Chapter 7

Densities and kernels

7.1 Weighted measures

Let v be a measure on a measurable space (S,S). Let f: S — [0,00] be a
S/B([0, 0o])-measurable function. Define

w(B) = /Bf(az)l/(dx), BeS, (7.1.1)

where by definition, the right side means |, ¢ L f dv, that is, the integral of the
function x — 1g(z)f(x) with respect to v. This can be seen as an weighted
version of v, so that the mass of v(dz) is weighted by f(z). The following
result confirms that weighted measures are measures. The weighted measure
is sometimes abbreviated as p(dz) = f(z)v(dx).

Proposition 7.1.1. For any measure v on (S,S) and any measurable func-
tion f: S — [0,00], the map B — [, fdv is a measure on (S,S).

Proof. For any B € S, the function 1z is §/B([0, cc])-measurable, and
the same is true for f by our assumption. Hence also the function 1gf
is §/B([0, oo])-measurable, and the integral [, fdv = [ 1pf dv on the right
side of (7.1.1) is well defined. Hence p is a well-defined set function from S
into [0, oo].

For B = (), we see that 15(x) = 0 for all z. Hence 15 is identically zero,
and therefore () = f; fdv = 0.

Let Bji, Bs,... be disjoint sets in S. Denote C,, = B; U---U B, and
Coo = U By Then 1¢, = >0 1p,, and 1¢, f = > ,_, 1, f, and the
linearity of integration implies that

w(C,) = /Slcnfdy = Z/Slkady = ) ul(By).
k=1 k=1
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Next, we see that C), T Cw, so that 1¢, 1 1¢._. Hence also 1¢, f 1 1¢_f. By
monotone continuity of integration, it follows that

WC) = [tefdr =t [10.fdv = lm Y p(B) = 3 ().
s S ) k=1

n—00

We conclude that p is a measure. O

7.1.1 Integrating against weighted measures
This is called a chain rule [Kal02, Lemma 1.23].

Proposition 7.1.2. For any f,g: S — [0, 00|, integration with respect to the
weighted measure i(B) = [, f(x)v(dx) satisfies

[ s@ntdn) = | go)fa)vin). (7.1.2)
S S

Proof. (i) Let us first see what happens with indicator functions. Let g = 14
for some A € S. Then

[o@utan) = [1a@ntan) = wa) = [ s@yvian) = [ raawvias).

Hence (7.1.2) holds for indicator functions g.
(ii) Assume next that g = > ;_, ¢;la, is a finite-range function, with
¢ > 0 and A, € S. The by linearity of integration and by (i),

/gdu = /chlAde
o S k=1
= ch/lAkdu
k=1 s
= ch/flAde
k=1 s

= /chklAde
S k=1

- /S fodv.

Hence (7.1.2) holds for nonnegative measurable finite-range functions g.
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(iii) Let g: S — [0, 00| be measurable. Fix nonnegative measurable finite-
range functions g, such that g, 1T ¢g. Then by (ii),

S S

for all n. Because ¢, T g and fg, 1 fg, we see by monotone continuity of
integration, and taking limits of both sides above as n — oo, that

/gd,u = lim/gndu = lim/fgndu = /fgdl/.

7.2 Probability densities

Weighted measures defined using a weight function integrating to one yield
probability measures. Let v be a measure on (S5,S) and let f: S — [0, o0]
be a measurable function such that [, ¢ fdp = 1. Proposition 7.1.1 implies
that 4(B) = [ fdv is a probability measure on (S,S). We say that f is a
density of p with respect to reference measure v. Note that v does not need
to be a finite measure.

Let (2, A,P) be a probability space, and let X: Q@ — S be a random
variable with law p. In this case we also say that X is distributed according
to u, or that the probability distribution of X equals u. Let us assume that
i admits a density f with respect to a reference measure v. Probabilities
associated with X can then be computed as

P(X € B) /f

Expectations related to X can be computed as
Bg(X) = [ g(o)f(a)vlda).
R

7.2.1 Lebesgue densities
Let A be the Lebesgue measure on (R, B(R)). Let f: R — R be a Borel

function such that f(z) > 0 for all z € R and [, f(z) A(dx) = 1. Then
= [5 f(z) AM(dz) is a probability measure on (R B( )). Each such
functlon batlsfylng f ( ) > 0 for all z € R and [, f(z) A(dz) = 1 yields

a probability measure on the real line. Important exarnples of probability
measure admitting a Lebesgue density are the following.
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Example 7.2.1. Let f(x) = ﬁlA(l‘) for some A € B such that 0 < A\(A) <
oo. The probability measure on (R, B(R)) with Lebesgue density f is called

the uniform distribution on A. Compare with Example 7.2.6.

T—m

Example 7.2.2. Let f(z) = #ﬁe_%(T)z for some m € R and o € (0, 00).

