CIV-E4100 Stability of Structures Opening Lecture 26.2.2024

D.Sc. Joonas Jaaranen, University Teacher

Motivation

...we need to analyse properly...

...and design accordingly.

Learning objectives

After finishing the course, the student:

- can apply the theory and concepts of elastic stability to the problems in structural engineering
- can formulate stability problems mathematically
- can apply exact or approximate solution methods and FE-software to solve stability problems
- can utilize literature to extend the skills and knowledge gained during the course

- Theory and concepts of stability of structures: equilibrium, stability, bifurcation, imperfection sensitivity, critical load, post-critical behaviour.
- Governing equations of structural stability problems.
- Exact and approximate solution methods.
- Numerical solutions using finite element methods.
- Flexural buckling.
- Torsional and lateral-torsional buckling.
- Plate buckling.
- Shell buckling basics.

Workload

- Lectures $4 \times 6 = 24 \text{ h}$
- Exercise sessions $6 \times 6 = 36 \text{ h}$
- Independent work 56 h
- Exam (incl. preparation) 16 + 3 = 19 h

Course overview

Lectures	Exercise sessions	Homework assignments	Exams
6 x (2 + 2) h	6 x (2 + 2 + 2) h	1 / week	
 Weekly lectures Monday 10.15-12.00 Tuesday 10.15-12.00 	 Weekly exercise sessions Wednesday 8.15-10.00 Wednesday/Thursday 16.15-18.00* Friday 14.15-16.00 Guidance to homework assignments / examples 	 Homework assignments Published each week on previous Sunday Submission to MyCourses next week Wednesday 23.59 (latest) Graded 0-2025 points Homework grade limits Right to take part in the course exam: total points ≥ 50 % max. total points Total points ≥ 75%: exam grade upgraded by (+1) for the course grade. Applicable within 2024-2025. 	 Course exam 18.4.2024 13.00- 16.00 (R1) Make-up exam 5.6.2024 13.00- 16.00 (R1) [Sign-up via sisu.aalto.fi]

*) Day varies, check the weekly schedules

Schedule - overview

	Week 9	Week 10	Week 11	Week 12	Week 13-14*	Week 15	Week 16
	26.23.3.	4.310.3.	11.317.3.	18.324.3.	25.37.4.	8.414.4.	8.414.4.
Lectures (Monday 10-12) (Tuesday 10-12)	- Opening - Concepts - Discrete systems	- Flexural buckling	- Approximate methods - Torsional buckling	- Lateral- torsional buckling	- Plate buckling	- Shell buckling - Recap	Final exam Thu 18.4. 13.00-16.00 R1
Exercise sessions	Guidance HW1 + examples	Guidance HW2 + examples	Guidance HW3 + examples	Guidance HW4 + examples	Guidance HW5 + examples	Guidance HW6 + examples	
Assignment/	Homework 1	Homework 2	Homework 3	Homework 4	Homework 5	Homework 6	
Due date!	Wed 6.3. 23:59	Wed 13.3. 23:59	Wed 20.3. 23:59	Wed 27.3. 23:59	Wed 10.4. 23:59	Wed 17.4. 23:59	

- Week 1
- Basic concepts of stability analysis of mechanical systems
- Energy approach for stability analysis: concepts, calculus of variations, stationarity condition, stability conditions
- Analysis of discrete systems:
 - Perfect system
 - Imperfect system
 - Linearization
 - Multi-degree-of-freedom system
- Bifurcation and limit point, critical load, imperfection sensitivity

- Governing differential equations for columns
- Critical load and mode shapes (perfect Euler columns)
- Effect of imperfections
- Columns on elastic foundation or with elastic supports
- Post-critical behaviour

- Approximate solution methods;
 Rayleigh-Ritz method
- Different forms of energy criteria

$$\sum_{j=1}^{N} \left(\int_{0}^{L} EI\phi_{i}^{\prime\prime}\phi_{j}^{\prime\prime} \mathrm{d}x - P \int_{0}^{L} \phi_{i}^{\prime}\phi_{j}^{\prime} \mathrm{d}x \right) c_{j} = 0$$

- Torsion of beams
 - St. Venant torsion and Vlasov torsion
 - Kinematics, internal forces, cross-section properties, notation

- Torsional buckling
 - Differential equations and boundary conditions
 - Solution methods
- Lateral torsional buckling
 - Differential equations and boundary conditions
 - Solutions methods

- Governing equations of plate buckling
- Solutions for basic cases
- Approximate solutions
- Local buckling in structural members

Course content* Week 6

- Buckling of cylindrical shells
- Critical load
- Post-critical behaviour
- Imperfection sensitivity
- Other aspects

