p < oo.
Next we give an even stronger result.

Theorem 3.24. C°(R") is dense in LP(R") for 1< p <oo.

THE MORAL: Notonly compactly supported continuous functions, but also
compactly supported smooth functions are dense in L? for 1< p <oo.

Proof. Assume [ € LP(R") and let 1 > 0. Theorem 1.57 shows that Cy(R") is dense
in LP(R") so that there exists g € Co(R") such that |f — gllLr®n) < g Let ¢, be the
standard mollifier in Example 3.20. Theorem 3.21 shows that g * ¢, € C*°(Q).

CLAIM: supp(g *¢,)is compact.

Reason. If (g * ¢.)(x) # 0, then there exists y € R* such that g(y)p.(x —y) #0,
which implies that g(y) # 0 and ¢.(x —y) # 0. If g(y) #0, then y € suppg and we
denote K = suppg. If ¢.(x—y) #0, then |x — y| < e. Thus

K, ={xeR":dist(x,K) < ¢}

is a compact set and (g * ¢¢)(x) = 0 for every x € R* \ K. This implies that g * ¢,

has a compact support. n
By Theorem 3.18 there exists ¢’ > 0 such that
lg —(g* )l < g whenever O<e<eg'.
Thus

n,.n
If ~(@x gl <If ~glp+lg—(g*¢lp <5 +5 =1 _

3.6 Smoothing in an open subset

Next we discuss smoothing in an open subset of R”. The convolution smoothing
techniques apply also in this case with some minor modifications. For an open
subset U of R"with R*\ U # @, we consider

U ={xeU :dist(x,0U) > ¢}, €>0.

Observe that U = UgsqUe. Let f € Llloc(U). The convolution mollification is

fe :Ug — [—00,00],
Fo@) = (F * pe)(x) = / FOelx— dy,
U

where ¢ € CP(R") with ¢ > 0, supp¢ < B(0,1) and [, ¢dx = 1. Here ¢, £ >0,
is an approximation of the identity as in Definition 3.8. For example, we may

consider the standard mollifier as in Example 3.20.
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THE MORAL: Since the convolution is a weighted integral average of f over
the ball B(x,¢) for every x, instead of U it is well defined only in U,. Sometimes
we may consider the zero extension of f to R* \U. If U = R", we do not have this
difficulty.

Remark 3.25. Let ¢ € C°(R") with ¢ =0, supp¢ < B(0,1) and fRn ¢odx=1.

(1) For every x € U,, we have

felx) = / FNbelx—y)dy = / FPe(x—y)dy.
U B

(x,€)

(2) By a change of variables z = x — y we have

/ F)ela—y)dy = / Flao—2)pe(2)dz
U U

(3) For every x € U,, we have

Ife()] <

/ fPe(x—y)dy| < ||¢6"oo/ [f(y)Idy < oo.
B(x,e) B(x,e)

4) If f e Co(U), then f. € Co(U,), whenever 0 <e <ep = %dist(supp f,oU).

Reason. If x € U, such that dist(x,suppf) > €9 (in particular, for every
x € U \Ug,) then B(x,e) nsupp f = @, which implies that f.(x)=0. n

We collect properties of the convolution approximation below. The main dif-
ference to Theorem 3.14 and Theorem 3.18 is that here we consider compactly
supported smooth approximations of the unity instead of more general integrable
functions. This simplifies some of the arguments. We denote U’ €U, if U,U’ are
open subset of R” and U'isa compact subset of U. In particular, it follows that
dist(U’,0U) > 0, if U # R™.

Lemma 3.26. Let U cR” be an open set and assume that f € LP(U), 1< p <oo.
Let ¢ € CP(R™) with ¢ >0, supp¢ < B(0,1) and [p, pdx=1.

(1) feeC>®WU,), e>0.

(2) fe— f almost everywhere in U as € — 0.

(3) If f € C(U), then f; — f uniformly in every U' €U as £ — 0.

4) Iff EL{;C(U), 1< p <oo, then f, — f in LP(U’) for every U' €U as € — 0.

Proof. The proof is very similar to the proof of Theorem 3.21. Let x € U, and
e; =(0,...,1,...,0), i =1,...,n. Let hg > 0 such that B(x,hg) cU, and let h € R
with |h| < hg. Then

fe(x+he;)—fe(x) _ 1

/ 1 x+he;j—y
h €™ JB(x+he; ,£)UB(xe) h

J-o(*22)] ras.

E
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Let U' = B(x,hog+¢). Then U’ €U and B(x + he;,e)UB(x,e) cU’. As in the proof

of Theorem 3.21 we may apply the dominated convergence theorem to obtain

afs(x) 1 fs(x+hei)_fs(x)
ox; h
1 1 x+he;,—y x—y
“tim e | o[ () rova
_i 10¢ (x—y
=5 e e /OB
Ipe
= | ox; (x=yf(ydy
U/
¢ -
(ax, f)(x) i=1,...,n.

A similar argument shows that D¢f, exists and D*f, = D%, * f in U, for every

multi-index a.
Recall that fB(x o $e(x—y)dy = 1. Therefore we have

Ife(x)—f(x) = Gelx—Nfy)dy — f(x) be(x—y)dy
B(x,e) B(x,e)
= Pelx—(f () - fxDdy
B(x,e)
1 _
<= | o(Z2)ifw-fwidy
€7 JB(x,e) £
1 o
< lPllLeo@m ——— IF) - F@ldy =20
IB(x, &) JB(x,e)

for almost every x € U. Here Q, =|B(0,1)| and the last convergence follows from
the Lebesgue differentiation theorem (Theorem 2.24).

Let U' € U" €U, 0 < e <dist(U’,8U"), and x € U'. Because U" is compact
and f € C(U), f is uniformly continuous in U"”, that is, for every &’ > 0 there exists
6 > 0 such that |f(x) — f(y)| < € for every x,y € U" with |x—y| < 6. By combining
this with an estimate from the proof of claim (2), we conclude that

1
Ife(x) = f(0)] < QullPllLo@n)y —— If ) —F@Idy < QnllPpliogn) €
|B(x,€) B(x,e)

for every x e U’ if £ < 6.
Let U'cU" €U.
CLAIM:

IfelPdx< [ |fIPdx
U! U”

whenever 0 < ¢ < dist(U’,0U") and 0 < € < dist(U",8U).
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Reason. Let x € U'. By Holder’s inequality, we have

Ifel)l = '/ d’e(x—y)f(y)dy‘
B(x,¢e)

< / be(e— )7 el — )7 1 ()] dy
B(x,e)

1
s( / @(x—y)dy)” ( / <be(x—y)|f(y)lpdy)
B(x,e) B(x,e)

1 1
= ( / %(y)dy)” ( Delx = VI QIP dy)p
B(x,¢) B(x,e)

1
= (/ qbe(x—y)lf(y)lpdy)p-
B(x,¢)

Here we used the fact that f[mn ¢edx = fRn(/)dx = 1. By raising the previous

1
p

estimate to power p and by integrating over U’, we obtain

/ Ife()IP dx < / Pe(x—WIf NP dydx
U U JB&e)
=/ Pe(x=NIf(WIP dxdy
" U!

= If(y)lp/ ¢e(x—y)dxdy
U/I UI

- / FOIP dy.
U/I

Here we used Fubini’s theorem and once more the fact that fRn Gedx = f[Re" ¢ddx =
1. [ ]

Since C(U") is dense in LP(U"). Therefore for every ¢ > 0 there exists g €

C(U") such that )
= !
(/ |f—g|de)P <<
UH 3

By (3), we have g, — g uniformly in U’ as £ — 0. Thus

1

? 1 ¢
(/ Ige—glpdx) <suplg.—gl|U'|? < —,
U// U!

3
when € > 0 is small enough. Now we use Minkowski’s inequality and the previous
claim to conclude that

(/U,Ifg—flpdx); s(/U,m—gapdx)‘l’
+(/ Ige—glpdx;+(/ Ig—flpdx);
U o

1 1
p p
Ig—flpdx) +(/ Ige—glpdx)
U UI

!
€ /
—=Ec£.

3

<2
U’
/

+
3

€
<2—-
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Thus f — f in LP(U’) as € — 0. O

Next we discuss the density of continuous functions in L? for open subsets,
compare to Remark 3.22. We apply a version of partition of unity in the argument..

We return to this topic in the next section.

Theorem 3.27. Let U be an open subset of R?. Then C*®°(U)NLP(U) is dense in
LP(U) for 1< p <oo.

Proof Let Uy =@ and
Ui = {x e U :dist(x,0U) > 2} nB(0,i), i=1,2,....

Then U = U‘i’zl U;, U; s open and U;isa compact subset of U; 1 foreveryi =1,2,....

CLAIM: There exists ¢; € C°(Uj12\Uj-1), 0<; <1,i=1,2,... such that

3

Z(pl—l in U.
i=1

Reason. By applying the distance function, we may construct a function g; €
C(O)O(Ui+2 \Uj-1)withO<g;<land g;=1in U;;1 \U; for every i =1,2,.... Let
9;:U—R,

gi(x)

Pix)=c=——, i=12,....
Y%, 8@’ .

Let f € LP(U) with 1 < p < oo and let ¢, be an approximation of the identity as
in Definition 3.8. Then ¢;f has a compact support and supp(p;f) cU;+2 \U;_1.
Fix £ > 0. Choose ¢; >0 so small that

supp(e; * (@; ) cU; 2 \U;_1

and
€ .
pe; * (@i f) = @ifllLrw) < PR 1=1,2,....
Let
o0
=Y e, = @if).

This function belongs to C°(U), since in a neighbourhood of any point x € U, there

are only finitely many nonzero terms in the sum. Moreover, we have

© 00
If = glLr @) = Z Ge; ¥ (i)=Y @if
i=1 i=1 LP(U)
(&) 00 €
< Z ||(p51 *(pif) - ‘plf”Lp(U) 9 €.
i=1 i=1

This shows that C*°(U) is dense in L?(U) for 1 < p < oo for an arbitrary open
subset U of R". d
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Next we discuss a version of Theorem 3.24 for an open subset of R”. In the
proof of the previous theorem, we worked inside the open set throughout. In the
proof of the next result we apply zero extension to the complement. This proof can

also be arranged so that we work inside the open set throughout (exercise).

Theorem 3.28. Let U be an open subset of R”. Then C3°(U) is dense in LP(U)
for 1< p <oo.

Proof. Let f € LP(U) and extend as zero to R* \U. Let
Ui = {x €U :dist(x,R* \U) > 2} nB(0,i), i=1,2,....

ThenU; cU;,q, Eis a compact subset of U; .1 foreveryi=1,2,... and U = U‘L?Z1 U;.
Let

gi=fru, and fi=¢1*gi i=12,..,
where ¢ € C°(R") with ¢ = 0, supp¢ c B(0,1) and fRn(pdx =1. Here ¢1 is an

approximation of the identity as in Definition 3.8 with € = % For example, we may

consider the standard mollifier in Example 3.20. Since supp¢1 < B(0, %) it follows
that
suppf;  {x € R" : dist(x,U;) < 1} cU

for every i =1,2,.... Note that {x € R" : dist(x,U;) < %} is a closed and bounded
set and thus a compact subset of U. Consequently supp f; is a compact subset of
U for every i =1,2,.... It follows from Lemma 3.26 (1) that f; € C;°(U) for every
i=1,2,....
By Minkowski’s inequality and Young’s theorem (Theorem 3.4), we have
Ifi = Flliea@y = fi = FliLe@n = Id18i = fllLe@e
<ldr*gi=¢1* flp@n + b1 *f = Flreg
<loilillgi = Fllie@n +1d1*f = FllLr@n
=\fxv, = flLr@e) + ||(P% *f = fllLr@n)

for every i = 1,2,.... Here we also applied the fact that |¢1]; =1 for every
i1=1,2,.... Since |fyy,| <|f| for every i =1,2,..., by the dominated convergence
theorem (Theorem 1.37), we have

I xu, = flp@n) —O.
On the other hand, Theorem 3.18 implies that
||¢>71 *f = Fle@ny — 0.

It follows that
Ifi = Flle) ==0.

This completes the proof. d
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3.7 Partition of unity

In this section we briefly discuss partition of unity which is a useful tool to localize
problems in analysis. We already applied a partition of unity in the proof of
Theorem 3.27.

Theorem 3.29. Let U cR” be an open set and let {Uy}qer be an open covering of
U. There exist functions ¢; € C3°(U), i = 1,2,..., such that

(1) X*_ pi(x)=1forevery xeU,
(2) supp; is a subset of U, for some a € I and

(3) for every compact set K c U, there exists an integer k and an open set U’
with K c U’ c U such that Z?:l @;(x)=1for every x e U’.

TERMINOLOGY: The collection of functions ¢; is called a partition of unity
related to the covering {Ugy}qaecr. Observe that I is an arbitrary index set which is

not necessarily countable.
THE MORAL: Partition of unity is a very useful tool to localize functions,
since

k
f(x)p;(x) forevery xeU'.
i=1

1=

k
f)=Ff@)Y pi(x)=
i=1
Thus a function can be represented as a sum of compactly supported functions.

Proof. Let S be a countable dense subset of U. For example, we may take
S={x=(x1,...,x,)€eU:x;€Q,i=1,...,n}. Consider a collection & of countably

many closed balls
F = {B(xi,ri):0< ri<l,rieQ,x; €S,B(x;,r;)cU,nU for some ael}.

Since{Ugy}qer is an open covering of U, by the density of S in U and the density of

the rational numbers in the real line, we have

o

U=UB(xi, %),

i=1

that is, the set U is a countable union of the respective open balls in &.

Let

gi =(/>% *XB(xi’%ri), i=12,...,

where ¢ is the standard mollifier in Example 3.20. Here ¢br; is an approximation of
4
the identity as in Definition 3.8 with € = %. Theorem 3.21 implies that g; € C*°(R"),
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i=1,2,.... We note that if x € B(x;, %), then B(x, %) © B(x;, 3r;). This implies that

= Grile=yx, 3 (Ndy
/Bu,}) 1 Blai,gr)

=/ . Prilx—y)dy=1
B,

for every x € B(x;, %). Here we also used the properties

supp¢r; =B(0,%) and Iprili=1, i=12,....
Since 0 < Xp (xi,% ) <1 and ¢ =0, a similar argument as above shows that 0 < g; <
1,i=1,2,.... Moreover, if x ¢ B(x;,r;), then B(x, Z:) n B(x;, %ri) = @. This implies
that

8it0= /B(x,li)(przf(x B y)XB(xi,%ri)(y)dy =0

for every x ¢ B(x;,r;). It follows that g; € C3°(R") and suppg; < B(x;,7;). By the

definition of &%, we conclude that suppg; c B(xj,r;) cU,NU for some a € I.

Let

P1=581,
p2=(1-g1)82,

pr=1-g1)...(1—gr-1)8%-

Since 0 < g; <1 and suppg; < B(x;,r;), i = 1,2,..., we have 0 < ¢; <1 and
supp; € B(x;,r;), 1 =1,2,....
We show by induction that

k
Z(pizl—(l—gl)...(l—gk), k=1,2,....
i=1

This is true for £ = 1, since ¢1 = g1. Assume that the formula above holds true for
some k. Then

k+1

Y pi=1-(1-g1)...(1 = gp) + Pp+1
i=1

=1-(1-g1)...0—gp)+ (1 -g1)...(1 - gr)8k+1
=1-(1-g1)...(1—gpr+1).

(5)] Since g; =11in B(x;, %), i=1,2,..., we have

J
Y pir)=1-(1-g1(x)...(1-gj(x) =1
i=1
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for every x € UleB(xi, ) and every j > k. Since U =U2, B(x;, 3), for every x e U
there exists £ such that x € Ué’:lB(xi, %). It follows that Z{:l @;(x) =1 for every
J =k and thus

J

Z @i(x)=1.

o0
Z(pi(x)z lim
i J70=1

i=1

Finally, let K be a compact subset of U. Since {B(x;, %)} is an open covering

of K, there exists a finite subcovering such that K c Uf:lB(xi,%). Let U' =

Ui?le(xi, %). As a finite union of open balls the set U’ is open. Since B(x;, %) cU,
i=1,...,k, we have K cU’' cU. Moreover, we have

k
Y pix)=1-(1-g1(x)...(1-g;(x) =1
i=1

for everyxEUfZIB(xi,%):U. O

Remark 3.30. The smoothing process with convolutions is applied to construct a
smooth partition of unity. If we are only interested in having a partition of unity
by compactly supported continuous functions, that is, ¢; € C(U), i =1,2,..., we
can construct the required cutoff functions by applying the distance function as in
(1.58).

