
Lecture 11: The most common
changes of variables: polar, cylider
and spherical coordinates
Learning goals:

1 What are polar coordinates and how they can be used in the change
of variables?

2 What are cylinder coordinates and how they can be used in the
change of variables?

3 What are spherical coordinates and how they can be used in the
change of variables?

Where to find the material?
Corral 3.5
Guichard et friends 15.2, 15.6
Active Calculus 11.5, 11.8
Adams-Essex 15.4, 15.6
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http://www.mecmath.net/VectorCalculus.pdf
https://www.whitman.edu/mathematics/calculus_online/chapter15.html


Last time

The change of variables formula for double integrals∫∫
D
f (x , y) dA =

∫∫
G
g(u, v)

∣∣ detDF(u, v)
∣∣ du dv

where g(u, v) = f (x(u, v), y(u, v)) = f (F(u, v)) ja D = F(G ).
And F(u, v) = (x(u, v), y(u, v)) is bijection between G and D with
continuous 1st order partial derivatives.
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Polar coordinates
Coordinate systems let’s us to use algebraic methods to understand
geometry

A coordinates system is a scheme that allows us to identify any point
in the plane or the space by a set of numbers.

Rectangular coordinates (Cartesian coordinates) are most common,
but sometimes using alternate coordinate systems makes problems
easier.

In polar coordinates a point (x , y) ∈ R2 can be written in a form
(r , θ), where r ≥ 0 and 0 ≤ θ < 2π.
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Using geometry we get the following formulas{
x = r cos θ,
y = r sin θ,

⇔
{

r2 = x2 + y2

tan θ = y/x .
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Polar coordinates in the change of the variable formula

The change of the variable formula:∫∫
D
f (x , y) dA =

∫∫
G
f (x(u, v), y(u, v))

∣∣ detDF(u, v)
∣∣ du dv

The polar coordinate change

F (r , θ) = (x(r , θ), y(r , θ)) = (r cos θ, r sin θ)
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Thus

detDF(r , θ) = det

[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r

So the double integral in polar coordinates is∫∫
D
f (x , y) dA =

∫∫
G
g(r , θ)r dr dθ,

where g(r , θ) = f (r cos θ, r sin θ).

February 12, 2024 6 / 19



Example
Let D = {(x , y) ∈: 1 < x2 + y2 < 4}.
Calculate the integral

I =

∫∫
D

1

x2 + y2
dx dy .

The shape of the D (draw a picture) and the integrand suggest that
this is easier to do in the polar coordinates

For polar coordinates we have the formulas{
x = r cos θ,
y = r sin θ,

⇔
{

r2 = x2 + y2

tan θ = y/x .

Thus

I =

∫ 2π

0

∫ 2

1

1

r2
r dr dθ =

∫ 2π

0

∫ 2

1

dr

r
dθ

= 2π ln r
∣∣∣2
r=1

= 2π ln 2.
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Second example

Calculate ∫∫
D
arctan2(

y

x
) dA,

where D = {(x , y) : 1 < x2 + y2 < 2 and x , y > 0}.

(Answer: π3

48 )

What is the physical interpretation for the integral?
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A famous example of the using the polar coordinates

The integral ∫ ∞

−∞
e−x2 dx

is particularly important in, among other things, probability and
statistics.

The integral is difficult because it is not possible to write an integral
function using elementary functions.

However, it is possible to calculate the integral by the following trick:

I =

∫∫
R2

e−x2−y2
dA =

∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dx dy =

(∫ ∞

−∞
e−x2 dx

)2

.
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We can calculate the improper double integral in polar coordinates:

I =

∫ 2π

0

∫ ∞

0
e−r2r dr dθ =

∫ 2π

0
dθ ·

∫ ∞

0
re−r2 dr

= 2π

∫ ∞

0
re−r2 dr = −π lim

R→∞

∫ R

0
(−2r)e−r2 dr

Because d
dr e

−r2 = −2re−r2 we have∫ R

0
(−2r)e−r2 dr = e−R2 − 1

Letting R → ∞ we get I = π and thus the value of the original
integral: ∫ ∞

−∞
e−x2 dx =

√
I =

√
π.
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Cylinder coordinates

In cylinder coordinates a point (x , y , z) ∈ R3 can be given in a form
(r , θ, z), where r ≥ 0, 0 ≤ θ < 2π, z ∈ R.

