Lecture	Lecturer: lecture content
number,	
date	
Lecture 1,	CS and ST: Introduction to the course. Scalars and pseudo-scalars.
26.02	Complex vectors and inhomogeneous plane waves
Lecture 2,	ST: Dyadics. Definition, coordinate representation (matrix form),
4.03	symmetric and antisymmetric, 2D, uniaxial, Hermitian dyadics
Lecture 3,	CS: Dyadics. Rotation and reflection dyadics, eigenvalue problem,
11.03	inverse dyadics
Lecture 4,	CS: Material relations, causality, frequency and spatial dispersion
18.03	
Lecture 5,	XW: Boundary conditions – Generalized sheet transition conditions
25.03	and boundary conditions at discontinuities in time. Reflection from
	impedance boundaries
28.03 - 03.04	Easter break
Lecture 6,	CS: Uniqueness, energy conservation, lossless, lossy and gainy media
8.04	and boundaries
Lecture 7,	ST: Reversal transformations (time, space reversals, parity-time
15.04	symmetry)
Lecture 8,	ST: Reciprocity and nonreciprocity in electrodynamics
22.04	
Lecture 9,	ST: Electromagnetic duality, duality in nonreciprocal media, Babinet
29.04	principle and implications
Lecture 10,	MSM: Moving charge radiation and Green's function
6.05	
Lecture 11,	ST: Huygens' principle, including the physical optics integrals
13.05	
Lecture 12,	MSM and MM: Time-varying electromagnetic structures
20.05	
Consultation,	Your questions and teachers' answers (preparation for the exam)
27.05	
3.06	Course examination

CS – Constantin Simovski, ST – Sergei Tretyakov, XW – Xuchen Wang,

MSM – Mohammad Sajjad Mirmoosa, MM – Mohamed Mostafa.

Weeks 09-11,13,16-22 Mon 12:15 - 14:00 Maarintie 8 / AS4

09-12,14-18,21 Thu 12:15 - 14:00 Tietotekniikka / T3

12,15 Mon 12:15 - 14:00 Maarintie 8 / TU5