3.8 The Poisson kernel

We consider an example from the theory of partial differential equations. Assume
that f e LP(R"), 1< p <oco. Let P:R" - R,

1
r(%)

n+l
2

P =c(n)1L+[xD)"F, c(n)=

T

be the Poisson kernel, where the constant ¢(n) is chosen such that

/ Px)dx=1.

Then 1
Pew)= —P(Z) = cne(xl? +e)7%, £>0,
en g

is an approximation of the identity and we may apply the theory developed above.

By Young’s theorem (Theorem 3.4), the Poisson integral of f

u(x, ) =(f * Pe)(x) = / P.(x—y)f(y)dy
Rn
is well defined and

”f*PEHp < ”f”plng”l: ”f”p for every e>0.
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Theorem 3.14 implies that
lir%(f * P.)(x) = f(x) for almost every xeR".
E—

It can be shown that the function x — u(x,¢) = (f * P.)(x) belongs to C*°(R") for
every € > 0 (exercise). Observe that we cannot directly apply Theorem 3.21, since
the Poisson kernel is not compactly supported. Moreover, the function u is a

solution to the Laplace equation in the upper half space
R™ = {(x1,...,%n,6) ER"™ L 1> 0},

that is,

d%u %u  0%u

= +.+—+—=0 in R'L
Gx% 0x2 02

Thus u(x,e) =(f * P.)(x) is a solution to the Dirichlet problem

Au

Au=0 in R7*,
{uzf on ORI =R"
in the sense that
lii% u(x,e) = f(x) for almost every xeR”.
Moreover, Theorem 3.18 shows that u(x,e) — f(x) in L?(R"?) as € — 0. Note also,

that by Theorem 3.13, there exists a constant ¢ such that

sup|(f * Pe)(x)| < cMf(x) for every xeR".

e>0
THE MORAL: This gives a method to define and study a solution to a Dirichlet
problem in the upper half space for boundary values that only belong to L?. In
particular, the boundary values do not have to be continuous or bounded. On the
other hand, this gives another point of view to the convolution approximations.

They can be seen as extensions of functions to the upper half space.

Remark 3.31. Let p be a finite Radon measure on R”. The convolution of u with a
function f € L1(R"; u) is defined as

(f * w(x) = - flx—y)du(y).
It can be shown that
IPe* plly < p(R™) and lli% I1Pe * pully = p(R™).
Moreover,
lill(l) |W(P,; * ()f (x)dx = /IR" f(x)du(x) forevery feCo(R™).

(Exercise). This means that the measures (P, * u)(x)f(x)dx converge weakly to
u as € — 0. We shall discuss the weak convergence of measures later. Note that
this holds, in particular, when p is Dirac’s delta. In this case we obtain the

fundamental solution, which is the Poisson kernel itself.



Derivatives of measures are very useful tools in represent-
ing measures as integrals with respect to another measure.
The Radon-Nikodym theorem is a version of the fundamen-
tal theorem of calculus for measures. It has applications not
only in analysis but also in probability theory. Differentia-
tion of measures also extend the Lebesgue differentiation
theorem for more general Radon measures. A powerful

Besicovitch covering theorem is used in the arguments.

Differentiation of measures

There exists a useful differentiation theory for measures which has similar fea-
tures as the differentiation theory for real functions. The first problem is to find a

way to define the derivative of measures and to show that it exists.

4.1 Covering theorems

Let us recall the definition of a Radon measure from the measure and integration
theory.

Definition 4.1. Let u be an outer measure on R”.

(1) pis called a Borel outer measure, if all Borel sets are py-measurable.
(2) A Borel outer measure  is called Borel regular, if for every set A c R"
there exists a Borel set B such that A ¢ B and pu(A) = u(B).

(3) pis a Radon outer measure, if y is Borel regular and p(K) < oo for every
compact set K c R”.

THE MORAL: The Lebesgue outer measure is a Radon measure. Gen-
eral Radon measures have many good approximation properties similar to the
Lebesgue measure. There is also a natural way to construct Radon measures by
the Riesz representation theorem. This will be discussed later.

We discuss the covering lemma, see Theorem 2.15. For an arbitrary Radon mea-
sure ¢ on R”?, there is no uniform way to control u(B(x,2r)) in terms of u(B(x,r)).

The measure p is called doubling, if there is a constant ¢ such that

1(B(x,2r)) < cu(B(x,r)) for every xeR",r>0.

89
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The factor two does not play any particular role in the doubling condition and it
can be replaced by any factor that is strictly greater than one. For example, we
have

(B(x,5r)) < ep(B(x, 57)) < c® u(B(x, 31))
<cAuBx, 3r) < PuB(x,r)) for every xeR",r>0.

Let A be a bounded subset of R* and assume that for every x € A there is a ball
B(x,r,) with the radius r, > 0 possibly depending on the point x. By the covering
lemma, see Theorem 2.15, we have a countable subcollection of pairwise disjoint

balls B(x;,r;), i =1,2,..., dilates of which covers the union of the original balls.
Thus
[e.e] [e]
A < p U B,ro) < (U Bai,571)) < 3 w(Bxi,5r.)

x€A =

i=
_ 3
e Zu(B(xl,r N=c ,u(UB(xl,rl) (UB(x,rx)).
i=1 x€A

This shows that for a doubling measure we can use similar covering arguments as
for the Lebesgue measure.

However, Theorem 2.15 is not useful for a general Radon measure. We need
a covering theorem that does not require us to enlarge the balls, but allows the
balls to have overlap. The claim is purely geometric and it will be an important

tool to prove other covering theorems.

Theorem 4.2 (Besicovitch covering theorem). There exist integers P = P(n)
and @ = @(n) with the following properties. Let A cR” be a bounded set and let
& be a collection of closed balls B(x,r) such that every point of A is a center of

some ball in &.

(1) There exists a countable subcollection of balls B(x;,r;) € &, i =1,2,...,
such that they cover the set A, that is,

[e.e]
Ac U B(xi,ri)
=1
and that every point of R” belongs to at most P balls B(x;,r;), that is,
(0]
AS Z XB(x;,ri) <P.
i=1

(2) There exist subcollections %1,...,%g < & such that each &, consists of
countably many pairwise disjoint balls in &% and

Q
< JUB(xi,ri).

k=19
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THE MORAL: Property (1) asserts that the subcollection covers the set of
center points of the original balls and that the balls in the subcollection have
bounded overlap. Property (2) asserts that the subcollection can be distributed in
a finite number of subcollections of disjoint balls. The main advantage compared
to the covering lemma, see Theorem 2.15, is that we do not have to enlarge the

covering balls.

Let A is a bounded subset of R” and assume that for every x € A there is a
ball B(x,r,) with the radius r, > 0 possibly depending on the point x. By the
Besicovitch covering theorem, we have a countable subcollection of balls B(x;,r;),
i =1,2,..., which covers A and by the bounded overlap property, we have

o0
> XBGr)(@©) < P YU, Bey,r)(®)
i=1
for every x € R*. Thus
(o] (o8] (o8]
A < p(UBGiro) < Y pBair =Y | pwr@duto)
i=1 i=1 i=1JR?

o0
= | > XBGirp@du(x) <P / XU, Bl () d pi(x)
R" i=1 R” -

- P,u(:lB(xi,ri)) <P,u(ng(x,rx)).

Example 4.3. Let u be the Radon measure on R? defined by
wA)={xeR:(x,0) € A},
where |-| denotes the one-dimensional Lebesgue measure. The collection
F ={B((x,y),y):x€R, 0 <y < oo}

of closed balls covers the set A = {(x,0) : x € R}, but for any countable subcollection
{B;} we have

[e.9]

,U(A N U B i) =0.

i=1
THE MORAL: The previous example shows that it is essential in the Besicov-
itch covering theorem, that every point of A is (more or less) a center of some ball
in the collection. In particular, it is not enough, that every point of A belongs to a

ball in the collection as in the covering lemma, see Theorem 2.15.

We need a couple of lemmas in the proof of the Besicovitch covering theorem.
Lemma4.4. If x,yeR", 0<|x|<|x—y| and 0 < |y| < |x — |, then

X Yy

=1.
] [yl
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THE MORAL: This means that the angle between points x and y is at least
60°.

Reason. Since

x Yy

2 Jx oy x y
<l Iyl < x| Iyl lx| |y|>
e ey O 069
22 lxllyl  lxllyl o (yl2
(x, y)

lxllyl

=2-9

we have

‘3"~1->1c:2—2

lxl Iyl

(x,y) S
[x|1y
(x,y) sl
lxllyl 2

1

1
< cos L(x,y) < 3

— A(x,y) =60° m

Proof. We may assume that n = 2, since there is a plane containing x, y and
the origin. Moreover, we may assume that x = (x1,0,...,0). If x ¢ B(y,|y|) and
y ¢ B(x,|x|), then by plane geometry y; < %1 Since

X
5 1
cosa=-2 ==
x| 2

we conclude that Z(x,y) = 60° (Figure required). Another way to prove the lemma
is to use the cosine theorem. d

The following lemma is the core of the proof of the Besicovitch covering theo-

rem.

Lemma 4.5. There exists a constant N = N(n) such that if x1,...,x, € R* and
ri,...,rx >0 such that

(1) x; ¢ B(x;,r;), whenever i # j and
(2) Ny Bxi,rd) # @,
then £ < N(n).
THE MORAL: Condition (1) asserts that the center of every ball belongs only

to that ball of which center it is and (2) asserts that all balls intersect at some

point. The claim is that there can be only a bounded number of such balls.

Remark 4.6. For example infinite dimensional Hilbert space 2 does not have the

property above, so that it is some kind finite dimensionality condition.
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Reason. Let e;, i=1,2,..., be the standard orthonormal basis of /2, that is, the
ith term of e; is one and all other terms are zero. Then every closed ball B(e;, 1),
i =1,2,..., contains the origin and every e; belongs to only that ball of which
center it is.

This example also shows that the Besicovitch covering theorem does not hold
in {2. Indeed, if we remove any ball B(e;, 1), then the center e; is not covered by

the other balls. Moreover, the balls do not have bounded overlap at the origin. u

Proof. We may assume that 0 € ﬂleB(xi ,7i). Then (1) implies that x; # 0 for every
i=1,...,k. To see this, assume on the contrary that x;, = 0 for some ig =1,...,%.

Then x;, € B(x;,r;) for every i =1,2,...,k, which is not possible. We have
O<|a;| <ry<lxj—x;], j#L.

Lemma 4.4 implies

>1, j#i 4.7

SInce dB(0,1) c R" is a compact set, it can be covered by finitely many balls
B(y;, 3) with y; €9B(0,1), i = 1,...,N(n).

Then & < N, since otherwise for some indices i,j <k, i # j, the points Iz_il and
%j

L would belong to the same ball B(y;,, %) with ig < N. This implies

o7

5

which contradicts (4.7). a

Now we are ready for the proof of the Besicovitch covering theorem. This proof

is technical and can be omitted in the first reading.

Proof: Step 1|Since A is bounded and or every x € A there exists B(x,ry) € %,
we may assume that
M7 =supiry:xe€A} <oo.

(If r, > 2diam A, then the single ball B(x,r,) satisfies the required properties.)
Choose x1 € A such that ry, = % Then we choose recursively

J
xXj+1 €AN UB(xi,rxj) such that 7y, = %,
i=1
as long as this is possible. Since |x; —x;| = %, i1 #Jj, and % <1y, < M, we
conclude that the balls B(x;, %), i=1,2,..., are disjoint. Then B(x;, %) cB(x,R)
with R = diam(A)+ M and x € A. This implies

M

k
|B(xi, M1)| = )_L_JIB(xi,%” <|B(x,R)I.

i=1
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On the other hand,
k
X |B (i, )| = KIBO.DICR)"
1=

which implies
|B(x,R)|
k< 4 \n M
G5 50,1 <

and consequently there are only finitely many points x;, i =1,...,k1.

Denote
k1
My = sup{rx ‘xe AN\ UB(x,rxi)} <oo.
i=1
Choose .
1
xp,+1 €A\ UB(x,ry,) such that Fipyan = %

i=1

and recursevely

J
xjs1 € AN |JB(xi,ry,) suchthat ry,, > %
i=1

By the construction, we have Mgy < % Again we obtain finitely many points as
above. By continuing this way, we obtain a countably, or finitely, many

(1) indices 0=kg<ki<ko<...,

(2) numbers M; such that M;,1 < 5,

(3) balls B(x;,ry;) € %8 and

(4) classes of indices I; ={k;_1+1,...,k;}, j=1,2,....

M:
2

We shall show that the collection B(x;,ry,), i =1,2,..., has the desired properties.

CLAIM:
Mi<ry<Mj<™l when iel, 4.8)
J
xXjs1 €AN UB(xi,rxi) and 4.9)
i=1
xie AN U U Bj,ry), when i€l (4.10)
m#k jely,

Reason. The first two properties (4.8) and (4.9) follow from the construction. To
prove (4.10), assume that i e I, m #k and j€ I,,. If m <k, then by (4.9) we have

x; € B(xj,ry;). If k <m , then (4.8) and m —1 >k imply
o, <Mp<Mol<Meor,

Thus (4.9) implies x; ¢ B(x;,ry,;) and consequently x; ¢ B(x;,ry,). -
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Observe that

49= M;<2"7'M;,i=12,...
= M;—0,i—0c0
= ry,—0,i—00.
)
CLAIM: Ac UB(xi,rxi).
i=1
Reason. Assume, on the contrary, that there exists x € A\ U‘i’ilB(xi,rxi). Then

there exists j such that TJ <ry < Mj, which implies that x € U,-e[j B(x;,ry,). This

is a contradiction. ]

We shall show that every x € R” belongs to at most P(n) = 16"N(n)
balls, where N(n) is as in Lemma 4.5 Assume that x € ﬂleB(xmi 3T, ).

,,,,,

that each ball belongs to a different class of indices I;. Property (4.10) implies
that x € M _, Bx and every ball B, does not contain the center of any other ball B;
with & # j. Lemma 4.5 implies s < N(n) and

t{j:I;nim;:i=1,...,p} # 8} <N(n).
In other words, the indices m; can belong to at most N(n) classes of indices I ;.
Craim: fI;n{m;:i=1,...,pHt<16", j=1,2,....
Reason. Fix j and denote
Iin{m;:i=1,...,p}={l1,...14}
Properties (4.8) and (4.9) imply B(x;;, %rxl, ), i=1,...q, are pairwise disjoint and
they are contained in the ball B(x,2M ;). Thus
M M;
gIBO,DI(F) < Y |Bla,, 3)| < 1B, 2M)| = [BO, DI2M,)"
i=1
This implies g = 16". ]

Let B(x;i,ry;), i = 1,2,..., be the collection of balls in the claim (1) of the
Besicovitch covering. Since M; — 0, j — oo, for every € > 0 there are only a
finite number of balls B(x;,r,,) such that r,, = &. Thus we may assume that
I'x; Tz =.... Denote B; = B(x;,ry,;), i =1,2,.... Let B11 =B and inductively
B j+1 =By, where k is the smallest index, for which

J
B, n UBLL' =@.

=1

Continuing this way, we obtain a countable (or finite) subcollection

%1 =1{B1,1,B12,...},
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which consists of pairwise disjoint balls. If 72, B1,; does not cover the set A, we
choose By 1 = By, where k is the smallest index for which By, ¢ 2.
Inductively, let Bg j+1 = By, where k is the smallest index for which

J
B, n UBQ’]‘=¢.

=1
This gives subcollections 981, %s,... consisting of pairwise disjoint balls.
CLAIM: AcU U2 By withm=4"P+1.

Reason. We show that, if there exists x € A\U;" U2, By i, then m <4"P. Since
A cU32, Bi, there exists i such that x € B; = B(x;,7y,). Then B; ¢ %, k <m and,
by the definition of %8y, there exists By, ;, such that B, ;, NB; # @ and ry; < Iz,

for every k£ < m. Thus for every k < m there exists a ball
B;e cB(x;,2ry,)NBy;,

such that the radius of B;e is r;/2. By (1), each point in R™ belongs to at most P
balls By ;,, £ =1,...,m. This holds for subballs B;e as well. This implies

i

X, <Pyy» B
=k k=1"%
and consequently

m
277" B(0,1)| = |B(x;,2ry,)| > | U B}e| (B, < B(x;,2ry))
k=1

m

1
= m prdx=—

1m .
- 1_’;;1 B)|= %us(o, (%)

Xp dx
1 k

This shows that m <4"P. -

Remarks 4.11:

(1) The assumption that A is bounded in Theorem 4.2 can be replaced with
the assumption that the radii of the balls in & are uniformly bounded,
that is, sup{r: B(x,r) € #} < co.