v

x

y

(x,y,z)

z
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From geometry we get the formulas:
x = r cos θ
y = r sin θ

z = z
⇔


r2 = x2 + y2

tan θ = y/x
z = z
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Cylinder coordinates in the change of the variable formula
The change of the variable formula∫∫∫

D
f (x , y , z) dV =∫∫∫

G
f (x(u, v ,w), y(u, v ,w), z(u, v ,w))

∣∣ detDF(u, v ,w)
∣∣ du dv dw

The cylinder coordinate change

F (r , θ, z) = (x(r , θ, z), y(r , θ, z), z(r , θ, z)) = (r cos θ, r sin θ, z)
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Thus

detDF(r , θ, z) = det

cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

 = r cos2 θ + r sin2 θ = r

The triple integral in cylinder coordinates∫∫∫
D
f (x , y , z) dV =

∫∫∫
G
g(r , θ, z)r dr dθ dz ,

where g(r , θ, z) = f (r cos θ, r sin θ, z).
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Where to use cylinder coordinates?

Cylinder coordinates make it easy to handle rotations around z-axis,
because a curve rotating around z-axis can be written in a form

r = f (z), where z ∈ [a, b] and θ ∈ [0, 2π),

where f is a non-negative function.
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Example

Calculate the volume of the solid Ω of revolution of the area between
the axis and f .

So
Ω = {(x , y , z) ∈ R3 : a ≤ z ≤ b,

√
x2 + y2 ≤ f (z)}.

∫∫∫
Ω
dx dy dz =

∫ b

a

∫ 2π

0

∫ f (z)

0
r dr dθ dz

=

∫ b

a

(
2π · 1

2
f (z)2

)
dz = π

∫ b

a
f (z)2 dz .
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Second example

Find the volume under z =
√
4− x2 − y2 above the quarter circle inside

x2 + y2 = 4 in the first quadrant.

(Answer= 4π
3 )
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Spherical coordinates

In spherical coordinates a point (x , y , z) can be given in a form
(r , θ, ϕ), where r ≥ 0, 0 ≤ θ < 2π, 0 ≤ ϕ ≤ π.

v

x

y

(x,y,z)

z

θ
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From geometry we get the formulas
x = r sinϕ cos θ
y = r sinϕ sin θ
z = r cosϕ
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Spherical coordinates in the change of the variable formula

Now F (r , θ, ϕ) = (r sinϕ cos θ, r sinϕ sin θ, r cosϕ)

Thus

detDF(r , θ, ϕ) = det

sinϕ cos θ −r sinϕ sin θ r cosϕ cos θ
sinϕ sin θ r sinϕ cos θ r cosϕ sin θ
cosϕ 0 −r sinϕ


= −r2 sinϕ

Absolute value of this is r2 sinϕ

So the triple integral in spherical coordinates∫∫∫
D
f (x , y , z) dV =

∫∫∫
G
g(r , θ, ϕ)r2 sinϕ dr dθ dϕ,

where g(r , θ, z) = f (r sinϕ cos θ, r sinϕ sin θ, r cosϕ).
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Example

Calculate the volume of a ball B3(R) of radius R:∫∫∫
B3(R)

1 dV =

∫ R

0

∫ 2π

0

∫ π

0
r2 sinϕ dϕ dθ dr

=

∫ R

0

∫ 2π

0
−r2 cosϕ

∣∣∣∣π
ϕ=0

dθ dr =

∫ R

0

∫ 2π

0
2r2 dθ dr

=

∫ R

0
2 · 2πr2 dr = 4πr3

3

∣∣∣∣R
r=0

=
4πR3

3
.
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