The probability measure on (R, B(R)) with Lebesgue density f is called the
normal distribution with mean m and standard deviation o.

Example 7.2.3. Let f(z) = 1(g,00)(x) be " for some 0 < b < co. The proba-
bility measure on (R, B(R)) with Lebesgue density f is called the exponential
distribution with rate parameter b.

Example 7.2.4 (No Lebesgue density). Let do(A) = 1(0 € A) be the Dirac
measure at 0. We see that §y is a probability measure on (R, B(R)). We
show that dy does not admit a density with respect to the Lebesgue measure
Aon (R, B(R)). Assume the contrary. Then there would exists a measurable
function f: R — [0, oo] such that

do(B) = /Bf(:c) A(dx) for all B € B(R).

In particular, the fact that A{0} = 0 implies that
1 = 6({0}) = { }f(l“) Aldr) = f(0)A{0} = 0.
0

Because this is a contradiction, we conclude that dy does not admit a Lebesgue
density.

7.2.2 Counting measures and discrete densities

Let S be a countable set equipped with the power sigma-algebra 2°. Let
v be the counting measure on (5,2%), so that v(A) equals the number of
points in A. Integration against the counting measure is indeed summation,
as confirmed next.

Proposition 7.2.5. For any f: S — [0, 0],
[ s@vian = 3 fa),
s xeS

Proof. (i) Assume first that S is a finite set, and enumerate it according to
S ={s1,...,8,}. Let f: § = [0, 00] be arbitrary. Then f is measurable and
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finite range. We may represent f = > ,_ ¢x1a, where ¢, = f(s;) and Ay =
{sr}. Then by definition of the integral, and noting that v(A;) = v{sx} =1
for all k, we see that

/fdl/ chl/ (Ag) = Zf(sk) = Zf(x)

zeS

(ii) Assume next that S is a countably infinite set, and enumerate it
according to S = {s1, S2,...}. Let S, = {s1,...,s,}. Then S,, TS, so that
fls, T fls. The monotone continuity of integration then implies that

/fdu = /lim flg, dv = lim/flgndy = lim fdv.
S STL—)OO n—oo S n—oo S’n

Part (i) of the proof tells that [, fdv =73 g f(z). Hence

/fdu = lim fdy = lim > f(z) = lim En:f(sk) = f:f(sk

€Sy
The claim follows. O]

Propositions 7.1.1-7.2.5 imply that every function f: S — R, on a count-
able set S such that ) _. f(z) < oo defines a probability measure yx on
(S,2%) by the formula

)= [ sits = [ g0 #stan) = 3 f@

z€B

where #g denotes the counting measure on (.9,2%). Densities with respect to
a counting measures are typically called probability mass functions. Prob-
ability measures on countable spaces are often called discrete probability
distributions. Important examples of discrete probability distributions on
the integers are the following.

Example 7.2.6. The uniform distribution on a set A € 2% such that 0 <
#(A) < oo is the probability measure on (Z,2%) with density

L
#2(A)

with respect to the counting measure #7. Compare with Example 7.2.1

flz) = La(z).
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Example 7.2.7. The Bernoulli distribution with parameter p € [0, 1] is the
probability measure on (Z, 2%) with with density

1—p for z = 0,
flx) = Sp for x =1,

0 else,

with respect to the counting measure #z. The Bernoulli distribution with
parameter p = 3 is the uniform distribution on {0, 1}.

Example 7.2.8. The Poisson distribution with parameter a € (0, c0) is the
probability measure on (Z, 2%) with density

— 1@ >0t

fl@) = Uz =z0)e™—

with respect to the counting measure #,.

7.2.3 Practical example

Example 7.2.9. Let X, X, be independent random variables such that the
law of X is the uniform distribution on [0,3], and the law of X, equals
the uniform distribution on {1,2,3,4,5}. Write down a probability space
(Q, A,P) on which X; and X, are defined, and determine the probability
that Xl +X2 Z 3.

(i) Define 2 = R?, A = B(R) ® B(R), and let P = u; ® s where iy is the
law of X7 and ps is the law of X5. Define X;(w) = m(w) and Xs(w) = ma(w).
This the so-called canonical construction. But what the laws puq, po?

e The law of X; equals py = $Ap 3 on (R, B(R)) where Apg(B) = A(BN
0,3]) equals the Lebesgue measure on R restricted to [0, 3].

e The law of X, equals py = %22:1 dr on (R, B(R)), where 6;(B) =
15(k) equals the Dirac measure at k.

(ii) Let us now compute that probability of the event
A = {we: Xj(w)+ Xo(w) > 3}

There are many ways to do this. Here are two. You are recommended to
have a look at both of them.
(ii)(a) Direct way: Straight from the definition(s). Then

P(A) = / 1alw) Pld) = / 1a() (1 ® i) ().
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By Fubini’s theorem, we see that

//1A wi, wa) 1 (dwr) pro(dws) //1A w1, wa) pa(dws) pia (dwr).