(2) Theorem 4.2 applies also for open balls.

(3) Balls in Theorem 4.2 can be replaced, for example, by cubes.

We take another look at the covering theorem. For the Lebesgue measure,
the following covering theorem can be proved by applying Theorem 2.15. For a
general Radon measure, we apply the Besicovitch covering theorem instead.
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Theorem 4.12 (Infinitesimal covering theorem). Let u be a Radon measure
on R", A cR" and & a collection of closed balls such that each point of A is a
center of arbitrarily small balls %, that is,

infir >0:B(x,r) e #}=0 forevery x€A.

Then there exist disjoint balls B(x;,r;) € &, i =1,2,..., such that

[e.9]
ula\UBGi,re)) =0.
i=1
THE MORAL: The main advantage compared to the Besicovitch covering
theorem is that the balls that the covering balls are pairwise disjoint under the

assumption that there exist arbitrarily small balls centered at every point.

Remark 4.13. The infinitesimal covering theorem implies that every open set
can be exhausted by countably many disjoint balls up to a set of measure zero.
Observe that this result holds true not only for the Lebesgue measure, but also for
a general Radon measure. Recall that in the one-dimensional case every nonempty
open set is a union of countably many disjoint open intervals and in the higher
dimensional case every nonempty open set is a union of countably many pairwise

disjoint half open dyadic cubes.

Let A be a pu-measurable subset of R” and assume that for every x € A there
are balls B(x,r) with arbitrary small radii » > 0. By the infinitesimal covering
theorem, see Theorem 4.12, we have a countable subcollection of pairwise disjoint
balls B(x;,r;),i=1,2,..., such that

ufan ij(xi,ri)) =0.
i=1
Thus
WA) < ,u(A N GB(xi,ri)) +N(A \ f_jB(xi,r,-))

i=1 i=1

~

=0

(0] [e.9]
<Y uBxi,ri) = ,u( UB(xi,ri)).

i=1 i=1
Proof. We may assume that y(A) > 0, because otherwise the claim is clear. Assume
first that A is bounded. Then there exists a compact set K such that A c K and
thus u(A) < u(K) < co. Since u is Borel regular, there exists a Borel set B such
that A ¢ B and u(B) = u(A). Thus we may assume that A is a Borel set and, in
particular, A is y-measurable. By the approximation properties of measurable
sets for a Radon measure, there exists an open set G > A such that

w@G) < (1+$)N(A).



CHAPTER 4. DIFFERENTIATION OF MEASURES

98

By the Besicovitch covering theorem, there are subcollections %71,...,%g such

that the balls in each %, are pairwise disjoint and
Q
Ac JUB(xi,ri)cG.
k=1,
This implies

Q
pA<y u(UB(xi,ri)).
=1 F

Thus there exists k£ such that

u(A)sQu(gB(xi,ri)).
k

Reason. If
wA) > Q,u(UB(xi,r,-)) forevery k=1,...,Q,
T
then
Q Q
QuA)= Y 1a)>Q Y. u(UBGi,r),
k=1 =1 T
This implies
Q
wA> Y p(UBGi,r)).
k=1 " F,
Since

u(A) < Qu(UBGi, ) = Q ¥ u(Bxi,ri),
T

T

there exists a finite subcollection gﬁ’{ c %, such that

Q) wB(x;,ri) = &
F 2

1

This implies
A <2Q Y p(B(xi,r) = 2Qu(UBGi, )
7 7
Let
A=A\ UB(xi,ri).
7
Then

A < p(G\UBGi, 7))
91'
= @ - p(UBGi,ri)) < (1+ 5 - ) wa)
gl

1

1
=(1—$),u(A)=yy(A), y:l—m<l.
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In practice, this means that balls in %] cover a certain percentage of A in the
sense of measure.

Then we apply the same argument to the collection
F'={Bx,n) e F :B,nn(UB;,r)) = 8},
71

Note that A is a subset of the open set G \ Uglf B(x;,r;). There exists an open set
G1 such that

A1cG1cG\UB(i,r) and (G < (1+ ) uA.
7
Thus there exists a finite subcollection 9:2’ such that

(%B(xi,ri)) N (gB(x,r)) -

and

WA2) <yu(Ai), where Ag=A\ U B(x,r).
7.7,

By continuing this process, we obtain

/,L(A\ U B(x,r))syk/.t(A)
FIU.LUF,

and the result follows by letting £ — oo, since y < 1 and p(A) < co.

In order to remove the assumption that A bounded, we use the fact that
((@B(0,r)) > 0 for at most countably many radii r > 0, if y is a Radon measure
(exercise). Hence we may choose the radii 0 <r; <rg <... such that r; — co as
k — oo and u(8B(0,rp)) =0 for every £ =1,2,...

Denote
Ar={xeR":|x|<r1}, Ap={xeR":rp_1<l|x|<ri}, k=2,3,...

and
F* = {B(x,r)e F :B(x,r) < Ay, x € A}.

The claim follows by applying the proof above for the sets A; and the coverings
Fkk=12,... O

4.2 The Lebesgue differentiation theorem
for Radon measures

It is not immediately clear how to define derivative of a measure. Let f : [a,b] —

[0,00] be a nonnegative integrable function and F :[a,b] — R,

F(x)= f(ydy.

[a,x]
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By Theorem 2.33, we have F'(x) = f(x) for almost every x € [a,b]. Let us write this
in another way. Define a measure by letting u(A) = f 4 [ (y)dy for every Lebesgue
measurable set A <R and let v be the one-dimensional Lebesgue measure. Then

F(x+r)-F(x) _ 1/ Fly)dy = w(lx,x +r])
[x,x+r]

r r ~ v(lx,x+r])

Thus [ D
F’(x) = lim M

= f 1 .
r—0 v([x,x +r]) f(x) for almost every x€la,b]

This suggest the following definition for the derivative of measures.

Definition 4.14. Let y and v be Radon measures on R”. The upper derivative of

v with respect to p is

= L v(B(x,r))
DuvG) =T sie . B, )

and the lower derivative of v with respect to u is

.. V(B(x,1)
va(x) = llﬁlglfm .
We use the convention that l_)yv(x) =ooand D ﬂv(x) = oo, if u(B(x,r)) =0 for some
r > 0. At the points where the limit exists, we define the derivative of v with
respect to i as

Dyv(x) = Dyv(x) = D, V(x) < o0.

Examples 4.15:
(1) Let A cR" be u-measurable. By the measure theory, the restriction v =
1|A is a Radon measure and

im v(B(x,r)) ‘m WA NB(x,r))
r—0 w(B(x,r)) =0 w(B(x,r)

measures the density of A at x.

(2) Assume that p is a Radon measures on R* and f € LY(R*; ). Let v(A) =
f Al fldu for every u-measurable set A c R”. Then

im v(B(x,7)) im 1
r—0 ((B(x,r)) S =0 w(B(x, 7)) JBxr)

Ifldu

is the limit of the integral averages as in the Lebesgue differentiation
theorem.

Recall that a function is Borel measurable, if the preimage of every Borel set

is a Borel set.
Lemma 4.16. ]-_)u"’ D v and D,v are Borel measurable.

THE MORAL: Derivatives of measures are Borel measurable and, in particu-

lar, measurable functions with respect to any Radon measure.
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Proof CLAIM: limsupu(B(y,r)) < u(B(x,r)) for every x € R™.

y—x

Reason. By an approximation result for measurable sets, there exists an open
set G o B(x,r) such that w(G) < u(B(x,r)) + €. Observe that B(x,r) denotes the
closed ball with center x and radius r. It follows that B(y,r) c G, if |x —y| <
1 dist(B(x,r),R" \ G). Thus

w(B(y,r)) < wG) < w(B(x,r) +¢,
if lx—y|l< %dist(B(x,r), R™\ G). This implies

limsup w(B(y,r)) < uw(B(x,r))

y—x

and thus x — p(B(x,r)) is upper semicontinuous. Similarly x — v(B(x,r)) is upper

semicontinuous and consequently the functions are Borel measurable (exercise).m

e g VB@,T)
CLAIM: Dyv(x)=limsup o =0

reQy
Reason. Since B(x,r) is a closed ball,
B(x,r)=(B(x,r+3) and uB(x,r+1))<oo,
i=1
we have

1—00

uBGe, = u((VB (x,r+ 1)) = lim (B (x.r+ 1)
=1

This implies that u and v are continuous from right and that we may replace the

limes superior with a limes superior over the rationals. Consequently, D,v is a
countable limes superior of Borel functions and hence it is a Borel function. The

measurability of D WV and D v are proved in a similar manner (exercise). n

The following result will be an extremely useful tool in our analysis.

Theorem 4.17. Assume that y and v are Radon measures in R”, A c R" and
0<t<oo.

(@8] IfQMv(x) <t for every x € A, then v(A) <tu(A).
(2) Ifﬁuv(x) = ¢ for every x € A, then v(A) = tu(A).

THE MORAL: These inequalities give distribution set estimates
v(fx eR" : D v(x) < th) <tu®R™)

and

px e R :Dyv(x) =t} < %V(IR”).

which are Chebyshev-type inequalities for Radon measures.
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Remark 4.18. The set A cR” does not necessarily have to be measurable, compare
to Theorem 4.12.

Proof. If u(A) = 0o, the claim is clear, so that we may assume p(A) < oo. Let
£>0. There exists an open set G o A such that u(G) < u(A) + . Since Q#V(x) <t
for every x € A, there exists an arbitrarily small r > 0 such that

v(B(x,r)) < (t+&)u(B(x,r)) and B(x,r)cG.

By the infinitesimal covering theorem (Theorem 4.12), there is a countable subcol-

lection of pairwise disjoint balls B(x;,r;) <G, i=1,2,..., such that
v(B(x,r;)) < (t + &)u(B(x,r;))
for every i =1,2,... and
v(A\ B, r) =o.
i=1

Thus

V(A) < V(A n fj B(xi,ri)) + V(A \ GB(xi,ri))

i=1 =1
-0
(e o] [0}
< Y V(B(xj,ri) <(t+¢€) ) uB(x;,r;)
i-1 i=1

<@+ E),u( G B(xi,ri)) (the balls are disjoint)
i=1
<(t+e)uG) <@t +e)(ulAd) +eé).

Letting € — 0, we have v(A) < tu(A).
(2)| (Exercise) d

Theorem 4.19. If 1 and v are Radon measures on R, then the derivative D ,v(x)

exists and is finite for y-almost every x € R”.

THE MORAL: Thisis a version of the Lebesgue differentiation theorem for

general Radon measures.
Proof: CLAIM: 5”1/ = qu p-almost everywhere in R”, that is,
px e R" : Dyv(x) > D v(x)}) = 0.
Reason. Leti,ke{1,2,...}, p,q € Q with p <q. Let
Appg={x€B0,k): D, v(x)<p <q<Dyv(x)}

and
Ay ={x€B(0,k):Dyv(x) > i}.
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Observe that

{x€B(0,k):Dyv(x)>D V)= |J Akpg-
0<p<q
P,q,€Q

Since ]__)pv(x) = q for every x € Ay, 4, Theorem 4.17 implies that v(A; , 4) =
qu(Ap p ). On the other hand, since qu(x) < p for every x € Ay, p, ¢, Theorem 4.17
implies that v(Ay , o) < pu(Apg p o). Thus we have
QN(Ak,p,q) < V(Ak,p,q) < p,u(Ak,p,q),
from which it follows that
H(Ak,p,q) < %H(Ak,p,q) < H(B(O,k))
<00

Since p < g, we conclude that p(Ag , ) = 0. Thus

(e € BO,R): Dyv@)> D v =p( U Anpg)

O<p<gq
P,q,€Q
< ) MAgpg)=0
O<p<q
P,q€Q
and consequently
— o) —
plix €R* :Dyv(x) > D V(@) < k;u({x € B(0,k):Dyv(x)> D, v(x)}) = 0.

Since l_)“v =D " always, we conclude that ]__),lv =D WV p-almost everywhere in
R™. (]

Step2| CLAIM: ]__),,v < oo u-almost everywhere in R” or equivalently

p{x € R : D v(x) = oo}) = 0.
Reason. Theorem 4.17 implies

AL < $Y(AL) < FVBO,R)).
<00

Thus
p({x € B(0,k): D v(x) = 0o}) < i(Ap ;) < 3v(B(0,k)) for every i,k=12,....
By letting i — co, we have
p(fx € B(0,k): D ,v(x) = 00}) = 0

for every £ =1,2,.... This implies

(e € R : Dyv(w) = ooh) = i U (€ BO, k) : Dyv() = oo}
k=1

< Y u({x € B(0,k):Dyv(x)=oo}) = 0. .
k=1



CHAPTER 4. DIFFERENTIATION OF MEASURES 104

4.3 The Radon-Nikodym theorem

Assume that y and v are Radon measures on R". Let f be a nonnegative u-
measurable function and let v(A) = [, f du, where A y-measurable. Then v is
a measure with the property that u(A) = 0 implies v(A) = 0. Conversely, if v
is a Radon measure on R", does there exist a y-measurable function f such
that v(A) = f 4 [ du for every u-measurable set A? The Radon-Nikodym theorem
(Theorem 4.23 below) shows that this is the case if v is absolutely continuous with
respect to p.

Definition 4.20. A outer measure v is absolutely continuous with respect to

another outer measure g, if u(A) =0 implies v(A) = 0. In this case we write v < p.

THE MORAL: v< ymeans that v is small if y is small. When we are dealing
with more than one measure, the term almost everywhere becomes ambiguous
and we have to specify almost everywhere with respect p or v. If v< p and a

property holds p-almost everywhere, then it also holds v-almost everywhere.

It is easy to verify that that the relation « is reflexive (u <« p) and transitive
(1 < pg and ug < ug imply p1 < ps.)
Examples 4.21:

(1) Let u be the Lebesgue measure and v be the Dirac measure at the origin,

1, 0€A,
v(A) =
0, 0¢A.

Then u({0}) = 0, but v({0}) = 1. Thus v is not absolutely continuous with
respect to p. In this case it is not reasonable to expect that there exists a
p-measurable function f such v(A) = [ 4 [ du for every u-measurable set

A, since

v(lop= [ fdu=0.
{0}

(2) Let f be a nonnegative y-measurable function and let v(4) = [ afdy,
where A is y-measurable. Then p(A) = 0 implies v(A) = [ 4fdp=0. Thus
V<L .

Remark 4.22. Tt is often useful, in particular in connection with integrals, to use
the following &, §-version of absolute continuity: If v is a finite measure, then
v <« u if and only if for every € > 0 there exists § > 0 such that v(A) < € for every
p-measurable set A with u(A) < 8. In particular, if f € L1(R"; ), then for every
£ >0 there exists § >0 such that f 4 |fldu < e for every y-measurable set A with
HA)<$8.
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Reason. Assume that the ¢, §-version of absolute continuity holds. Let A c R"
with p(A) =0. Then v(A) < € for every € > 0 and thus v(A) = 0. This implies that
V< .

For a contradiction, assume that v < p and that the &, J-version of
absolute continuity fails. Then there exist € > 0 and y-measurable sets A; c R”,
1=1,2,...,such that u(4;) < 2_11 and v(A;)=eforeveryi=1,2,.... Let B; = U‘L?Zin,
j=12,...,and B :ﬂ;‘;lBj. Then

u(B)su(Bj)w(U.Ai) < “(A’)S;ﬁ =2 720.

i=j

I8

Thus p(B) = 0 On the other hand, since B;.1 < Bj, j=1,2,... and v(R") < oo, we
have

oo

ﬂBj) = lim v(Bj) = €.
j=1 J=oo

v(B)=v (
This is a contradiction with v « p. m

If v(R™) = oo, then the ¢, §-version of absolute continuity implies v <« u, but

the converse is not tue in general. For example, let i be the Lebesgue measure on

R and 1
v(A) =/ —dx
AX

for every measurable set A ¢ R. Then v <« yu, but the ¢, d-version of absolute

continuity fails.

The following theorem on absolutely continuous measures is very important.
It shows that differentiation of measures and integration are inverse operations
and, in that sense, it is a version of the fundamental theorem of calculus for Radon
measures. It has applications in the identification of continuous linear functionals
on L?, 1 < p <oo. Moreover, a general version of the theorem is applied in the
construction of the conditional expectation in the probability theory. Let y and v
are Radon measures on R". Recall that, by Theorem 4.19, the derivative D, v(x)
exists and is finite for y-almost every x € R”.