Buckled wine tanks. https://shellbuckling.com

- Preparation for the exam

Buckling of a soda can. <u>https://www.youtube.com/watch?v=AXSG3q1Jqp0</u>

Literature

- Yoo, Chai Hong, and Sung Chil Lee. Stability of Structures: Principles and Applications. Amsterdam; Butterworth-Heinemann, 2011. [Course book] E-version available in Aalto Library: <u>https://primo.aalto.fi/permalink/358AALTO_INST/ha1cg5/alma999087064406526</u>
- Timoshenko, Stephen, and James M. Gere. Theory of Elastic Stability. 2nd ed., Dover ed. Mineola, N.Y: Dover Publications, 2009. E-version available in Aalto Library: https://primo.aalto.fi/permalink/358AALTO_INST/ha1cg5/alma999103404406526
- Galambos, T. V. (Theodore V.), and Andrea Eden Surovek. Structural Stability of Steel: Concepts and Applications for Structural Engineers. Hoboken, N.J: John Wiley & Sons, 2008. E-version available in Aalto Library: https://primo.aalto.fi/permalink/358ALTO_INST/ha1cg5/alma999069624406526
- Eslami, M. Reza (Mohamad Reza). Buckling and Postbuckling of Beams, Plates, and Shells. Cham: Springer, 2018. E-version available in Aalto Library: <u>https://primo.aalto.fi/permalink/358AALTO_INST/ha1cg5/alma999162354406526</u>
- Markku Tuomala. Rakenteiden stabiilisuusteoria, luentomoniste. [In Finnish] http://rmseura.tkk.fi/opetusmonisteita/Tuomala_Rakenteiden_stabiilius_luentomoniste.pdf
- Zdenek P. Bazant and Luigi Cedolin. Stability of structures: Elastic, inelastic, fracture and damage theories. World Scientific, 2010.
- N. A. Alfutov. Stability of Elastic Structures. Springer, 2000

	Mon 26.2.	Tue 27.2.	Wed 28.2.	Thu 29.2.	Fri 1.3.
8-10			Exercise (R2)		
10-12	Lecture (266)	Lecture (R266)			
12-14					
14-16					Exercise (R2)
16-18			Exercise (266)		
18-20					

	Mon 4.3.	Tue 5.3.	Wed 6.3.	Thu 7.3.	Fri 8.3.
8-10			Exercise (R2)		
10-12	Lecture (266)	Lecture (266)			
12-14					
14-16					Exercise (R2)
16-18			Exercise (TBA)		
18-20					

	Mon 11.3.	Tue 12.3.	Wed 13.3.	Thu 14.3.	Fri 15.3.
8-10			Exercise (R2)		
10-12	Lecture (266)	Lecture (266)			
12-14					
14-16					Exercise (R2)
16-18				Exercise (266)	
18-20					

	Mon 18.3.	Tue 19.3.	Wed 20.3.	Thu 21.3.	Fri 22.3.
8-10			Exercise (R2)		
10-12	Lecture (266)	Lecture (266)			
12-14					
14-16					Exercise (R2)
16-18				Exercise (266)	
18-20					

	Mon 25.3.	Tue 26.3.	Wed 27.3.	Thu 28.3.	Fri 29.3.
8-10			Exercise (R2)	No teaching	Easter
10-12	Lecture (266)	Lecture (266)			
12-14					
14-16					
16-18					
18-20					

	Mon 1.4.	Tue 2.4.	Wed 3.4.	Thu 4.4.	Fri 5.4.
8-10	Easter	No teaching			
10-12					
12-14					
14-16					Exercise (R2)
16-18				Exercise (TBA)	
18-20					

	Mon 8.4.	Tue 9.4.	Wed 10.4.	Thu 11.4.	Fri 12.4.
8-10			Exercise (R2)		
10-12	Lecture (266)	Lecture (266)			
12-14					
14-16					Exercise (R2)
16-18			Exercise (266)		
18-20					

	Mon 15.4.	Tue 16.4.	Wed 17.4.	Thu 18.4.	Fri 19.4.
8-10					
10-12					
12-13					
13-14				Exam	
14-16				13-16 (R1)	
16-18					
18-20					

Course staff

- Lectures, responsible teacher

- Joonas Jaaranen, joonas.jaaranen@aalto.fi, room 229 (CIV department)
- Exercise sessions, grading
 - Ahmad Shahgordi, shahgordi@hotmail.com
 - Gabriel Da Silva Reis, gabriel.dasilvareis@aalto.fi

Requirements

- Mandatory homework assignments: ≥ 50% of the max. points grants right to the exam
- Submision deadlines: submit each week's homework to MyCourses latest on Wednesday 23:59 during the following week
- Course grading: 0-5
 - Final exam graded 0-5
 - Grade upgrade to course grade (+1), if total homework points ≥ 75% of the max. total points

Assignments

- Must be submitted Wednesday 23:59 next week (latest) in MyCourses
- Homework tasks for each assignment in MyCourses, published latest in the beginning of the week (Monday morning)
- Submit a single pdf-file, paper size A4
- Make the answers clear, ambiguous answers do not score points
- Write clearly, illustrate by drawings when needed
- There is lot to do: start early, do not leave close to submission deadline!
- Participate the exercise sessions; assistants are there to support you

Software [Computer exercises]

Computer exercises: RFEM 6 (or your own preferred software)

Access options:

Premote use of classroom computers, instructions: MyCourses \rightarrow RFEM instructions

Installation on a personal computer, instructions: MyCourses \rightarrow RFEM instructions

End of opening lecture

Questions?