We may choose whichever order of integration is more convenient. Because
we may always restrict to sets of nonzero measure, we see that

/[03 /{1 A(wr, wa2) pia(dws) pa (dwn).

,,,,,

Fix wy € [0, 3]. Note that

5

Z 1A(w1,k).
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By integrating both sides above against 1, we find that

5

P(A) = /K)g]%z:llA(wl,k)ul(dwl) = %Z/[OS} La(wr, k) g (dewn).

Next, we note that A = {(wy,ws): w1 +wy > 3}. Hence (wq,k) € A if and
only if w; > 3 — k. It follows that

1 5

FA) = 52 [ 1230 a)

ot

5
w1 E O 3 (w1 >3- k) ,ul(dwl)

\

U‘lH

We note that
1(W1 € [0,3]) 1(w1 >3- l{?) = 1(&]1 S [0,3], wy >3 — k)
1(W1 - [3 — ]{5,3])

= 1[3%,3] (w1)-



CHAPTER 7. DENSITIES AND KERNELS 67

Hence

P(A) = =3 (B - k.3)

11
=z g)\([3—k73]ﬂ[073])
k=1
1 5
= 2 AB-Hk3)
k=1
= 1(1+2+3+3+3)
15
12
15

(ii)(b) Alternative way. We may split the event A according to the
possible values of X, € {1,2,3,4,5}. Namely, A = U;_,(A N A;) where
Ap = {w: Xs(w) = k}. The events Ay,..., A5 are disjoint. So are the events
ANAy, ..., AN As. Hence,

P(A) = P(U; ANAy) = Y PANA).

k=1
Note that
ANA = {w: Xi(w) + Xo(w) >3} N{w: Xo(w) =k}
= {w: Xj(w)+ k>3 N{w: Xo(w) =k}
Hence by independence,
P(ANAy) = P(Xy1+k>3, Xo=k)
= P(X;+k>3)P(Xy =k).
Now we note that P(X, = k) =1 for all k =1,...,5. Also,
P(X,s+k>3) = P(X; >3—k)
= ([3 —k,00))

_ %)\([3 —k,00)NJ0,3])

_ %A([B—k,?)])

min{k, 3}
—
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Hence

P(A) = iP(AﬂAk) = ZB:P(X1+I<;23)]P(X2:/€) _ i%l _ 12

3 ) 15
k=1 k=1 k=1

7.2.4 Restrictions and extensions of measures

This is complementary knowledge for a mathematically suspicious mind who
wonders how the law a random variable in Z should properly be seen as
the law of a random variable in R. It is safe to skip this for less suspicious
readers.

Let (S,S) be a measurable space. The restriction of S into a set U C S
is defined as the set family

SNU = {BnNnU:BeS}.
Proposition 7.2.10. The set family SN U 1is a sigma-algebra on U.

Proof. Homework. O]

Let 41 be a measure on a measurable space (S7,S;). The restriction of
p1 into a measurable space (Sp, S; N Sp) such that Sy € S; is defined as the
set function

io(A) = u(4),  AeS NS (7.2.1)

The extension of p; into a measurable space (S, Ss2) such that S; C Sy and
S, NSy C S is defined as the set function

pe(A) = wm(ANSy), AeS,. (7.2.2)

Proposition 7.2.11. For any Sy € 81, the restriction po defined by (7.2.1)
is a measure on the measurable space (Sy,S1 M So). If 11(So) = 1, then pyg is
a probability measure.

Proof. Homework. O]

Proposition 7.2.12. For any Sy C Sy such that S, NS, C S, the exten-
sion uy defined by (7.2.1) is a measure on (S, Sa). Furthermore, if uy is a
probability measure, then so is pis.

Proof. Homework. O]
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Example 7.2.13 (Bernoulli distribution on the real line). The Bernoulli
distribution with parameter p € [0,1] defined in Example 7.2.7 is a prob-
ability measure u on (Z,2%). Because p({0,1}) = 1, we find that the re-
striction of p into {0, 1} is a probability measure on ({0, 1},2{%!}). Because
B(R)NZ C 2%, it follows that u extends to a probability measure (R, B(R)).
In this sense, the Bernoulli distribution may be defined as a probability
measure on ({0,1},2{0) (Z,2%), or (R, B(R)). When we say that X is a
Bernoulli-distributed random variable in R, we may that the law of X is the
Bernoulli distribution on (R, B(R)).

Example 7.2.14. Because B(R)NZ C 2%, it follows that the counting mea-
sure #7 on the countable set (Z,2%) can also be considered as a probability
measure on (R, B(R)), so that #(B) equals the number of points in BNZ
for any Borel set B. We may also write #7 = >, _, 6, as a sum of Dirac
measures. This is why this distribution is sometimes called the Dirac comb.