Theorem 4.23 (Radon-Nikodym theorem). Let y and v are Radon measures
on R". Then

/ Dyvdu<v(A)
A

for every p-measurable set A < R", with equality if and only if v <« p.

TERMINOLOGY: Wecall D,v the Radon-Nikodym derivative.

THE MORAL: The Radon-Nikodym theorem asserts that if v is absolutely
continuous with respect to v, then v can be expressed as an integral with respect
to u and the Radon-Nikodym derivative D v can be computed by differentiating v
with respect to p.
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Proof. |Step 1|Since u is a Radon measure, a y-measurable set can be written as
A =BUF, where B c A is a Borel set and F c A with u(F) = 0. If we can show that

/Dﬂvdp <v(B)
B

for every Borel set B c R, then

/Duvd,u:/D”vdusv(B)sv(A).
A B

Thus we may assume that A is a Borel set.
Let 1 <t <ooand

Aj={xeA:t'<Dvx) <t'*}, iez
The sets A;, i =1,2,..., are pairwise disjoint and
o0
U Ai={xeA:0<Dyv(x)<oo}.
i=—00
Lemma 4.16 shows that the sets A;, i = 1,2,..., are Borel sets and thus pu-
measurable and v-measurable. Let

Z={xeA:D,v(x)=0},

I={xeA:Dyv(x)= oo}
and
N={xeA:Dyv(x)#D v(x)}
Then
Az( Ej Ai)U(ZUIUN).

i=—00
By Theorem 4.19, we have u(I) =0 and u(N)=0.
Step 2| Since D,v = t'in A;, Theorem 4.17 (2) implies that

VA=A i=1,2,....

Since D v < t*1in A;, by Chebyshev’s inequality we have
ti“u(A,-);/ Dyvdy, i=1,2,....
A;

Thus we have

V(A)?V(‘U Ai)Z_Z v(A;)
oo . 1 = .
>‘Z tl,U(Ai)=;‘Z £ (A

1 & 1
>= ) / Duvd,u=—/ Dyvdp.

i=—00 14
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Since

/Duvdpz/ Duvdy+/Duvdp+/DHvdp+/Duvdp,
A UR_ A Z I N

=0,D,v=0 =0,u(I)=0 =0,u(N)=0

we have

1
V(A)B—/D”vdu.
tJja

By letting ¢ — 1, we conclude that

/ Dyvdu<v(A)
A

for every Borel set A c R”.

Assume that v < p and that A ¢ R” is a y-measurable set. Since
1 is a Radon measure, a yu-measurable set can be written as A = BUF, where
B c A is a Borel set and F c A with u(F)=0. Since v < u we have v(F) =0. Thus
A =BUF, where Bc A is a Borel set and F c A with v(F) = 0. This implies that
A is v-measurable.

By Theorem 4.19, we have p(I) =0 and p(IN) = 0. Since v < y, we have
v(I)=0 and v(N) =0.
Let 0 <¢<oo. Since D,,v=0<tin Z, Theorem 4.17 (1) implies that

v(ZnB(0,i) <t w(ZnB(0,i)), i=12,....
—_—

<00

By letting ¢ — 0, we conclude that v(Z nB(0,:)) =0 for every i = 1,2,.... Thus

WZ) = v( .Oo (Z B, i))) < f WZ nB(0,1)) = 0.

=1 =
i i=1 -0

This shows that v(Z) =0.
Since A \U‘L.’Z_OOAi =ZUluN, we have

v(a\ U Ai) SVZUTUN) <VZ)+ V(D) +V(N) =0.

i=—00
Step 4 | Since D,v < #*1in A;, Theorem 4.17 (1) implies that
VA) <t Ay, =12,

Since D v = t' in A;, by Chebyshev’s inequality we have

tiy(Ai)s/ Dyvdy, i=1,2,....

i
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Thus we have

v(4)=v(4n U Ai)+v(aN U Ai)= Y way
1=—00 l_=0—00 1=—00
< Y #uAp=t Y tuA)

[0}
<t Z / Dﬂvdu:t/ D#vd,ust/Dﬂvdp.
i=—oco/ A; U2 i A

i=—oc0 7t

By letting ¢ — 1 we arrive at

v(A) < / Dyvdu.
A

Sen ]

v(A):/D”vdp
A

for every pu-measurable set A ¢ R", then v <« . This follows, since v(A) = 0 if
u(A)=0. O
Remarks 4.24:
(1) It can be shown that v < u if and only of D,v(x) < oo for u almost every
x € R" (exercise). This is a pointwise characterization of absolute continuity
of measures.
(2) By Example 4.21 (2) we may conclude that v « p if and only if v(A) =
i) 4 du, where f is a nonnegative u-measurable function A is a u-measurable
set.
(3) The Radon-Nikodym derivative is unique: If f € Llloc([R”; 1) is a nonnegative
function and v(A) = f 4 [ du for every y-measurable set A < R”, then f =
D,v p-almost everywhere (exercise).
(4) Note that D,v does not have to be integrable. In fact, D,v € Ll(IR”;u) if

and only if v(R") < co (exercise).

Remark 4.25. The Radon-Nikodym derivative has many properties reminiscent

of standard derivatives. Let v, yu and { be Radon measures on R”.

(1) if v< u and f is a nonnegative py-measurable function, then

/fdv:/fD,ﬂdu
A A

for every measurable set A (exercise).
Hint: if g is a nonnegative y-measurable function and v(A) = [ 4 &du for
every p-measurable set A ¢ R”, then for every nonnegative measurable

/Afdv= /Afgdu-

function f we have
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(2) If v<pand { <y, then D(v+{)=D,v+D,{ p-almost everywhere.
(3) If v< { x u, then Dyv=D;vD,{ u-almost everywhere.
(4) If v< p and y < v, then Dv =1/Du p-almost everywhere.

Remark 4.26. The Radon-Nikodym theorem holds in a more general context: If u
is a o-finite measure on X and v is a o-finite signed measure on X such that v « p.
Then there exists a real-valued measurable function f such that v(A) = f Afdu
for every measurable set A ¢ X with |v|(A) < oco. If g is another function such
that v(A) = fA gdu for every measurable set A c X with |v|(A) < oo, then f = g pu-
almost everywhere. The function f above is called the Radon-Nikodym derivative
of v with respect to u. However, in the general case there is no formula for the

Radon-Nikodym derivative.

4.4 The Lebesgue decomposition

In this section we consider measures which are not necessarily absolutely con-
tinuous. The following definition describes an extreme form of non absolute

continuity.

Definition 4.27. The Radon measures p and v are mutually singular, if there
exists a Borel set B cR” such that

w@®*\B)=v(B)=0.
In this case we write uLv.

THE MORAL: Mutually singular measures live on complementary sets.

Example 4.28. Let u be the Lebesgue measure and v be the Dirac measure at the

1, 0€A,
v(A) =
0, 0¢A.

origin,

Then p({0}) = v(R* \{0}) = 0. Thus vLu.

Remark 4.29. Absolutely continuous and singular measures have the following

properties (exercise):
(1) If vilpu and ve Ly, then (v1 +vo)Llpu.
(2) If vi < pand v < p, then (vi +vo) < .
(3) If vi < pand va Ly, then vy Lvs.
(4) If v< pand vLly, then v=0.

Theorem 4.30 (Lebesgue decomposition). Let y and v be Radon measures on
R™.
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(1) Then v = v, + v5, where v, and v, are Radon measures with v, < £ and
vslpu.

(2) Furthermore, D;v=D,v, and D,vs =0 p-almost everywhere in R" and

v(A) = / Dyvdu+vs(A)
A
for every Borel set A c R”.

TERMINOLOGY: We call v, the absolutely continuous part and v the
singular part of v with respect to p.

THE MORAL: Any Radon measure can be split into absolutely continuous and
singular parts with respect to another Radon measure. The absolutely continuous
part can be represented as an integral of the derivative of the measures. Moreover,
the absolutely continuous part lives in the set where D v <00 and the singular

part in the set where qu = o0.
Proof. |Step 1| Let
B={xeR":D v(x)<oo},
ve=vIB and v,=v[(R"\B).

Here | denotes the restriction of a measure to a subset. Then v =v, + v and, by
the properties of restrictions of measures, v, and v, are Radon measures.

By Theorem 4.19, the derivative D ,v(x) exists and is finite for y-almost
every x € R*. Thus

U@®*\B)=0=v(g)=u(Bn(R"*\B)) =vs(B).

This shows that v L p.
Let A cR" with u(A) = 0. Let

Bi={xeR":Dvx)<i}, i=12,...

Then B; c Bjs1, i =1,2,..., and B =2, B;. Since Dyv <i in AnB;, Theorem
4.17 (1) implies that

VANB) <imANB) <ip(A)=0, i=12,....

It follows that

va(A)=v(ANB) = V(A n ijl-) = v(oo (A mB,-))
=1 i=1
< f WANB;)=0.
i=1

This shows that v, < p. Theorem 4.23 implies that

Ve(A) = / Dyvedu
A
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Since D v, = 1in C; nB, Theorem 4.17 (2) implies that

14

Ci={xeR":Dyvs()=1}, i=12,..

vs(C;nB)= 2 u(C;nB), i=12,....
Then

1(Ci) = L€ nB) + 1(C; N (R" \ B))
—_——

=0, (R \B)=0

<vs(C;inB)=v((C;nB)N([®R*\B))=0, i=1,2,....

=
This shows that u(C;) =0 for every i =1,2,..., and consequently
o0

Hltx € R :Dyvy()> 0 = J €] < Y- (i) =o0.
1 =1

i= i

Thus D, v,(x) = 0 for y-almost every x € R” and

Do, () = lim YeBED) _ o V(B 1)~ v(B,r)
uva r—0 'LL(B(x,r)) r—0 ,U(B(x,r))

=D v(x)—Dyvg(x) =D v(x)

for p-almost every x € R”. Since v, < , the Radon-Nikodym theorem (Theorem

4.23) implies that
Ve(A) = / Dyvedpu
A

for every u-measurable set A c R".
V(A) = vy (A)+ve(A)

= / D,vodp+vs(A)
A

= / Dyvdu+vg(A).
A

Remarks 4.31:

(1) It can be shown that pLv if and only if D ,v(x) = 0 for u almost every x € R"

(exercise). This is a pointwise characterization of mutual singularity of

measures.

(2) v < pifand only if vs = 0 (exercise).

Remark 4.32. The Lebesgue decomposition holds in a more general context: Let

1 and v be o-finite signed measures on X. Then v = v, + vg, where v, and v are

o-finite signed measures with v, < p and v; L u. Moreover, this decomposition is

unique.
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4.5 Lebesgue and density points revisited

We shall prove a version of the Lebesgue differentiation theorem for an arbitrary

Radon measure on R", see Theorem 2.24 for the case of the Lebesgue measure.
Theorem 4.33 (Lebesgue differentiation theorem). Let u be a Radon mea-
sure on R” and f ELlloc(Rn;”)' Then

1
lim —— du=f(x)
rl_I’I(l) ,U(B(x;r)) /B(x,r)f H f g

for u-almost every x € R”.

Proof Let
V@)= [ redp
B
where B cR” is a Borel set, and
v(A) =inf{v*(B): A c B, B Borel}

for an arbitrary set A ¢ R®. Then v* and v~ are Radon measures and v <« u

(exercise). The Radon-Nikodym theorem (Theorem 4.23) implies

vi(A)z/DHvidyz/fidp
A A

for every p-measurable set A c R”. This implies that D,v* = f* p-almost every-

where in R”. Consequently,

1 1
lim —— dy=lim— tdu- / “d )
r—0 w(B(x,7)) /B(x,r) fdu r—0 u(B(x,r)) (/B(x,r) fap B(x,r) fau

. 1 + o
_l%m(v (B(x,r)— v~ (B(x,r)))
=D,v (x)-Dyv (x)
= @) - (%) = f(x)

for y-almost every x € R™. d

Corollary 4.34. Let u be a Radon measure on R” and f € LIIOC(R”; ). Then

lim — - du=0
rl—I»%p(B(x,r)) B(x’r)lf fx)ldu

for u-almost every x € R”.

Proof. Let U72,{gi} = Q be an enumeration of the rationals. By Theorem 4.33, for
every i =1,2,... there exists A; c R" such that yu(A;)=0 and

m ———— If —q;ldu=1f(x)—q;| foreve xR \A;.
B B(x,r)f qildpu=1f(x)-q; ry i
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Let A=U2, A;. Then u(A)<¥72; (A;)=0 and

lim —— If —q;ldu=|f(x)—q;| forevery xcR*\A.
lim B B(x’r)f qildu=If qi y

Let x € R"\ A and £ > 0. Then there exists g; such that |f(x)—gq;| < §. This implies

1
limsup ———— -fx)d
lr—»(l)'lp ,u(B(x,r)) B(x,r)|f fxl K

. 1
shmsup—(/ |f—qz'|d,u+/ lgi —f(x)du
r—0 ,u(B(x,r‘)) B(x,r) B(x,r)

:|f(x)_qi|+|f(x)—qi|<§+§:g, O

Remarks 4.35:
(1) We have already seen in Example 2.28 that

1
lim ———— du=
rl—I»I(l)[J(B(x,r)) /B(x,r)f H f(x)

does not necessarily imply

lim——— —f)ldp=0
rl—r»I(l)/,t(B(x,r)) B(x,r)|f feldy

at a given point x € R". The point in the proof above is that the previous

1

1oc ®™; ) for p-almost every x € R”

equality holds for every function f € L
and this implies the latter equality for py-almost every x € R”.

(2) In contrast with the proof of the Lebesgue differentiation theorem (Theo-
rem 2.24) based on the Hardy-Littlewood maximal function, this proof does
not depend on the density of compactly supported continuous functions in
LYR™; ).

We discuss a special case of the Lebesgue differentiability theorem. Let A c R
a p-measurable set and consider f = y4. By the Lebesgue differentation theorem

wANB(x,r)

xradp=lim =xa(x)

lim ———
0 pB G ) Jpge ) 0 uBx,r)
for u-almost every x € R”. In particular,

. WANB(x,r)

lim B =1 for y-almostevery x€A

and
. WANB(x,r)

o w(B(x,r))

Thus the theory of density points extends to general Radon measures on R”.

=0 for y-almost every xeR"\A.
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It is also possible to consider the centered maximal function M f : R" — [0,00]
of f € L (R™;pu) associated with u defined by

loc

1
M = _— d
”f(x) Srlig u(B(x,1r)) B(x,r) FNaut),

The Hardy-Littlewood-Wiener maximal function theorems hold for the maximal
operator with respect to a general Radon measure, compare with Theorem 2.17
and Theorem 2.22. This gives an alternative approach to prove the Lebesgue
differentiation theorem, Theorem 4.33, for a general Radon measure as in the
proof of Theorem 2.24.

Theorem 4.36 (General maximal function theorem). Let y be a Radon mea-

sure on R”. There exists a constant ¢ = ¢(n) such that
c
u({x e R® tMyf(x)> A < 1 "f”Ll(Rn;M) for every A >0.
For 1 < p < oo, there exists a constant ¢ = ¢(n, p) such that

IMFllLe@ew < cllfllLe@ew-

Proof: The proof of the weak type estimate is similar to the proof of Theorem 2.17,
but instead of the covering lemma, see Theorem 2.15, we use Besicovitch covering
theorem, Theorem 4.2. For every point x € R” with M, f(x) > A there exists a ball
centered at x for which the average appearing in the definition of the maximal
function is greater than A. The constant appearing in the weak type estimate is
the constant P in Theorem 4.2. The strong type estimate follows by applying the
weak type estimate and the L°°(R"; 1) estimate as in the proof of 2.22 (exercise).O

Remark 4.37. The noncentered version of the maximal function M, satisfies sim-
ilar weak type and strong type inequalities in the one-dimensional case. In the
higher dimensional case these results do not hold in general. However, if the
measure u is doubling, the noncentered operator satisfies weak type and strong
type estimates. In this case we can apply the covering lemma, see Theorem 2.15,

and the constants in depend on the doubling constant of the measure.

THE MORAL: The Hardy-Littlewood-Wiener maximal function theorems hold
for the centered maximal operator with respect to a general Radon measure, but
we have to use a more powerfull covering theorem compared to the Lebesgue

measure.



In this chapter we show that Radon measures arise nat-
urally in connection with linear functionals on compactly
supported continuous functions. Moreover, we consider
weak convergence of Radon measures and LP functions

and obtain useful compactness theorems.

Weak convergence methods

Radon measures on R” interact nicely with the Euclidean topology. Indeed, mea-
surable sets can be approximated by open sets from outside and compact sets
from inside and integrable functions can be approximated by compactly supported
continuous functions. In this chapter we show that certain linear functionals on
compactly supported continuous functions are characterized by integrals with
respect to Radon measures. This fact constitutes an important link between
measure theory and functional analysis and it also provides a useful tool for

constructing such measures.

5.1 The Riesz representation theorem for
Lp
A mapping L : LP(R") — R is a linear functional, if
L(af +bg)=aL(f)+bL(g)

for every f, g € LP(R") and a, b € R. The functional L is bounded, if there exists a

constant M < oo such that
IL(AOI<M|fll, forevery f[eLPR").

The norm of L is the smallest constant M for which the bound above holds, that is,
IL(f)I
u
reLr@,ifi,#0 I1flp
L(f)
= sup
reLr@,iflp#0 1f lIp

= sup |L(f)I.

FELP®R™),|Iflp<1

ILII =

115
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Recall, that the linear functional
L:LP(R") - R iscontinuous <= Lisbounded <= |L| <oo.

The space of bounded linear functionals on LP(R") is called the dual space of
LP(R™). The dual space is denoted by L?(R*)*. The main result of this section
provides us with a representation for continuous linear functionals on L?(R")
with 1 < p <oo. This is called the Riesz representation theorem and it gives a
characterization for L?(R™)* with 1 < p <oco. We begin with the easier direction.

Theorem 5.1. Let 1 < p <oo and assume that p is a Radon measure on R*. Then
for every g € Lp'([Ri”), the functional L : LP(R") — R,

L(f)= / fgdu
Rn
is linear and bounded and thus belongs to L?(R™)*. Moreover, ||L| = | gl Pl

THE MORAL: This shows that for every function g € LP'(R") there exists a
bounded linear functional L : LP(R") — R with ||L|| = [|g]l,>. With this interpreta-
tion LP'(R™) c LP(R™)*.

Proof. The linearity follows from the linearity of the integral. If | g]|,» = 0, then
L(f) =0 for every f € L°(R") and the claim is clear. Hence we may assume that
gl >0.

By Holder’s inequality

IL(f)|='/ fegdu s/ Ifllgldu
R” R™

1 1
<( IfI1P d/u)p (/ gl”’ du)p =lflplglp
R~ R”

This implies

ILI=  sup  |L(AI<lgly <oo.
fELP(RM),|Ifllp<1

/

On the other hand, the function f = |g]| 0 sign g belongs to LP(R™), since

Y oo NP
||f||,,=( Ifl du) =( 18l du) =ligll ), <oo.
R™ R™

v v ,
Since |g| » gsigng =gl 7 |g] =|gP =0, we have

P ,
IL(f)] = L(f) = IgIPgSIgngdu=/ lgl” du
R™ N— —r R?
=gl
1
1 p
:( |g|P’du)P /Iglp'du =1fllplgll,y
Rn A
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and

Ll

LIl = sup
reLr@),ifip#o Iflp

> gl

This shows that L[| = [gll,.
Assume that g € LY(R?). Again we may assume that [ g|l; > 0. Then

IL(f)] < / Ifllgldpu<iiflcolgl,
Rn

which implies that

ILI=  sup  |L(f< gl <co.
feLP(R™),|If lloo<1

On the other hand, since the function f = sign g belongs to L¥(R"), [|flloo <1 and
gsigng =gl =0, we have

IL(f)I=L(f)=/ gsigngdu=/ lgldu=1lgl.
R” R”

This shows that

ILI = sup IL(F) = gl
FELPR™),|f o<1

from which it follows that |[L| = |l g]l1.
Let g € L°(R™). Again we may assume that | gllcc > 0. Then

IL(f)Is/ IFligldp<Iflilglo,
RTL

which implies that

ILI = sup  |L(f)I<]glloo <oo0.
fELI@®™),Ifl1<1

Assume first that u(R") <oo. Let 0 <& <[ gll0o,

XA, signg

Ac=(xeR" gl > Iglo—e) and fo= "2

Then 0 < u(A,) < pu(R™) < co. We observe that f,. € L1(R") and

Ifell1 =/n

gl / lglloo—€
L(f)| = gdu| = dus | Elo—€ 0 gl -t
e '/Rnfg “‘ /AEMA» 2, Taay dH=lEle e

This shows that, for every 0 < € < ||gllo, there exists f: € LY(R™) with Ifelli <1
such that

1.

xASSIgng’ s/ XA du:u(Ag):
wAg) ke H(Ag) HWA)

Thus

lglloo — € S IL(f)l < I8 lloo-
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This implies

LI = sup IL(F) = 118lloo
fELI@®™),[Ifl1<1

under the assumption that u(R") < co.

The case p(R™) = oo follows by exhausting R” with sets A; c A;41, R” = U‘i’zlAi
with u(A;) < oo for every i = 1,2,.... For example, we may choose A; = B(0,1),
i=1,2,.... Let

XA, signg
.U(Ae,i)

fori=1,2,.... Weobservethat A,; cA,;.1,i=1,2,...,and A, = U‘i’glAg,i. Since
H(A;) >0 and we have

Agi={x€B(0,i):Igx) = lgllo—¢€} and fe;=

(o9}

0<u(A,) = u( Ae,,-) = lim p(Ac,;)

i=1
and, consequently, there exists i such that (A, ;) > 0. On the other hand, u(A, ;) <
1(B(0,i)) < co. As above, we conclude that, for every € > 0, there exists f; ; € Li®Y)
with [|f¢,il1 <1 such that

l8lloo =& < IL(fe,i)l < 18 llco-

This implies

ILI = sup IL(F) = lglloo-
FELY®™),If <1 ]

Then we show that the converse of the previous theorem holds for 1 < p < oo.

Theorem 5.2 (Riesz representation theorem in LP). Let 1 < p < oo and as-
sume that y is a Radon measure. For every bounded linear functional L : LP (R") —
R there exists a unique g € LP'(R") such that

L(f)= [ fgdu forevery f[eLP(R"). (5.3)
[R'l
Moreover, ||L|| = gl

THE MORAL: The dual space of L?(R") is isomorphic to Lp/(IR”), that is,
LP(R™)* = LP'(R") for 1< p < oo.

WARNING: The result does not hold for p = oo, since L*(R")* is not a subset
of L1(R™).

Proof. If |L| =0, then g =0 in LP'(IR”), that is g = 0 py-almost everywhere in
R”, satisfies the required properties. Thus we may assume that |L|| > 0. First
we assume that L is a positive functional, that is, f = 0 py-almost everywhere
in R" implies L(f) = 0 At the end of the proof, we show that every bounded
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linear functional L : LP(R") — R can be represented as a difference of two positive
functionals.

First we assume that pu(R") < co. Later in the proof we show that this
assumption can be removed for o-finite measures. For a y-measurable set A c R",
let

v(A)=L(xa).
We have
/Rn lxal? dp=p(A) < p(R") < oo,

which implies that y4 € L?(R") and v is well defined. Observe that y4 =0 and
since the operator is positive, we have v(A) = L(y4) = 0. Thus v is a nonnegative

set function on p-measurable sets.
m CLAIM: viscountably additive on pairwise disjoint yu-measurable sets.

Reason. Assume that A;,i=1,2,..., are pairwise disjoint y-measurable sets. Let
B= U‘L?ZlAi and By, = Uf:IA,-. Since By, < Br+1 and By, is a y-measurable set,
k=1,2,..., we have

4

k e
lim w(Bp)= lim ,u( Ai) :,u(UAi) = 1(B).
k—o0 k—o0 1 i=1
This implies
k—
lxB = xB; Iy =/ |xB — xB, |” dp = (B \ By,) = u(B) — u(By) —— 0,
[Rn

since w(B) < u(R") < oco. It follows that yp, — yp in LP(R") and by the continuity
of L, we have L(yp,) — L(xB) as k — co. This implies that

[e) k
Zv(A,-)z lim Zv(Ai)z lim v(By)
i=1 k—oco;3y k—co

(@

=klim L()(Bk):L(XB):V(B):V( Ai)- (]
oo =

1

(3)] CLAIM: vis absolutely continuous with respect to p.

Reason. If i(A) =0, then ||yall, = 0 and thus y4 =0 in LP(R"*). Since a linear

functional maps zero to zero, we have v(A) =L(y4) =0. n

By the Radon-Nikodym theorem, see Theorem 4.23, there exists g € L1(R")
for which

v(A)=L(ya) = / xagdu
Rﬂ

for every p-measurable set A < R". This proves (5.3) for the characteristic func-
tions f = ya, where A is a y-measurable set. We still have to show that g € L? '(R™),
(5.3) holds for all f € L°P(R") and |IL|| =gl

(5)] CLATIM: The representation in (5.3) holds for every f € L(R") with

f =0 p-almost everywhere in R”.
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Reason. In (4) we showed that (5.3) holds for every characteristic function of
a p-measurable set and consequently it holds for linear combinations of such
sets. Thus (5.3) holds for simple functions. Every nonnegative f € L*°(R") can
be approximated in L>°(R") by an increasing sequence (s;) of nonnegative simple
functions. Since p(R™) < oo, we have

1
p 15
Isi = Fllp = (/ ls; = fIP du) <llsi = f loopu(®R™)? =0
Rn
and since L is a bounded operator, we have
i—00

IL(si) = L(AI < ILIls; = fll, — 0.

On the other hand,

'/ Sigdu—/ fgdu
R™ R

s/ ls; — fllgldu

Rn

<lsi—flloo | lgldu—=20.
Rn

Thus
L(f)= lim L(s;) = lim sigd,u:/ fedu.
1—00 1—00 JRrn R”
This shows (5.3) holds for every f € L®(R") with f = 0 u-almost everywhere in

R™. [ ]

For a general sign-changing function f € L*(R"), we represent f as a
difference of the positive and negative parts f = f* — f~, where f* € L*°(R") and
f~ € L°(R"). We apply (5) to conclude that there exists nonnegative g € L1(R")
such that

L(A)=L(f*—f)=L(f)-L(f")
=/ f+gdu—/ frgdu
R~ R~
= (f"=f)gdu
Rn
= [ fgdp.
Rn

This shows (5.3) holds for every f € L°(R")

CLAIM: |gl, <Ll and thus g € L?'(R"). Recall that g >0 with
lgll,,r # 0.

Reason. Let

A;j={xeR":gx)<i} and fi=ya,g” % i=12,....
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Then f; € L°(R") and flp :gp' on A;. Thus

-

/gl”du=/ figdu=L<fi)<||L||||fi||p=||L||(/ gp’du)p.

i A

This implies

1
T

1-1
A A

13

for every i = 1,2,.... By the monotone convergence theorem, we have

Lo
R" U®, A

i=14%
=/ g? 1imxAidu=.1im/ g” xa,du
R 1—00 1—00 R”

=lim | g"dps<ILI”.

i—o0 /4,

g’ du=/ 8" xux, A, du
Rn

This shows that llgll,» < [IL].

Aj={xeR":g@)=|LI+1}, i=12,...
Then
(||L||+%).U(Ai)$/A>gle=‘/WXAigle‘
=|L(xa)l = ILINxa, 1 < ILIuA),

which can happen only if u(A;) =0 for every i =1,2,.... Since

o0 o0
p(fx €R™ : g(x) > IILI}) = Il(UAi) <) wA)=0,
i=1 i=1
we have g(x) < | L| for almost every x € R”. This implies ||gllco < IIL]. -

Thus g € LP' (R") and

L) = / fedu
Rn

for every f € L°(R"). Both sides of the equality above are continuous linear
functionals on L?(R") and they coincide on the dense subset L*°(R"). Consequently,
they coincide on the whole of LP(R"). This proves that the equality above holds
for every f € LP(R") under the assumption u(R") < co.

To show the uniqueness of g, assume that there exist g1,g2 € LP'(R") such
that

L) = / ferdu and L(f)= / Feadu
R~ R~
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for every f € LP(R"). It follows that
/W f(g1—g2)du=0
for every f € LP(R"). We choose f =sign(g; — g2). Since u(R") < oo, we have
- IfIPdp= /R Isign(g1—g2)I” dpu< pR") < oo.
Thus f € LP(R"). It follows that
- lg1—g2ldu= /R sign(g1—g2)(g1—8g2)du= /R f(g1—g2)du=0.

This implies that g1(x) = g2(x) for y-almost every x € R”.
(@ cratm: ligly =ILI.

Reason. By (7) we have | gll,» < ||L|l. The opposite direction comes from Hélder’s

inequality, since

IL(f)] < / fedu|<Iflplgly
Rn
so that
LI = sup LA <lgllp.
FELP@M,|f]Ip<1 -

(10)| The proof is now complete in the case u(R"*) < co. Next we consider the
case U(R") =co. Let

F ={A cR": A y-measurable and u(A) < oo}.

Note that & is not a g-algebra, since R" \ A does not necessarily belong to %,
if Ae . For A € &%, we may identify LP(A) with {f e LP(R*): f =0in R*\ A}
by extending all functions in LP(A) by zero to R” \ A. Since y(A) < co, we may
apply the beginning of the proof to the bounded nonnegative linear functional
L:LP(A)— R and obtain a unique g4 € LP'(A) such that

L(f)=/ngdu=/ fgadu forevery feLP(A)
A R®

and
lgall,pa = _EOL
L@ FELP(A),I fllLpcay20 1 1Lp(a)
L)
= sup —f <|L].

FELP(A),IfllLpcay20 I ILp@n)

Extend g4 by zero to R” \ A. Since the right-hand side does not depend on A € &,
we obtain

sup lgall; » ny < LIl < o0o.
Ac LP (R™)
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By the definition of supremum, there exists a sequence of sets (A;), A; € &,
1=1,2,..., such that

lim lga; ll; 0/ ey = sUP llg Al o gny-
et ZECO R 4 Lr'(R")

(11)) CLAIM: We may assume that A; cA; 1 and 0< g4, <ga,,, H-almost
everywhere for i =1,2,....

Reason. Assume that A,B € &. By the uniqueness of g4, we have ga(x) =
ganB(x) = gp(x) for p-almost every x € A N B. In particular, this implies that

gAuB =max{ga,gB}.

On the other, if A ¢ B, then 0 < g4 < gp p-almost everywhere. The claim follows
by replacing A; with U§'=1AJ' and g4, with ng-zlAj‘ n

Since (g4,) is an increasing sequence, it converges p-almost everywhere and
we may define
g(x) = lim g4, (x)
1—00

for u-almost every x € R”. By the monotone convergence theorem, we have
”g”Lp’(Rn) = lllglo ”gAi ”Lp’([Rn)

=sup [Igall ' @ny < ILIl < oo.
e LP (R")

(12)) CLAIM: If Ae %, then g4 = g p-almost everywhere in R”
Reason. By (10), we have
su liony = 1ony = liM |
AELE'}) ”gA ”Lp (R™) ”g”Lp (R") i—»oo”gAl "Lp (R)
< }LI& “gAiUA ”LP’([R”)
= LILI& ” maX{gAi 5gA} ”LP,(IR”)
< sup 8all ' @)
AeF Lr®)
By the monotone convergence theorem, we have
”g”Lpl([Rn) = llirélo ” maX{gAi ’gA} ”LPI(R”) = “ maX{g,gA} ”LPI(R”)’
from which the claim follows. m

(13)| Assume that f € LP(R"). Let s be a simple function that is zero outside a

set of finite measure. Then s € L?(R") (exercise). By (8), we have

L(S)Z/ sg(s¢o}du=/ sgdu.
R? Rn
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Since p is o-finite, there exists a sequence (s;) of simple functions s;, i =1,2,...,
such that every s; is zero outside a set of finite measure (depending on i), |s;(x)| <

|f(x)| for p-almost every x € R” and
f(x) = lim s;(x)
1—00

for p-almost every x € R" (exercise). By the dominated convergence theorem,
we have s; — f in LP(R") as i — co. By the continuity of L and the dominated

convergence theorem, we have
L(f)=lim L(s;) = _lim/ s;gdu
1—00 1—00 Rn

- [ Gimsogan= [ redu
Rﬂ

Rn 1—00

for every f € L?(R"). The proof of |L| = llg|l,» is the same as in (7) and (9).
To show the uniqueness of g, assume that there exist g1,g9 € LP'(R") such
that

L(f)=/ fgidy and L(f)=/ fgadu
R~ R~

for every f € LP(R"). As in (8) it follows that

/Rn Flg1-g)du=0

for every f € LP(R"). Let A; c A;;1 be u-measurable sets with u(A;) < co and
R"? = 72, Ai. For example, we may choose A; = B(0,1),1=1,2,.... Since pi(A;) < oo,
we have f = y4, sign(g1—g2) € LP(A;) and

/Algl—gzldu=/ XAisign(gl—gz)(gl—gz)du=/ f(g1—82)du=0
i Rn Rn

for every i = 1,2,.... This implies that g1(x) = gao(x) for py-almost every x € A;.
Since this holds for every i = 1,2,..., we conclude that g;(x) = ga(x) for u-almost
every x € R".

Finally we remove the assumption that L is a positive functional by
showing that every bounded linear functional L : LP(R") — R can be represented
as a difference of two bounded positive functionals. Let L :L?(R") — R be a
bounded linear functional. For f € LP(R"), f =0, let

L*(f)= sup L(g) and L7(f)=- inf L(g).
O<gs<f Osgsf

CLAIM: L*(f1+f2)=L*(f1)+L*(fe) for every f1,f2 € LP(R") with f; =0 and
fo=0.

Reason. Let g;,fi e LP(R*) withO0<g; <f;,i=1,2. Then

L(g1)+L(g2)=L(g1+g2) <L*(f1+f2).
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By taking supremums over g1 and gg, we get
L*(f)+ L7 (f2) L (f1+ f2).

To prove the reverse inequality, let g € LP(R") with 0 < g < f1+f2 and let g1 =
min{g,f1} and go=g—g1. Then0< g; <f;,i=1,2, and we have

L(g)=L(g1+g2)=L(g1)+L(g2) <L (fU+ L (f2).
By taking supremum over g, we get
L*(f1+f2) <L (f1)+ L (f2).
It follows that L*(f1 + f2) = L™ (f1) + L* (f2). (]

CLAIM: L*(af)=aL*(f)for every f e LP(R"), f =0 and a = 0.

Reason.

L*(af)= sup L(g)= sup L(ah)=a sup L(h)=aL*(f).
O<sgs<af O<hsf O<hsf n

Moroever, for g € LP(R") with 0 < g < f, we have
L@ <ILINglp < ILIIFlp-
By taking supremum over g, we get
L) <ILINF N,
for every f € LP(R"), f = 0. A similar argument shows that
L™(A)<ILINFp

for every f € LP(R"), f = 0 (exercise).
Let f e LP(R"), f =0. Then

L*(f)=L(f)= sup L(g)-L(f)= sup (L(g)—L(f))

Os<gs<f O<g<f
= sup —(L(f)-L(g))= sup —-L(f-g)
O<sgsf Osgsf

== ot L= L)

which shows that L(f) = L*(f)— L™ (f) for every f € LP(R"), f = 0.
Define operators L™ : L’(R") — R and L™ : L?(R") — R by

LY(f)=L"(f)-L*(f7) and L7 (f)=L7(f)-L7(f).

The operators L* and L~ are linear, bounded and positive. In addition, we have
L(f)=L*(f)—L~(f) for every f € LP(R™).
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By (13), there exist unique nonnegative g1,g2 € LP'(R") such that

L) = / ferdu and L(f)= / Feady
Rn R~

for every f € LP(R"). The function g = g1 — g9 satisfies

L(f)=/ fegdu
[Rn,

for every f € LP(R"). The fact that |L|| = ||gll, follows as in Theorem 5.1. O

Remarks 5.4:

(1) For p = p’ =2 the Riesz representation theorem can be proved using the
facts that L2(R") is a complete space and therefore a Hilbert space, and
that bounded linear functionals on a Hilbert space are given by the inner
product.

(2) It follows that LP(R")** = LP(R"), and thus LP(R") is a reflexive space
when 1< p <oo.

(3) The result does not hold for p = 1 without the o-finiteness assumption.
For p > 1, we do not need to assume that u is o-finite in fact, although the

proof requires some different details.

Remarks 5.5:
(1) It holds that (exercise)

171, :sup{/ fgdx:geLp’([Rn), lgll, < 1}, 1< p <oo.
Rn
(2) Since Co(R") is dense in L? (R") for 1 < p < oo, we have
£y = Sup{/ fgdx:geCo®™), gl < 1}.
[RIL

(3) To show the uniqueness of g, assume that there exist g1,g92 € L?'(R") such
that

L= [ ferdu and L= [ feadp
R" R"
for every f € LP(R"). As in (8) and (13) in the proof of Theorem 5.2 it
follows that
/ f(g1—-g2)dp=0
Rﬂ

for every f € LP(R"). By choosing f = N?gé;":)), where x € R" and r > 0, we

have
1

— (g1—82)du=0

LB ) Jaen g1—-82)au

for every x € R” and r > 0. By the Lebesgue differentiation theorem (The-
orem 4.33), we conclude that g1(x)— go(x) = 0 for py-almost every x € R”.

This gives an alternative way to prove the uniqueness in Theorem 5.2.
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5.2 The Riesz representation theorem for
Radon measures

We denote the space of continuous functions f : R* — R™ by C(R";R™), where

n,m=1,2,.... The support of such a function f is
suppf ={x e R”: f(x) # 0}

and
Co(R™;R™)={f € C(R";R™):suppf is a compact subset of R"}

is the space of compactly supported continuous functions f : R” — R™. The space
Co(R"™;R™) is relevant since it is dense in many function spaces. For example,
Co(R") is dense in L?(R") for 1 < p < oo, see Theorem 1.57.

Assume that pis a Radon measure on R” and let o : R* — R™ be a u-measurable
function such that |o(x)| = 1 for py-almost every x € R*. Let L : Co(R™";R™) — R,

L(f) =/ f-odu
RVL
for every f € Co(R™;R™). Then
L(f+g)=L(f)+L(g) and L(af)=aL(f), a€R,

so that L is a linear functional. Let K < R” be a compact set and assume that
f € Co(R™;R™) with supp f < K and |f(x)| <1 for every x € R”. Then

/f-Udu S/ |f~oldu</ Iflloldu
R? R” R?

= | Ifldp<p(suppf) < mK) < oo,
Rn

IL(f)I =

which implies
sup{IL()l: f € CoR™;R™), |f| < 1,suppf c K} < oco.

This is the norm of the linear functional L over the class of functions f € Co(R";R™)

with supp f < K. Thus this functional is locally bounded.

THE MORAL: Theintegral with respect to a Radon measure defines a locally
bounded linear functional L : Cy(R™;R™) — R as above.

The next theorem shows that the converse holds as well.

Theorem 5.6 (Riesz representation theorem). Assume that L : Co(R";R™) —

R is a linear functional satisfying

sup{L(f): f € Co(R";R™), |fI<1,suppf <K} <oco (5.7)
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for every compact set K < R". Then there exists a Radon measure p on R” and a
p-measurable function o : R” — R™ such that |o(x)| = 1 for py-almost every x € R

and

L(f)=/ frodu
[Rn

for every f € Co(R™;R™).

THE MORAL: Alocally bounded linear functional on Cy(R"?;R™) can be char-
acterized as an integral with respect to a Radon measure. This gives a method to
construct Radon measures and motivates the study of Radon measures. The role
of o is just to assign a sign so that the measure y is nonnegative.

Example 5.8. Let L : Co(R™) — R, L(f) = f(xo) be the evaluation map for a fixed
x9 € R™. Let K c R" be a compact set, f € Co(R"?) with |f| <1 and suppf < K. Then

L(f) = f(x¢) < 1 <oo.

This functional is positive in the sense that L(f) = 0 whenever f = 0. By the Riesz

representation theorem, there exists a Radon measure y on R” such that
L(f)y=[ fdu
Rn

for every f € Co(R"). It follows that for the evaluation map, the measure p is equal
to Dirac’s measure J,, concentrated at xo.

Now we are ready for the proof of Theorem 5.6.

Proof. For an open set U c R", we define a variation measure u as
pU) = sup{L(f): f € Co®™;R™), |f| < 1,suppf < U}.
For an arbitrary A cR”, we set

wA) =inf{u(U): A c U, U open}.

CLAIM: pisan outer measure.

Reason. Let U and U;, i = 1,2,..., be open subsets of R” such that U c U?Z1Ui'
Let f € Co(R™;R™) such that |f| <1 and suppf < U. Since suppf is a compact
set and the collection of sets U;, i = 1,2,..., is an open covering of K, there exist
finitely many sets U;, i =1,...,k, such that suppf c Ule U;.

Let ¢;, i =1,...,k, be a partition of unity (Theorem 3.29) related to the col-
lection U;, i = 1,...,k, such that 0 < ¢; < 1, supp¢; c U; for every i =1,...,k,
and

k
Z @i(x)=1 forevery xesuppf.
i=1
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Then \ \
f@)=f@)Y @i(x)=) fx)p;(x) forevery xeR",
. =

i=1 i=

supp(@;f)cU; and 0 < ¢;f <1foreveryi=1,2,.... Thus

)

By taking the supremum over such functions f, we have

k
=X Lifi)

i=1

\IL(f)I =

k 00
< Y IL(fol < ) pWy).
i=1 i

i=1

(o)

p) <Y wU;).
i=1
Thenlet A;,i=1,2,..., be arbitrary sets with A c U;’ZlA,-. Fix € > 0. For every
1=1,2,...,let U; be an open set such that A; cU; and
€
wU;i) < p(Ai) + ok

Then

[e.e]
= Z UAj) +e.
i=1 i=1

[e9) o0 (o) £
pA) <p(UUi|<) pUs< ), (I-l(Ai)+ >
j i=1 i=1
m CLAIM: puisaRadon measure.

Reason. Assume first that U; and Uy are open sets with dist(U1,Us) > 0. Let f; €
Co(R™;R™) such that 0 < f; <1 and supp f; < U;, i =1,2. Then f1 + fo € Co(R";R™),
0 < f1+ f2 <1 and supp(f1 + f2) c U1 UUy, so that

L(f1)+ L(f2) = L(f1 + f2) s p(U1 L U2).
By taking the supremum over all admissible functions f; and f5, we obtain
ulU1) + wUz) < wUy VU?).
On the other hand, by (1) we have u(U; + Us) < u(U1) + p(Us). Thus
pU1) + pUz2) = WUy + Uy).

Assume then that A, and Ag are arbitrary sets with dist(A1,A9)>0. Let >0
and choose an open set U c R" such that A{UAg cU and

wU) < u(A1UA9) +e.

Take open sets U; c R” such that A; c U; and dist(U;,U2) > 0. For example, we
may take
U; = {xeR" :dist(x,A;) < 3 dist(A1,40)}, i=12.

Then A; cU; nU and dist(U; nU,UanU) > 0. Thus

WA+ WA < WUy nU) + w(Ua nU)
=pUnUinUsz) s u(A1UA9) +e.
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Letting € — 0, we have u(A; UAg) < (A1) + pu(Asg). Again, the reverse inequality
follows by subadditivity, so that

(A1 UAg) < (A + u(Ag).

This shows that p is a metric outer measure and consequently it is a Borel
measure.

To see that u is Borel regular, let A be an arbitrary subset of R*. Then there
exist open sets U;, i =1,2,..., such that A cU; and

pU) < wA)+3, i=1,2,....

Thus

13

wA) < ,u(ﬂ Ui) <pU;) < pA)+1
=1

for every i = 1,2,..., which implies

u(A)=u(ﬂ Ui).
i=1

Finally, we show that u(K) < oo for every compact set K < R”. It is enough to
show that u(B(x,r)) < oo for every ball B(x,r) cR". This is clear, since (5.7) gives

WB(x,r) =sup{L(f): f € Co(R";R™), |f| <1, suppf < B(x,r)}
< sup{L(f) :f e Co@®";R™), |f1<1,suppf CE(x,r)} < o0.
Thus p satisfies all conditions in the definition of Radon measure. m
m Denote Cg([R{”) ={f eCyp(R"): f =0} and for every f € Car([Ri”) define
v(f)=sup{IL(g)|: g € Co®";R™), Ig| < f}.

Observe that if f1,f2 € Cg([R”) and f1 < fo, then v(f1) < v(f2). Moreover, v(af) =
av(f) for every a >0 and f € Cj(R").

(5)] CLATM: V(fi+f2) = v(f1)+v(f2) for every f1,fz € Cg(R™).

Reason. If g1,g92 € Co(R";R™) such that |g1] < f1 and |g2| < fo, then |g1 + g2 <
lg1l+1g2l < f1+f2. In addition, we may assume that L(g1) =0 and L(g2) = 0. Thus

[L(g DI+ |L(g2)l = L(g1) + L(g2) = L(g1 + g2) < |L(g1 + g2)| < v(f1 + f2).
By taking suprema over g1 € Co(R";R™) and g9 € Co(R";R™), we have
v(f1) +v(f2) <v(f1+ fo).

To prove the reverse inequality, let g € Co(R";R™) with |g| < f1+f2. Fori =1,2,
set

fig .
— > if fi+fa>0,
gi= fi+f2

0, if fi+/f2=0,
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Then g1,g2 € Co(R™;R™) and g = g1 + g2. Moreover, |g1| < f1 and |g2| < f2, so that
IL(g)l < IL(g DI+ |L(g2)l < v(f1) +v(fa),

from which it follows that v(f1 + f2) < v(f1) + v(f2). n

CLAIM: v(f):/ f du for every f € Cj(R™).
[Rﬂ
Reason. Let € >0. Choose 0=ty <t?t; <---<tp such that
tr =2fllco, O0<t;—t;_1<€ and ,u(f_l{ti})zo for every i=1,...,k.

Set U; = f‘l((ti_l,ti)), then U; is open and u(U;) < oo for every i =1,...,k. By
approximation properties of measurable sets with respect to a Radon measure,

there exist compact sets K; < U; such that
WU\K;) < % i=1,.. k.

Futhermore, there exist functions g; € Co(R";R™) with |g;| <1, suppg; < U; such
that
£ .
IL(gi)| = wU;) - o T 1,...,k.

Note also that there exit functions 4; € Cj(R") such that supph; cU;, 0<h; <1
and &; =1 in the compact set K; Usuppg;. Then

v(hy) = |L(g)| = pU;) - % i=1,... .k,

and
v(hi) =sup{IL(g)|: g € CoR™;R™), |g| < h;}
<sup{IL(g)|: g € Co(R";R™), |g| < 1,suppg c U;} = u(U;).
Thus
wU;) - % <vh) <uU;), i=1,...k.
Let

k
A:{xeR":f(x)(l— hi(x))>0}.
i=1

Then A is an open set. We have

k k
V(f—fzhi)=SUP{|L(g)|ig€Co(R”;Rm), IgISf—thi}

i=1 i=1
<sup{IL(g)l: g € Co(R";R™), gl < I fllooxa}

= Ifloosup{IL(g)l: g € Co®R™;R™), g < xa}
k

1

= £ lloop(A) = IIflloou( UiNthi= 1}))

1

k
=lflloo ) U NK) <&l f llco-
i=1
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Thus
k k
v(f)=v(f—f2hi) +v(thi)
i=1 i=1
k
<élflloo+ Y v(fhi)
i=1
k
<éllflloo+ Y tipU;)
i=1
and
k k ek
)= Y v(Fhi) =Y tig (,U(Ui)— E) =) ti1uU;) —tre.
i=1 i=1 i=1
Since
k k
YotisqapU< [ fdu<) t;uU;),
i=1 R" i=1
we have
k
v(f) - / Fdul< X -t +ll Flloo + £t
R” i=1
< ep(supp f) + 3€ll f ll oo m

There exists a y-measurable function o : R* — R such that

L(f)=| f[-odu
Rn

for every f € Co(R™;R™).

Reason. Fix e € R" with |e| = 1. Define v.(f) = L(fe) for every f € Cy(R"). Then v,

is linear and
[ve(F)I = L(fe)l < sup{|L(g)| : g € Co(R™;R™), Ig| < |}

=v(|f|):/ Fldu.
Rn

Thus we can extend v, to a bounded linear functional on L'(R";u). By Theorem
5.2 there exists o, € L°°(R"; ) such that

Aelf) = / foedu, feCo®.
Rn

Let eq,...,e, be the standard basis for R™ and define o = Z;’;laeiei. For f €
Co(R™;R™), we have

L= L(f-enen =Y (f'ei)aeiduz/ foodp.
i=1 i=1JR" R”

B) CLAIM: |o(x)| =1 for p-almost every x € R".
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Reason. Let U cR" be a open set with p(U) < co. By definition

u(U)zsup{/ f-odu:feCoR";R™), Iflsl,suppch}.
Rn

Let f; € Co(R™*;R™) such that |f;| <1, suppf; cU and f; -0 — |o| y-almost every-
where. Thus

/ loldu = lim fi-odu<u).
U 1—00 Rﬂ

On the other hand, if f € Co(R™;R™) is such that [f| <1, suppf < U, then

f-od,us/laldu
R? U
and consequently
,u(U)s/ loldp.
U

Thus
u(U)z/laldu for every open U cR".
U

This implies |o| = 1 for py-almost everywhere. m

Next we prove the Riesz representation theorem for positive linear functionals
on Co(R™).

Theorem 5.9. Assume that L : Cy(R") — R is a positive linear functional, that
is, L(f) = 0 for every f € Co(R") with f = 0. Then there exists a unique Radon

measure ¢ on R” such that

L(f)= [ fdu
Rn
for every f € Co(R™).
Remarks 5.10:
(1) If f,g € Co(R*) and f = g, then L(f)—L(g) = L(f — g) = 0 and thus L(f) =
L(g).

(2) Positive linear functionals on Cy(R") are not necessarily bounded, but they

are locally bounded, as we shall see in the proof below.

Proof. Let K be a compact subset of R” and let ¢ € C3°(R") be such that ¢ =1 on
K and 0 < ¢ <1. Then for every f € C3°(R") with suppf < K, set

g=Ifllcp—f =0.

Thus
0<L(g) = If looL(p) = L(f)

which implies that
L) <clfllo
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with ¢ = L(¢). The mapping L can be extended to a linear mapping from Cy(R")
to R, which satisfies the assumptions in the Riesz representation theorem, see
Theorem 5.6 (exercise). Hence there exists a Radon measure u and a y-measurable

function o : R* — R such that |o(x)| = 1 for y-almost every x € R® and

L(f)=| fodu
Rn

for every f € Co(R™). Then g(x) = +1 for uy-almost every x € R” and positivity of
the operator implies o(x) = 1 for u-almost every x € R” (exercise).

To prove the uniqueness of i, assume that there exist two measures p; and pg
such that

L(f)= [ fdpr and L(f)= | fduz
R™ R™

for every f € Co(R"). Since p is a Radon measure, it is enough to show that
11(K) = po(K) for every compact set K cR”. Let K c R" be a compact set and let
£ > 0. By the properties of Radon measure, there exists an open set U > K with
wU) < u(K) + €. Assume that U < R” is an open set and that F < G a compact set.
As in the proof of Theorem 1.57, there exists a continuous function f : R” — R such
that 0 < f(x) <1 for every x e R*, f(x) =1 for every x € K and suppf is a compact
subset of U. This implies

Hl(K>=/ mdms/ fd,U1=L(f)=/ fdus
R™ R” R®

s/ xu due = pa(U) < w(K) +e.
Rﬂ

This shows that p1(K) < po(K). The reverse inequality holds by switching the
roles of 1y and puo. d

Remark 5.11. The Riesz representation theorem holds in a much more general
context. The underlying space can be any locally compact Hausdorff space X
instead of R™.

5.3 Weak convergence and compactness
of Radon measures

Let us recall the notion of weak convergence from functional analysis. Let X be a
normed space. A sequence (x;) in X is said to be weakly converging, if there exists
an element x € X such that

lim x*(x;) =x"(x) for every x"e€X™.

1—00
A sequence (x}) in the dual space X* is said to be weakly (weak star) converging,

if there exists an element x* € X* such that

lim x7(x) =x"(x) for every xeX.
1—00
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Both weak and weak star convergences are pointwise convergences tested on
every element of the space X* and X, respectively.

By the Riesz representation theorem (Theorem 5.6), every bounded linear
functional on Cy(R") is an integral with respect to a Radon measure. This gives a
motivation for the following definition.

Definition 5.12. The sequence (y;) of Radon measures pu;, i =1,2,..., converges

weakly to the Radon measure p, if

lim [ fdy; :/ fdu forevery feCo(R").
Rn

1—00 JRr
In this case we write y; — pas i — oo.

Examples 5.13:
(1) Let ¢¢, £ >0, be the standard mollifier in Example 3.10 (2) and let u; be a

Radon measure on R” defined by

ui(A)=usi(A)=/¢si(y)dy,
A

with €; — 0 as i — oo, for every Borel set A cR"”. As in Example 3.10 (2),

we have

lim/ f(y)d,ui(y)z_lim/ e (y)dy =f(0)
1—00 R” 1—00 R”

for every f € Cop(R™). This implies that y; — dg as i — oo, where 9§y is
Dirac’s measure at 0.

(2) Let §; be Dirac’s measure at i = 1,2,... on R. Then §; — 0 as i — oo
(exercise).

(3) Let

piz%(5%+6%+~'+5%), i=1,2,....

Then for every f € Co(R), we have

i . 1
/fdﬂi: Z%f(f—-)~/ f@)dx,
R j=1 0

since these are Riemann sums in [0,1]. Thus y; — m! li0,1] as i — oco. Here
| denotes the restriction of a measure to a subset.

Lemma 5.14. Assume that y;,i=1,2,..., are Radon measures on R” with u; — u

as i — o0o. Then the following claims are true:

(1) limsup;_,, #i(K) < w(K) for every compact set K < R* and
(2) pU) <liminf;_ o, y;(U) for every open set U < R”.



CHAPTER 5. WEAK CONVERGENCE METHODS 136

Proof: Let K < R" be compact and let U be an open set with K c U. Let
feCyo(R") suchthat 0< f <1, suppf cU and f =1 on K. Then

#(U)=/ld,u>/fdy=/ fdu
U U R”

= lim f dy; =limsup y;(K).

1—0 JRre 1—00

Taking infimum over all open sets U > K, we have

limsup ;(K) < inf{u(U) : U o K, U open} = u(K).

i—00

Let U be open and K c U compact. Let f be the same function as in (1).
Then
WK) < fdyp=1lim fdy; <liminfy;(U).
Rn R 1—00

1—00 n

Thus
wU) =sup{uX) : K cU, K compact} < liminfu;(U). O
I—00
Next we prove a very useful weak compactness result for Radon measures.
Theorem 5.15. Let (u;) be a sequence of Radon measures y;, i =1,2,..., on R?
with
sup ;i (K) < oo

i

for every compact set K < R". Then there is a subsequence (y; j), j=12,...,and a

Radon measure p such that y;; — p as j — oo.

THE MORAL: Everylocally bounded sequence of Radon measures on R"” has

a weakly converging subsequence.

Proof: Assume first that M = sup; p;(R"*) < co.

Let {fz};2, be a countable dense subset of Co(R") with respect to |-l
norm (exercise). We apply a diagonal argument. The assumption in (1) implies
that

sup/ frdu; <l fillcosupp;(R") = M| f1lloo < co.
i R” i

This shows that ( [, f1d ;) is a bounded sequence in R and thus it has a converg-
ing subsequence. Hence there exists a subsequence (,u}) of (i;) and a1 € R such
that

/ Frdu! 2 qy.
Rn

Recursively, there exists a subsequence (uf’) of (,uf’_l) and aj € R such that

/ frduf == ay.
Rn




CHAPTER 5. WEAK CONVERGENCE METHODS 137

Then the diagonal sequence (,uf) satisfies

1—00

lim fkd/yti:ak for every k=1,2,....
Rﬂ

Let S be a vector space spanned by f%, £ =1,2,..., that is,

m
S:{g: Z/kak:)tie[R%,meN}.
k=1

Define a functional L : S — R by setting

m m
L(g)= ) Arap, where g=) Apfs.
k=1 k=1
Then

m m .
L(g) =) Arap=) lim [ Apfrpdy
k=1 k=117 JR"

m . .
~lim [ 3 Aufidui=lim [ g
nk:]. 1—00 R~

1—00

for every g € S. Thus L is a linear functional on S. Moreover,

IL(g)|=i1im‘/ gd | <sup(lgllootti(R™) < Mg lioo- (5.16)
—O|JR i

This shows that L is a bounded functional on S.

The functional L : S — R can be uniquely extended to a bounded linear
functional on Co(R").

Reason. Let f € Co(R"™). Since {fk};’;l is dense in Co(R"), there exists a sequence
(f;) such that |fj — fllco — 0 as j — co. It follows from (5.16) that (L(f)) is a

Cauchy sequence in R and thus it converges. Let
L(f) = lim L(f)).
Jj—oo

It follows from (5.16) that L is a well-defined functional in C¢(R") and that (5.16)
holds for every f € Co(R™). [ ]

CLAIM: L:Cy(R*)— Ris a positive functional.
Reason. If f € Co(R") with f =0, and [|f; — fllooc — 0 as j — co with f; € S, then
liminf(min f;) = 0.
j—oo R

We observe that, if ming- f; <0, then

/ fjd,u;: p pé([ﬁ?”)%%nfj = suppi([R")nu%infj = Mlﬁinfj.
R? i " "
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On the other hand, if ming» f; = 0, then

/ fidut=0.
Rn

/ fdu; > Mmin{0,min f;)
Rn

for every i,7=1,2,.... By (3) we obtain

It follows that

L(f) = lim L(f;) = lim 1im/ fjd,ui:
Jj—oo Jj—ooi—oo [pn
= Mliminfmin{0, min f;} = 0. n
Jj—oo R®
According to the Riesz representation theorem (Theorem 5.9) there exists a
Radon measure p on R* such that

L(f):/ fdu forevery feCyR?).
Rn

CLAIM: uf*,uasi—»oo.
Reason. Let ¢ >0 and f € Cy(R™). Let g € S be such that

€
If —&lloo < oM
Then, for large enough i, we have
L) - / Fdul
Rn

<|L(f -2 + +

L(g)—/ gdu! /(g—f)duﬁ
R” R”
SMIf -8low+e+MIf —glloo < 2¢.

This proves the claim. m

Finally, we remove the assumption sup; ;(R") < co. The assumption
sup; i;(K) < oo for every compact set K — R” and the argument above show that
for every j=1,2,... there exists a subsequence (,u; ) of (,u{ 1) such that

j ' :
1 Bo,j)— v/, as i—o0,

where v/ is a Radon measure with v/(R"\B(0, 7)) =0. Here | denotes the restriction

of a measure to a subset. The diagonal sequence (pf) satisfies
,uf B, )H— v as i—oo for every j=1,2,....

Here | denotes the restriction of a measure to a subset. Observe that v/ B, = vk,

k=1,...,j. Thus we may define a Radon measure

wA) =Y v(AN(BO,7)\B(,j+1)).
j=2

When j is so large that supp f < B(0, j), then

[ rau= | ravi=tm [ g,
R” R” 1—00 JRnr

sothat,ué*uasi—»oo. d
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5.4 Weak convergence in L?,

Next we consider weak convergence in L”. Recall that the Riesz representation
theorem (Theorem 5.2) gives a characterization for L?(A)* with 1< p <oco. We
only discuss the case when the underlying measure is the Lebesgue measure

although similar results hold also for L?(R"; u), where u is a Radon measure.

Definition 5.17. Let 1 < p <oo. A sequence (f;) of functions in LP(R") converges
weakly (weak star if p = 0co) in L?(R") to a function f € LP(R"), if

lim figdxz/ fgdx for every geLp’(IRZ”).
Rﬂ,

1—00 JRe

Here we use the interpretation that p’ =ocoif p=1and p’ =1 if p = co.
Remark 5.18. f; — f strongly in LP(R") implies f; — f weakly in LP(R") as i — oo.

Reason. By Holder’s inequality, we have

‘/ figdx—/ fgdx
Rn [Rn

for every g € LP'(R"). =

s/ fi ~ fllgldx
Rn

<Ifi—flplgly,y —=0

We illustrate some typical features of the behaviour of a sequence which

converges weakly but not strongly.

Examples 5.19:
(1) (Oscillation) Let f; : (0,27) — R, f;(x) =sin(ix), i = 1,2,.... Then f; con-
verges weakly to f = 0 in L?((0,27)), but [|f;ll, = c(p) > 0 for every i =
1,2,..., so that f; does not converge to 0 in L?((0,27x)). Observe, that

1£1lp <liminflfillp.
1—00

THE MORAL: Sequences of rapidly oscillating functions provide exam-

ples of weakly converging sequences that do not converge strongly.

(2) (Concentration) Let f; :(-1,1) — R,

i, O<x<i,
filx)= !

0, otherwise.

Then f; — dg weakly as measures in (—1,1). Observe that the sequence (f;)
converges weakly to zero as measures in (0, 1), but (f;) does not converge
weakly in L1((0, 1)).

THE MORAL: Sequences of concentrating functions provide examples

of weakly converging sequences that do not converge strongly.
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(3) Letl<p<ooand f;:(-1,1)— R

i%, O<sx<
fi(x):{
0

N[

, otherW1se.

Then f; — 0 weakly in LP((—1, 1)), but the sequence (f;) does not converge
in LP((~1,1)), since ||f;ll, = 1 for every i = 1,2,.... This shows that the
norms || f;|l, = 1 concentrate. However, f; — 0 in L9((-1, 1)) for every q < p.

Indeed,
/ filddx =i 1 12%0,
(-1,1)

In particular, the norms [/f;ll4, ¢ < p, do not concentrate.

The next result shows that any weakly converging sequence is bounded.

Theorem 5.20. If f; — f weakly in LP(R") as i — oo with 1 < p < oo, then
£l <liminf| f;l 5.
1—00

THE MORAL: The LP-norm is lower semicontinuous with respect to the weak
convergence.

Proof. We apply similar arguments as in the proof of Theorem 5.1. If |||, =0,
the claim is clear. Hence we may assume that | £, > 0.

P i
The function g = |f|?’ sign f belongs L? (R"), since

1
o7

IIgllpr=(/ lgl? dx) (/ Iflpdx) —IIfllp <oo.

Since f; — f weakly in LP(R") as i — oo, we have

D
tim [ fugds = | redx= [ 1717 rsigns = [ ifras=iri,
R” R™ N—— R”

i—00

On the other hand, by Holder’s inequality

/ figdx
Rn

for every i =1,2,.... Thus

yd
T
<Ifillplglhy =1fillpIflp

p
. . o
<Liminf|lf; 1, I 1l .
1—00

£ = lim ‘/ figdx
1—00 R7

pa
The claim follows by dividing through by | £l 1‘,” >0

The function g = sign f belongs to L°(R") and [|gllco < 1. Since f; — f
weakly in L1(R") as i — oo, we have

i—00

tim [ fugds- /fgdx=/ fsignfdx=/ fldx=Ifl1.
R~ Rn R~
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On the other hand, by Hélder’s inequality

‘/ figdx
[Rn

for every i =1,2,.... Thus

<|fillillglloo < llfillx

£l = lim ‘/ figdx
1—00 R”

< liminfl|f; 1.
1—00

Exhaust R” with measurable sets A; c Aj,1, R" = U;.;lAj with |A ;] <
oo for every j =1,2,.... For example, we may choose A; = B(0, ) for every j =
1,2,.... For 0 <& < ||fllLo(wn), let

XA, signf

Acj={xeA;:|IfI=lflc—€ and g, ;= A
£,

Let A, ={x e R" : |[f(x)| = | flloo — €}. We observe that A, jc A, ji1,7=1,2,...,
and A, = U;';IAEJ. Since |A¢| > 0 and we have

0<|Agl = = lim |A, |
Jj—oo

=)
U As,i
j=1

and, consequently, there exists j such that |A, ;| > 0. On the other hand, |A, ;| <
[B(0, /)| < co.
We observe that g, ; € LY(R™), since

Igejl1am = /
Rn

Since f; — f weakly (weak star) in L*°(R") as i — oo, we have

XA, signf
|Ae,j|

XA, A
dxs/ —’dezl E’J|=1.
3 |Ae,j| |Ae,j|

lim figg,jde_lim/ figg,jdx
. 1—00 Rn

1—00 AE,]
:/ fge,jdx:/ fge,jdx
R™ Agj

:/ |f| dx = ”f”oo_g

A |Ae,j|

On the other hand, by Hélder’s inequality

/ figejdx|<|filloolge 1= filloo
A
for every i =1,2,.... It follows that
floo-e < lim| [ fige;dx| <liminfi il
1—00 Aé_‘,j 1—00

The claim follows by letting € — 0. O
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Remark 5.21. Let 1< p <oo. If f; — f weakly in LP(R"), it does not follow that
that lim; .o | fill, = If . Nor does the reverse implication hold true. Example
5.19 (1) gives a counter example for both claims. The following result explains
the situation: If f; — f weakly in L?(R") with 1< p <oco and lim;_ I f;llp = I fllp,
then f; — f strongly in L?(R"). This result will not be proved here.

Remark 5.22. The previous theorem is a general fact in the functional analysis.
Let X be a Banach space. If a sequence (x;) converges weakly to x € X, then it is
bounded and

el <liminf|lx; .
1—00

The previous theorem asserts that a weakly converging sequence is bounded.
The next result shows that the converse is true up to a subsequence. One of the
most useful applications of the weak convergence is in compactness arguments. A
bounded sequence in L? does not need to have any convergent subsequence with
convergence interpreted in the standard L? sense. However, there exists a weakly

converging subsequence.

Theorem 5.23. Let 1 < p <oco. Assume that the sequence (f;) of functions f; €
LP(R™),i1=1,2,..., satisfies

sup || fillp <oo.
12

Then there exists a subsequence (f;;) and a function f € LP(R"™) such that fi,—f
weakly in LP(R").

THE MORAL: This shows that L? with 1 < p < oo is weakly sequentially
compact, that is, every bounded sequence in L? with 1 < p < co has a weakly
converging subsequence. This is an analogue of the Bolzano-Weierstrass theorem.

Remark 5.24. The claim does not hold for p = 1. Indeed, if (f;) is a sequence of
nonnegative functions in L1(R") with sup; | fill1 < oo, there is no guarantee that
some subsequence will converge weakly in LY(R"). However, let u be a Radon
measure on R” and consider the measures defined by

Vi(A):/ fidu
A

for every Borel set A c R”. By Theorem 5.15, there exists a Radon measure v on
R™ such that

lim (pfl-d,u:/ pdu for every e Co(R™).
R" "

1—00

Example 5.25. Let u be the one-dimensional Lebesgue measure on R. Then the
sequence f; = iX[o 1) i=1,2,..., converges in measure to zero, satisfies || f;|l1 =1

for every i =1,2,..., and thus

sup | fill1 <oo.
12



CHAPTER 5. WEAK CONVERGENCE METHODS

143

CLAIM: (f;) does not converge weakly in L1(R).

Reason. For a contradiction assume that there exists f € L1(R) such that f; —

weakly in L1(R) as i — co. Then
lim figdx:/fgdx for every g€ L™(R).
1—00 R R

Let y#0and g = ix[y_g,yﬂ] with 0 < e <|y|. Then

0=Ilim | figdx= /fgdx—— fdx.
1—00 JR

[y—¢,y+el

By the Lebesgue differentiation theorem (Theorem 4.33), we conclude that

1
0=1lim— fdx=7f(y)
e—02¢ [y—¢,y+el
for almost every y € R, y #0. Thus f =0 almost everywhere in R and

lim figdx:/fgdxzo for every g e L™(R).
1—00 R R

/figdx=/fidx=1
R R

for every i = 1,2,.... This is a contradiction.

By letting g =1, we have

However, consider the measures
ui(A)=/fidx=i/ ldx=i|An[0,1]]
" anfo. ]

for every Borel set A cR.

CLAIM: u;—0dpasi—oo.

Reason.
lim gdul hm /gfl dx = 11m gdx
1—00 i—oo 1 [0)%]
-0~ [ gdoo
R
for every g € Co(R).

Proof: We may assume that f; = 0 almost everywhere for every i =1,2,...,
otherwise we may consider the positive and negative parts f;r and f; . (Exercise)

Define Radon measures y;, i =1,2,..., by setting

f

for

ui(A) =/ fidx (5.26)
A
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where A cR” is a Borel set. Then for each compact set K cR”,

3 1
wt)= [ fiaws( [ rax) ki
K K

for every i =1,2,.... This implies sup; y;(K) < co. Thus we may apply Theorem
5.15 to find a Radon measure i on R” and a subsequence (pi;), j=1,2,..., such
that y; — pasi— oo.

1 is absolutely continuous with respect to the Lebesgue measure.

Reason. Assume that A c R" is a bounded set with |[A| = 0. Let £ > 0 and choose
an open and bounded set U > A such that |U| < €. By Lemma 5.14 and (5.26), we
have

wl) < liminfuij(U) = 1iminf/ fij dx
1—00 J—oo JU

1
sliminf(/ fr dx)p U7 <ce'.
U J

J—oo

Thus p(A)=0. (]

By the Radon-Nikodym theorem (Theorem 4.23), there exists f € Llloc(R”)
satisfying

H(A) =/ fdx (5.27)
A
for every Borel set A c R”.
CLAIM: feLP(R"?).

Reason. Let ¢ € Cop(R™). By (5.27) and (5.26) we have

/<pfdx=/ pdp=lim [ @dpy;,
R” R7 J—0 JRe

= lim ¢fi;dx
J—00 Jpn

<suplfillpllelq,
l

where sup; || f;ll, < oo by the assuption. By Theorem 5.2
1fllp= sup{/ pfdx:peCo@"), ol < 1} < o0.
Rn

(5)| CLAIM: fi;— f weakly in LP(R").

Reason. We showed above that

lim [ of;,dx= / of dx
R” R”

J—o0
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for every ¢ € Co(R™). Assume that g€ L?'(R"). Let £ >0 and let @ € Cop(R™) with
lg -l <e. Then

[ fogas- [ reas
R™ R™

/ figdx- / of:, dax / of; dx— / of dx
R~ Rn R~ Rn

/ of dx— / gf dx

Rn [Rn

<||fij||p||g—<pllpf+/wfijdx—/ ¢f dx
R™ R~

/ ofi;dx- / of dx
R™ R™

lim/ fijgdxz/ fegdx.
J—00 Rn Rn [ ]

< +

+

+flpllg =l

+elfllp-

<esupllfilp +
12

This implies that

Remark 5.28. There is a general theorem in functional analysis, which says that
a Banach space is weakly sequentially compact if and only if it is reflexive. This is

another manifestation that L?(R") spaces are reflexive for 1 < p < co.

Corollary 5.29. Let 1 < p < co. Assume that the sequence (f;) of functions
fie LP(R"),i=1,2,.... Then f; — f weakly in LP(R") if and only if
(1) sup; lIfill, <oo and

(2) lim [ fidx= / f dx for every measurable set A c R” with u(A) < co.
1—00 A A

Proof. The result follows from the fact that simple functions are dense in LP'(R")
using the results above. a

THE MORAL: Property (2) asserts that the averages of the functions f;
converge to the average of f over A.

Recall that weak convergence does not imply strong converge. We close this
section by a result which is sometimes useful.

Theorem 5.30. Let A c R” be a measurable set with [A| <oco and let 1 < p < co.
Assume that f; — f weakly in LP(A) and f; — f almost everywhere in A. Then
fi — f in LY(A) whenever 1< g < p.

THE MORAL: Pointwise convergence and weak convergence in L? imply
strong convergence in LY, with ¢ < p, on bounded sets.
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Proof. Since a weakly converging sequence is bounded, we have
M =sup|fillLr) < oo
1
and
IfllLr(a) <liminf| f;llLpa) < M.
1—00

Cavalieri’s principle implies that

/Wﬁ—ﬂ%m=/' |ﬁ—ﬂ%w+/ \fi— f19dx
A {Ifi-fIskinA {Ifi=f1>kINA

=/’ \fi - f19dx
{Ifi—fI<skInA

(0.0}
+q/ ATYF = 1> MnAldA+RIIf; — f1 > E}NAL.
k
By Chebyshev’s inequality, we have

1 1
I{Ifi—f|>7L}ﬂAI<A—p/AIfi—prdeA—p/A(IfiHIfI)pdx

2P 2p+1pp
. P p _
< P /A(lfll +1f1P)dx < P
for every i =1,2,.... It follows that
00 op+1prp
q/ AN (f = FI> M nAldA < ———R97P
k pP—q
and
RINIf = FI>EINA| <2PHIMPRIP,
Let £ > 0. By choosing % large enough so that
op+1prp
p—q

max{ kq_p,2p+1Mpkq_p}=2p+1Mpkq_pmax{ ! ,1}<£,
r-q 2

we arrive at

/|fi—f|qu</ Ifi—fl%dx+e¢
A {Ifi—fI<kInA

for every i =1,2,.... Since yy,_fi<kinalfi — f19 <k9 for every i =1,2,..., |A| <oco

and f; — f in A as i — oo, the dominated convergence theorem implies that

/ |fi—f|quz/X{Ifi—flsk}nA|fi_f|qu
{Ifi—fI<kInA A

Thus we may choose i, large enough so that

/’ fi—fl9dx<e
{Ifi—fIskInA

for every i = i.. It follows that

i—00

0.

/ﬁﬁ—fﬂdx<2e
A

for every i = i.. This shows that f; — f in LY(A) as i — oco. a
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5.5 Mazur’'s lemma

This section discusses a method to upgrade weak convergence to strong conver-
gence. We are mainly interested in the case of LP(R") with 1 < p < oo, compare to
Theorem 5.23, but we consider a general normed space X.

We recall some facts related to the Hanh-Banach theorem, which are needed
in the argument. A function p : X — R is sublinear, if p(x + y) < p(x) + p(y) for
every x,y € X and p(1x) = Ap(x) for every x € X and A = 0. In particular, every
seminorm on X determines a sublinear function. More generally, if C is a convex,

open neighborhood of 0 in a normed space X , then p: X — R,
px) =inf{A>0:1"1xeC,},

is a sublinear function, called the Minkowski functional associated with C. Let
p : X — Ris sublinear function, let Y be a vector subspace of X andlet f:Y — R
be a linear function with f(x) < p(x) for every x € Y. The Hahn-Banach theorem
asserts that there exist a linear function f : X — R such that fly = f, that is
f(x) = f(x) for every x € Y, and f(x) < p(x) for every x € X. The mapping f is called
a linear extension of f to X.

Theorem 5.31 (Mazur’s lemma). Assume that X is a normed space and that
x; — x weakly in X as i — oco. Then for every € > 0, there exists m € N and a convex

combination ¥, a;x; with a; >0 and X7 | a; =1, such that

m
x—Zaixi <E.
i=1

If x; — x weakly in X, Mazur’s lemma gives the existence of a sequence (x) of

convex combinations

m; m;

xX;= Z a;jxj, with a;;=0 and Z a;j=1,

j=1 Jj=1
such that ¥; — x in the norm of X as i — co.
THE MORAL: Forevery weakly converging sequence, there is a sequence of
convex combinations that converges strongly. Thus weak convergence is upgraded
to strong convergence for a sequence of convex combinations. Observe that some

of the coefficients a; may be zero so that the convex combination is essentially for

a subsequence.

Proof. Let C be the set of all convex combinations of x;, i =1,2,..., that is

m m
C= Zaixi:aiZO,Zaizl,meN .
i=1 =

i=1



CHAPTER 5. WEAK CONVERGENCE METHODS 148

By replacing the sequence (x;)?2; by a sequence (x; —x1);2; and x by x —x1, we
may assume that 0 € C. For a contradiction, assume that there exists € > 0 with
lx — yll = 2¢ for every y € C. In particular, this implies x # 0.

The e-neighbourhood of C defined by

C, ={yeX :dist(y,C) < &}

is a convex set and an open neighbourhood of 0. Consider the Minkowski functional
p : X — R associated with C, defined by

p(y)=infid>0: 171y e C,).

Since C; is convex, p is a sublinear function on X. Since C; is an open neighbour-
hood of 0, p is a continuous function on X (exercise).
Let ze€ C, and y € C with ||z —y|| <&. Since ||x — y|| = 2¢ for every y € C, by the

triangle inequality, we conclude that
lx—zlzllx—yl-lly—zl>2e—e=¢

for every z € C,. This implies that there exists yo € C, such that x = A~ 1y, with
0<A<1and p(yg) =1 and thus

p@)=pA ty)=A1"1p(yo) =217 > 1.

Consider the vector subspace Y = {tyo : ¢ € R} of X and the linear function f : Y — R
defined by f(tyg) =¢. Then f(y) < p(y) for every y € Y and by the Hahn-Banach
theorem, there exists an extension of f to a linear functional f : X — R with
f(y)< p(y) for every y € X. Since p is continuous, f is continuous and thus f € X *.
Since x; — x weakly in X, we have

f@) = lim £(x;).
1—00
Since x € Y we have f(x) = p(x) and since x; € C we have p(x;) < 1 for every
1=1,2,.... It follows that
1< p(x) = f(x) = lim f(x;) <liminfp(x;) < 1
1—00 1—00
which is a contradiction. O

The following tail version of Mazur’s lemma will be useful in applications.
Observe that the indexing of the sequence of convex combinations starts from i

instead of one.

Lemma 5.32. Assume that X is a normed space and that x; — x weakly in X as

i — 00. Then there exists a sequence of convex combinations
m; m;
X; =Zai,jxj, with a;;j=0 and Zai,jzl,
J=i J=i

such that ¥; — x in the norm of X as i — oo.
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Proof. By applying Mazur’s lemma repeatedly to the sequences (x J-);‘;i, i=1,2,..

*

we obtain convex combinations

m; m;
X =Zai,jxj, with a;;=0 and Zai,j:l’
J=i J=i

such that ||X; — x|l < % This implies that ¥; — x in the norm of X as i — oo. O

We discuss briefly applications of Mazur’s lemma for L?(R") with 1 < p < co.
The following process upgrades the mode of convergence stepwise. This is applied,
for example, in the direct methods of the calculus of variations.

(1) Assume that (f;) is a bounded sequence in LP(R"™). By Theorem 5.23 there
exists a subsequence (f;;) and a function f € LP(R") such that f;, — f
weakly in LP(R"™). Thus from boundedness we obtain weak convergence
for a subsequence.

(2) If f;; — f weakly in LP(R"), by Mazur’s lemma there is a sequence of convex
combinations that converges in L?(R"). Thus from weak convergence we

obtain strong convergence for a subsequence of convex combinations.

(3) Strong convergence in L?(R™) implies almost everywhere convergence for
a subsequence by Corollary 1.34. Thus from strong convergence we obtain

almost everywhere convergence for a subsequence.
The following result is useful in identifying a weak limit in L?(R").

Theorem 5.33. Let 1 < p <oo and assume that f; — f weakly in LP(R"). If f; — g

almost everywhere in R” as i — oo, then f = g almost everywhere in R”.

Proof By Lemma 5.32 there exists a sequence (f;) of convex combinations

_ m; m;
fizzai,jfj’ with a;;=0 and Zai,j:l’
J=i J=i

such that f; — f in LP(R") as i — co. By Corollary 1.34, there exists a subsequence,
denoted again by (f;), such that f; — f almost everywhere in R". Since f; — g
almost everywhere in R", we have

m;
fi=) aijfi—f
J=i
as i — co. We conclude that f = g almost everywhere in R”. a

Remark 5.34. if f;(x) — f(x) as i — oo, then it does not follow for general convex
combinations that

m; . m;
Zai,jfj(x) s f(x), with a;;=0 and Zai,j: 1.
j=1 Jj=1
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However, for tail convex combinations, we have

m; . m;
Y a;jfjtx) = f(x), with @;;=0 and Y a;;=1.
Jj=i Jj=i

This is the advantage of the tail version of Mazur’s lemma, see Lemma 5.32.

Corollary 5.35. Let 1 < p < oo and assume that (f;) is a bounded sequence in
LP(R"™). If f; — f almost everywhere in R”, then f; — f weakly in LP(R").

Proof. By Theorem 5.23 there exists a subsequence, still denoted by (f;), and a
function g € LP(R") such that f; — g weakly in LP(R") as i — co. By Lemma 5.32

there exists a sequence (f;) of convex combinations

m; m;
fizzai,jfj, with a;;=0 and Zai,j:L
J=i J=i
such that f; — g in LP(R") as i — co. Since f; — f almost everywhere in R" as

i — 0o, we have
U i—00
fi=) aijfi—f
J=i

We conclude that f = g almost everywhere in R” and f; — f weakly in L?(R") as

1 — oo. O

Remark 5.36. Let 1 < p <oo. Since LP?(R") is a uniformly convex Banach space,
the Banach—Saks theorem which asserts that a weakly convergent sequence has
a subsequence whose arithmetic means converge in the norm. Assume that a
sequence (f;);en converges to f weakly in LP(R") as i — co. Then there exists
a subsequence (f;;)jen for which the arithmetic mean %Z§=1 fi; converges to f
in LP(R") as £ — co. The advantage of the Banach—Saks theorem compared to
Mazur’s lemma is that we can work with the arithmetic means instead of more
general convex combinations
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